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dynamic meshes
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Abstract

The physical mechanisms of frost formation have been widely studied, yet much
empirism is still needed in numerical approaches. Indeed, accurate simulations
of frost growth can be reached by setting up a specific combination of the model
empirical inputs while using a method to accurately track the frost-air interface.

This paper presents a finite volume ALE method which captures the air-
frost interface using dynamic meshes. It is divided into two main sections.
First, the search of a valid set of empirical correlations to correctly emulate frost
growth under certain experimental conditions. An assessment of seven reference
cases is carried out by comparing solutions using different empirical correlations
against experimental data. As a result, a discussion on the performance of such
parameters is made, emphasizing the fact of using diffusion resistance factors
above 1.0 in order to capture the frost growth. Second, a 2D numerical test
consisting of a duct flow with a non-homogeneously cooled lower boundary is
performed. Aspects related to the frost thickness and growth rate are analysed,
proving the method to be a valid candidate to simulate frost growth.

Keywords: Frost growth, Arbitrary Lagrangian-Eulerian (ALE) method,
Dynamic mesh, Numerical model, Diffusion resistance factor

Nomenclature

cp specific heat capacity, J/(kgK)
D diffusivity, m2/s
Dh hydraulic diameter, m
h enthalpy, J/kg
hsv latent heat of sublimation, J/kg
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hc convective heat transfer coefficient, W/(m2K)
hm mass transfer coefficient, m/s
~j diffusion mass flux, kg/(m2s)
ṁ water vapour mass flux, kg/(m2s)
q̇ heat flux, W/m2

r vector of residuals
S supersaturation degree
T temperature, K (Celsius when specified)
P pressure, Pa
v velocity, m/s
V volume, m3

W water vapour concentration, kgv/kgda

x mole fraction
x vector of variables
y coordinate, m
Yv water vapour concentration, kgv/kgha

Greek symbols
αr relaxation factor
δ relative error
δy mesh displacement, m
∆yfs growth displacement, m
ε porosity
λ conductivity, W/mK
µ diffusion resistance factor
ρ density, kg/m3

τ tortuosity
ω̇i ice generation, kg/(m3s)
ω̇v water vapour generation, kg/(m3s)

Subscript
av averaged
da dry air
dens related to the densification of the frost layer
∆y related to the increase of layer thickness
eff effective
fl frost layer (contains ice and humid air)
fs frost surface
ha humid air
i ice
lat latent
sat saturated
t total
v water vapour
w wall
x related to the position in streamwise direction
0 initial value
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∞ far field conditions

Superscript
` current outer iteration
m current inner iteration
n current time step
q iteration

1. Introduction

Whenever a surface is in contact with humid air below the dew and freezing
points, water vapour will desublimate, transitioning to a solid state that will
form a crystaline structure called frost. Frost formation is a common and usually
undesired phenomenon that affects the aerospace, cryogenics and refrigeration
industry, among others. Frost can form on aircraft wings either on-ground
(typically through nocturnal frost), and in-flight (when crossing supersaturated
icing clouds [1]), adding weight and reducing the aerodynamical performance.
It also causes a great impact on wind turbines, heat exchangers, engine turbine
blades, electrical lines, etc. These issues highlight the need of understanding
and accurately predicting frost formation.

Hayashi et al. [2] divided the frost formation mechanism into three periods:
the crystal growth period, the frost layer growth period and the frost layer full
growth period. The first refers to an early growth period characterized by crystal
growth. First, heterogeneous nucleation and further embryo growth covers the
cold wall as a thin frost layer. In the second period, the frost layer behaves
as a porous medium, where crystals continue growing while interacting with
each other. In this period, the initial rough frost becomes a uniform layer. It is
considered to end when the thickness of the frost stops growing. The third period
continues with a densification and growth of the frost layer, bringing with it an
increase of the thermal resistance [2]. During that stage, the thickness growth
is minimal, and the frost surface temperature rises until the melting point.
From that point onwards, new deposition sites at the frost surface will form in
liquid phase, which will soak into the frost layer, freezing in the inside. This
cycle process continues periodically until the heat transfer condition reaches the
equilibrium.

The frost layer growth period is the most studied among the three. Brian et
al. [3] proposed first analytical approximations to model frost growth. Later
on, Tao et al. [4] and Le Gall et al. [5] used averaged finite volume approaches,
which were also used by Na and Webb [6] with some simplifications. Na and
Webb’s formulation was subsequently used by Lenic et al. [7], and recently by
Armengol et al. [8] to address the air-frost coupled problem. Other significant
approaches involving the computation of the fluid and frost domains are the
coupling of a one dimensional frost model with a comercial CFD code by Ell-
gas and Pfitzner [9], the one-domain approach by Kim et al. [10], in which
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the one dimensional frosting model [11] is implemented, and the recent frost
formation resistance model put forward by Kim et al. [12].

Despite the efforts to simulate the frost-free air coupled problem, there is
still a lack of consensus in which empirical correlations capture better the frost
formation. Furthermore, solutions with CFD approaches use static grids [7, 8,
13, 14, 15, 16], which lead to a non-accurate tracking of the interface.

In view of the reported results, a finite volume approach based on Tao’s
mathematical formulation, which models the frost layer growth period (until the
melting point is reached) using a deformable mesh is here presented. This paper
aims to discuss the performance of the tested empirical correlations, and provide
new insights throughout a critical analysis of seven reference cases, covering a
wide range of experimental conditions. Finally, the stated methodology is used
to numerically solve the frosting on a wind tunnel with a non-homogeneously
cooled lower boundary, experimentally set up by Kwon et al. [17], in order to
test the model capabilities.

2. Physical model and mathematical formulation

The mechanism of frost growth is shown in Fig. 1, in which a local averaged
control volume analysis is depicted. The set out approach considers that a
volume V is composed by the volumes occupied by the ice Vi, and the humid
air Vha. The ice volume fraction or ice porosity is then defined as εi = Vi/V .
Similarly, the air porosity is expressed as εha = Vha/V . Moreover, the equalty
εha + εi = 1 must be preserved. In addition, note that the humid air porosity,
the dry air porosity and the water vapour porosity stand for the same volume
fraction, i.e., εha = εda = εv. Such porosities will also be represented as εv for
the sake of clarity.

The assumptions made in the present analysis are: (a) the total gas phase
pressure Pha is constant throughout the porous frost layer, and equal to the
external atmospheric pressure P∞; (b) water vapour, dry air and ice are in local
thermal equilibrium, i.e. Tha = Tv = Tda = Ti; (c) water vapour inside the frost
layer is saturated; (d) the heat and mass transfer analogy is applicable, with a
constant Lewis number; (e) convection effects are negligible such that ~vha = 0
within the frost layer [18], and (f) no movement of the ice crystals is allowed
(~vi = 0).

2.1. The transport diffusion equations

The vapour mass conservation equation reads as:

d

dt

∫
Vv

ρvdVv +

∫
Sv

ρv (~vv − ~vb) · ~ndSv =

∫
V

ω̇vdV (1)

where the substantial derivative of the Eulerian density field including the vol-
ume swept by the mesh equals the generation or destruction of water vapour
ω̇v. Integrating over the volume V and rewriting the equation in terms of the
water vapour diffusion mass flux ~jv = ρv (~vv − ~vha).
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Figure 1: Sketch of the frost growth in a discretized domain. The detail of the elementary
control volume shows the implemented averaged volume technique.

d

dt

∫
V

ρvεvdV +

∫
S

ρvεv (~vha − ~vb) · ~ndS +

∫
S

εv~jv~ndS =

∫
V

ω̇vdV (2)

Applying that ~vha = 0 and introducing Fick’s law, i.e. ~jv = −ρhaτDv∇Yv:

d

dt

∫
V

ρvεvdV −
∫
S

ρvεv~vb · ~ndS =

∫
S

ρhaεvτDv∇Yv · ~ndS +

∫
V

ω̇vdV (3)

where Yv is the concentration of water vapour, and τ is the tortuosity. The
effective diffusivity is defined as Deff ≡ εvτDv or Deff ≡ µDv, where µ is called
the diffusion resistance factor (µ ≡ εvτ). On the other hand, setting up the
transport equation of the ice phase:

d

dt

∫
V

ρiεidV +

∫
S

ρiεi (~vi − ~vb) · ~ndS =

∫
V

ω̇idV (4)

where ice generation equals water vapour destruction (ω̇i = −ω̇v). Applying
the equality into Eq.4 and substituting into Eq. 3, while considering ~vi = 0, and
rearranging the terms:
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d

dt

∫
V

εv (ρv − ρi) dV −
∫
S

εv (ρv − ρi)~vb · ~ndS =

∫
S

ρi~vb~ndS

− d

dt

∫
V

ρidV +

∫
S

ρhaDeff∇Yv · ~ndS

(5)

2.2. The energy equation

The energy conservation equation is given by the following equation:

d

dt

∑
k

∫
Vk

(ρkhk − Pk) dVk+
∑
k

∫
Sk

ρkhk (~vk − ~vb)·~ndSk = −
∑
k

∫
Sk

~̇qk ·~ndSk (6)

where k = {i, v,da}. Rewriting the former in terms of the diffusion mass flux
~jr = ρr (~vr − ~vha), where r = {v,da}, and applying the condition Pha ≈ Pi ≈
P∞ as well as the assumed zero velocities of the ice and humid air within the
frost layer:

d

dt

∫
V

(εiρihi + εvρhahha) dV −
∫
S

(εiρihi + εvρhahha)~vb · ~ndS

+

∫
S

εvhv~jv · ~ndS +

∫
S

εvhda
~jda · ~ndS = −

∫
S

(
εi~̇qi + εha

~̇qha

)
· ~ndS

(7)

Now, developing the enthalpy cross-diffusion terms:

d

dt

∫
V

(εiρihi + εvρhahha) dV −
∫
S

(εiρihi + εvρhahha)~vb · ~ndS

+

∫
S

εv (hv − hda)~jv · ~ndS = −
∫
S

(
εi~̇qi + εha

~̇qha

)
· ~ndS

(8)

where ~jv = −~jda. Furthermore, defining the frost layer (fl) conduction heat flux

as ~̇qfl ≡ εi~̇qi + εha
~̇qha and applying Fick’s law:

d

dt

∫
V

(εiρihi + εvρhahha) dV −
∫
S

(εiρihi + εvρhahha)~vb · ~ndS =

∫
S

(hv − hda) ρhaDeff∇Yv · ~ndS −
∫
S

~̇qfl · ~ndS

(9)

The enthalpy cross-diffusion term on the right-hand side of the equation is
neglected as it is about five orders of magnitude smaller than the heat flux term
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(hv − hda) ρhaDeff∇Yv ~̇qfl = −λfl∇T
(hv − hda) ρhaDeff ∇Yv λfl ∇T
107 10−7 10−1 101 103

10−1 104

Table 1: Orders of magnitude of the right-hand side of Eq. 9.

(see Table 1). Note that this term is not usually mentioned in the literature.
Recalling that enthalpies are defined as:

hn = hfn +

T∫
Tref

cpndT ≈ hfn + c̄pn (T − Tref) (10)

c̄pn =
1

T − Tref

T∫
Tref

cpndT (11)

where n = {i, v,da} and hf is the formation enthalpy. Rearranging the terms
of Eq. 9 in terms of the temperature, the following expression is reached:

d

dt

∫
V

(C1T + C2εv + C3εvT ) dV −
∫
S

(C1T + C2εv + C3εvT )~vb · ~ndS =

∫
S

(C4 + P∞)~vb · ~ndS +

∫
S

λfl∇T~ndS − d

dt

∫
V

C4dV

(12)

where λfl is the frost layer conductivity, and the coefficients C1, C2, C3, C4 are
given by:

C1 = ρic̄pi

C2 = ρi (c̄piTrefi − hfi) + ρhac̄pda
Trefda

(Yv − 1) + ρhaYv (hfv − c̄pvTrefv )

C3 = ρhac̄pda
(1− Yv)− ρic̄pi + ρhaYv c̄pv

C4 = ρi (hfi − c̄piTrefi)− P∞

2.3. Boundary conditions

Air-frost interface:

An energy balance at the interface gives the temperature at the frost sur-
face (fs):

λfl
∂Tfl

∂n︸ ︷︷ ︸
q̇fl

= hc (T∞ − Tfs)︸ ︷︷ ︸
q̇t

+ ρfl∆hsv
dyfs

dt︸ ︷︷ ︸
q̇lat

(13)
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where the sensible heat flux q̇fl, which penetrates into the frost layer, is generated
by the heat convection from the surrounding air q̇t caused by the temperature
gradient between the air bulk and the frost surface, and by the latent heat of
sublimation q̇lat given by the desublimation of water vapour at the frost surface.

The Nusselt number correlations used in the present study vary depending
on the tested experiment. Further detail on such taken values will be adressed
in Section 5.1 and Section 6.

On the other hand, a mass balance at the frost interface allows the evaluation
of the frost surface displacement:

ρfl
dyfs

dt︸ ︷︷ ︸
ṁ∆y

= hm (ρv∞ − ρvfs
)︸ ︷︷ ︸

ṁt

− ρhaDeff
∂Yv,fl
∂n︸ ︷︷ ︸

ṁdens

(14)

Notice that the total deposited mass ṁt breaks into the part that contributes
to the growth of the frost thickness ṁ∆y, and the one that densifies the frost
layer ṁdens. The mass transfer coefficient hm is calculated by means of the heat
and mass transfer analogy that assumes a Lewis number of 1.

hm = hc/
(
ρha,∞cp,ha,∞Le

2/3
)

(15)

The terms of Eqs. 13 and 14 are graphically shown in Fig. 1.
A major concern is the calculation of the water vapour pressure at the frost

surface. Although theoretical analyses state the water vapour must be supersat-
urated for the phase change to occur, no general method for the calculation of
such pressure values has yet been reported. Authors prior to Na and Webb [19],
such as [5, 11], used a saturation condition. Na and Web suggested an empiri-
cal expression to model the supersaturation degree (see Eq. 16) extracted from
linearizing the laminar boundary layer equations.

Sfs = 0.808

(
Pv,∞
Pv,sat,∞

)(
Pv,sat,fs

Pv,sat,∞

)−0.657

− 1

for Tfs + 14 < T∞ < Tfs + 20 and 243.15K < Tfs < 273.15K

(16)

where Sfs is defined as follows:

Sfs =
Pv,fs − Pv,sat,fs

Pv,sat,fs
(17)

Kandula [20] again used a saturation condition claiming that the supersatu-
ration degree is strongly dependent on the surface coating governing the contact
angle, and that there is no such information in the reported experimental data.

Another condition was recently used by El Cheikh and Jacobi [21], which
uses the total air heat flux acquired at the frost surface. Unfortunately, this con-
dition needs such value from the experiment. Hence, it was not considered, and
saturated and supersaturated conditions were tested. Whenever using the su-
persaturated condition given in Eq.16 and out of range, the saturated condition
is applied.
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In regards to the frost density, the Neumann type condition used by Na
and Webb [6] is applied. Such condition assumes that the gradient of the frost
density at the frost surface is zero, i.e. ∂ρfl/∂n|fs = 0.

The cold wall:

The cases tested in this paper consider a Dirichlet type boundary condition,
either through an isothermal wall T = Tw in the 1D tests shown in Section 5, or
a varying temperature over the wall in the 2D case presented in Section 6. The
wall is assumed totally impermeable, such that the water vapour concentration
gradient is zero, hence, ∂Yv/∂n|w = 0. Moreover, there is no change in porosity,
which leads to ∂εv/∂n|w = 0.

Other boundaries:

Neumann type boundary conditions are chosen for the temperature, water
vapour concentration and porosity.

3. Thermo-physical properties

This section is dedicated to the definition of the implemented thermo-physical
properties of ice and the humid air mixture, as well as the averaged frost prop-
erties used within the porous medium.

3.1. Ice properties

According to Fukusako’s thermophysical correlations of ice [22], in the range
of -25◦C to 0◦C, density changes are about 0.3%, while variations in that range
for the conductivity and the specific heat are about 12% and 8%, respectively.
The correlations of ice thermal conductivity and heat capacity proposed in the
aforementioned paper are:

λi = 1.16
(
1.91− 8.66 · 10−3θ + 2.97 · 10−5θ2

)
for 100K ≤ T ≤ 273K (18)

cp,i = 1000 ·
(
0.185 + 0.689 · 10−2T

)
for 90K ≤ T ≤ 273K (19)

where θ is in [◦C], and T is in [K].
Several tests were carried out by changing the density, conductivity and

specific heat capacity from variable to fixed values. Results show negligible
variations under density and heat capacity changes. Hence, mean ice density is
considered to be ρ̄i = 918.9kg/m3. Nevertheless, changes of approximately 2%
on the thermal conductivity lead to accumulated mean density errors of approx-
imately 2-3% after 3 hours of simulation time, stressing out the importance of
using a variable ice conductivity.
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3.2. Humid air properties

Pressure and density:

Due to the lack of information of the water vapour pressure in the inside of
the frost layer, many authors assume the saturation condition. El Cheikh and
Jacobi [21] used another formulation in which a mass transfer conductance is
considered, avoiding the use of the aforementioned condition. Saturated water
vapour below the freezing point can be approximated by the correlation given
in [23]. Thus, the dry air pressure can be obtained from Pda = P∞ − Pv,sat.

The humid air density, which is the sum of water vapour and dry air densi-
ties, is then easily calculated by means of the perfect gas law applied to both
substances.

Thermal conductivity:

The thermal conductivity of humid air is a mixture of the dry air and water
vapour conductivities. It can be calculated by means of the Studnikov expression
found in [24].

λha = (xdaλda + xvλv)
1 +

(
xv − x2

v

)
2.75

(20)

where xda and xv are the dry air and water vapour mole fractions.
Dry air and water vapour conductivites are calculated by means of the sug-

gested correlations by [25].

Diffusivity:

The water vapour diffusivity is determined from [26].

Dv = 2.11 · 10−5

(
T

T0

)1.94(
P0

P

)
for 233.15K ≤ T ≤ 313.15K (21)

where T0 and P0 are the reference temperature (273.15K) and the reference
pressure (101325Pa), respectively.

Specific heat capacity:

The specific heat capacity of humid air can be approximated as the sum of
the heat capacities of its elements alone:

cp,ha = Ydacp,da + Yvcp,v (22)

The dry air and water vapour heat capacities are given by polinomial fits
extracted from the experimental data supplied in [27, 28]:

cp,da = a0 + a1T + a2T
2 + a3T

3 + a4T
4 for 200K ≤ T ≤ 400K

cp,v =
1000

18.01528

(
b1 + b2T + b3T

2 + b4T
3
)

for 200K ≤ T ≤ 800K
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where coefficients are:

a0 = +8.858044433595E + 02 b1 = +33.8E + 00

a1 = +1.837101847329E + 00 b2 = −0.00795E + 00

a2 = −1.011132405598E− 02 b3 = +2.8228E− 05

a3 = +2.353255208331E− 05 b4 = −1.3115E− 08

a4 = −1.933268229165E− 08

3.3. Frost properties

The frost domain is comprised of a porous ice crystaline structure that con-
tains humid air. Depending on the environmental conditions, a large diversity of
crystals can be formed. Temperature mainly determines whether snow crystals
will grow into plates or columns, while higher supersaturations produce more
complex structures (an extensive study can be found in Libbrecht’s work [29]).
This will affect the thermal conductivity of the frost as well as the mass dif-
fusivity of the water vapour throughout the porous structure. In the present
averaged volume approach, the former will be treated as an effective conductiv-
ity and diffusivity.

Frost density:

The frost density is directly calculated with the local porosity, humid air
and ice densities.

ρfl = εhaρha + (1− εv) ρi (23)

Frost effective conductivity:

Among the large amount of correlations suggested in the literature (a de-
tailed list can be found in [30, 31]), the three thermal conductivity correlations
proposed by Lee et al. [32], Na and Webb [6] and Negrelli et al. [30] are hereby
tested. These are chosen due to being both some of the most widely (see [31]),
and also most recently used.

Lee et al. [32] gave the following correlation:

λfl = 0.133 + 3.13e−4ρfl + 1.6e−7ρ2
fl for ρ̄fl ≤ 500kg/m3 (24)

Later studies by Na and Webb [6] in the line of the series-parallel model put
forward by Sanders [33] suggest that:

λfl = ξλpar + (1− ξ)λser (25)

where:

λpar =

(
1− ρfl

ρi

)
λha +

ρfl

ρi
λi

λser =

[
ρfl

ρi

1

λi
+

(
1− ρfl

ρi

)
1

λha

]−1
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Range ξ

(i) −10 < Tw < −4 ◦C 0.283 + e−0.020ρfl

(ii) −21 < Tw < −10 ◦C 0.140 + 0.919e−0.0142ρfl

(iii) Tw < −21 ◦C and ρfl < 200kg/m3 0.0107 + 0.419e−0.00424ρfl

(iv) Tw < −21 ◦C and ρfl > 200kg/m3 0.005ρfl

(
0.0107 + 0.419e−0.00424ρfl

)
Table 2: ξ parameter of Na and Webb’s effective thermal conductivity correlation.

Temperature range Morphology a b

(i) −10 < Tw < −4 ◦C Needles and sheaths 1.576 0.797
(ii) −19 < Tw < −10 ◦C Plates and dentrites 1.594 0.761
(iii) −30 < Tw < −19 ◦C Sheaths 1.035 0.797

Table 3: Coefficients of Eq. 26.

And the modeled ξ parameter is given in Table 2.
Negrelli et al. [30] have recently introduced a new correlation which takes

into account the morphology of the crystals by means of the temperature and
the porosity of the frost.

λfl

λi
= a

(
λha

λi

)bεv
for 0.5 ≤ εv ≤ 0.95 (26)

Coefficients a and b are listed in Table 3. For convenience, the three pre-
sented correlations will be referred in this paper as Lee, Na and Webb and
Negrelli.

A comparison of the three correlations is depicted in Fig. 2. Whenever
Negrelli’s correlation is used, and due to the fact that this correlation does not
cover the 0 to 1 porosity range, constant thermal conductivity values are set
below 0.5 and above 0.95 porosity values, with the values obtained at these
two porosities. This treatment is also applied to Lee’s correlation when having
averaged densities above 500kg/m3.

Frost effective diffusivity:

As deduced in Section 2.1, the effective diffusivity is a function of the local
porosity, water vapour diffusivity and the tortuosity factor, or just a function of
the diffusion resistance factor and the water vapour diffusivity. The tortuosity
factor and the diffusion resistance factor are measures of the added difficulty to
the water vapour following diffusion paths through the snow crystals. Values
above unity contradict reality, as it seems that the water vapour would be able
to follow a path shorter than a straight line. However, in the past Tao et al. [4]
and Le Gall et al. [5] used correlations with values higher than 1. Yosida [34]
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Figure 2: Comparison of frost conductivity correlations as a function of the porosity at T =
240K (influence of temperature is minimal).

also suggested a hand-to-hand delivery of water vapour as an explanation of
such diffusion enhancements.

In this paper, the most widely used correlations for the diffusion resistance
factor have been tested. All of them are listed in Table 4. Moreover, Fig. 3
shows the calculated values which range from below 1 to 2.2.

Note that the correlations given by Bruggeman, Prager and Zehnder were
obtained by means of experimental data of packed beds, not frost. Auracher
was the only one to provide a correlation by means of experimental data of
frost. However, notice that Auracher did not provide experimental values above
ε = 0.89. Either Tao et al. [4] and Le Gall et al. [5] used modifications of
Auracher’s correlation to correctly capture the evolution of the frost layer under
high porosity values. Further discussion is given in Section 5.2.

4. Numerical implementation

The presented formulation has been implemented into the in-house C++
computer code called TermoFluids. TermoFluids is an unstructured finite vol-
ume flow solver, designed for direct and large-eddy numerical simulation of
turbulent flows along with multiphysics problems. The reader is referred to [37]
for details on the TermoFluids framework that are beyond the scope of this
paper.
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Author Diffusion resistance factor

Bruggeman et al. [35] µ = ε
2/3
v

Prager et al. [35] µ = 0.5εv (1 + εv)

Zehnder et al. [33] µ =
(
1−
√

1− εv
)

Auracher et al. [36] µ = εv/ (1− 0.58 (1− εv))
Le Gall et al. [5] µ = εv/ (1− 0.58 (1− εv)) + F10 (1− εv) ε10

v

Table 4: Correlations of the diffusion resistance factor.
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porosity. Experimental data from Auracher [36].
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4.1. Discretization

The pair {T, εv} is solved using the finite volume method. Time derivatives
are discretized with a first order implicit Euler scheme. Discretization of face
values at previous time instant tn is performed with Central Difference Schemes
(CDS), whereas face values at current time tn+1 are dealt with diffusive schemes
i.e. first order Upwind Differential Schemes (UDS) due to instabilities that may
arise near the wall. In addition, the grid velocity is evaluated at the faces of the
swept volume:

~vb =
`~r n+1
f,centroid − ~r nf,centroid

∆t
(27)

where the face centroid positions ~rf,centroid are evaluated at the iteration itself
and at the former time step, respectively.

4.2. Methodology

The algorithm, which follows a fully implicit time resolution, is presented in
Alg. 1, where ` refers to the current outer iteration, and m refers to the inner
iteration. The calculation of the temperature and porosity distributions follows
a Gauss-Seidel method. αr refers to the underelaxation factors, implemented
as dynamic relaxation factors using the Aitken’s ∆2 method (see Section 4.3).

Algorithm 1 Frost growth - moving mesh method

1: Initial conditions (t = 0): {T̄fl = Tw ; y 0
fs ; ρ̄ 0

fl (see Table 5)}
2: New time step ∆t (evaluation of instant tn+1)
3: Extrapolate l∆yn+1

fs = 2.5∆ynfs − 2∆yn−1
fs + 0.5∆yn−2

fs

4: Move mesh
5: Calculate T from Eq. 12
6: Update physical properties (Yv, ρha, ρv, ρda, cp,i, ρfl, Deff , λi, λfl, C1,2,3,4)
7: Calculate εv from Eq. 5

8: if ‖
mTn+1−m−1Tn+1‖
‖m−1Tn+1‖ > δ2 and ‖mεn+1−m−1εn+1‖

‖m−1εn+1‖ < δ2 then

mTn+1,NEW = f
(
m−1Tn+1,m Tn+1, αr

)
,

mεn+1,NEW = f
(
m−1εn+1,m εn+1, αr

)
,

Go to step 5 endif

9: mTn+1,NEW =m Tn+1 and mεn+1,NEW =m εn+1

10: Update physical properties (Yv, ρha, ρv, ρda, cp,i, ρfl, Deff , λi, λfl, C1,2,3,4)
11: Calculate ∆yn+1

fs from Eq. 14

12: if
‖`∆yn+1

fs −`−1∆yn+1
fs ‖

‖`∆yn+1
fs ‖ > δ1 then Go to step 4 endif

13: if tsim < tend then Go to step 2

else End of Simulation endif

The dynamic movement of the mesh comprehends steps 4, 11 and 12 of
the algorithm. The example shown in Fig. 4 shows the moving mesh pattern
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Figure 4: Schematized pattern of a 2-outer-iteration mesh movement.

followed within a time step. Notice that in this particular case, the algorithm
goes through step 4 of the algorithm twice before the ∆y n+1

fs convergence is
reached in meshit2. Equation 28 displays the amount δy that the mesh has to
move at a specific outer iteration. While ∆y has a physical meaning (recall its
definition given in Section 2.3), δy is purely geometrical.

`δy = `∆y n+1
fs − `−1∆y n+1

fs (28)

Notice that despite the fact that ∆y is positive-definite, δy can take either
positive or negative values. No adaptative mesh refinement is used. Thus, the
number of control volumes along the simulation remain constant. These are
resized after each outer iteration by means of a technique based on a classical
elasticity-based mesh update model introduced by Smith and Wright [38] further
explained in Appendix.

The δ′s that appear in steps 8 and 12 of the algorithm previously introduced
refer to the convergence criteria. The latter are studied along with the time step
and the mesh size in order to secure grid independence. The adequate values
found are a time step of 10−2s, and the pair {δ1 = 10−5,δ2 = 10−5} under a
single column 30-cell structured mesh.

Different close-to-zero frost layer initial thicknesses are tested. No significant
differences are encountered between y 0

fs = 2 · 10−5m and y 0
fs = 10−5m, values

also tested by Jones and Parker [39], and later used in [7, 8, 19]. Hence, the
present study uses an initial thickness of 10−5m.

4.3. Relaxation factors

An optimized performance of the model is of key importance as applications
with complex geometries and vast domains require large amounts of compu-
tational time. This Section tackles the aforementioned by testing two types
of relaxation factors for the Gauss-Seidel solver: fixed relaxation factor and
Aitken’s dynamic relaxation method. Note that these are applied in step 8 of
the algorithm previously presented.

Variables are updated at each iteration q as follows:

qx = q−1x + q−1αr
qr (29)

where αr is the relaxation factor and r the residual, defined as:

qr = qx̃− q−1x (30)
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Parameter Value-Correlation

µ { Auracher [36], Prager [35], Zehnder [33], Bruggeman [35],
Le Gall et al. [5] with F = {1− 10} with intervals of 0.5}

λfl { Na and Webb [6], Lee et al. [32], Negrelli et al. [30] }
ρ̄ 0

fl {25, 30, 35} kg/m3

Pfs {Saturated, Supersaturated (when applicable)}

Table 5: List of parameters tested in each case.

while x̃ is the unrelaxed calculated variable.
In fixed relaxation factors, a small enough fixed value is assigned for all

iterations to keep a stable solution. On the other hand, dynamic relaxation
factors follow Aitken’s ∆2 method as stated in Eq. 31.

q−1αr = −q−2αr

q−1rT
(
qr−q−1 r

)
|qr−q−1 r|2

(31)

Both fixed and dynamic relaxation factors show a favourable performance
and stability. Nevertheless, Aitken’s dynamic relaxation method has proved the
most efficient based on computational time, taking 50% of the averaged CPU
time required by the most adequate fixed relaxation factor.

5. Assessment of the model empirical inputs

The empirical inputs needed by the model, i.e. the diffusion resistance fac-
tor, the frost layer conductivity, the initial frost mean density and the pressure
condition at the air-frost interface are listed in Table 5. Several empirical correla-
tions and values have been suggested in literature. However, numerical solutions
varying the empirical input parameters show significant differences. Such dif-
ferences urge to conduct parametric studies in order to determine combinations
which give best fits against tested experimental data.

The reference experimental cases studied in this paper were chosen with the
aim of covering a major region of Hayashi’s diagram [2], i.e. covering different
types of frost morphologies (see Fig. 5). Taking into account the preference of
selecting cases with thickness and average density data over time, the full set
of experiments tested by Lee et al. [11] were chosen. Moreover, in order to give
the study greater generality, the test cases by Sahin [40] were also included. A
summary of the experimental conditions is given in Table 6.

Each of these cases is then simulated, by means of 1D numerical tests, with
each of the resulting input combinations obtained from Table 5. As an example,
an input combination would be Le Gall et al. [5] diffusion resistance factor with
F = 2.5, Na and Webb’s [6] frost layer conductivity, an initial frost thickness of
30kg/m3 and a supersaturated condition at the frost-air interface. Note that the
heat and mass transfer coefficients are selected based on each specific experiment
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Case W [kgv/kgda] Tw [◦C] T∞ [◦C] v [m/s] Data

Lee1 [11] 0.00531 −20 10 1.75 {yfs; ρ̄fl;Tfs}
Lee2 [11] 0.00637 −15 15 2.5 {yfs; ρ̄fl;Tfs}
Lee3 [11] 0.00323 −15 5 1 {yfs; ρ̄fl;Tfs}
Sah1 [40] 0.0069 −9.15 12.85 2.11 {yfs}
Sah2 [40] 0.0069 −15.15 12.85 2.11 {yfs}
Sah3 [40] 0.007 −25.15 19.85 2.20 {yfs}
Sah4 [40] 0.0039 −25.15 12.85 2.10 {yfs}

Table 6: Chosen experimental conditions and measured data based on Lee et al. [11] and
Sahin [40] experiments.
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Figure 5: Initial state experimental conditions under Hayashi’s ∆C − Tw diagram[2]. Condi-
tions are given in Tables 6 and 8.
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conditions (see Section 5.1). The total amount of input combinations per case
is of 414 runs, giving an overall of 2898 runs for the seven cases.

Due to the large number of results, an statistical post-process is made after
every simulation in order to find out the best fit of each case. It consists of cal-
culating a modified R-squared value of each output with available experimental
data: thickness, mean density and surface temperature over time. The chosen
modified R-squared value is given by:

R2
mod ≡ 1−

∑
i (numi − expi)

2∑
i (expi − ¯exp)

2 (32)

where R2
mod ∈ (−∞ , 1]. Recall that a value of 1 correponds to a perfect fit,

whereas lowering the R2
mod increases the discrepancies among experimental and

numerical data, worsening the output fit. Equation 32 differs from the stan-
dard definition in its denominator: instead of dividing by the residuals of the
numerical solution, residuals of the experimental data are used in order to share
a unique normalization for all the runs tested of a certain case.

Due to the large discrepancies encountered when matching the surface tem-
perature (when available), the criterion followed to find the best fit consists of
choosing the combination which maximizes the average of Rmod,yfs

and Rmod,ρ̄fl
.

In the cases where no mean density data were reported, the best fit will be given
by the combination that maximizes the Rmod,yfs

.

5.1. Heat and mass transfer coefficients

Lee et al. [11] experimental apparatus (cases Lee1-Lee3) consisted of a closed
wind tunnel, with a test section of 300 mm long, 150 mm wide and 150 mm high.
The thickness was measured by a digital micrometer, and the surface temper-
ature with an infrared thermometer. The mean frost density was obtained by
weighing the frost mass. The overall uncertainties were of 5.57% in thickness,
6.94% in frost density, and 4.36% in frost surface temperature.

Instead of using an empirical correlation to calculate the Nusselt number,
and eventually the heat transfer coefficient, a mass transfer coefficient was first
computed from the available experimental data. The latter was extrapolated
from every set of thickness, frost mean density and surface temperature given
at a certain time. In particular, a mass transfer coefficient can be obtained by
means of a mass balance at the interface:

d (yfsρfl)

dt

∣∣∣
t=i

= [hm (ρv∞ − ρvfs
)]
∣∣∣
t=i

(33)

where i refers to the instant where the set of data is evaluated, and where ρvfs
is

obtained at the given surface temperature. The heat transfer coefficient is then
computed by means of the previously introduced heat and mass transfer analogy
(see Eq. 15). The final value is then given by the average of all computed hc |t=i.

On the other hand, Sahin [40] experimental set up (cases Sah1-Sah4) con-
sisted of an open wind tunnel, with a long entrance rectangular section of 1000
mm long, 254 mm wide and 12.7mm high, followed by a test section of 506 mm
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Case µ λfl ρ̄ 0
fl Pfs R2

mod,yfs
R2

mod,ρ̄fl

Lee1 Le Gall F = 2 Negrelli 35 Sat. 0.972 0.960
Lee2 Le Gall F = 3.5 Na and Webb 35 Sat. 0.951 0.932
Lee3 Le Gall F = 5 Na and Webb 25 Sat. 0.888 0.701
Sah1 Le Gall F = 6.5 Na and Webb 35 Sat. 0.962 -
Sah2 Le Gall F = 7 Na and Webb 35 Sat. 0.995 -
Sah3 Le Gall F = 6.5 Na and Webb 35 Sat. 0.975 -
Sah4 Le Gall F = 9 Na and Webb 30 Sat. 0.997 -

Table 7: Best fit cases. Units of ρ̄ 0
fl are kg/m3.

long with same aspect ratio. The thickness was measured using two different
techniques: using a depth micrometer and the use of a cathetometer. The first
being more accurate with an overall uncertainty of ±0.2 mm.

The averaged Nusselt correlation put forward by Shah (found in [41]) for a
thermally developing and hydrodynamically developed flow is hereby used.

Nuav =


1.849(L∗)−1/3 for L∗ ≤ 0.0005

1.849(L∗)−1/3 + 0.6 for 0.0005 < L∗ ≤ 0.0005

7.541 + 0.0235
L∗ for L∗ > 0.006

(34)

where L∗ is the dimensionless distance in the flow direction for the thermal
entrance region expressed as:

L∗ =
L

DhRePr
(35)

where L is the test section length and Dh the hydraulic diameter.

5.2. Assessment results

The assessment carried out shows that frost layer thickness results can fit
properly through numerous combinations. However, fewer combinations capture
the rest of the properties with acceptable accuracy (the reader is referred to [42]
for a detailed explanation). Testing a model uniquely against frost thickness
measurements does not ensure a proper capture of the physical phenomenon.
Furthermore, both thickness and frost mean density represent global values of
the problem, which are linked together. This is, whenever using parameters that
give an increase to the mean frost density, the thickness decreases and viceversa.

The best combination of empirical inputs found for each case, presented in
Table 6, is given in Table 7. In addition, a comparison of the numerical solutions
and the experimental data is shown in Figs. 6 and 7.

Results ensure that best fits are achieved whenever using diffusion resistance
factors above 1. On the other hand, Auracher, Prager, Zehnder and Brugge-
man effective diffusivities (µ < 1) show poorer results than Le Gall’s correlation,
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as these tend to underestimate the total deposited mass. Nevertheless, better
agreements are reached when increasing the initial mean frost density, using a
supersaturated condition at the air-frost interface (whenever applicable), and
also when using Na and Webb’s or Negrelli’s frost layer conductivity correlations
rather than Lee’s. This is due to the lower ratio observed between the calcu-
lated deposited mass and the experiment deposited mass compared to the one
resulting from a µ > 1 effective diffusivity, which is enhanced when imposing
the supersaturated condition. This results in the fact that some of the solutions
provide good agreement of the frost growth, however lacking a proper capture of
the other two variables, which usually follow the tendency line although shifted.
Indeed, it is difficult not to underestimate the mean frost density when having
a good fit of the frost thickness and viceversa.

5.3. Physical aspects of the diffusion resistance factor

The former numerical assessment shows not only that the chosen effective
diffusivity correlation has a great impact in the numerical solution, but also that
diffusion resistance factors with values greater than 1.0 are needed to match
experimental data. It is found that whenever using correlations which remain
within the range 0 ≤ µ ≤ 1, the observed lower ratio between the calculated
and the experimental deposited mass unables an accurate capture of the frost
growth evolution.

Na and Webb [19] argued the fact that Le Gall and Tao had used values
greater than 1.0, stating that such values could not be physically possible. In-
deed, no molecule of water vapour can run through a solid wall. Nevertheless,
the fact that frost behaves as a packed bed could be a hasty verdict. In his
experiments, Yosida [34] found values much greater than 1.0 in snow (which is
very similar to frost). He suggested a hand-to-hand delivery of water vapour
from side to side of ice crystals. Later on, Tao and Le Gall also found the need
of using higher values of the diffusion resistance factors in order to numerically
match their own experiments. The latter gave two other physical explanations.
First, the displacement of ice crystals towards the cold wall due to the extreme
fragility of frost caused by either thermophoresis acting on small ice nuclei, dis-
sociation of dendritic crystals or a modification of the shear stress caused by
the air flow along the frost layer. And second, the rate of densification along
the frost layer could act as a pumping force, promoting the mass transfer mech-
anism. Moreover, notice that Le Gall’s correlation shown in Fig. 3 follows the
trendline of Auracher’s at low porosity values, and separates when getting to
high porosities. Furthermore, note that the experimental data gathered by Au-
racher [36] was aquired up to values of ε = 0.89, as shown in Section 3.3. No
experimental data has yet been provided in the range of 0.89 < ε ≤ 1.

Fig. 8 shows the distributions of porosity and temperature at different times
of a representative example as a function of a normalized frost thickness. It
shows that about 80% of the frost layer has porosity values greater than 0.9, a
fact also observed in the frost density distributions computed by Na and Webb
presented in [6]. Indeed, this characteristic has been found in all the tested
numerical experiments. This is remarkable, as the rate of densification is being
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Tha,in [K] vha,in [m/s] Win [kgv/kgda] Tw,center [K]

275.15 1.5 0.00365 264.15

Table 8: Experimental test conditions

held mainly close to the cold wall. It is a fact that not only corroborates the
possible mechanisms suggested by Le Gall but also, and most outstanding, the
fact that convective effects within the frost layer should be taken into account.
In the case convective effects were implemented, a reduction of the maximum
values of µ would be expected, as water vapour would penetrate easier into
the frost layer. Ongoing work is focused on investigating the validity of such
an idea. Furthermore, the lack of experimental data within the frost layer
highlights, despite its great difficulties, the actual need to perform experiments
aiming to study the internal processes within it.

6. 2D numerical test

The described model, set up through an Arbitrary Lagrangian-Eulerian
(ALE) formulation and implemented by means of a finite volume approach,
is tested against the experimental case carried out by Kwon et al. [17], aiming
to complete and verify the conclusions extracted from the previous 1D-studies.
The experiment consists of a duct flow with a rectangular cross section of 4mm
x 100mm, and a total length of 110 mm. A cooling source is placed at the
middle-length cross section of the test chamber, below the aluminum plate that
constitutes its bottom side. Fig. 9 shows a detail of the test section. The tested
experimental conditions are given in Table 8.
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Figure 9: Detail of the test section used by Kwon et al. [17].

The total mass of frost was measured every 30 min, until 120 min. Frost
thickness was also measured at 7 different locations along the test section. Mea-
sures were taken every 30 min, till the end of the experimental test (180 min).
The wall temperature, shown in Fig. 10, was also monitored at 17 different
positions at 5, 10, 15, 30, 60, 90, 120, 150 and 180 minutes. In order to take into
account the temperature variations at the wall boundary, a stepwise Dirichlet
type boundary condition consisting of linear interpolations in both streamwise
direction and time is implemented.

Following the conclusions extracted from the grid independence study carried
out in Section 4.2, the present 2D-study shows the results acquired with a
structured mesh of size of 440 x 30 cells, with ∆x0 = 0.25mm and ∆y0 = 0.33 ·
10−3mm. Note that the growth happens mainly perpendicular to the cold wall.
Thus, a small-enough ∆x value was chosen such that it would ensure a smooth
streamwise transition at the air-frost interface. The model empirical inputs
used correspond to Lee3 case (see Table 7). This combination is chosen due to
the fact that among the set of cases studied in Section 5, Lee3 experimental
conditions are the closest to the present study in terms of crystal morphology
(see Fig. 5).

On the other hand, as the goal of the present paper is not solving the fluid
domain accurately, but to stress out the methodology used to track the interface
using a dynamic mesh, a simplified treatment of the flow is applied. Linear
functions for the temperature and the water vapour concentration are used
along the streamwise direction. The approximate outlet values, Tout = 274.15K
and Wout = 0.00336, have been taken from a previous numerical test using
constant values, and have been qualitatively verified against the available Kwon
experimental data.

In addition, local heat and mass transfer coefficients are applied. These are
found by means of the local Sherwood number correlation put forward by Lom-
bardi and Sparrow [43], which accounts for the combined entry length problem
for parallel plates under a thermally and hydrodynamically developing flow with
a wall at a uniform temperature and the other insulated.
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Figure 10: Experimental data aquired by Kwon et al. [17], and hereby used as a boundary
condition for the cold plate.
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(36)

Recall that the Sherwood number is defined as Sh = Dhhm/Dv.
The steep gradients of the transfer coefficients close to the inlet causes a

significant increase of the computational costs. Because of this, a Shx|5mm is
applied when x ≤ 5 mm.

6.1. Test results

The growth of the frost layer is shown in Fig. 11 through several thickness
profiles at different times. The experimental data gathered by Kwon et al. [17],
and the numerical solutions given by Wu et al. [14] using a static grid under a
CFD approach, are also depicted.

Results agree well with the experimental data. However, some differences
can be observed: an underpredicted growth found in the upstream region, fol-
lowed by an initial underprediction of the frost growth in the central region. A
behaviour also seen close to the outlet.

In the reported experimental facility, the flow is subjected to a sudden
stretchment at the inflow of the duct, shown in Fig. 9. The design is such
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that higher velocities are found close to the inflow, where a thermal boundary
layer is being formed. Thus, increasing the heat and mass transfer coefficients as
accounted by Eq. 36. Wu et al.’s model does not capture the increase of growth
close to the inlet, presumably due to the fact that the simulation domain was
extended 5 additional millimeters and, as a consequence, not considering the
enhanced gradients of the temperature and the water vapour close to the inlet.
On the contrary, despite the fact that the present model indicates a gradual
increase of the frost thickness close to the inlet, the underprediction is due to
the fact of using constant heat and mass transfer coefficients for the first 5 mm
of the duct, previously explained.

Moreover, because the model uses heat and mass transfer coefficients which
take into account the hydraulic diameter of the clean duct, the increase of
the flow velocity due to the narrowing of the duct caused by the frost growth
is not taken into account. Indeed, in the central region, where the velocity is
maximized, a larger heat and mass transfer should be expected. Larger heat and
mass transfer coefficients would enhance the initial rate of deposition, as seen in
the distributions approximately up to 90 min which lay below the experimental
values.

Furthermore, the slight overprediction in the downstream region seen in the
profiles beginning at 90 min is atributed to the fact of not accounting for a
detailed resolution of the water vapour concentration decay along the duct.
Recall that the linear profile used would decrease its slope with time, due to the
fact of having a reduced deposition of water vapour given by an increase of the
surface temperature.

The evolution of the frost weight over time is shown in Fig. 12. Good agree-
ment is found between numerical results and experimental data. Nevertheless,
the numerical results show that the deposition tends to slightly decrease with
time. This is due to the reduction of the vapour deposition caused by a continu-
ous diminution of the difference between the frost surface and the external flow
temperatures, and also between water vapour densities. The aforementioned
reducing effect should balance the increase of deposition due to the continuous
strangulation of the channel, as the more the frost layer grows, the larger should
the heat and mass transfer coefficients be, enhancing the deposition of the water
vapour. On the other hand, the high linearity of the numerical solution given
by Wu et al.’s model implies that the initial rate of deposition of water vapor
suffers an increase during the first 30 min of simulation. This is due to the fact
that the number of frost cells in contact with humid air along the duct increases
gradually, beginning at the central region where the cooling source is located.

In addition, a set of countour plots ranging from 30 to 180 min is shown in
Fig. 13. The distributions of the temperature and the porosity show that the
regions where the wall temperature is smaller (e.g. the central region), larger
growth is reached, and viceversa. However, note that the porosity close to the
wall is greater in the central region than in the upstream and downstream areas.
This is due to the fact that the rate of phase change in the central region is not
sufficient to overcome the increment of the volume due to the frost growth.

Despite the fact that the model is not accounting for a detailed analysis
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Figure 13: Porosity and temperature contour plots over time. x : and y : refer to the applied
image scaling.
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of the external humid air flow, but thanks to the interface tracking method
implemented by means of a dynamic mesh, the solutions reached show that the
presented model is able to produce competitive results, which are in reasonable
agreement with the experimental data.

7. Conclusions

A finite volume method capable to solve the frost growth using dynamic
meshes has been presented. The model, based on Tao’s formulation, takes into
account a growing frost domain. The deformation of the mesh is accomplished
by means of a moving mesh method that enables the vertices of the mesh to
readapt to given imposed displacements at the interface boundary.

Tackling the problem of frost formation is still a challenge. Despite the
many empirical correlations proposed in literature, there is still no agreement
on which combinations of parameters better capture the formation pattern. A
comprehensive numerical assessment of the empirical inputs of the model with
seven reference cases has been carried out by means of more than 2800 numerical
tests, resulting on combinations which ensure best fits under the considered
experimental conditions. Special attention has been given to the arguments
upholding the usage of diffusion resistance factors larger than 1.0 when having
high porosity values, εv ≥ 0.9, as they are needed to capute the frost formation.
Due to the fact that a significant part of the frost layer has such values, a
new insight has been put forward in regards of attributing the water vapour
transport inside the frost layer not only to Fickian diffusion, but also to the
convective effects involved in it.

Finally, the model has been tested on a bidimensional case with a non-
homogeneous temperature at the wall. Notwithstanding the fact that the exter-
nal flow is not being solved in detail, solutions show reasonable agreement with
experimental data, proving the method to be a valid candidate to simulate frost
growth.
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Appendix

The implemented moving mesh method that allows deformations of the frost
domain is here explained.

The mesh is assumed to be elastic. The linear momentum conservation
equation computed at each time step reads as:

�
��

�
��*

0
D

Dt

∫
V

ρvdV =

∮
S

~n · σdS +
�
��

��*
0∫

V

ρfbdV

where inertial and body forces are neglected.

Constitutive law

The constitutive equations of a linear, elastic and homogeneous continuum
are the Lamé-Hooke equations. In the particular case of small deformations,
the stress tensor can be written as follows:

σ = 2µε+ λtr (ε) I

where µ and λ are the Lamé coefficients, which can be expressed as a function
of Young’s modulus and Poisson’s ratio. In addition, the infinitessimal strain
tensor ε reads as:

ε =
1

2

(
∇~u+ (∇~u)

T
)

where ~u represents the displacements.

Boundary Conditions

Two main boundary conditions are implemented: Dirichlet (fixed displace-
ment ~uB) and Neumann (~n · (∇~u) = 0) type boundary conditions.

The present study uses Dirichlet type boundary conditions at the wall (with
~uB = 0) and at the frost surface. The side walls use a ~uB = 0 condition in
the streamwise direction, and Neumann boundary condition in the other two
directions. Periodic walls use a ~uB = 0 in the spanwise direction, and Neumann
boundary condition in the other two directions.

Discretization

The momentum equation previously introduced can be written in terms of
the displacements using the constitutive law.∮

S

(2µ+ λ)~n · ∇~udS =

∮
S

~n ·
(
µ (∇~u)

T
+ λtr (∇~u) I− (µ+ λ)∇~u

)
dS

The left-hand side term, also known as the Laplacian term, is solved implicitly
using a central difference scheme with a non-orthogonal correction. On the other
hand, the right-hand side term is treated explicitly, and where cell gradients are
evaluated by means of a least squares method. The schemes implemented in
both sides of the equation ensure second-order accuracy.
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Mesh update

Since the model uses a cell-centered finite volume method and the mesh
movement is accomplished by updating the vertices, an interpolating function
which translates displacements at the cell nodes to displacements at the vertices.

~up =

∑
c ωpc [~uc + (~rp − ~rc) · (∇~u)c]∑

c ωpc

where p indicates the point where the displacement is interpolated, and c repre-
sents the nodes (or cell centers) whose corresponding cell contains point p. The
weighting factor ωpc is:

ωpc =
1

‖~rp − ~rc‖
Note that ~uc is equivalent to the δy defined in Eq. 28.
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