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ABSTRACT: Colloidal nanocrystals (NCs) compete with molecular catalysts in the field of 

homogenous catalysis, offering an easier recyclability and a number of potentially advantageous 

functionalities, such as tunable band gaps, plasmonic properties or a magnetic moment. Using 

high throughput printing technologies, colloidal NCs can be also supported onto substrates to 
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produce cost-effective electronic, optoelectronic, electrocatalytic and sensing devices. For both 

catalytic and technological application, NCs surface chemistry and supracrystal organization are 

key parameters determining final performance. Here, we study the influence of the surface 

ligands and the NC organization on the catalytic properties of In2S3, both in colloidal form and as 

a supported layer. In colloidal form, NCs stabilized in solution by inorganic ligands show the 

highest photocatalytic activities, which we associate with their large and more accessible 

surfaces. On the other hand, when NCs are supported on a substrate, their organization becomes 

an essential parameter determining performance. For instance, NC-based films produced through 

a gelation process provided five-fold higher photocurrent densities than those obtained from 

dense films produced by the direct printing of NCs.  

INTRODUCTION 

Semiconductor nanocrystals (NCs) combine huge surface areas with a solid state platform for 

charge carrier photogeneration and transport.1 This combination of properties makes them 

particularly appealing for applications involving interaction with the surrounding media, such as 

catalysis,2,3 environmental remediation,4,5 and sensing.6 Colloidal NCs are especially suited for 

quasi-homogenous catalysis because relative to molecular catalysts they offer easier recyclability 

and added functionalities such as a magnetic moment for remote location or recovery, tunable 

band gaps for photocatalysis, and modulability to produce multisite systems by combining 

multiple co-catalysts.7,8 However, the ability of colloidal NCs to interact with the surrounding 

media is controlled by their surface chemistry, which also determines several other fundamental 

properties, including colloidal and chemical stabilities and charge carrier and surface trap 

densities.9 To find surface chemistries that simultaneously optimize all these parameters is 

extremely challenging and at the same time critical to exploit their full potential.  
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Colloidal NCs can be also assembled or supported within macroscopic structures and devices 

as required in electrocatalysis or sensing, for instance.10-12 Beyond their huge surface area, 

solution processability, associated with high throughput and cost-effectiveness, is the main 

advantage of colloidal NCs in technological applications, especially when compared with thin 

films produced by vacuum-based technologies. When supported, a proper NC organization 

becomes essential to maintain their inherent large surface areas, while ensuring at the same time 

proper electrical conductivities for effective charge injection/extraction.13 To face this key 

challenge, a plethora of approaches to engineer NC solids with controlled NC arrangement have 

been developed. A highly used approach involves slow NC assembly driven by an oversaturation 

of the NC concentration during solvent removal.14,15 While yielding in some cases astonishing 

NC assemblies, this strategy does not generally provide materials with large surface areas and is 

strongly limited in terms of reproducibility, production throughput and scale up potential. To 

produce highly porous structures in a cost-effective manner, faster assembly strategies, based on 

destabilizing the NC dispersion in solution, are more suitable. This destabilization can be 

induced by externally triggering the ligand desorption or stimulating its binding.10,16 The ultimate 

goal is to produce an interconnected NC network, i.e. a gel, with a proper surface chemistry to 

interact with the media.17 In this direction, an effective approach to produce highly porous NC 

superstructures with good transport properties is the oxidative removal of thiolate ligands to link 

chalcogenide NCs through chalcogen-chalcogen bonds.18 Following this approach, gels of 

different metal chalcogenides have been produced.19-21 

In2S3 is an n-type semiconductor (2.6 eV band gap) with large exciton Bohr radius of 33.8 

nm22 used in lithium-ion batteries,23 as photodetector,24 for solar energy conversion through 

photocatalysis,25-27 and particularly as a host material for two-photon absorption processes 
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through an intermediate band.28-29 While its chemical stability, low defect density, simple 

synthesis, and proper band gap makes it an excellent candidate for photocatalytic applications, 

this material is yet underexplored in this area. There have been reported a number of synthetic 

procedures to produce In2S3 NCs with different morphologies.[1-4] Ultrathin In2S3 nanobelts 

showed promise for phosphorous displays due to the blue emission in photoluminescence 

spectra.[1] Doping of In2S3 by Mn, Cu demonstrated tunable dual color emission at blue and 

orange depending on the excitation wavelength.[] Moreover it has been demonstrated that 

depending on the morphology of the NCs and facets enclosed, In2S3 can serve as an efficient 

catalysts for dye degradation under either UV, visible or NIR light irradiation.[5] Furthermore, 

there have been reported several works devoted to improvement of photocatalytic performance 

via producing composites. In2O3/In2S3/Ag nanoheterostructures have been shown improved 

efficiency towards photoelectrochemical water splitting.[] However, to the best of our 

knowledge, the study on the influence of the In2S3 NC surface chemistry has not been shown.  

In this work, we evaluate the photocatalytic activity of colloidal In2S3 NCs both in solution and 

when supported. We analyze the effect of different surface chemistries and NC organizations to 

determine the conditions resulting in best performances for quasi-homogeneous catalysis and 

photoelectrocatalysis.  

 

EXPERIMENTAL DETAILS 

Materials. Indium trichloride (InCl3, 98%), oleylamine (OAm, 70%), oleic acid (OAc, 90%), 

sulfur powder (99.998 %), 11-mercaptoundecanoic acid (MUA, 95%), tetramethylammonium 

hydroxide pentahydrate (TMAOH, ≥97%), dodecanethiol (DDT, ≥98% ), tert-dodecanethiol 

(tDDT, 98.5 %), N-methylformamide (MFA, 99 %), phosphotungstic acid hydrate 
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(H3[PW12O40]·xH2O, PTA, 95 %), trifluoroacetic acid (TFA, 99 %), tetranitromethane (TNM, 95 

%), rhodamine B (RhB, 97 %), sodium hydroxide (NaOH, ≥98 %), sodium sulfide (Na2S), and 

potassium chloride (KCl, ≥99 %) were purchased from Sigma-Aldrich. Hexane, methanol and 

acetone were of analytical grade and were purchased from Panreac. Glass substrates coated with 

indium tin oxide (ITO, ∼8 Ω/sq) were acquired from VWR. Milli-Q water (MQ-Water): 18.2 

MΩ, filtered with filter pore size 0.22 μM, Millipore. All syntheses were carried out using 

standard air-free Schlenk-line techniques. 

Synthesis of In2S3 NCs: Among the several established synthetic protocols to produce In2S3 

NCs with different shapes and sizes,23-24,27,29 we followed a slight variation of the procedure 

reported by K. H. Park et al.,30 to obtain In2S3 NCs with a two-dimensional disk-like 

morphology. The difference between the synthesis procedure reported by K. H. Park et al. and 

ours is that we used an injection step instead of a heating up procedure, since the latter led to a 

broader size-distribution in our hands (Figure S1 b). Briefly, in a 25 mL three-neck flask, 1 

mmol of InCl3 and 10 mL of OAm were mixed and degassed (100 mTorr) for 60 minutes at 80 

°C under magnetic stirring. During this time, a clear solution formed. Then, the temperature was 

raised up to 220 °C (5 °C/min) and a previously degassed (15 minutes) solution containing 1.5 

mmol of sulphur powder in 5 mL of OAm was swiftly injected. Upon injection of the sulphur 

precursor solution, the color of the solution gradually changed from transparent to orange, 

indicating the NC formation. After 10 minutes, the reaction was quenched by removing the 

heating mantle and placing the flask in a water bath. During the cooling step, the color of the 

solution changed from orange to yellow. NCs were precipitated by adding 30 mL of acetone to 

the crude solution and centrifuging the mixture at 5700 rpm for 5 min. The supernatant was 

discarded and the precipitate was redispersed in 5 mL of hexane. A second purification step was 
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performed following the same procedure. Finally, NCs were dispersed in 5 mL of hexane (~ 10 

mg/mL solution) and stored for later use. 

Surface modification with PTA: The procedure used to replace native organic ligands with 

PTA was based on previous work by J. Huang et al.31 Briefly, 1 mL of a 10 mg/mL dispersion of 

In2S3 NCs in hexane was mixed with 1 mL of a MFA solution that contained 20 mL of TFA and 

50 mg (0.0173 mmols) of PTA. The formed biphasic solution was shook vigorously for 10 

seconds and then stirred for 30-60 minutes. After stirring, the mixture was allowed to separate 

into the two phases. The migration of NCs from the upper hexane phase to the lower MFA phase 

indicated the ligand exchange and transfer of particles into a polar solvent. The upper liquid 

phase was discarded and then 2 mL of a hexane: acetone (1:1) mixture was added to the vial. The 

solution was then shook and centrifuged at 3000 rpm for 5 min. This step was repeated 3 times 

for the purpose of removing as much of the residual ligands as possible. Finally, the precipitated 

NCs were redispersed in MQ-Water for dye degradation measurements and in methanol for film 

preparation. 

Surface modification with InCl3: The procedure used to replace native organic ligands with a 

In-Cl complex was based on previous work by V. Sayevich et al.32 Basically, the same steps 

followed above to modify the In2S3 NCs surface with PTA were used to modify them with InCl3, 

with two small differences: i) the 1 mL MFA solution contained 30 mg of InCl3 (0.135 mmols); 

ii) to facilitate the phase transfer / ligand exchange, instead of TFA, 1 mL of acetone was 

additionally introduced in the initial biphasic solution before shaking. Finally, NCs were 

redispersed in MQ-Water or in methanol depending on whether they were to be used for dye 

degradation measurements or film preparation, respectively.  
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Surface modification with MUA: The procedure used to replace native organic ligands with 

MUA was based on a previous work by S. F Wuister et al.33 Briefly, 5 mL of a 20 mg/mL 

dispersion of In2S3 NCs were mixed with 5 mL of a MUA solution (2 mM in methanol). The 

resulting biphasic solution was stirred under inert atmosphere for 30 min. During this time, NCs 

moved from the upper hexane phase to the bottom methanol phase. The upper part was removed 

and NCs were precipitated by addition of 30 mL of acetone and centrifuging at 4000 rpm for 5 

min. The obtained precipitate was redispersed in methanol and precipitated one more time with 

acetone. NCs were finally dispersed in MQ-Water or methanol. It should be noted that repeating 

the washing procedure several more times led to NCs aggregation, but addition of few mL of the 

MUA solution (2 mM in methanol) permitted redispersion NCs back in solution.  

Direct NC deposition: 1 mL of the hexane or methanol solution containing In2S3 NCs (20 

mg/mL) with the selected surface ligand (OAm, PTA, InCl3, MUA) was spin-coated on 

previously washed ITO substrates at a rotation speed of 2000 rpm for 20 seconds. The obtained 

films were annealed at 250 °C for 60 min under argon flow. 

NC deposition through xerogel formation: 1 mL of MUA-caped In2S3 NCs (20 mg/mL) in 

methanol was spin-coated on ITO substrates at a rotation speed of 2000 rpm for 20 seconds. 

Immediately after preparation, the film was dipped in a TNM solution (50 µL of 3% TNM in 5 

mL of acetone) for 1 min. Subsequently, the film was rinsed with fresh methanol to remove by-

products and then annealed at 250 °C for 60 min under argon flow. 

Gel and aerogel preparation: The procedure used to produce In2S3 NC gels and aerogels was 

based on our previous work.19 To produce In2S3 NC gels, 50 µL of a TNM solution (3% in 

acetone) were added into 2 mL of a methanol solution containing MUA-capped In2S3 NCs (10 

mg/mL). The mixture was shaken vigorously for 30 seconds and then kept undisturbed for the 
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whole gelation process. The gelation process visually evolved during 2 h, but the solution was 

left undisturbed for two days to ensure its completion. After two days, the solvent mixture 

(methanol and acetone) was exchanged to pure acetone, removing all the methanol and TNM 

residues. This process must be carried out with special care in order to not damage the porous 

network of the gel. At the same time, the solvent cannot be completely removed at any step. 

Thus, we partially replaced the solvent every 1-2 h for 2 days. While not optimized, relatively 

long time intervals between solvent replacements were used to ensure complete penetration of 

the fresh solvent into the porous structure of the gel. After the solvent exchange, the gel 

immersed in acetone was loaded into a supercritical point dryer chamber and soaked with liquid 

CO2 overnight. After 12 h, the chamber was half drained and filled with fresh liquid CO2. This 

procedure was repeated at least 6 times in one-hour intervals in order to replace acetone by liquid 

CO2. Finally, the chamber was completely filled with liquid CO2 and heated to 39 °C. Upon 

heating, the pressure increased up to 75-80 bars, thus surpassing the supercritical point of CO2. 

The sample was kept under these conditions for 1 h. Afterward, the pressure was released while 

keeping the temperature constant. 

Dye degradation experiments: The photocatalytic activity of In2S3 NCs was evaluated by 

photodegradation of RhB. In a typical experiment, 1 mL of an aqueous RhB solution (100 ppm) 

was added to 9 mL of an aqueous solution containing In2S3 NCs (1.1 mg/mL). Before reaction, 

the mixture was kept in the dark for 30 min under magnetic stirring. Then, the glass reaction 

vessel was exposed through its open top to a 300 W xenon lamp for 2 h providing ca. 100 

mW/cm2 irradiance at the sample. 

Photoelectrochemical measurements: The photoelectrocatalytic activity of In2S3 NCs was 

evaluated through the photoelectrochemical oxidation of a polysulfide electrolyte:34 
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S2- + 2h+  S 

S + Sx-1
2-
 Sx

2- (x = 2–5) 

the oxidized species, Sx
2-, is converted back (reduced) to S2- on the counter electrode: 

Sx
2- + 2e-  Sx-1

2- + S2- 

Photocurrent measurements were performed using a three-electrode cell configuration with a 

Pt-coiled wire having a surface area of 2 cm2 as a counter electrode and an Ag/AgCl reference 

electrode filled with 3M KCl solution. A 1M aqueous solution of S, NaOH and Na2S at pH7 was 

used as electrolyte. A bias voltage to the working electrode was applied through an electrical 

contact to the uncoated part of the ITO-glass substrate. A surface area of 1 cm2 of the deposited 

film was in contact with the electrolyte. Illumination was provided by 8 xenon lamps (35 W 

each) radially distributed with a total power of 280 W and irradiance on the sample of ca. 100 

mW/cm2. Electrochemical impedance spectroscopy (EIS) was performed using versaSTAT3. 

Measurements were conducted in the frequency range from 100 kHz to 1 mHz with a 5 mV Ac 

amplitude using the three-electrode cell configuration with the same conditions used for 

photocurrent measurements. 

 

Characterization techniques: Transmission electron microscopy (TEM) characterization was 

carried out using a ZEISS LIBRA 120, operating at 120 kV. Samples were prepared by drop 

casting a diluted NC solution onto a carbon coated copper grid (200 mesh). Scanning electron 

microscopy (SEM) analysis was carried out using a ZEISS Auriga microscope. For SEM 

characterization, NCs were dispersed in appropriate solvent and drop casted onto silicon 

substrates. X-ray power diffraction (XRD) analyses were carried out on a Bruker AXS D8 

ADVANCE X-ray diffractometer with Ni-filtered (2 µm thickness) Cu Kα1 radiation (λ = 

1.5406 Å). For XRD analysis, NCs in solution were drop casted (200-500 µL at a concentration 
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of about 3 mg/mL) onto a zero-signal silicon wafer. UV-vis absorption spectra were recorded on 

a PerkinElmer LAMBDA 950 UV−vis spectrophotometer. Samples were prepared by diluting 

100 µL in 2 mL of hexane inside a 10 mm path length quartz cuvette. UV-vis diffuse reflectance 

spectra were acquired with a Jasco V-570 UV/Vis/NIR spectrophotometer equipped with an 

integrating sphere. The solid sample was placed on the sample holder and measured from 1000 

to 300 nm and the baseline was corrected using a BaSO4 reflectance standard. The Kubelka-

Munk equation was employed to convert reflectance to absorption.34 FTIR spectra were recorded 

form 500 cm-1 to 4000 cm-1 using a PerkinElmer FT-IR 2000 spectrophotometer. Dynamic light 

scattering (DLS) measurements were performed using a Zeta Sizer (Malvern Instruments) 

equipped with a 4.0 mW HeNe laser operating at 633 nm and an avalanche photodiode detector. 

For DLS analysis, samples were diluted in 2 mL of appropriate solvent inside a 10 mm path 

length glass cuvette. X-ray photoelectron spectroscopy (XPS) measurements were carried out on 

a SPECS system equipped with an Al anode XR50 source operating at 150 mW and a Phoibos 

150 MCD-9 detector. The pressure in the analysis chamber was kept below 10-7 Pa. The area 

analyzed was about 2 mm x 2 mm. The pass energy of the hemispherical analyzer was set at 25 

eV and the energy step was maintained at 1.0 eV. Data processing was performed with the Casa 

XPS program (Casa Software Ltd., UK). Binding energies were shifted according to the 

reference C 1s peak that was located at 284.8 eV. The fitting of each component was performed 

taking into account the characteristic width of each peak (taking into account the particular 

element and electronic state) and the separation of each doublet as reported in the Handbook of 

X-ray photoelectron spectroscopy [REF].  Thermogravimetric analyses (TGA) were carried out 

using PerkinElmer Diamond TG/DTA instrument. For TG analysis, samples were dried and 20 
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mg of the dried powder was loaded into a ceramic pan. Measurements were carried out in an Ar 

atmosphere from ambient temperature to 500 °C at a heating rate of 2 °C/min. 

 

RESULTS AND DISCUSSIONS 

Figure 1a displays a representative TEM micrograph of the 18  2 nm In2S3 NCs produced 

through the injection of a OAm-sulfur solution into a hot (220 °C) OAm solution containing 

InCl3, as described in the experimental section. Using this synthetic protocol, a slight variation of 

that reported by K. H. Park et al.,30 -In2S3 NCs with disk-like morphology were produced. The 

thickness of the In2S3 nanodisks was previously reported at 0.76 nm,30 which corresponds to a 

single unit cell, and their diameter could be adjusted in the range from 18 nm to 90 nm by using 

different sulfur precursors and/or reaction times (see details in the supporting information, SI, 

Figure S1).  

The XRD patterns of the as-synthesized NCs and NC aerogel displayed the reflections of the 

β-In2S3 with tetragonal crystal structure (Figure 2 a). Two intense peaks observed on the 

diffraction patterns suggest the preferential growth along these planes. However, we did not 

observe (0012) and (1015) peaks which indicates about retardant growth rate along these lattice 

planes. Similar trend was reported by Park et al for In2S3 nanoplates.[] The assembly of NCs into 

aerogel did not affect the material crystallinity. However, the diffraction pattern from the aerogel 

sample is appeared to be noisier. This might be due to the aerogel porous nature. 

Figure 2 b shows the absorption spectra of the as-synthesized OAm-NCs and NC aerogel 

converted from the spectra obtained using diffuse reflectance UV-vis spectroscopy. 

Measurements demonstrated slight shift of the absorption peak for the aerogel sample suggesting 
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the changes in the NCs sizes upon gelation. Indeed calculation of the NCs sizes using Scherrer 

equation demonstrated the decrease in the size values from L(311) = 18 nm for precursor NCs to 

L(311) = 15 nm for NC aerogel. This indicates that the changes in the band gap originated from the 

quantum confinement effects. These results are consistent with the one obtained for CdSe NC 

aerogels and can indicate about the etching of the NCs surface during the process of gelation.[6]  

Furthermore the difference in the absorption between NCs and aerogel can be due to aerogel 

interconnected structure and different powders packing and delocalization along the network.[7] 

Similar trend was observed by Brock et al, for CdSe NCs where the various aerogel density 

resulted in the absorption shift.[8] 

The presence of OAm in the reaction mixture was fundamental to produce In2S3 crystals with 

sizes in the nanometer size regime and with narrow size and shape distributions. OAm binds 

indium ions at the NCs surface, limiting the access/reaction of additional monomer and thus 

confining the NC growth. At the same time, OAm molecules bound at the NC surface colloidally 

stabilized them during synthesis, enabling their homogeneous growth. The presence of OAm was 

indicated by FTIR analysis (Figure 2 c), and was expected to modulate the NC catalytic activity. 

To determine the effect of surface ligands on the photocatalytic properties of In2S3 NCs and to 

direct their assembly, OAm was replaced from as-produced NCs (OAm-NCs) with three 

different ligands: a composition-matched inorganic ligand, In-Cl complex (InCl-NCs); a non-

matching inorganic ligand, (PW12O40)
3- ((PW12O40)

3-NCs); and a shorter organic ligand, MUA 

(MUA-NCs). In all cases, new ligands were introduced using previously reported two-phase 

methods adapted to our system.31,32 

In brief, to replace the native OAm with inorganic ligands, a hexane solution containing the 

In2S3 NCs was mixed with a PTA/TFA solution in MFA or with an InCl3 solution in MFA. This 
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process rendered the NCs soluble in polar media such as methanol or H2O, as confirmed by TEM 

and DLS measurements (Figure 1 c, d) which confirms successful ligand displacement of long-

chain hydrocarbon organic ligands by smaller one or inorganic. FTIR spectra from the 

functionalized NCs demonstrated the absence of the peaks at 2800-2900 cm-1 assigned to the C-

H vibration band from OAm (Figure 2 c), suggesting successful replacement of the native 

ligands.  

The surface of In2S3 NCs capped with InCl, (PW12O40)
3-, and MUA ligands was characterized 

by the presence of negatively charged species, which resulted in negative ζ-potential values of -

19 mV, -26 mV and -28 mV, respectively (Figure 1 e). TGA analysis further confirmed OAm 

displacement. (PW12O40)
3- -NCs showed 9% weight loss, much lower close to 50% loss for 

OAm-NCs, (Figure 1 f). 
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Figure 1. a-d) Representative TEM micrographs and corresponding DLS spectra of the initial 

In2S3 NCs (a) and of the In2S3 NCs capped with MUA (b), (PW12O40)
3- (c), and an In-Cl complex 

(d). All micrographs have the same scale bar = 50 nm. e) Z-potential measurements of the In2S3 

NCs capped with MUA, (PW12O40)
3-, and the In-Cl complex. e) TGA profiles of the initial In2S3 

NCs (OAm-NCs) and of the In2S3 NCs capped with MUA and (PW12O40)
3-. 

 

Figure 2. XRD patterns of the In2S3 NCs and aerogel (a). The bars in the bottom correspond to 

the bulk β- In2S3 (JCPDS N 25-0390). Absorption spectra for the NC powder and NC aerogel 

(b). 

XPS measurements corroborated the presence of (PW12O40)
3- and Cl on the surface of In2S3 

NCs (Figure 2). The XPS spectrum of (PW12O40)
3--NCs displayed the presence of tungsten at the 

In2S3 NC surface ( 1 %), with a main oxidation state compatible with that of a tungstate (W 

4f7/2 binding energy = 35.8 eV, Figure 2a).35 The ratio In/S in (PW12O40)
3--NCs was slightly 

above that of stoichiometric In2S3: In/S = 0.87, and the main contribution to the In 3d5/2 

electronic states (77 %) displayed a relatively high binding energy (In 3d5/2 binding energy 
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=446.1 eV) compared to that of In2S3, which would be compatible with a higher electronegativity 

of  (PW12O40)
3- anions.  

The XPS spectrum of In2S3 NCs stabilized with InCl3 (InCl-NCs) displayed the presence of Cl 

( 3%) in a metal chloride environment (Cl 2p3/2 binding energy = 198.9 eV, Figure 2b). 

Additionally, the surface of InCl-NCs contained an even larger excess of In: In/S = 1.0. The 

main contribution to In electronic states (70 %) was compatible with both an In2S3 and an InCl 

chemical environment (In 3d5/2 binding energy = 445.2 eV, Figure 2b), and a minor component 

at (In 3d5/2 binding energy =445.8 eV) might be assigned to InCl3.
36 

OAm was replaced with MUA by mixing In2S3 NCs in hexane with a MUA solution in 

methanol.16 This process rendered the In2S3 NCs soluble in polar media such as methanol, 

isopropanol or water (Figure 1 b). FTIR spectra of In2S3 NCs stabilized with MUA (MUA-NCs) 

showed the presence of peaks at 2924 cm-1 and 2830 cm-1 that correspond to C-H stretching 

(Figure 3 c). However, due to the shorter chain length of MUA compared with OAm, the 

intensity of these peaks was lower than in the initial OAm-stabilized In2S3 NCs (OAm-NCs). 

This was consistent with TGA measurements that confirmed the decrease in organics amount 

(Figure 1 f). The as-synthesized NCs contained a large quantity of organics which was confirmed 

by weight loss of 50 %. The decrease in the loss up to 18% for MUA-NCs indicated less amount 

of organic of the NCs surface since MUA has lower molecular weight. And in the case of 

inorganic ligand functionalized PW12O40)
3--NCs, the weight loss was 8%. Furthermore, in the 

FTIR spectra we observed the decrease in the intensity of the C-H peaks that come from 

organics. The disappearance of the weak peak at 2547 cm-1 present in the spectrum of pure 

MUA, and which was attributed to the S-H stretching, indicated the binding of the ligand to the 

metal atom through the thiolate group. Finally, the peaks at 1547 cm-1 and 1406 cm-1 observed in 
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the FTIR spectrum of the MUA-NCs were attributed to the asymmetric and symmetric 

vibrational bands of the carboxylate, again consistent with the presence of the MUA functional 

group. 

 

Figure 3. a) XPS spectrum of the In 3d, S 2p and Cl 1s regions obtained from (PW12O40)
3--NCs. 

b) XPS spectrum of the In 3d, S 2p and Cl 1s regions obtained from InCl-NCs. c) FTIR spectra 

of OAm, MUA, MUA-NCs, OAm-NCs and a NC aerogel. Note that MUA-NCs and OAm-NCs 

were dispersed in methanol and hexane respectively.  
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methanol, leaving a chalcogen-rich NC surface. In such chalcogen-rich NCs, and in the presence 

of sufficient oxidizer, chalcogen catenation takes place, resulting in the aggregation of the NCs 
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into a network held together by interparticle chalcogen–chalcogen bonding.17 This ligand-free 

gelation mechanism allows for direct connection of NCs without any intermediary ligand that 

could hinder, for instance, inter-particle charge transfer. 

The formed gel was subsequently dried under super-critical CO2 to retain the porous structure. 

TEM characterization of the resulting aerogel (Figures 4 a and S2) revealed the random 

aggregation of the NCs. However, HRTEM micrographs showed some of the attached NCs to 

have coincident crystallographic orientations (Figure S2). SEM characterization of aerogels 

suggested a highly porous three dimensional structure with large voids (Figure 4 b). FTIR 

analysis of the final aerogel evidenced that the gelation process was accompanied by the removal 

of MUA as proven by the suppression of the 2800-2900 cm-1 peak corresponding to the C-H 

vibration band (Figure 3 c). The peak with low intensity at 2400 cm-1 can be ascribed to vibration 

of C=O ketone group originated from carboxylate group of MUA. 

The amount of oxidizing agent introduced was a key parameter controlling the gelation 

process. On one hand, low amounts of TNM resulted in partial NC aggregation and precipitation 

but without the formation of a proper NC network. On the other hand, an excess of the oxidizing 

agent resulted in much denser gels by strongly accelerated the NC aggregation through 

efficiently removing all the MUA molecules and leading to extensive chalcogen-chalcogen bond 

formation (Figure S3). 

Type IV nitrogen adsorption/desorption isotherms, characteristic of mesoporous structures, 

were observed for the NC aerogels (Figure 4 d). From the fitting of the data to a Brunauer-

Emmett-Teller (BET) model,38 the surface area of In2S3 NC aerogels was determined to be ca. 

134 m2/g, while that of precipitated MUA-NCs was just 40 m2/g (Figure 4 d). For comparison, 
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the calculated surface area for colloidal In2S3 NCs with a disk-like geometry, a thickness of 1 nm 

and a diameter of 18 nm was 225 m2/g. 

 

 

Figure 4. a) TEM and b) SEM micrographs of an In2S3 NC aerogel. c) Vials containing the 

MUA-NC solution in methanol, a NC wet gel, the super-critically dried NCs aerogel and the 

precipitated and dried MUA-NCs. d) Nitrogen adsorption/desorption isotherms of an In2S3 NC 
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aerogel and of dried MUA-NCs. e) Scheme of the gel formation by TNM oxidation of MUA and 

sulphur ions at the NC surface.  

 

Due to absorption in the UV and visible region, In2S3 is considered as a suitable candidate for 

photodegradation of dyes. There are have been published several studies on the photocatalytic 

degradation of methylene blue,[9] methylene orange[10] and rhodamine B[11] over In2S3 NCs 

(Table S1). In this work as an example it was decided to choose RhB.  

The photocatalytic performance of In2S3 NCs in suspension was evaluated through the 

degradation of RhB under xenon lamp irradiation (300 W). In a typical measurement, 20 mg of 

NCs were suspended in 10 mL of MQ-water containing 10 ppm of RhB. Before irradiation, the 

solution was stirred in the dark for 30 min to achieve adsorption equilibrium. Note that OAm-

NCs were not stable in MQ-water and thus were not tested for RhB degradation. MUA-NCs 

showed a poor activity toward photodegradation of RhB, reaching just 50% of RhB degradation 

after 2 h illumination (Figure 5). We associated this poor performance to the limited access of 

RhB to the MUA-covered NC surface. Under illumination, photogenerated electrons are 

transferred to adsorbed dye molecules to decompose them. If not properly extracted, 

photogenerated holes accumulate at the In2S3 NC and result in the oxidation of the NC surface.11 

In MUA-NCs, this photooxidation results in the detachment of MUA ligands as disulphides and, 

hence, induce irreversible NCs aggregation and consequent surface loss.39-41  

 (PW12O40)
3-- and InCl-NCs provided the highest RhB degradation rates, which we attributed 

to the superior surface accessibility on these NCs due to the absence of organic ligands and their 

fair stability in solution during the whole experiment (Figure 5). No photooxidation-induced 

aggregation was observed for (PW12O40)
3--NCs and InCl-NCs proving the presence of these 

ligands to provide a better stability. Noteworthy, the In2S3 NC-gel showed intermediate 
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efficiency for RhB degradation (65 %) under the same experimental conditions. This 

intermediate efficiency of NC-gels corresponded to a partially organic-free surface compared to 

MUA-NCs but associated with a lower total active area if compared with colloidal (PW12O40)
3--

NCs and InCl-NCs. Compare to the work published by Liu et al.,11 the (PW12O40)
3--NCs exhibit 

higher efficiency, even considering the fact that the amount of the catalyst used was significantly 

lower. The complete degradation of RhB was achieved in 210 min over In2S3 nanotubes, 

however, in our case already in 120 min we observed the diminishing of RhB over inorganically 

functionalized NCs. 

Furthermore, we compared the produced In2S3 NC catalysts with In2S3 bulk. As it was 

expected bulk In2S3 exhibit moderate results compared to nanocrystalline material. We 

investigated the performance of In2S3 NC aerogel compared to the catalytic performance with a 

TiO2 nanopowder as well. TiO2 is a common material used for photocatalytic energy conversion. 

However, TiO2 nanopowder showed lower catalytic activity under visible light irradiation 

compared to inorganically functionalized In2S3 NCs. 
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Figure 5. Photocatalytic degradation curves of RhB on MUA-NCs, (PW12O40)
3--NCs, InCl-NCs 

and a NC-gel. Experiments were carried out by irradiating a 10 ppm RhB mixture containing 20 

mg of sample in MQ-water with a xenon lamp (300 W) for 2 hours. 

 

To investigate their photoelectrocatalytic properties, In2S3 NCs were supported on ITO-

covered glass substrates. NC layers were prepared by spin coating a methanol solution of the 

NCs (Figure 6). To produce porous films, the MUA-NC layer was dipped into a TNM solution 

immediately after spin coating, interconnecting in this way the In2S3 NCs into a porous 

network.20 The substrate was afterwards rinsed with methanol to remove excess of TNM and 

reaction by-products. All layers were annealed at 250 °C for 60 min under argon flow before 

photoelectrocatalytic characterization. 
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Figure 6. a-e) SEM images of films obtained by spin-coating OAm-NCs (a), MUA-NCs (b), 

(PW12O40)
3--NCs (c), InCl-NCs (d), and MUA-NCs that were subsequently linked together by 

oxidation with TNM to produce a xerogel film (e). Scale bar = 2 µm. f) Scheme of the process of 

formation of a xerogel film.  

The photoelectrocatalytic performance of In2S3 NCs was evaluated using a three-electrode cell 

with a Pt-coiled counter electrode, an Ag/AgCl reference electrode and the NCs film as working 

electrode. A polysulfide solution, consisting of a 1 M aqueous solution of Na2S, NaOH and S, 

was used as electrolyte. Figure 7 shows the results obtained from linear sweep voltammograms 

and time-dependent photocurrent measurements of the different samples analysed. 

Films obtained by spin coating OAm- and MUA-NCs showed the lowest performance. We 

attribute this poor performance to a limited access of the sulphide species to the NC’s surface 

and to the low electrical conductivity of the film due to the presence of the insulating organic 

ligands. The lower performance of OAm-NCs if compared to MUA-NCs could result from the 

hydrophobic nature of OAm-NCs which may reduce the interaction with the reaction solution 

hence reducing the current density. The hydrophilic nature of MUA-NC films provided a better 

contact between the NCs and the electrolyte and hence slightly higher photocurrent densities. 

Layers produced from (PW12O40)
3--NCs and InCl-NCs showed improved photocurrents 

compared with OAm-NCs, which we attributed to a more efficient charge transfer with the 

media and a faster charge transport between the NCs. Surprisingly, xerogel films provided the 

highest photocurrent densities, reaching 150 µA/cm2 at 1.0 V vs Ag/AgCl which represent a 

five-fold increase compared to the (PW12O40)
3--NCs and InCl-NCs films (Figure 7 a). We 

attributed such enhanced performance of the xerogel films to: i) an organic-free NC 

interconnection, resulting in improved interaction and charge transfer, ii) a high degree of 
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porosity offering large active surface areas for interaction with the media. EIS measurements 

confirmed the lower charge transfer resistance of the xerogel layers compared with (PW12O40)
3--

NCs and InCl-NCs films, associated again to the higher surface area of the interconnected NC of 

the xerogel films (Figure 7 c). 

 

 

 

Figure 7. Linear sweep voltammogram curves (a) and chronoamperometric characteristics 

normalized by the amount of photoactive material at 0.3 V vs. Ag/AgCl (b) of xerogel layers and 

layers produced from OAm-, MUA-, (PW12O40)
3-- and InCl-NCs. Nyquist plots for (PW12O40)

3-- 

and InCl-NCs and xerogel layer (c).  

 

CONCLUSIONS 

We compared the photocatalytic and photoelectrocatalytic performance of 18 nm disk-shaped 

In2S3 NCs with different surface chemistries and supra-crystalline organization. Dispersions of 

In2S3 NCs, colloidally stabilized with inorganic ligands such as polyoxometallates or chlorides, 

showed the highest photocatalytic performance toward dye degradation in solution. We 

attributed this experimental fact to the higher accessibility of the NC surface provided by the 
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inorganic ligands compared with the organic ones and to the colloidal stability of the materials, 

which provided maximized surface areas to interact with the media. On the other hand, organized 

NC assemblies provided higher photoelectrocatalytic performances than organic- and inorganic-

capped NCs. The organization of the NCs into networks held together through chalcogen-

chalcogen bonds simultaneously provided larger surface areas for interaction with the media 

compared with layers of precipitated NCs, and effective avenues for charge transport through the 

layer. 
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Fourier-transform infrared spectroscopy; XPS, X-ray photoelectron spectroscopy; ICP, 

inductively coupled plasma mass spectroscopy; OAm-NCs, OAm-capped NCs; (PW12O40)
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