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Overview 

 

Globalization plays an important role in our society. There is a need to be 
connected and have the ability to reach any place in the world, for this 
purpose different networks or systems had been created such as: Internet, 
transportation and communication systems, the power grid, social networks 
etc., which can be classified as complex networks and each of them is 
specialized in a need. 

These networks should have a high resilience against possible failures in any 
of its nodes. That can occur either randomly or because of planned attacks. 
Against this failures, the network should be able to redirect their flow through 
other nodes that are still operative.  

Recent studies have considered models for node cascade failures that lead to 
a network collapse as it has happened recently in real life networks like 
Twitter, Facebook, the global router network and the European electrical 
network.  

In this TFG we analyse the behaviour of different networks properties 
(random, small-world, scale-free, modular, geometrical, etc.) when they are 
confronted to node cascade failures. We study which network invariants and 
parameters affect the process.  

We have performed simulations and analysed the results by using the 
Pythonôs package ñNetworkXò, which allows the creation, manipulation and 
analysis of complex networks. 

To perform the analysis we have compared the obtained behaviours 
according to the network structure and the nodesô functions. Afterwards, we 
have used the data from a real-life network like the USA air transport network 
and we have compared it with the behaviour of the generated networks. By 
this, the research shows us that what makes a network to collapse is mainly 
its structure instead of its centrality, and to reduce the network collapsing risk 
it is necessary that all nodes are well-connected among them at a local level. 

 

 

 

 

 

 

 

 

 

 



   

 

 

 

 

Resumen 

 

La globalización juega un papel importante en la sociedad actual. Existe la 
necesidad de estar conectado y tener la capacidad de llegar a cualquier lugar 
del mundo, para ello se han creado diversas redes o sistemas como: Internet, 
los sistemas de transporte y comunicación, la red eléctrica, las redes 
sociales, etc., que pueden ser catalogadas como redes complejas  y cada 
una está especializada en una necesidad. 

Estas redes deben tener una alta resiliencia frente a posibles fallos en alguno 
de sus nodos. Esto puede ocurrir tanto de manera aleatoria como por un 
ataque planeado. Frente a estos fallos, la red debe ser capaz de redirigir el 
flujo a través de otros nodos aún operativos. 

Estudios recientes han obtenido modelos acerca de la caída de nodos en 
cascada que consiguen un colapso de la red como ha ocurrido recientemente 
en redes reales como Twitter, Facebook, la red global de rúters o la red 
eléctrica europea. 

En este TFG analizamos el comportamiento de diferentes propiedades en las 
redes (aleatorias, mundo-pequeño, escala libre, modulares, geométricas, 
etc.) cuando se enfrentan a una caída en cascada de los nodos. Estudiamos 
que parámetros y variantes de la red afectan al proceso. 

Hemos realizado las simulaciones y analizado los resultados mediante el 
paquete ñNetworkXò de Python, permite la creación, manipulación y análisis 
de redes complejas.  

Para realizar el análisis hemos comparado los comportamientos obtenidos 
según la estructura de la red y la función de los nodos. Después, hemos 
utilizado los datos de una red real como la red de transporte aéreo de los 
EUA y los hemos comparado con el comportamiento de las redes generadas. 
Con esto hemos podido ver que lo que hace fallar a una red 
mayoritariamente es su estructura, y que para reducir el riesgo de colapso es 
necesario que los nodos estén bien interconectados entre ellos a nivel local. 
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0 Introduction 

Many real complex systems such as communication, transport, social, or 
biological networks are ñsmall-world scale-freeò and quite sensitive to 
cascade failures. It is really important to prevent networks from failures that let 
the whole network or a huge part of it unserviceable. This TFG aims to find 
efficient methods for network protection. For this purposes, we will study model 
graphs and networks coming from real data, such as the USA airport network, 
in order to analyse graph invariants and parameters which are relevant in 
cascade failures. 

During the last two decades,   there have been important advances in the 
context of network science. A relevant study by Albert-Jeong-Barabasi [23] 
concludes that real networks, such as the USA power grid, are robust against 
random attacks, but weak against planned attacks. Researchers further 
conclude that it is possible a complete failure of the whole network just by the 
failure of few nodes [23]. The aim of this project is to analyse the results and 
behaviour of several network families after a cascade failure and identify the 
parameters that affect it. 

To carry out this project we have generated several network families with 
different properties each. On these generated networks, its nodes, have a 
different initial load depending on the parameter considered (centrality) and 
thus, a different maximum load value that the node can accept before failing. If 
one of the nodes fails (due to an attack, due an error or due to any incident that 
might occur in real life) transfers their load to their neighbours (nodes to whom 
they are connected). This extra load can also make the neighbours fail to 
produce a cascade failure. The behaviour of the network during these cascade 
failures is what we are considering in our study. For the purpose of this study, 
we have selected three different scenarios: when the network fails after a failure 
in nodes with the highest load, with the lowest load and with a half value of the 
highest load. We show that network failures are mostly affected by the nature of 
the network rather than by the centrality considered. Likewise, the failures are 
primarily affected by how well every individual node is connected with the other 
nodes around them (its neighbourhood) instead of how well is connected with 
the rest of the nodes of the whole network. 

To support our research, we have considered the USA air transport network. 
After forcing a network failure we have analysed the role of different centralities 
and compared the behaviour with those of the simulated networks. The results 
obtained from this real network are similar to the ones found with the generated 
graphs. 
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1 Graph Theory 

A graph is a representation of a system. It consists of nodes (vertices), which 
represent the entities of the system and links (edges) which connect a pair of 
nodes and represent a particular kind of interconnection between those entities. 
Networks are modelled by using graph theory which can describe mathematical 
concepts and represent the essential topological properties of a network by 
treating it as a collection of nodes and edges. 

 

Mathematically, a graph G = (V, E) is a pair of sets of vertices (V) and edges 
(E). 

 

1.1.Basic Glossary 

Å Two vertices are adjacent if there is an edge which links them. 

Å The order (n) of a graph is the number of vertices it has: n = |V|. 

Å The size (m) of the graph is the number of edges it has: m = |E|. 

Å The degree of a vertex i (ki) is the number of edges attached to it.  

In many cases, the vertices with the highest degrees in a network, those 

with the most connections, also called hubs and play an important role in 

the system. 

Å The degree of a graph (ȹ) is the highest degree of all nodes: ȹ = max (ki). 

Å A path is the succession of edges that link two vertices of the same graph. 

Å The length of the path is defined by the number of edges that this path 

crosses. 

Å A geodesic path between a pair of vertices is the shortest path that links 

them, and it gives also, by definition, the distance (d) between them. It can 

exist more than one geodesic path between two nodes. 

Å The eccentricity of a vertex v (ev) is the maximum distance between that 

vertex v to all other vertices in the graph: ev = max{d(v,x)} 

Å The radius (r) of a graph is the minimum eccentricity of a graph. A node is 

called central if its eccentricity is equal to the radius of the network. 
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1.2.Graph Parameters and Properties 

There exist many parameters and measures that could characterize different 
topological and dynamical properties of a network. For this project, we will focus 
only on the ones that will give us a useful information for our analysis. 

 

1.2.1 Diameter 

The diameter (D) of a graph is the length of the longest geodesic path between 
any pair of vertices in the network for which a path actually exists, in other 
words, it is the maximum eccentricity of a graph. 

The diameter is restricted to: 

ὶ Ὀ ςὶ                                                (1.1) 

Where r is the radius if the graph. 

The diameter of a graph could be affected substantially by a small change to 
only a single vertex or a few vertices, which makes it a poor indicator of the 
behaviour of the network as a whole.  
 

1.2.2 Mean Distance 

The mean distance of a graph is defined as the average of the distance 
between all pairs of vertices:  

ὨӶ
ВВ ȟ

                                 (1.2) 

 

1.2.3 Wiener Index 

The Wiener index is a topological index defined as the sum of lengths of the 
shortest paths, d(u, v), between all pair of nodes of a network.  

                                 (1.3) 

Notice that                                     ὨӶ                                  (1.4) 

You can estimate the overall structure of the graph if it is dense (high index) or 
sparse (low index). [2] 
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1.2.4 Clustering Coefficient 

The clustering coefficient of a graph is a measure of the degree to which its 
vertices tend to cluster together, i.e. if neighbours of a vertex are also 
neighbours among them. 

 It is related to the number of triangles in the graph. The clustering is high if two 
vertices sharing a neighbour have a high probability of being connected to each 
other. 

The clustering of a node i is the fraction of possible triangles through that node 

that exists in the graph: 

                                        (1.5) 

Where C3(i) is the number of triangles connected to the node i. 

Then the clustering coefficient for the graph is the average: 

                                              (1.6) 

 

Figure 1 Example of a simple network with one triangle and eight connected triples 

 

1.2.5 Degree distribution 

The degree distribution of a graph is the probability distribution of all degrees 
over the graph. 

For a random graph, the degree distribution follows a Poisson distribution:                                        

ὴὯ
Ὡ Ὧ

ὯȦ
   

(1.7) 

In real networks with a high number of vertices we usually find a power law 
distribution: 

ὴὯ ὃὯ                                                (1.8) 

In a power-law distribution, the probability of finding a node with degree k 

decreases as a negative power of the degree: ὴὯ Ὧͯ . This means that the 
probability of finding a high-degree node is relatively small in comparison with a 
high probability of finding low-degree nodes. 



Cascade failures in complex networks  6 

 

      

Illustration 1 Examples of typical degree distributions. 

 

The networks that present this kind of behaviour are called scale-free networks. 
Most real networks present a power-law distribution because in every real 
network there are nodes that are more important than others and they have a 
high number of edges connected to them. 

 

1.2.6 Centrality 

Centrality is the property that shows us the importance of a node inside the 
whole network in comparison with the other nodes, such as its closeness to 
many other nodes or the number of times a node is included in a geodesic path 
of a pair of nodes, on their way to reach others as an intermediary. 

Quantifies how important vertices (or edges) are and determine many of the 
structural and functional properties of this node in a networked system, for 
example, how important a person is within a social network or how well-used a 
road is within an urban network. It is based on counting paths going through a 
node. For each node, i, in the network, the number of routing paths to all other 
nodes going through i is counted, and this number determines the centrality of 
the node i. 

Social network analysts, in particular, have expended considerable effort 
studying it. There are a wide variety of mathematical measures of vertex 
centrality that focus on different concepts and definitions of what it means to be 
central in a network. 

There are different measures of centrality that are used in network analysis but 
we will just focus on six different centralities. These are explained in section 2.2. 
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1.2.7 Small-World Effect 

Watts and Strogatz observed that many real networks, apparently random, have 
some common properties such as small diameter, in comparison with random 
networks with the same order and size, but also a high clustering coefficient 
whilst in random networks is around 0. 

This led Watts and Strogatz to introduce the concept of ñsmall-worldò network. 
They modelled them from an ordered lattice, such as the k-ring, a ring where 
each site is connected to its 2k nearest neighbours of both sides (see Figure 2). 
For each node, each of the links going out from it is removed with probability   
and is rewired to a randomly selected site in the network. A variant of this 
process is to add links rather than rewire, which simplifies the analysis without 
considerably affecting the results. 

The nodes with this random links are called ñhubsò. These hubs are responsible 
for the small-world phenomenon, they reduce the distance among all nodes.  

Real networks seem they have a chaotic network, however it is found 
empirically that the mean distance, between nodes, is very short (can be 
defined as log(n)) relative to a highly ordered network. [1] 

 

 

Figure 2 Example of creation of a small-world network 

 

In popular culture, this effect is referred to the ñsix degrees of separationò 
concept. This name comes from the experiment that the psychologist Stanley 
Milgram did sending out letters to certain people in what he considered a 
remote city (in Ohio). Each letter would name a Milgramôs friend living in Boston 
and asked the recipient to forward the message directly to that person, or, if 
they didn't know the person, to forward the message to a direct contact that they 
thought might know the end person. In one study, out of 296 letters, only about 
64 reached their destination. Many original and intermediate recipients ignored 
the request. When people did continue the chain, and the letter reached its 
destination to Boston, Milgram and his collaborators counted the number of 
hops it made from the initial recipient to its target. After several experiments, 
they concluded that it takes an average of 6 people to connect any two persons. 
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1.2.8 Robustness 

The robustness of a network is the ability to keep most of its relevant properties 
and characteristics from the initial scenario against a random failure of any 
node. It has been shown that scale-free networks are robust against random 
errors but vulnerable to planned attacks. 

In random networks, where the degree distribution follows a Poisson law, 
random and planned errors affect in a similar way, only with few node failures 
the connectivity between active nodes gets worse and it produces a network 
failure. 

Research about real-world networks is very important, they can be used to 
protect lots of infrastructures based on networks, and thus protect the crucial 
nodes efficiently to avoid a network collapse. 

 

1.2.9 Modularity  

Modularity is a measure of networksô structure. Many complex networks consist 
of a number of modules or groups, so modularity was designed to measure the 
strength of division of the network. Each module contains several 
interconnected nodes, and there are few connections between nodes in 
different modules.  

Networks with high modularity have dense connections between the nodes in 
the same module but few connections between nodes in different modules. 
Inside the modules, we can differentiate between two different kinds of nodes in 
terms of their roles inside their community structure: Provincial hubs, which are 
connected mainly to nodes in their own modules; and Connector hubs, which 
are connected to nodes from other modules. [19] 

 

Figure 3. Vertices in many networks fall naturally into groups or communities creating 
a modular network. 
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1.2.10 Connection density  

The connection density parameter is a proportion of the number of edges in the 
network and the total number of possible edges. It is the simplest estimator of 
the physical cost of a network. A high density of connections between regions 
increases the clustering coefficient of the graph, whereas the long-range 
connections between different modules or clusters, even though they are 
relatively few in number, keep the path length low. [20] 

Examples of high connection density networks are: an epidemic disease 
spreading, the neurological network of the brain or the telecommunication 
network. 

The connection density parameter (D) can be computed as: 

 

Ὀ
ςά

ὔὔ ρ
 

(1.9) 

 

Where m is the number of edges and N the number of nodes. For a network of 

N nodes. The maximum value of the connection density parameter is 1.  
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2 Graphs and Centralities 

2.1.Graphs 

For our study we have chosen a variety of random and real networks: 

 

2.1.1 Geographical Threshold 2D and 3D 

This kind of graphs analyse the geographical extension of the non-growing 
scale-free networks. Even the Internet, could seem it is not restricted to physical 
distances because signals travel at the speed of light, but the Internet is 
subjected to geographical constraints due to wiring costs.  

Real networks are often represented as topological spaces. It is often 
advantageous to map non-physical quantities or networks into geographical 
spaces by, for example, the principal component analysis 

Weights represent the fitness of vertices to win edges and are interpreted as, for 
example, capitals, social skills, activity levels, information contents, 
concentration or mass of physical or chemical substances, and the vertex 
degree itself.  

The geographical threshold graph model places n nodes uniformly at random in 

a rectangular domain. Each node u has assigned a weight (w) wu. Two 

nodes u and v are joined by an edge if and only if:   

 

ύ ύ — ὶ                                             (2.1) 

 

Where r is the Euclidean distance between u and v,  the threshold value 

and ñŬò a distance parameter. 

 

2.1.2 Watts ï Strogatz 

The Watts-Strogatz graph model makes reference to the k-ring model explained 
in section 1.2.7. Consider a probability for rewiring the links in the ring, so that 
the average path length decreases very fast while the clustering coefficient still 
remains high. The rewiring can be considered as the process through which, 
with probability p, we replace each link of two nodes r-s with a link r-t, where t is 

a randomly chosen node different from r and s. If r-t is already contained in the 

modified network, no action is considered. 

A variant of this process is to add links rather than rewire, which simplifies the 
analysis without considerably affecting the results. 
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2.1.3 Barabasi ï Albert 

The BarabasiïAlbert model is based on two simple assumptions regarding 
network evolution: 

¶ Growth: new nodes are added to the network, where each new node is 
connected to m existing nodes. 

¶ Preferential attachment: this is the heart of the model. Each new node is 
connected to existing nodes with a probability proportional to its existing 
connections; the more connected, the more likely a node is to receive 
new links. 
 

The network begins with an initial network of m0 nodes (m0 Ó 2), and the degree 

of each node in the initial network should be at least 1. New nodes are added to 
the network one by one. The probability, p, of a new node to be connected to an 

existing node i, is given by:          

                 

ὴὯ
Ὧ

ВὯ
 

(2.2) 

Where j are all the pre-existing nodes.  

 

2.1.4 Erdös ï Rényi 

The Erdös-Rényi graph model considers N  nodes in an unconnected network 

distributed randomly. Therefore, all nodes connect each other by a certain 

probability p (p > 0), obtaining a set of pairs of nodes. Repeating this process M  

times, every node will have a degree M . If M  is small in comparison with N , the 

network can be disconnected, with different sets of nodes disconnected one 

from another. In the other hand, if M  is high, the network can hardly be 

disconnected.  
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Figure 4. Resulting graph depending on the value of the linking probability 

 

When nodes are linked this way, the degree distribution, p(k), for a large 

number of nodes, follows a Poisson law.   

ὴὯ
ὔ ρ

Ὧ
ὖ ρ ὖ  

(2.3) 

Where P is the probability of each node to be included in the graph. 

 

2.1.5 Power-law Cluster 

The Watts-Strogatz model shows a high clustering but without a scale-free 
degree distribution, while the Barabasi-Albert (BA) model with the scale-free 
nature does not has a high clustering. The power-law cluster model has both, a 
perfect power-law degree distribution and a high clustering. 

It is essentially the BA growth model with an extra step to incorporate high 
clustering, after the preferential attachment (PA) step in the BA model algorithm 
we add an additional step called: Triad formation. If an edge between v and w 

was added in the previous PA step, then add one more edge from v to a 

randomly chosen neighbour of w. 
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This algorithm improves BA model in the sense that it enables a higher average 
clustering and more triangles. 

 

Illustration 2. Preferential attachment (a) and Trial formation (b) 

 

The standard scale-free network model suggests a mechanism for the 
emergence of power-law degree distributions in evolving networks: New actors 

(vertices) in a social context prefers to attach to more connected (ówell knownô) 
actors. This mechanism of the emergence of clustering is well known, and was 
discussed under the name ósibling biasô. 

In the power-law distribution, the probability of finding a node with degree k 

decays as a negative power of the degree: ὴὯ Ὧͯ . This means that the 
probability of finding a high-degree node is relatively small in comparison with 
the high probability of finding low-degree nodes. Power-law relations are usually 
represented on a logarithmic scale, by which we obtain a straight line. [10] 

 

2.1.6 Random Geometric 

The random geometric graph model is the mathematically simplest spatial 
network. It is a model built by N nodes placed in a random position in a unit 

cube and linked by edges (e) according to a specified probability distribution: 

 

      ὴ ὴ ρ ὴ                                  (2.4) 

 

Two nodes (u, v) are connected with an edge if and only if the distance between 

them is below a threshold. 

 

Ὠόȟὺ ὶ                                                 (2.5) 

Where d is the Euclidean distance and r is a radius threshold. 

 

This kind of graph resembles real human social networks in a number of ways. 
For instance, they spontaneously demonstrate community structure such as 
clusters of nodes with high modularity. 
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Illustration 3 Example of a Random Geometric Graph 

 

2.1.7 Random Partition 

The random partition graph model, also known as planted partition, represents 
community structures, where n vertices are classified into q groups. The groups 

have equal size and the vertices of the same group are linked with a probability 
pin, while vertices of different groups are linked with a probability pout. If pin > pout, 

the model graph has a built-in community structure. The vertex classification is 

indicated by the set of labels ñ{qi}ò, which indicates a node inside a group.  

The classification probability to distribute nodes in all groups is:  

 

                             (2.6) 
 

Where  ὐ ÌÏÇ 
  

  
 , ὐ ÌÏÇ 

  

  
 and ŭ a density parameter of the 

groups. 
 

2.1.8 Random Regular 

Random regular graphs play a central role in combinatorics and theoretical 
computer science. It is a particular kind of random graph with n vertices, where 

3 Ò d < n and ὲ Ὠ is even, but the regularity restriction modifies significantly the 

random properties. A random d-regular graph of large size is asymptotically 
almost surely d-connected, in other words, the probability of selecting a graph 
with a connectivity less than d tends to 0 as n increases. A d-regular graph has 

all vertices of degree d. 

The pairing model is a method which takes ὲ Ὠ points and split them 
into n buckets with d points in each of them. Taking a random matching of 

the ὲ Ὠ points, and then linking the d points in each bucket into a single vertex, 
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yields a d-regular graph or multigraph. The resulting net should do not has 

multiple edges or loops, otherwise, we will need to start again. [16][17][18] 

2.2.Centralities 

The study of centrality addresses the question, ñWhich are the most important 
or central vertices in a network?ò  

In graph theory, we are particularly interested in the importance of a node due 
to its topological function in the network and possible applications in real life. To 
do so we are going to analyse each graph with several different centralities 
chosen to be the most common used.  

 

2.2.1 Degree Centrality 

It is the simplest measure in a network, is just the degree of a vertex, the higher 
the degree, the more a node is connected, and therefore, the higher is its 
centrality in the network. This centrality was considered by Wang and Rong [4] 
in the model of cascade-failure which motivates our study. 

Although degree centrality is a simple centrality measure, it can be useful. In a 
social network, for instance, it seems reasonable to suppose that individuals 
who have connections to many others might have more influence, more access 
to information, or more prestige than those who have fewer connections.  

 

2.2.2 Betweenness Centrality 

Betweenness centrality counts all the paths going through a given node among 
all pairs of nodes in the network. 

We can express the betweenness of a node i as: 

                                                            (2.7) 

Where s and t are the set of all pairs of nodes, g the number of geodetic paths 

between two nodes, in case that exists more than one, and nist the number of 

geodetic paths between s and t that go through i. 
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Illustration 4. Example of a simple graph. Node B has a higher Betweenness value 
than A 

The vertices with the highest betweenness are also the ones whose removal 
from the network will disrupt communications the most between other vertices. 
It measures how much a vertex connects others, so can occur that a vertex can 
have a low degree and high betweenness. 

 

 

Illustration 5. Example of a node with a low degree and high betweenness. 

 

One application for the betweenness centrality is in identifying bottlenecks and 
important nodes in the network.  

 

2.2.3 Communicability Centrality 

The communicability centrality, also called subgraph centrality, is a method to 
characterize nodes in a network according to the number of closed walks 
starting and ending at the node. The contribution of these closed walks 
decreases as the length of the walks increases. In other words, shorter closed 
walks have more influence on the centrality of the vertex than longer closed 
walks. 

Each closed walk is associated with a connected subgraph, this means that this 
measure counts the times that a node takes part in the different connected 
subgraphs of the network, having a higher importance in smaller subgraphs.  

We define the communicability centrality of the vertex i as the number of closed 

walks of length k in the network starting and ending at vertex i. We can compute 

this value from the powers of the adjacency matrix A which give the number of 
walks between vertices.  

But just counting the number of closed walks can take this number to infinite, 
we can avoid this problem by scaling the contribution of closed walks to the 
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centrality of the vertex by dividing them by the factorial of the order of the 
spectral moment (k!).  

ὅέάάὅὭ
ὃ

ὯȦ
 

(2.8) 

Communicability centrality takes into account not only the immediate effects of 
the closest nodes but also the long-range effects ñtransmittedò through the 
participation of a node in all subgraphs existing in the network. [15] 

 

2.2.4 Closeness Current Flow Centrality 

The closeness current flow centrality, also known as information centrality, is a 
variant of closeness centrality based on effective resistance between nodes in a 
network. It was introduced by Stephenson and Zelen in 1989 as a measure of 
node centrality of social networks. It is based on information that can be 
transmitted between any two points in a connected network.  

Here a path connecting two nodes is considered as a ñsignalò. The information 
measure (I ij) between two nodes is defined as the reciprocal of the topological 

distance (dij) between the corresponding nodes. 

Ὅ
ρ

Ὠ
 

(2.9) 

Stephenson and Zelen proposed to define I ii as infinite for computational 

purposes, which makes   ρὍ π. 

The information centrality determines the average harmonic length of the paths 
that end in a node i:  

ὍὲὪέὅὭ
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(2.10) 

This centrality will have a low value if a vertex is connected, through short 
paths, with a large number of nodes; it is better if a node has all nodes 
connected with the lowest number of steps possible, the centrality goes with the 
inverse of the average distance to other vertices. [15] 

 

2.2.5 Pagerank Centrality 

PageRank is the trade name given by Google, which uses it as a central part of 
their web ranking technology. The aim of the Google web search engine is to 
generate lists of useful web pages from a preassembled index of pages in 
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response to text queries. It does this by first searching the index for pages 
matching a given query using relatively simple criteria such as text matching, 
and then ranking the answers according to scores based on a combination of 
ingredients, of which PageRank is one. 

Page Rank algorithm determines the importance of Internet pages based on the 
links pointing to them. There are three distinct factors that determine the 
PageRank of a node: the number of links pointing to the node, the number of 
links going outbound (link propensity) from the nodes that point you (linkers), 
and the centrality of your linkers. The nodes that have fewer links going 
outbound are worthier than the ones that have many. A node is important if it is 
highly linked, it is linked from other important nodes and linked by nodes with 
few outbound links. [22] 

This algorithm initiates a random walk at a random node, following a random 
link at each node, with some small probability, at every step of jumping to a 
randomly chosen node without following a link. The algorithm gives high 
importance (high probability of hitting) to nodes with a high number of links 
pointing to them. 

In mathematical terms, this centrality is defined by: 

                                    (2.11) 

Where Ŭ is a normalization factor, kout the number of links pointing out, A is a 

square matrix with rows and columns corresponding to web pages, and ȁ a 

normalized source of a rank vector. 

Note that the rank of a page is divided among its forward links to contribute to 
the ranks of the pages they point to, this covers both the case when a page has 
many backlinks and when a page has a few highly ranked backlinks. A page 
has a high rank if the sum of the ranks of its backlinks is high.  

In our study, undirected graphs are converted to a directed graph with two 
directed edges for each undirected edge. 

 

2.2.6 Eigenvector Centrality 

The Eigenvector centrality computes the centrality for a node based on the 
centrality of its neighbours. The centrality value that is assigned to the nodes is 
based on the concept that connections to high-scoring nodes contribute more 
than equal connections to low-scoring nodes. A high eigenvector value means 
that a node is connected to many nodes who themselves have high scores. 

To compute the centrality value let ὃ ὥȟ  be the adjacency matrix. If 

vertex v is linked to vertex t ὥȟ ρ, and ὥȟ π otherwise. Furthermore, this 

can be generalized so that the entries in A can be real numbers representing 

connection strengths, as in a stochastic matrix.  

The relative centrality value of a vertex v can be defined as: 
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(2.12) 

Where ‗ is a constant. [24] 

With a small rearrangement, this can be rewritten in vector notation as 
the eigenvector equation. 

ὃὼ ‗ὼ (2.13) 

In general, there will be many different eigenvalues ‗ for which a non-zero 
eigenvector solution exists. However, the additional requirement that all the 
entries in the eigenvector are non-negative implies that only the greatest 
eigenvalue results must be the corresponding eigenvectors. This the centrality 
out to be a revealing measure in many situations, for example, PageRank is a 
variant of Eigenvector centrality, and it is employed by the Googleôs Web search 
engine to rank Web pages. 

The eigenvectors are only defined up to a common factor, so only centrality 
ratios of the vertices are well defined. To define an absolute score, it must be 
normalized in such a way that the sum over all vertices is 1 or the total number 
of vertices n.  



21  Cascading Failure Simulations 

 

 

 

3 Cascading Failure Simulations 

 

3.1.Cascading failures in a network 

A cascading failure in an interconnected system or network consists of 
successive node failures, triggered by the failure of a single node or of a subset 
of nodes. As the system must compensate for the failing components, other 
nodes become overloaded and also fail. Some models consider that the load of 
the failing nodes is distributed proportionally to their active neighbours 
according to their initial load, causing them too to collapse when they become 
overloaded. This process continues until either the load can be supported by 
the remaining nodes, or until the whole network fails. 

Several years ago it was shown that real-world networks, such as those of 
transport or the Internet, are robust against random node failures but 
susceptible to intentional attacks. Although they start locally, depending on the 
structure of the network there are nodes that are particularly sensitive and a 
failure of any one of these could trigger a global network failure. For this reason, 
it is important to quickly and efficiently identify these weak links and secure 
them. One method would be to create a security system which allows the 
network to operate up to a pre-determined level of security, which would leave a 
margin big enough to absorb any possible extra load from neighbouring node 
failures. Working under these limits will ensure the proper functioning of the 
network.  Otherwise, a prevention action protocol could be prepared in case of a 
failure to avoid a major catastrophe. [23] 

  

3.2.Cascading failure simulation method 

For this analysis, we will examine 200 different graphs belonging to 10 different 
categories. For each category created 20 different graphs are generated to 
allow a statistical study.  

Each node starts with an initial load, Lj, which depends on the centrality that we 

are studying, and an initial maximum capacity, Cj.  

 

ὒ Ὧ В Ὧ                                           (3.1) 

 

ὅ Ὕ ὒ                                                (3.2) 

 

Where kj is the centrality of a node j, m runs on the set of neighbour nodes, Ŭ is 

a tunable parameter that controls the strength of the initial load and T is a 

tolerance parameter (T Ó 1). [4] 
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Illustration 6. An example of correlation between the initial load and its neighbours 

 

Once we have established these parameters, the next steps we will take are: 

- We sort the nodes by their load Lj, and we select the 5 nodes with the 

highest load, the 5 with the lowest load and the 5 with a load value at 
the mid-point between the highest and the lowest.  
i.e.: if the highest value is 200 and the lowest 10, the nodes that we 
will take for the medium value analysis will be the 5 nodes closest to 
value 105. 

- We will analyse of each individual graph and different load group 
separately.  

- For every load group, we make these nodes (i) fail one by one and 

distribute their load to their active neighbours (j)  as:  
 

ὒȿ ὒ Ўὒ                                         (3.3) 

 

ῳὒ ὒ
В

                                                             (3.4) 

 

Where, Ўὒ  is the contribution of extra load received from the neighbours failed 

nodes and ɜ the set of neighbours. 
 

 

Illustration 7 Load redistribution to neighbouring nodes connecting node i. 

 

A neighbouring node with a higher load will receive a higher shared load from 
the failing node. 
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- Once the load has been distributed to its neighbouring nodes, we check 

if any of the nodes affected has reached the Cj value. If so, it means that 

these nodes have failed and we have to redistribute this load. This 
procedure is repeated until the remaining active nodes stabilize or all the 
nodes fail. 

- Once the cascade process is over, we count the nodes that have failed 
due to the node i failure, CFi, and we repeat this process with the 5 

nodes of the load group. 
- To represent the robustness of the whole network as a number, compute 

the CFattack as: 

 

ὅὊ                                           (3.5) 

 

Where A represents the set of nodes and NA the number of nodes attacked.  

When CFattack =1 means that by failing 1 node, it collapses the whole network; 

CFattack =0 means that by failing 1 node, none of the nodes is affected by it and 

their neighbours can absorb the extra load. The lowest the CFattack, the more 

robust the network is. 

 

3.3.Study Scenarios 

With this study, we want to know which kind of nodes are more susceptible to 
intentional attacks. To do so we have created 10 different graph families, the 
most relevant, to analyse their behaviour: 

¶ Geographical Threshold 2D 

¶ Geographical Threshold 3D 

¶ Watts ï Strogatz (High Clustering) 

¶ Watts ï Strogatz (Low Clustering) 

¶ Barabasi ï Albert 

¶ Erdös - Rényi 

¶ Power-law Cluster 

¶ Random Geometric 

¶ Random Partition 

¶ Random Regular 
 

To create all these graphs we use the NetworkX [21] package of Python which 
allows us to easily create and manage graphs for the study. The code used to 
generate the graphs can be found in Annex B. 

Furthermore, for each type of graph and to avoid errors of probability, we have 
randomly created 20 different graphs, each with 100 nodes and around 400 
links.  

Also, to ensure that our study takes into account the wide variety of networks in 
the real world, we have picked out the 6 most relevant centralities, and 
represented a wide range of topological node functions: 
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¶ Degree (Wang-Rong)  

¶ Betweenness 

¶ Communicability 

¶ Closeness Current Flow 

¶ Pagerank 

¶ Eigenvector 

Since Ŭ is a tunable parameter, we performed the analysis with 2 different 

values (Ŭ=0.1 and Ŭ=0.5) to compare their contribution to the process of 

cascade failure. 

With all these variants we have a total of 2400 different graphs to study in our 
simulations. To simplify the analysis we examine 20 graphs belonging to each 
of the categories and take the average values. So, in the end, we just have 120 
categories to analyse.  
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4 Results 

4.1.Simulation Results 

To run the simulations we have used the software Python 2.7 by using the 
Enthought Canopy program and the software package NetworkX 1.11  

After running each simulation we obtained two file types which contained 
information about each scenario. One file gives information about the properties 
of the graph, shown in the following table, and how the networks reacted during 
the simulations. 

Graph Diameter AVG. 
Dist. 

Clustering Weiner 
Idx 

2D-Geo. 9,1 3,7758 0,6799 18690,3 

3D-Geo. 6,1 2,8649 0,6549 14181,5 

Barabasi-Albert 4,0 2,3691 0,1727 11727,2 

Erdös-Rényi 4,2 2,4327 0,0832 12042,1 

Hclust-Watts Strogatz 5,5 3,0766 0,4823 15229,4 

Lclust-Watts Strogatz 4,0 2,4168 0,0726 11963,2 

Powerlaw 4,0 2,3826 0,3317 11793,8 

Random Geometric 11,1 4,5856 0,6387 22698,6 

Random Partition 4,6 2,4626 0,0969 12190,0 

Random Regular 4,0 2,4201 0,0642 11979,3 

Table 1. Graph properties 

 

From Table 1 we have selected some parameters about the graphs which 
describe and inform us about them. Take into account that these values are an 
average of the 20 graphs created per category. 

If we examine the distance terms in this network, it shows that if we compare 
the diameter of a network to their average distance, we will find that this is very 
small; the diameter value is two to three times higher than the average distance. 
This phenomenon is due to the small-world effect. 

In relation to the networkôs clustering coefficient, we can see that in half of the 
graphs (2D-Geo., 3D-Geo., Hclust-Watts-Strogatz, Powerlaw) these values 
show that close to half of the nodes share a connection to the other ones, which 
also contributes to the small-world phenomenon. 

We have also plotted the degree histogram to show how the different graphs 
link their nodes. In Figure 5 we have plotted a complete degree histogram in 
which we can observe at a first sight some relevant things.  
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Figure 5. Degree Histogram of all Graphs 

 

Figure 5 shows us is that the vast majority of the nodes have a low degree 
ranging between 1 and 15, compared to Random regular in which all nodes 
have the same degree (8), a degree between 1 and 15 means the networkôs 
nodes have an analogue distribution. On the other hand, there are some graphs 
that have nodes with a high degree, the highest is for 3D-Geographical 
Threshold, with a degree of 58, followed by Powerlaw, Barabasi-Albert and 2D-
Geographical Threshold, but if you look at the histogram, then only around the 
0.05-0.2% of nodes have these high degree values. This is why I have ignored 
this area and instead have focused on the zone where all nodes are 
concentrated, Figure 6. 
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Figure 6. Zoom of the Degree Histogram 

 

In Figure 6 we can observe that, in this interval, half of the graphs have a similar 
degree distribution. It appears that they follow a normal distribution with a 
standard deviation (Ȓ2) value of around 4 with a central axis between 7 and 8. 

The other half are quite different, especially Watts-Strogatz Low-clustering, 
Barabasi-Albert and Powerlaw, with these last two having an almost equal 
degree distribution. This similarity matches with the results in Table 1. This is 
because, as explained in chapter 2.1.5, the Powerlaw is like a Barabasi-Albert 
model which has been improved to achieve a high clustering.  

This last example shows us that the clustering index doesnôt have any relation 
to the degree histogram. 

The second file obtained is a plot about CFattack vs. Tolerance [Annex C]; based 
on publication [4], where the vulnerability of the USA power grid is tested using 
the algorithm explained in chapter 3.3. 

Figures in Annex C show us when the graph starts to fail by overload due to an 
extra load from failed nodes, this let us know how robust they are from the 
critical tolerance threshold (Tc) parameter, which is the point in which the 

network begins to collapse, CFattack > 0. This threshold can be seen as the 
minimum tolerance level to avoid a collapse. When T > Tc, it means that the 

network can work easily and can absorb more of the load. When T = Tc, it 

means that the system works well but care needs to be taken, as any 
inconvenience could reduce its capacity or increase the workload of any one 
node, causing it to collapse, and the load would then be transferred to the other 
nodes, in this way causing a cascade node failure. At this point, the networkôs 

tolerance is below Tc (T < Tc), as some nodes have failed and networkôs 

capacity is below the desired values. Thus, the higher the value of Tc, the more 

vulnerable the network is, therefore the network has a low robustness. 
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We have put these figures together in two different ways to compare them 
against one other and to help with the analysis. One classified by centrality, and 
the other by the graph family [Annex C]. Looking the simulation results we see 
some patterns emerge among the resulting figures.  

Comparing centralities through a graph family, we have seen that:  

¶ Medium Load (ML) Nodes always have more similarities to Low Load 
(LL) Nodes in Closeness Current Flow centrality than High Load (HL) 
Nodes as this does not occur with other centralities. This is because the 
centrality value in all nodes is not much different as it is in other 
centralities. Consequently, the values of ML nodes are close to those of 
LL nodes. 

¶ We can also split the centralities into two different groups due to their 
similar behaviour at both ñŬò scenarios: Degree ï PageRank ï Closeness 
(this last centrality is a bit more different than the other two centralities, it 
has the above mentioned difference), and Eigenvector ï 
Communicability ï Betweenness. There are slight differences between 
both groups, but the most significant is their similar behaviour when 
changing from Ŭ=0.1 to Ŭ=0.5, and their Tc value. In the first group, the 

three node groups have a positive correlation between Ŭ and Tc. In other 
words, when Ŭ increases, Tc increases; in the second group, LL nodes 
have a negative correlation between Ŭ and Tc. 

¶ The first centrality group has a notably higher Tc than the other, while 
Eigenvector, Communicability and Betweenness have the lowest Tc. 
Within each group, Tc has almost the same value, independent of the 
centrality. 

¶ Comparing the centralities in Random Regular, we can see that all 
scenarios have exactly the same behaviour, there is no change. The 
three node groups display exactly the same behaviour among them and 
the other centralities, and even changing the ñŬò parameter there is no 
change. They are all completely equal.  

¶ Analysing the resulting figures to know which centrality makes the nodes 
to fail the most, we have seen that HL and LL have completely different 
behaviour (ML follows HL behaviour), while Betweenness and 
Communicability take HL to their highest Tc values, they take LL to their 
lowest; and while Closeness and Pagerank take LL to their highest, they 
take HL to the lowest.  

However, when we look at which centralities give the network the highest 
incidence of failure, these are Closeness and Pagerank. 

Comparing graphs through a centrality family, we have seen that:  

¶ We can separate the graph families in different groups by their similar 
behaviour during the centrality familiesô comparison: 2D Geographical 
Threshold ï 3D Geographical Threshold ï Random Geometric, Barabasi-
Albert ï Powerlaw and Erdös-Rényi ï Random Partition.  

In the first group, the graph completely fails at low tolerance values, but 
when we increase the tolerance compared to the others, the network 
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failure rate decreases gradually with small differences at each step. In 
the second group, the LL node keeps the network in total failure levels up 
to a high value of tolerance, after this point a small increase in tolerance 
causes a huge drop in failure levels. The third group is like the second 
one but with a gradual load absorption process, faster than the first 
group. 

¶ HL nodes in the Communicability centrality for Ŭ=0.5, have the highest Tc 
values in comparison with the other centralities. For Ŭ=0.1, LL nodes 
have the highest tolerance values where the whole network is completely 
collapsed, whatôs more, HL nodes have the lowest Tc value. 

¶ For Ŭ=0.5 in the Eigenvector centrality, in most of the graph types, the 
three node groups have exactly the same behaviour, you can superpose 
the lines one in front the other and there is no deviation. There are only 
three types that differ from the others and this is only by the LL nodes: 
2D-Geographical threshold, 3D-Geographical Threshold and Random 
Geometric. The one that differs the most is Random Geometric, 3D-
Geographical differs the least. 

¶ Analysing the result figures to know which graph family makes their 
nodes fail the most, we have seen some differences among centralities. 
For HL, the graph family that takes the network to higher Tc values are 
Watts-Strogatz High-clustering or Random Regular depending on the 
centrality, Barabasi-Albert and Power-law take the network to lower Tc 
values. For LL, the graph family that takes the network to higher Tc 
values is Random Geometric; Random Regular to lower Tc values. Thus, 
we can observe that the graph family that keeps the networkôs nodes in 
high or low failure values depends on the centrality.  

Furthermore, in both comparisons we have noticed that there are some 
common behaviours: 

¶ In most cases, ML Nodes always have either none or just a few changes 
in behaviour between Ŭ=0.1 and 0.5, with a Tc value between 1.10 and 
1.15. 

¶ For Ŭ=0.5, the three node groups have more similar behaviour between 
one another than compared to Ŭ=0.1 for every scenario. They converge 
for ML behaviour, HL nodes have almost the same behaviour as ML, 
however LL nodes, in the majority of cases, is completely different. LL 
nodes can be seen as the group that changes their behaviour the most, 
having the lowest Tc, especially for the betweenness and 
communicability centralities. 

¶ LL nodes are the group that fails the most, as the graph needs more 
tolerance to resist a failure. On average, if LL nodes fail, the graph 
completely fails, even at a tolerance between 15-20% (CFattack =1), and in 

the worst cases at values of 30%. However, LL nodes produce a gradual 
failure instead of going from CFattack =0 to CFattack =1 suddenly or in 2 or 3 

steps, like ML and HL nodes do. 
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4.2.Real-life Scenario Results 

Taking into account the results obtained in the previous chapter, we are going 
to test them in a real-life scenario: the USA air transport network in 2001. 

 

Illustration 8. Representation of the USA air transport network in 2001. 

 

Firstly, it is important to know some information about the network: 

 

Graph Nodes Edges Diameter AVG. Dist. Clustering Weiner Idx 

USA 295 2072 5 2.4594 0.7046 106656.0 

Table 2. USA-graph properties 

 

If we have a look at Table 2 and compare it with the properties obtained by the 
graph we have created and analysed in the previous chapter, we can see that 
the graph with the most similar properties is: 3D Geographical Threshold. This 
would not be surprising, the USA-graph is a network of aircraft routes through 
the USA territory, with aircraft flying over airports without stopping there, linking 
distant nodes directly; therefore it is a good example to imagine a 3D 
Geographical Threshold graph. 

But having a graph with similar properties doesnôt necessarily mean that their 
behaviour will be similar, we need to compare their behaviour explicitly and see 
which ones have more similar behaviour. To do so, we are going to take the 
USA-graph, plot the different behaviours of every different centrality [Annex D.1] 
and compare them against the figures obtained for the previous chapter. 

Having a quick look through the figures obtained [Annex D], it can be seen that 
only some of them have similar behaviour, in the majority of centralities, the 
three node groups follow the same patterns and their Tc values are similar 
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(especially for Ŭ=0.1, at Ŭ=0.5 USA-graph doesnôt give much information, 
mostly graphs suddenly recover completely at the second or third step). These 
graphs are:  

¶ 2D-Geographical Threshold 

¶ 3D- Geographical Threshold 

¶ Random Geometric 

¶ Barabasi-Albert 

¶ Erdös-Renyi 
 

In chapter 4.1, we comment that 2D and Random Geometric are similar to 3D, 
so it could be reasonable that they are similar to the USA air transport network. 

Then, the graphs must be compared in pairs against the USA air transport 
network to know which ones have the highest similarity. To do so we have 
created the following table to compare the graphs and identify the most similar 
graph family. 

 

 

Illustration 9. Comparison groups against USA-graph. 

 

(It is necessary to comment that USA-graph is not similar to any of the theoretical 
behaviours, so it was hard to conclude which one was most similar, but there were 
some patterns and parameters that make one think that it actually follows one of the 
structures studied) 

Surprisingly, the graph family that matches better with the real network 
behaviour is Random Geometric, rather than 3D Geographical Threshold as 
was expected. 

This can be explained by the hub structure of the USAôs airlines. Each airline 
bases its operational model on having some hubs around the country plus some 
ñmini-hubsò. These ñmini-hubsò help airlines to cover all the secondary airports. 

Geometric 

3D Geometric 
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Barabasi 
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Geometric 
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Illustration 10. Destinations network of American Airlines from NY (Jan. 2018) 

 

Illustration 11. Destinations network of Delta Airlines from Salt Lake City (Jan. 2018) 

 

This kind of structure creates a modular network where, inside each group, 
small airports are only connected to a hub and hubs connect to other groups as 
it can be seen in Illustration 8, 10 and 11.  

That is why Random Geometric is the graph family that fits best with the 
simulation behaviour results. To answer why the properties match with 3D 
Geographical Threshold could be explained by the fact that in the USA-graph 
there are 3 times more nodes and 5 times more edges. This can mean that 
structurally, the network looks like a 3D, but the ratio between nodes and edges 
is different as there are more edges, and therefore the network is much more 
connected. Thus, the diameter and the average distance have been reduced, 
making the network much more similar to 3D than Geometric, but it still has an 
intrinsic Geometric structure, as these new edges have not modified the 
network. 
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Another comparison we have done with USA-graph figures is about which 
centrality makes the network fail the most by comparing each node group 
against the centralities [Annex D.2] to know which nodes are more likely to fail.  

Looking at the figures, it makes no doubt that the centrality that fails the most is 
Current Flow Closeness, followed by Pagerank. The one that fails the least is 
Betweenness, except for HL, which is the one which fails the most, but if we 
have a look at the created graphs, the centralities that fail the least are 
Communicability and Eigenvector followed by Betweenness.  
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5 Conclusions 

Our lives involve many complex networks dealing with different aspects of our 
daily routines such as telecommunications, power grid, sewage system, the 
internet or transport networks for goods or passengers. It is important to know 
and understand how these networks evolve and which parameters can rapidly 
modify their behaviour, in order to be able to develop high-tolerance networks 
which are less affected against intentional attacks or random failures. 

For the purpose of this study, we have considered different families of graphs 
and different centrality measures to study their failures from five initial nodes. By 
analysing and comparing the results obtained, we found that when considering 
a given graph family, the failure process is similar among different centralities 
and does not depend on the initial node. However, if we compare the results 
considering their centrality measure, the results completely differ among them. 
Thus, we can state that the behaviour of a network failure mainly depends on 
the type of graph rather than on the centrality considered.  

In addition, there exists a tunable parameter that controls the strength of the 
initial load which we call ñŬò. A higher ñŬò means that the network is less prone 
to failure. When we compare results between Ŭ=0.1 and Ŭ=0.5, the node groups 
HL (High Load) and LL (Low Load) have different behaviours for every graph 
family and centrality. This happens with LL and ML (Medium Load), not with HL 
nodes which increase their critical tolerance (Tc) values, the point in which the 
network starts to collapse. Therefore, these findings suggest that for the HL 
node groups it is preferred to analyse networks with a high ñŬò value, however, 
it is more relevant to focus on LL node groups due to their high importance in 
cascade failures. 

Besides, we consider relevant to know which parameters affect the most to a 
network failure for two main reasons. First, results among graph families are 
difficult to compare, as each of them has completely different patterns, and 
there are only a few similar parameters among them. Second, results among 
different centralities follow a much clear pattern in all figures. Centralities that 
make the network more robust against failures are Betweenness and 
Communicability, as these centralities base their initial load according to the 
nodes that are few links away to them, no matter how big the network is and 
how the distant nodes are connected. A high load means that the nodes have a 
well-connected cluster around them. The centralities that make the network 
more vulnerable against intentional failures, even at high tolerance values, are 
Closeness Current Flow and Pagerank. These centralities base their initial load 
according to how the whole network is connected and, if the nodes are well-
connected to the rest of nodes in the network, preferably through the fewest 
possible number of steps. For this, the graphs families which have more failing 
nodes at these centralities, are the ones with the highest diameter and average 
distance between a pair of nodes: 2D/3D-Geographical Threshold and Random 
Geometric. Hence, to increase networkôs resistance, we need to look at each 
node and analyse how it is connected to the nodes around them. 
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6 Annexes 

6.1. Annex A ï Code  

import time 

import itertools 

import statistics 

import networkx as nx 

from pylab import * 

 

starttime = time.time() 

 

################################### 

### Starting funciton. Compute initial load Lj  

###################################### 

def ini_carr(alpha,tol): 

for j in g: 

kj=gload[j] 

v=g.neighbors(j) 

sumkm=0 

for m in v: 

sumkm=sumkm+gload[m] 

Lj=(kj*sumkm)**alpha 

g.node[j]['Lj']=round(Lj,4) 

carr_max(tol) 

 

################################### 

### Compute maximum load Cj for every node  

################################### 

def carr_max(T): 

for j in g: 

Cj=(T*g.node[j]['Lj'])  

g.node[j]['Cj']=round(Cj,4) 

 

################################### 

### Distribution of nodeôs load to live neighbours  

################################### 

def distrib_carr(i): 

sum_carr_veins=0 

for j in g.neighbors(i): 

if g.node[j]['OK']==1: 

sum_carr_veins=sum_carr_veins+g.node[j]['Lj']  #si tots els veïns OK=0? 

for j in g.neighbors(i): 

if g.node[j]['OK']==1 and sum_carr_veins!=0: 

newLj=g.node[j]['Lj']+g.node[j]['Lj']*g.node[i]['Lj']/sum_carr_veins # si Lj=0; 

newLj=Lj(antiguo) 

g.node[j]['Lj']=round(newLj,4) 

 

################################### 



Cascade failures in complex networks  40 

 

### Sort nodes in a list from min to max Cj  

################################### 

 

def listdownup(): 

gsort=sorted(g.nodes_iter(data=True), key=lambda labels: labels[1]['Cj']) 

## gsort=sorted(g.nodes_iter(data=True), key=lambda labels: 

labels[1]['Cj'],reverse=True) 

ordlist=[] 

for i in range(len(gsort)): 

nod=gsort[i][0] 

ordlist.append(nod) 

return ordlist 

 

 

#### Per invertir la llista downup 

## updown=downup.reverse() 

 

################################### 

#Funcio cascada a partir d'un node fa la cascada i retorna la llista dels que han falla la 

llista es una llista de llistes a cada posicio diu els nodes que han fallat al pas 0,1,2,etc  

################################### 

 

def cascada(v): 

eccg=nx.eccentricity(g) 

ecc=eccg[v] 

for i in g: 

g.node[i]['OK']=1 

g.node[v]['OK']=0 

dist=-1 

finit=0 

oldlevel=[v] 

hanfallat=[oldlevel] 

while (finit==0): 

dist=dist+1 

newlevel=[] 

for pos in oldlevel: 

distrib_carr(pos) #new neighbour's node load 

#print (v,pos) 

for j in g.neighbors(pos): #which nodes are failing? 

if g.node[j]['OK']==1: 

if ((g.node[j]['Lj']) >= (g.node[j]['Cj'])): 

g.node[j]['OK']=0 

newlevel.append(j) 

hanfallat.append(newlevel) 

oldlevel=newlevel 

if (dist==ecc): 

finit=1 

return hanfallat 

############### 

def FCcommunicability_exp(G): 
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import scipy.linalg 

nodlst = list(G) # ordering of nodes in matrix 

A = nx.to_numpy_matrix(G,nodlst) 

# convert to 0-1 matrix 

# convert to 0-1 matrix 

A[A!=0.0] = 1 

# communicability matrix 

expA = scipy.linalg.expm(A.A) 

mapping = dict(zip(nodlst,range(len(nodlst)))) 

c = {}  

for u in G: 

c[u]={}  

for v in G: 

c[u][v] = float(expA[mapping[u],mapping[v]]) 

return c  

# ######################################## 

# Communicability distance index (big Gamma) 

 

def comm_dist_idx(G): 

Gamma_idx=0.0 

cdst=FCcommunicability_exp(G) 

for u in G: 

for v in G: 

val=cdst[u][u]+cdst[v][v]-2*cdst[u][v] 

val=abs(val) 

## if val<0: 

## print "problemo: ",val,"u: ",u,"v: ",v,"uu: ",cdst[u][u],"vv: ",cdst[v][v],"uv: 

",cdst[u][v] 

## val=-val 

Gamma_idx+=sqrt(val) 

return Gamma_idx/2 

 

def wiener_idx(G, weight=None): 

# compute sum of distances between all node pairs 

# (with optional weights) 

wiener=0.0 

if weight is None: 

for n in G: 

path_length=nx.single_source_shortest_path_length(G,n) 

wiener+=sum(path_length.values()) 

else: 

for n in G: 

path_length=nx.single_source_dijkstra_path_length(G,n,weight=weight) 

wiener+=sum(path_length.values()) 

return wiener/2.0 

def Q_idx(G,wieneridx): 

return log(0.857763885*wieneridx/comm_dist_idx(G)) 
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def correlation(xlist, ylist): 

xbar = mean(xlist) 

ybar = mean(ylist) 

xstd = standardDev(xlist) 

ystd = standardDev(ylist) 

num = 0.0 

for i in range(len(xlist)): 

num = num + (xlist[i]-xbar) * (ylist[i]-ybar) 

corr = num / ((len(xlist)-1) * xstd * ystd)  

return corr 

def standardDev(alist): 

theMean = mean(alist) 

sum = 0 

for item in alist: 

difference = item - theMean 

diffsq = difference ** 2 

sum = sum + diffsq 

sdev = math.sqrt(sum/(len(alist)-1)) 

return sdev 

 

################################### 

### Part principal 

################################### 

 

CFlist20LL=[] 

CFlist20HL=[] 

CFlist20ML=[] 

 

#filename = "geographical_threshold/dim2/geographical_threshold_2D_100--" 

#grafname = "2D-geographical_threshold-" 

 

#filename = "geographical_threshold/dim3/geographical_threshold_3D_100--" 

#grafname = "3D-geographical_threshold-" 

 

#filename = "watts_strogatz/H/wattsst_Hclust_100--" 

#grafname = "Hclust-watts_strogatz-" 

 

filename = "watts_strogatz/L/wattsst_Lclust_100--" 

grafname = "Lclust-watts_strogatz-" 

 

#filename = "barabasi_albert/barabasi_albert100--" 

#grafname = "Barabasi_albert-" 

 

#filename = "erdos_renyi/erdos_renyi100--" 

#grafname = "Erdos_renyi-" 

 

#filename = "powerlaw_cluster/powerlaw_cluster100--" 

#grafname = "Powerlaw_cluster-" 

 

#filename = "random_geometric/random_geometric_100--" 



43  Annexes 

 

 

 

#grafname = "Random_geometric-" 

 

#filename = "random_partition/random_partition100--" 

#grafname = "Random_partition-" 

 

#filename = "random_regular/random_regular_100--" 

#grafname = "Random_regular-" 

 

centrality= 'Eigenvector ' 

 

reps=20 

alfa=0.5 

alpha='0_5' 

dt = 0.02 

ngraus=5 

tolvals = arange(1.00, 1.50, dt) 

granslist=[] 

petitslist=[] 

miglist=[] 

gransnodelist=[] 

petitsnodelist=[] 

mignodelist=[] 

 

corr=[] 

diameter=[] 

avgdist=[] 

clust=[] 

wiener=[] 

qidx=[] 

histgrm=[] 

 

hstgrmlenmax=0 

 

for idx in range(reps): 

#idx=9 

 

g=nx.read_edgelist(filename+str(idx)+".edges",nodetype=int) 

gload=nx.eigenvector_centrality_numpy(g, weight='weight') 

diameter.append(nx.diameter(g)) 

avgdist.append(nx.average_shortest_path_length(g)) 

clust.append(nx.average_clustering(g)) 

wiener.append(wiener_idx(g)) 

qidx.append(Q_idx(g,wiener[idx])) 

hstgrm=nx.degree_histogram(g) 

histgrm.append(hstgrm) 

if len(hstgrm)>hstgrmlenmax:  

hstgrmlenmax=len(hstgrm) 

Gedges=g.edges() 

xlist=[]  
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ylist=[]  

for i in range(0,g.size()): 

xlist.append(g.degree(Gedges[i][0])) 

xlist.append(g.degree(Gedges[i][1])) 

ylist.append(g.degree(Gedges[i][1])) 

ylist.append(g.degree(Gedges[i][0])) 

corr.append(correlation(xlist, ylist)) 

 

print time.asctime( time.localtime(time.time()) ) 

print 'file:',grafname+str(idx)+'.edges' 

print 'avg clus-coeff.= %-6.4f ' % (nx.average_clustering(g)) 

print 'alpha:',alfa 

print nx.info(g) 

print 

############### 

CFlist=[] 

tol=1.00 

ini_carr(alfa,tol) #Asigna una carga a cada nodo (Todos activos) 

while (tol<1.50): 

 

if len(CFlist)==0: 

load=listdownup() #sort nodes, saves nodes names 

load.reverse() 

## print graus 

grans=[load[i] for i in range(ngraus)] 

#print '\nGRANS '+str(grans) 

gransload=[] 

for i in grans: 

gransload.append(round(gload[i],4)) 

print '\nGRANS '+str(grans) 

print ' alfa:',alfa,' T: ',tol  

start = time.time() 

faillist=[]  

#f.write('\n GRANS \nTolerance: '+str(tol)) 

for i in grans: 

ini_carr(alfa,tol)  

fail=cascada(i) #nodes that failed 

flat=list(itertools.chain.from_iterable(fail)) #give all nodes in 'fail'  

#print flat 

#f.write('\n'+str(flat)) 

CFi= len(flat) 

faillist.append(CFi) 

elapsed = (time.time() - start) 

print 'Nodes failing: '+str(faillist)  

CFattck=round(sum(faillist)/(ngraus*(g.order()-1)*1.0),4)  

print 'CFattck: ',CFattck 

CFlist.append(CFattck) 

#print time.asctime( time.localtime(time.time()) ) 

#print elapsed 

tol=tol+dt 
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CFlist20HL.append(CFlist) 

gransnodelist.append(grans) 

Lj0=[]  

Ljn=0 

for i in grans: 

Ljn=g.node[i]['Lj'] 

Lj0.append(Ljn) 

inf=zip(grans, gransload,Lj0) 

granslist.append(inf) 

 

########### 

 

CFlist=[] 

tol=1.00 

ini_carr(alfa,tol) 

while (tol<1.50): 

if len(CFlist)==0: 

load=listdownup() 

#graus.reverse() 

## print graus 

petits=[load[i] for i in range(ngraus)] 

petitsload=[] 

for i in petits: 

petitsload.append(round(gload[i],4)) 

print '\nPETITS '+str(petits) 

print ' alfa:',alfa,' T: ',tol 

start = time.time() 

faillist=[]  

#f.write('\n PETITS \nTolerance: '+str(tol)) 

for i in petits: 

ini_carr(alfa,tol) 

fail=cascada(i) 

flat=list(itertools.chain.from_iterable(fail)) 

#print flat 

#f.write('\n'+str(flat)) 

CFi= len(flat) 

#if CFi==1 and ftol[petits.index(i)]==0: #get node tolerance 

# ftol[petits.index(i)]=round(tol,4) 

faillist.append(CFi) 

elapsed = (time.time() - start) 

print 'Nodes failing: '+str(faillist) 

CFattck=round(sum(faillist)/(ngraus*(g.order()-1)*1.0),4) 

print 'CFattck: ', CFattck 

CFlist.append(CFattck) 

#print time.asctime( time.localtime(time.time()) ) 

#print elapsed 

tol=tol+dt 

CFlist20LL.append(CFlist) 

petitsnodelist.append(petits) 
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Lj0=[]  

Ljn=0 

for i in petits: 

Ljn=g.node[i]['Lj'] 

Lj0.append(Ljn) 

 

inf=zip(petits, petitsload, Lj0) 

 

petitslist.append(inf) 

 

############### 

CFlist=[] 

tol=1.00 

ini_carr(alfa,tol) 

while (tol<1.50): 

if len(CFlist)==0: 

load=listdownup() 

load.reverse() #from highest to lowest 

grausload=[] 

for i in load: 

grausload.append(gload[i]) 

## print graus 

#hstgrm=nx.degree_histogram(g) 

load_max=gload[load[0]] 

load_mig=(load_max)/2 

for i in range(len(load)): 

ns=grausload[i]-load_mig 

if ns<0:  

if abs(grausload[i]-load_mig)-abs(grausload[i-1]-load_mig)>0: 

i=i-1 #We choose the closest value to load_mig 

break 

#range of mitjans 

mitjans=[] 

j=i  

if i!=len(load)-1: #if i=99; middle node is the lowest node 

mitjans.append(load[i]) 

else: 

mitjans=petits 

while len(mitjans)<ngraus: 

ns=abs(grausload[i-1]-load_mig)-abs(grausload[j+1]-load_mig) 

if ns<0 and i>0: #we choose the closest values to load_mig 

mitjans.append(load[i-1]) 

i=i-1 

#if i==0: 

# mitjans=grans 

elif ns>=0 and j<(len(load)-1): 

mitjans.append(load[j+1]) 

j=j+1 

if j==99: 

mitjans=petits 
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mitjansload=[] 

for i in mitjans: 

mitjansload.append(round(gload[i],4)) 

print '\nMITJANS '+str(mitjans) 

print ' alfa:',alfa,' T: ',tol 

start = time.time() 

faillist=[]  

#f.write('\n MITJANS \nTolerance: '+str(tol)) 

for i in mitjans: 

ini_carr(alfa,tol) 

fail=cascada(i) 

flat=list(itertools.chain.from_iterable(fail)) 

#print flat 

#f.write('\n'+str(flat)) 

CFi= len(flat)  

faillist.append(CFi) 

elapsed = (time.time() - start) 

print 'Nodes failing: '+str(faillist) 

CFattck=round(sum(faillist)/(ngraus*(g.order()-1)*1.0),4)  

print 'CFattck: ',CFattck 

CFlist.append(CFattck) 

tol=tol+dt 

CFlist20ML.append(CFlist) 

mignodelist.append(mitjans) 

Lj0=[]  

Ljn=0 

for i in mitjans: 

Ljn=g.node[i]['Lj'] 

Lj0.append(Ljn) 

inf=zip(mitjans, mitjansload, Lj0) 

 

miglist.append(inf) 

#f.close() 

 

############## 

AVGdiameter=statistics.mean(diameter) 

AVGavgdist=round(statistics.mean(avgdist),4) 

AVGclust=round(statistics.mean(clust),4) 

AVGwiener=statistics.mean(wiener) 

AVGqidx=round(statistics.mean(qidx),4) 

AVGcorr=round(statistics.mean(corr),4) # random regular AVGcorr=1 

AVGhistgrm=[] 

 

for i in range(hstgrmlenmax): 

hist=[] 

for j in range(len(histgrm)): 

if len(histgrm[j])>i: 

hist.append(histgrm[j][i]) 

else: 
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hist.append(0) 

AVGhistgrm.append(statistics.mean(hist)) 

 

############## 

print 

 

dt = 0.02 

t = arange(1.00, 1.50, dt) 

 

processtime = time.time()-starttime 

 

f=open(grafname+centrality+'-alpha'+alpha+'--failure_info.txt','w') 

f.write('\ngraf type: '+grafname) 

f.write('\ncentrality: '+centrality+'\n') 

f.write('\nreps: '+str(reps)+'\nalpha:'+str(alfa)+'\ngraus:'+str(ngraus)+'\n') 

f.write('\nprocess time [s]: '+str(processtime)+'\n') 

#f.write('\n gransini: '+str(granslist)+'\n petitssini: '+str(petitslist)+'\n') 

f.write('\ntolvals: '+str(tolvals)+'\n') 

f.write('\n diameter: '+str(AVGdiameter)+'\n avg distance:'+str(AVGavgdist)+'\n 

clustering:'+str(AVGclust)+'\n Wiener index:'+str(AVGwiener)+'\n Q 

index:'+str(AVGqidx)+'\n Correlation:'+str(AVGcorr)+'\n') 

f.write('\n avg histogram: '+str(AVGhistgrm)+'\n') 

f.write('\n\nHL\n[node '+centrality+' 

initial_load]\n'+str(granslist)+'\n\n'+str(CFlist20HL)+'\n') 

f.write('\n\nLL\n[node '+centrality+' 

initial_load]\n'+str(petitslist)+'\n\n'+str(CFlist20LL)+'\n') 

f.write('\n\nML\n[node '+centrality+' 

initial_load]\n'+str(miglist)+'\n\n'+str(CFlist20ML)+'\n') 

f.close() 

 

 

print tolvals 

hl = [round(float(sum(col))/len(col),4) for col in zip(*CFlist20HL)] 

ll = [round(float(sum(col))/len(col),4) for col in zip(*CFlist20LL)] 

ml = [round(float(sum(col))/len(col),4) for col in zip(*CFlist20ML)] 

plot(tolvals, hl,'r-',marker='p') 

plot(tolvals, ll,'b-',marker='o') 

plot(tolvals, ml,'g-',marker='x') 

axis([1,1.3,0,1.1]) 

tcks = arange(1.00, 1.50, 0.05) 

xticks(tcks) 

xlabel('T') 

ylabel('CFattack') 

title(grafname+'-'+centrality+' alph='+str(alfa)+' red:HL blue:LL green:ML 

rep'+str(reps)) 

 

## 

savefig(grafname+'-'+centrality+'-alph'+alpha+'.png') 

 

show() 
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6.2. Annex B ï Graph creation functions 

 

graf=nx.barabasi_albert_graph(100,4) 

graf=nx.erdos_renyi_graph(100, 0.08) 

graf = nx.geographical_threshold_graph(100,63,dim=2) 

graf=nx.geographical_threshold_graph(100,21,dim=3) 

graf=nx.powerlaw_cluster_graph(100,4,0.5) 

graf=nx.random_geometric_graph(100,0.175) 

graf = nx.random_partition_graph([5,40,20,10,15,10],0.19,0.05) 

graf= nx.random_regular_graph(8, 100) 

graf=nx.connected_watts_strogatz_graph(100, 8, 0.1) #high clustering 

graf= nx.connected_watts_strogatz_graph(100, 8, 0.8) #low clustering 
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6.3. Annex C ï Graph plots 

6.3.1 Sorted by Centrality family 

Betweenness 0.1 

  

 




































































































