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Abstract The WWW contains a huge amount of doc-
uments. Some of them share the same subject, but are

generated by different people or even by different or-
ganizations. A semi-structured model allows to share
documents that do not have exactly the same struc-

ture. However, it does not facilitate the understanding
of such heterogeneous documents. In this paper, we of-
fer a characterization and algorithm to obtain a repre-
sentative (in terms of a resemblance function) of a set of

heterogeneous semi-structured documents. We approx-
imate the representative so that the resemblance func-
tion is maximized. Then, the algorithm is generalized

to deal with repetitions and different classes of docu-
ments. Although an exact representative could always
be found using an unlimited number of optional ele-

ments, it would cause an overfitting problem. The size
of an exact representative for a set of heterogeneous
documents may even make it useless. Our experiments
show that, for users, it is easier and faster to deal with
smaller representatives, even compensating the loss in
the approximation.
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1 Introduction

The Web is a powerful medium for human communica-
tion and an extraordinary source of information. Conse-
quently, it has become a popular knowledge base, where

people add documents (private, educational and organi-
zational) and navigate through its contents. For scala-
bility reasons, one important challenge is to distill those

documents and extract valuable knowledge from them.
There exist multiple formats for information sources,
ranging from unstructured data to highly structured.
As explained in [1], the term semi-structured data emer-

ged to describe data that has some structure but nei-
ther regular, nor known a priori to the system. Hence,
semi-structured documents are self-describing.

The importance of knowing the structure (schema)
of a set of documents has been largely described in the
literature. For example, [2] outlines its importance on

integrating and analyzing the structure of the WWW.
Besides, [3] points out that a known structure would
also facilitate the storage and encourage queries. This

is the key to improve the access methods to the data,
thus enabling query optimization and data interchange
among companies. As explained in [4], a simplistic ap-
proach taking the union or intersection of all documents
does not work in practice, because it results too big or
too small, respectively.

Without loss of generality, we consider a certain
kind of semi-structured data, in particular, XML doc-
uments, which has been adopted as standard for data
interchange, enabling the integration of heterogeneous
information sources (notice that JSON can be easily
mapped to this). A well-formed XML document is a
document that conforms to the XML syntax rules in
[5] (roughly, markups nest properly and attributes are
unique). Moreover, a valid XML document is a docu-
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ment that is well-formed and also conforms to the rules

of its grammar. A schema contains the declarations

that provide such grammar for a class of documents.

It determines the elements and attributes that appear

in a document, i.e., the name, type and constraints on

every element and attribute. This is really important

for the interchange of documents, since it represents

the meaning of data. However, some automatically ex-

tracted documents (maybe coming from HTML) lack

even this simple kind of schema.

As defined in [5], an XML document primarily con-

sists of a nested hierarchy of elements with a single

root. Elements can contain character data and child el-

ements, in both cases the elements can have attributes.

The structure of child elements consists of a sequence

list of elements. The standard states that elements in

a sequence must be ordered.

The choice construct in a schema indicates that one,

and only one, element in the choice list of contents

should appear in the document (alternative elements).

This construct is the key to find a perfect typing. With

a grammar lacking it, we cannot find a schema common

to a set of documents, and we have to approximate it.

Otherwise, if we use choice, finding the schema is sim-

ply a question of finding the best grammar expression

for each element (for example following a normal form

like [6], or other approaches like [7]), so that all elements

in the document belong to the corresponding grammar.

Nevertheless, a perfect schema (i.e. one that is followed

by all the documents) may cause an overfitting prob-

lem. Some works, like [8–10], have overcome overfitting

by using clustering techniques to approximate typing.

Such approximations are called inexact schemas in [11].

We aim at finding a common schema (“midpoint”

- MP - from here on) for a set of well-formed semi-

structured documents, avoiding the usage of optional

elements when possible. Thus, we take an inexact ap-

proach based on the resemblance of documents. In par-

ticular, considering all approaches in [12], we use the

resemblance family of functions in [2], which takes into

account extra elements both in the document and in

the schema. We could then redefine valid document as

a document whose resemblance to its schema is above

a given threshold. Our main contributions are the char-

acterization of the MP in terms of a resemblance func-

tion and offering an efficient algorithm to obtain it. We

have formalized schemas by means of Description Log-

ics (DL). The rationale of our approach is grounded on

its reasoning capabilities, but our results can be used

outside its scope. Although our experiments show with

DTDs, because of their simplicity, it also applies to any

kind of XML or JSON schemas.

The structure of the paper is as follows: Next sec-

tion reviews the work related to our method; Section 3

presents a formalization of XML by means of Descrip-

tion Logics and characterizes an MP; Section 4 shows a

linear algorithm to obtain the MP without optional el-

ements and repetitions; Sections 5 and 6 generalize the

algorithm for those cases; and, finally, Section 7 con-

cludes the paper. Appendix A shows some experimen-

tal results and user studies, and B contains the proofs

of theorems.

2 Related work

Several authors worked on finding the schema of a set

of semi-structured documents. Some, like [13], used Ob-

ject Exchange Model (OEM). However, most of them

worked on the generation of DTDs from XML data.

For example, [14] applies heuristics to find a general-

ization of element descriptions. Another relevant result

is [8], which explains how we can get an approximated

typing for a set of objects. They find a set of types

that cover most of the objects, but do not consider op-

tional elements nor unnumbered repetitions. [15] de-

scribes an implementation of an algorithm to generate

a DTD followed by an XML document. [9] classifies the

documents in different classes and gets one DTD per

class. This is a good solution if there are a few classes

with not many documents or elements each. However,

it may result in lots of different classes or optional ele-

ments for every class if we are dealing with really het-

erogeneous documents. [16] infers, in a more generic

and generalizable approach, a deterministic regular ex-

pression from a sample of documents. [17,18] present

another tool for the extraction of a DTD, in this case,

by means of heuristic rules on the graph representation

of the XML documents. [7] uses information theory to

find the regular expressions of the DTD element by el-

ement. The regular expression of an element is so that

it covers all appearances of it in the documents, and

minimizes the number of bits needed to code the regu-

lar expression and the elements that follow it. The al-

gorithm has high computational cost, so heuristics are

also provided. [19] and [20] improve this work. In a com-

pletely different approach, [21] proposes a model-based

technique to generate the underlying schema of a set of

documents.

[8] pays attention to inexact schemas, outlining that

the size of a perfect typing may be the order of the data

set, prohibiting its use for query optimization and inter-

faces. Therefore, we are not searching a perfect typing

but a human-friendly, computationally-tractable, and

graphically-representable approximation. The main dif-

ference in this work with regard to previous authors is
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that we do not use any heuristic, but a function. To

this end, we should use some kind of resemblance or

distance. The first option would be tree edit distance

(like in [22] or [23]), but it results in high complexity

(see [24]). Therefore, a promising option is structure

similarity. [25] uses an internal graph structure that

summarizing variants encountered in the data, which

allows to detect structural outliers (patterns that oc-

cur only in few documents and might even be due to

a errors during recording of the data). [8] uses Man-

hattan distance (i.e. the number of different descen-

dants/ancestors of two elements). [26] shows different

more elaborate resemblance measures. Among those,

[9,27] use |elem(d1)∩elem(d2)|
max(|elem(d1)|,|elem(d2)|) , while in [2], they use

|elem(d1)∩elem(d2)|
|elem(d1)∩elem(d2)|+α·|elem(d1)\elem(d2)|+β·|elem(d2)\elem(d1)|) . We

took this last measure, because it is more general, and

allows to distinguish lack of elements in one side or

another (i.e. either schema or documents).

Notice that we do not tackle the problem of finding

the best (most concise) regular expression for every el-

ement in the schema, which can be done a posteriori

by using [7], [19] or [20], but the problem of simplify-

ing the schema. This can be used as a preprocess to

reduce the cost of finding the best regular expression,

avoid overfitting and eliminate unnecessary complexity

in the result of those other algorithms, by automatically

deciding what is representative and what is not in the

original set of documents. To this aim, our approach

is better than [8], because we do consider optional ele-

ments and repetitions, while it does not. [4] also iden-

tifies the smallest set of core attributes, but their ap-

proach is more complex and computationally expensive

than the one we present here. Finally, [28] goes a step

further by not finding a common schema, but trying

to explain the different variants found in documents by

means of association rules.

document1: <a><b><c>Hi</c></b><d><e>Bye</e></d></a>
document2: <a><b></b><d></d></a>
document3: <a><d><e>Bye</e></d></a>
document4: <a><d><e>Bye bye</e></d></a>

d

ec

document2 document3 document4document1

aa

b d

e

a

b d

a

d

e

Fig. 1 Example of XML documents

3 Formalization of the problem

As we can see in [3], and exemplified in Figure 1, a

document is thought as a rooted tree. A rooted tree

is an acyclic graph (N ,E), that has no more than one

root. N is a set of nodes and E a set of edges. An edge

e is an ordered pair of nodes (nsource, ntarget). A node

is a leaf if it is not the source of any edge in E .

Since we only take into account element tags and

their structure (not textual contents in the leaves), we

are not actually interested in the whole documents, but

in their elements and parent-child relationships. These

can be obtained just by parsing the documents and

eliminating textual data (leaving only element tags).

Notice that one document will never contain choice,

nor unnumbered repetitions, nor optional elements, nor

any, because this is structural information that can only

occur in a schema. How could we know, just from one

document, that a present element may not be present or

vice-versa? How could we decide that there is a poten-

tially infinite repetition? We will consider that a doc-

ument is a set of elements, each represented by the

list of tags (t1, .., tn) in the path from the root to it

(see Section 6 to see how to deal with repetitions). The

parent of an element is defined as parent((t1, .., tn)) =

(t1, .., tn−1).

Regarding XML attributes, representing the infor-

mation either as an attribute or a child is just a design

decision. Thus, from here on, without loss of general-

ity and just for the sake of simplicity, we will consider

XML attributes as simple content elements.

As stated in [5], child elements are ordered. Order

is an important characteristic for documents. However,

unordered data can be processed more efficiently in

databases, so it is usually considered in that way. There-

fore, from this point of view, we will assume order is not

relevant in our case.

d1 = DL⊥(document1) = ∃a.(∃b.∃c.⊥ u ∃d.∃e.⊥)
d2 = DL⊥(document2) = ∃a.(∃b.⊥ u ∃d.⊥)
d3 = DL⊥(document3) = ∃a.∃d.∃e.⊥
d4 = DL⊥(document4) = ∃a.∃d.∃e.⊥

element: C (concept)
child: ∃r.C (existential quantification)
sequence: u (conjunction)
choice: t (disjunction)
leaves: ⊥ (bottom)

Fig. 2 DL representation of an XML document

3.1 Description Logics notation

We consider a set of documents as a knowledge base,

which comprises two components, i.e. TBox (the termi-

nology, we could recognize it as the schema) and ABox

(the assertions about individuals, or instances). As ex-

plained in [29], the TBox contains concepts, and to de-

fine a formal semantics of the logic we use an interpre-

tation I. An interpretation is a pair [∆I , ·I ], where ∆I
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is the domain (a non-empty set), and ·I is an interpre-

tation function that assigns to every atomic concept A

a set (AI ⊆ ∆I) and to every atomic role r a binary re-

lation (rI ⊆ ∆I ×∆I). Inductively, this is extended to

non-atomic concepts by the following definitions (where

C and D are concepts, and r a role):

Bottom ⊥I = ∅
Top >I = ∆I

Conjunction (C uD)I = CI ∩DI

Disjunction (C tD)I = CI ∪DI

Existential (∃r.C)I = {a ∈ ∆I | ∃b. (a, b) ∈ rI ∧ b ∈ CI}

As exemplified in Figure 2, we will represent a doc-
ument or piece of document by a concept “C”. An un-
ordered sequence of pieces of documents will be repre-
sented by a conjunction “C uD”, while choice will be
represented by a disjunction “C tD” (see Section 5 for
its treatment). Finally, children will be represented by
means of existential quantification “∃tag.C”. Actually,
existential quantification allows the presence of more
than one element of the same kind. Nevertheless, we do
not consider such repetitions right now (see Section 6
for the treatment of repetitions). Leaves will be repre-
sented by bottom “⊥”. However, in order to check the
presence of a given element in a DTD, it is necessary
to consider the possible existence of children. In this
case, the chain of existentials ends with top “>”. Thus,
elements are translated into DL as follows:

DL⊥(()) = ⊥;DL⊥((t1, .., tn)) = ∃t1..∃tn.⊥
DL>(()) = >;DL>((t1, .., tn)) = ∃t1..∃tn.>

This formalization allows the usage of the following DL

algorithms:

Subsumption (also known as “Query Containment” in
other areas and noted “C v D”, if C is subsumed
by D) shows whether one concept is more general
than another (i.e. one set contains the other for all
interpretations). For example, d1 v d3.

C v D ⇔ ∀I : CI ⊆ DI

Equivalence (noted “C ≡ D”) shows that two concepts
subsume each other. For example, d3 ≡ d4.

C ≡ D ⇔ C v D ∧D v C

Least Common Subsumer (LCS) results in the subsu-
mer of a set of concepts that is subsumed by any
other subsumer of the set of concepts. For example,
lcs(d2, d4) = ∃a.∃d.>. The usage of disjunction con-
struct in the solution is not considered by LCS al-
gorithms, because proves to be trivial (i.e. lcs(C,D)
would always be C tD).

L = lcs(C1, .., Cn)⇔ ∀i : Ci v L∧@D : (∀i : Ci v D∧D v L)

Difference (non-standard operation defined in [30] and
noted “C−D”) is only defined if C v D and results
in the concept characterized by the description in C
not being in D. For example, d1 − d3 = ∃a.∃b.∃c.⊥.

S = C −D ⇔ D u S ≡ C ∧ @S′ : (D u S′ ≡ C ∧ S v S′)

3.2 Characterization of the MP

Given a set of documents, we would like to find the
schema that has the maximum number of common el-
ements wrt that set, at the same time that minimizes
the elements being in the schema not in the documents
and those in the documents not in the schema. We will
call such schema the MP of the set. In order to char-
acterize the MP, we will use the resemblance family of
functions used in [2].

r : (MP, setOfDocuments) 7→ [0, 1]

r(C,E) =
wc(C,E)

wc(C,E) + α · wp(C,E) + β · wm(C,E)
, α, β ∈ R+

By instantiating α and β we get the concrete func-

tion we would like to use (notice that only if α = β the

resemblance will be symmetric). Positive real values can

be assigned to these parameters. They weight the im-

portance of finding plus (elements in some documents

that do not appear in the MP) and minus (elements

in the MP that do not appear in some documents) el-

ements respectively. The function relies now on three

simpler ones that obtain respectively the size of com-

mon, plus, and minus elements.

wc(C,E) =
∑
d∈E

size(lcs(C, d))

wp(C,E) =
∑
d∈E

(size(d)− size(lcs(C, d)))

wm(C,E) =
∑
d∈E

(size(C)− size(lcs(C, d)))

Any result in this paper does not depend on how

we compute the size of an MP. We only assume that in

the presence of choice the size is that of the smallest

option (size((t1 | .. | tn)) = min(size(t1), .., size(tn))),

and that the size of adding a non-optional element to an

MP is always equal to the size of the MP plus the added

element (size(d) = size(d − t) + size(t)). Therefore,

from here on we will assume, in the examples, that every

element contributes to the size with one unit (size(d) =

#tags)). For example, size(d1) = 5 and size(d2) =

size(d3) = 3. A general, more complex and accurate

algorithm (still fulfilling these constraints) for obtaining

the size of an MP is given in [2].

At this point, it is also important to notice that

there may exist more than one schema maximizing the

resemblance (i.e. more than one MP). For example, let

be α = 2 and β = 3. In this case, as we can see in Fig-

ure 3, all four resemblances coincide. The first candidate

has two plus elements: “b” regarding d2 and “e” regard-

ing d3. The second candidate has a perfect matching

wrt d3, and a plus and a minus elements wrt d2. For

the third candidate, it is the other way round. the last
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r(∃a.∃d.⊥, {d2, d3}) = 4
4+2α+0β

= 4
4+4

r(∃a.∃d.∃e.⊥, {d2, d3}) = 5
5+α+β

= 5
5+2+3

r(∃a.(∃b.⊥ u ∃d.⊥), {d2, d3}) = 5
5+α+β

= 5
5+2+3

r(∃a.(∃b.⊥ u ∃d.∃e.⊥), {d2, d3}) = 6
6+0α+2β

= 6
6+6

Fig. 3 Example of multiple MPs

one has a minus element regarding each document: “e”

for d2 and “b” for d3. Since this is the maximum resem-

blance, we can choose the MP of {d2, d3} among those

four candidates.

Midpoint β = 0 β 6= 0
α = 0 any ∃t.⊥
α 6= 0

d
d∈E d ?

Table 1 Trivial cases on finding an MP

4 Obtaining the MP of a set of documents

This section shows the possibility of finding an MP just

based on the appearances of each element in the set of

documents (we do not consider optional or repeated el-

ements for the moment). First of all, it is important to

show that depending on the values of α and β there are

some trivial cases (summarized in Table 1). If α = 0, we

do not mind having extra elements in the documents

wrt the MP. Therefore, among the multiple solutions

to the problem, we find ∃t.⊥ (where “t” is the most

frequent root tag in the documents). If β = 0, we do

not mind having extra elements in the MP wrt every

individual document. Therefore,
d

d∈E d is among the

solutions. Both equaling zero means that just by match-

ing some elements in some document we get maximum

resemblance (i.e. ∀wc 6= 0 : wc
wc+0wp+0wm

= 1). From

here on, we will only consider the non-trivial case where

α 6= 0 and β 6= 0.

The first question to answer is how we could know

whether the point in the search space we are treating

is better than another candidate or not. Surprisingly,

it is not necessary to get all plus and minus elements.

Thanks to Theorem 1, we know that all we need is

the number of common elements between each of both

candidate MPs and the set of documents E.

Theorem 1 To decide whether the resemblance of a

candidate C against a set of documents is better than

that of another candidate C ′, it is only necessary to

calculate the common elements between each document

and the candidates (we do not need to calculate neither

wp, nor wm). 1

Once we know that it is only necessary to com-

pare the common elements, the next question is how

we could improve the resemblance of a point in the

search space. By Lemma 1, we know that if adding an

element to the MP improves resemblance, all elements

appearing the same number of times also improve it in-

dependently of their sizes. We may have thought that

we have a set of possible improvements to investigate.

Nevertheless, the elements with the same number of

appearances do not generate alternative solutions, but

all together belong to the same solution.

Lemma 1 If adding an element e to a child sequence

in the candidate increases its resemblance to the set of

documents, adding all elements appearing in the same

number of documents as e to the corresponding child se-

quence will also improve its resemblance independently

of their sizes. 2

Finally, in Corollary 1, we show that elements ap-

pearing more times result in higher improvement of

resemblance. As a special case of this, if an element

improves resemblance, its parent improves resemblance

even more. Thus, before adding an element to the re-

sult, all its ancestors should have been added (which

otherwise could not have been avoided).

Corollary 1 Independently of their size, an element e1
appearing k1 times in E improves the resemblance more

than e2 appearing k2 times if k1 > k2.
3

From these theorems, we infer that we can incre-

mentally build an MP for a set of documents from >
(i.e. empty schema), by iteratively adding the most fre-

quent element in the set of documents. Firstly, as we

can see in Figure 4, we build a set of weighted elements

(i.e. WE), whose contents are those elements e so that

DL>(e) w
d

d∈E d, where e is weighted depending on its

number of appearances in the set of documents. Once

1 Proof has been moved to Appendix B.1.
2 Proof has been moved to Appendix B.2.
3 Proof has been moved to Appendix B.3.
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// Phase 1: Count appearances of elements
WE := ∅;
// For each document
foreach d ∈ E do

// For each of its elements
foreach element : DL>(element) w d do

// If the element appeared before
if [element, k] ∈ WE

// Increase its appearance
then WE := WE \ {[element, k]} ∪ {[element, k + 1]};

// Else
// Initialize its appearance
else WE := WE ∪ {[element, 1]};
endif;

endforeach;
endforeach;

// Phase 2: Build MP
// Initialize the empty document, and set the current appearance to the maximum
M := >;
m :=| E |;
// While the appearance improves the resemblance

while ( m
β·|E| ≥

∑
d∈E size(lcs(M,d))

α·
∑
d∈E size(d)+β·|E|·size(M)

)

// For each element appearing this amount of times
foreach element ∈ getSubsetByWeight(WE,m) do

// Add the element to MP
add(M,element);
endforeach;

// Decrease the current number of appearance
m := m − 1;
endwhile;

Fig. 4 Algorithm to get an MP without optional elements

we have the weight of each element, we take the max-

imum possible weight (i.e. | E |) and check if it would

improve resemblance from > to the set of documents. If

this maximum weight improves the resemblance, we add

all elements having such weight to the result (marking

them as leaves by means of ⊥) and get the next weight

smaller than that.

As pointed out in [4], it is hard for users to specify

any parameter to predefine the frequency on the data.

However, it should be noticed that we loop adding an-

other subset of elements while their weight improves

resemblance. Formally, if the parent of the element to

be added was a leaf (i.e. M v DL⊥(parent(element))),

we should remove it from the MP before adding the el-

ement as follows:

add(M : Concept, element: Element) {
if M v DL⊥(parent(element))
then
M := (M −DL⊥(parent(element))) uDL⊥(element);

else
M := M uDL⊥(element);

endif;
}

The first phase of the algorithm is really cheap in

terms of complexity. Taking into account that the num-

ber of possible children of an element should be small,

building the weighted tree can be considered linear in

the number of different elements in the set of docu-

ments, because we can find an element in WE just

searching the children of the previous element we mod-

ified/added to WE (assuming a depth first search of the

document we are treating). Regarding the second phase

of the algorithm, all calls to “getSubsetByWeight” can

be done in linear time in the number of different ele-

ments if we keep the elements with the same weight

in a list. Therefore, the space we need is linear in the

number of different elements (not counting repetitions),

and the time is also linear in the number of elements

in the set of documents (counting repetitions).

WE = {[(a), 4], [(a, b), 2], [(a, b, c), 1], [(a, d), 4], [(a, d, e), 3]}
M0 = > 4

4β
≥ 0

M1 = ∃a.∃d.⊥ 3
4β
≥ 8

14α+2·4β
M2 = ∃a.∃d.∃e.⊥ 2

4β
≥ 11

14α+3·4β
M3 = ∃a.(∃b.⊥ u ∃d.∃e.⊥) 1

4β
< 13

14α+4·4β

b

e

d

Midpoint

+c −b−b−e

document1 document4document3document2

db

a

e

db

a

a

c e

d

a

e

d

a

r(∃a.(∃b.⊥ u ∃d.∃e.⊥), E) = 13
13+α·1+β·3 = 13

17

Fig. 5 Example of MP generated by the algorithm

If we ran this algorithm on the set of documents in

Figure 1, it would result in the WE in Figure 5 (each

pair consists of an element and the number of docu-

ments that contain it). Thus, in the first loop, condition

evaluates true (for α = β = 1, and every element con-

tributing by one to the size), and we add the elements

appearing four times. Since it still evaluates true, we

add those appearing three times, and eventually twice.
Since the condition evaluates false for weight equal one,

the corresponding element does not belong to the so-

lution. Notice that adding “(a,b)” to MP triggered the

following operation “(∃a.⊥−DL⊥((a)))uDL⊥((a, b))”,

resulting in “∃a.∃b.⊥”.

As stated by Theorem 2, one of the possible MPs of

the set of documents (which corresponds to that given

by the previous algorithm) can be obtained by a con-

junction of LCSs of subsets of the documents.

Theorem 2 Given a set of documents E = {d1,...,dn},
and being ei elements of the form (t1, t2, .., tli) with
li ≥ 1, exists a collection of subsets of the set of docu-
ments, so that the MP (i.e. the schema that maximizes
the resemblance) is the conjunction of the LCS of each
of these subsets: 4

∃S1, ..., Sp ∈P(E) : ∀e1, ..., eq :

r(
l

i=1..q

DL⊥(ei), E) ≤ r(
l

j=1..p

lcs(Sj), E)

4 Proof has been moved to Appendix B.4.
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Moreover, one of the MPs is such that the subsets

of E that generate it are not subsets one of another.

Lemma 2 There is a schema of the form
d
k=1..p lcs(Sk)

maximizing the resemblance, so that for each pair of the

sets of documents that generate it, they are not subsets

one of another.5

∀1 ≤ i, j ≤ p, i 6= j : (Si * Sj)

Thus, it is easy to see that the upper bound of the

number of sets that generate the MP is the number of

possible subsets of E of size | E | /2.

Corollary 2 There is a schema of the form
d
k=1..p lcs(Sk)

maximizing the resemblance, so that the number of sub-

sets of E that we need to generate it is smaller or equal

than the number of subsets of E of size | E | /2.

p ≤
(
| E |
|E|
2

)

WE = { [∃a.>, {d1, d2, d3, d4}],
[∃a.∃b.>, {d1, d2}],
[∃a.∃b.∃c.>, {d1}],
[∃a.∃d.>, {d1, d2, d3, d4}],
[∃a.∃d.∃e.>, {d1, d3, d4}]}

M = lcs(d1, d2) u lcs(d1, d3, d4)

Fig. 6 Obtaining the sets of documents that generate MP

It is easy to obtain the sets of documents whose

LCSs generate the MP at a later stage (once we know

MP) with a small modification of the previous algo-

rithm. All we need is that “WE” keep the identifiers

of the documents that contain every element instead of

just a counter of them. The rationale of this is that the

conjunction of the LCSs of the documents containing

the leaves of the MP result in the MP. Figure 6 shows

how this would result in our example. These documents

related to each element could be used as a filtered in-

put for a tool like [7] to generate the best grammar

expression for that element.

5 Handling classes of documents

Until now, we assumed that we did not have the choice
XML construct (i.e. disjunction “t” in terms of DL).
In this section, we will study the possibility of using it
to show the existence of different classes of documents.

5 Proof has been moved to Appendix B.5.

Thus, resemblance needs to be redefined as follows, for
k classes of documents:

M =
k⊔
i=1

M
i

E
i

= {d ∈ E | ∀j 6= i, r(d,M
i
) > r(d,M

j
)}

r(M,E) =

∑k
i=1 wc(M

i,Ei)∑k
i=1

wc(Mi,Ei) + α
∑k
i=1

wp(Mi,Ei) + β
∑k
i=1

wm(Mi,Ei)

where M i do not contain disjunctions. Sections 5.1 and

5.2 show, respectively, how wp and wm can be reduced

by considering different classes of documents (adding a

limited number of optional elements).

5.1 Reducing plus elements (in documents, not in MP)

We want to improve the resemblance to the whole set of

documents by adding elements to the MP. Nevertheless,

since we already reached the maximum resemblance,

we could only worsen it. To solve this, we may consider

those elements as optional. Adding an optional element

will produce two classes of documents: Those contain-

ing the optional element (whose resemblance will be

improved), and those that do not contain it (whose re-

semblance will not be modified).

It is easy to see that by just extending (strictly

adding) the MP with optional elements, we will increase

wc, reduce wp, and preserve wm. The sum of all com-

mon and plus elements corresponds to the size of all

documents together independently of the concept we

are obtaining the distance to.

∀C : wc(C,E) + wp(C,E) =
∑
d∈E

size(d)

Thus, it is only necessary to consider how much wc

increases, i.e. how many documents match the optional

elements and how big these are. The more documents

matching those elements, the better; and the bigger the

elements, also the better.

... // Phase 3: Add optional leaves
// Get best element
e = nextByWeightAndSize(WE,m));
// While target resemblance is not reached and there are more elements
while (r(M,E) < target and e 6= null)

// Add an optional element to MP
p := parent(e);

M′ :=
⊔
MivDL⊥(p)(Mi t ((Mi −DL⊥(p)) uDL⊥(e)));

M′′ :=
⊔
¬(MivDL⊥(p))(Mi t (Mi uDL⊥(e)));

M := M′ tM′′;
// Get next element
e = nextByWeightAndSize(WE,m));
endwhile;

Fig. 7 Algorithm for the selection of optional elements

Figure 7 shows the third phase of the algorithm in

Figure 4. Once we got the schema of maximum resem-

blance, without any optional element, we may add op-

tional elements also based on the number of appear-

ance until we get the target resemblance (target = 1
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would result in exact matching and overfitting). Ev-

ery optional element, at worse, doubles the number of

classes. Those already existing classes can be either ex-

tended with the current element or not, which is for-

malized by means of a disjunction. Formally, as in the

second phase if the parent of the element to be added

was a leaf (i.e. Mi v DL⊥(p)), it must be removed (by

means of a difference) before adding the element.

Figure 8 exemplifies how we can improve the resem-

blance. In Figure 5, we stopped the second phase before

adding those elements appearing only once. Therefore,

m = 1 and the next element to be added is “(a, b, c)”.

Thus, we get a new MP being the disjunction of two

classes, and we calculate the resemblance taking into

account the best class for each document. In this way,

numerator increases by a factor of one, while denomi-

nator increases (or even decreases if α > 1) by a factor

of 1− α, thus, improving resemblance.

5.2 Reducing minus elements (in MP, not in

documents)

The first problem with that improvement of resem-

blance is that the number of classes grows quickly on the

number of optional elements, proving useful only when

we are quite close to the target resemblance. More-

over, notice that, by using the algorithm in Figure 7

we will never modify wm (which may not be zero af-

ter the second phase). Thus, we are not able to reach

resemblance equal one if the MP after second phase con-

tains non-optional elements that are absent from some

documents. We should look for optional roots, besides

optional leaves. In order to solve this, we should divide

the documents into several classes, and obtain sepa-

rately the MP of each of these classes. This way, in-

creasing the number of classes, each of the MPs would

eventually only contain elements that are present in all

its corresponding documents (i.e. wm = 0). The MP of

the whole set of documents will be the disjunction of

these partial MPs M i.

We may trigger this phase of the algorithm if we do

not reach the target resemblance with a given number of

iterations in the third phase (i.e. a given small number

of optional elements); or if
wp
wm

after phase two is below

a threshold; or it may even be triggered before hand,

based on the number of appearances of elements at first

level (i.e. if |E|
getMaxWeight(WE) is above a threshold).

For this classification of documents, we may use an

algorithm like “k-means” which is considered to need

linear time (see [31]). If we take k =| E |, the problem

becomes trivial, being M =
⊔

d∈E d. Therefore, we are

looking for a small k so that maximizes r(M,E). For

example, we may assume there are d |E|
getMaxWeight(WE)e

different kinds of documents, and generate such number

of alternative subsets of elements.

Figure 9 sketches the algorithm. In our case, we

could benefit from the existence of WE to improve per-

formance if it keeps the sets of documents that con-

tain every element, instead of just counting them (as

assumed at the end of Section 4). We should codify ev-

ery set Ei as a list of bits b1b2..b|E|, where bit j shows

whether the corresponding document contains the el-

ement or not (dj v DL>(element)). In this way, we

could take k random disjoint chains of bits as seeds

(si) for “k-means”. Then, we can find the MP corre-

sponding to each seed by running the second phase of

our algorithm on WE using the corresponding mask of

bits.

Figure 10 shows an example of clustering documents

into two sets, and how this improves the resemblance.

We take the first document as seed one, and the others

as seed two (i.e. {d1} vs {d2, d3, d4}). For each one of

them, we obtain the MP (i.e. “∃a.(∃b.∃c.⊥u∃d.∃e.⊥)”

and “∃a.∃d.∃e.⊥” respectively) by applying the algo-

rithm in Figure 4, ANDing the corresponding seed to

the sequence of bits of each element in WE. Obtaining

the resemblance of each document to both MPs, we see

that “d2” is in the wrong class, because its resemblance

to the first MP is higher, while it was related to the sec-

ond one. Therefore, we perform a second iteration with

one MP for “{d1, d2}” and another one for “{d3, d4}”.

Now every document is in the right class, so we have

finished. Figure 11 graphically draws the result and re-

semblance calculation. The MP of E is the disjunction

of both MPs, and the overall resemblance improves by

reducing the denominator. It is easy to see that with

three classes we had obtained the exact schema.

Notice also that resemblances can be obtained from

WE by crossing it once per cluster (keeping all | E |
resemblances in memory). For example, lets see how to

obtain in the first iteration of Figure 10 resemblances

from “∃a.∃d.∃e.⊥” to each document (i.e. “r(M2, d1)”,

“r(M2, d2)”,“r(M2, d3)”, and “r(M2, d4)”). At the first

step, we would take “(a)” that belongs to the MP. Since

the sequence of bits indicates that it belongs to the four

documents, it would increase all four common elements’

counters (i.e. wc(M
2, d1), wc(M

2, d2), wc(M
2, d3), and

wc(M
2, d4)). The same would happen for “(a,d)”. At

the third step, we may consider “(a, d, e)” that also

belongs to the MP. Since the sequence of bits indi-

cates that it belongs to “{d1, d3, d4}”, it would incre-

ment common elements of these and minus of d2 (i.e.

wc(M
2, d1), wm(M2, d2), wc(M

2, d3), and wc(M
2, d4)).

At the fourth step, we would take “(a, b)” that does

not belong to the MP. Since the sequence of bits in-



Approximating the schema of a set of documents by means of resemblance 9

WE = {[(a), 4], [(a, b), 2], [(a, b, c), 1], [(a, d), 4], [(a, d, e), 3]}
M4 = M1

4 tM2
4 = ∃a.(∃b.⊥ u ∃d.∃e.⊥) t (∃a.(∃b.∃c.⊥ u ∃d.∃e.⊥))

E1 = {d2, d3, d4};E2 = {d1}

b

e

d

a

c e

Midpoint

−bok −b−e

document1 document4document3document2

e

d
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e
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a
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a

c e
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a

r(M4, E) =
wc(M

1
4 ,E

1)+wc(M
2
4 ,E

2)

wc(M
1
4 ,E

1)+wc(M
2
4 ,E

2)+α(wp(M
1
4 ,E

1)+wp(M
2
4 ,E

2))+β(wm(M1
4 ,E

1)+wm(M2
4 ,E

2))
= (9+5)

(9+5)+α·(0+0)+β·(3+0)
= 14

17

Fig. 8 Example of resemblance improvement reducing plus elements

// Phase 0: Clustering documents
Choose k initial seeds // (may be random)
do

For each class get an MP
Assign each document to its nearest MP

while (classes changed)

Fig. 9 K-means algorithm

dicates that it belongs to the first and second docu-

ments, it would increment plus elements of these (i.e.

wp(M2, d1), and wp(M2, d2)). We would follow this way

also for the last element in WE.

Considering k-means iterations linear in the number

of documents, we need to get | E | MPs (whose cost is

linear in the number of elements), and cross WE the

same number of times to obtain the resemblance of the

documents to those MPs (whose cost depends on the

number of elements in WE, and the number of bits to

be compared, i.e. | E |). Therefore, the cost of finding

the MP considering choice construct and using k-means

algorithm is | E | ·((
∑
d∈E | d |) + (|WE | · | E |)).

6 Repeated elements

It is possible that the same tag appears at different

places (i.e. having a different parent) in the same doc-

ument (or even in different documents). If we consider

that in this case all appearances of a tag share the same

internal structure independently of their position in the

document, we should start a previous process to find the

MP of such tag (i.e. we should consider it as a whole

document, get its internal structure, and treat it as a

black box in the processing of the real document). This

section does not deal with this kind of repetitions, but

with one element that contains several others of the

same kind in a sequence.

First of all, on talking about repetitions, it is impor-

tant to distinguish between (a) unnumbered repetitions

(i.e. + in XML notation) and (b) numbered repetitions

(i.e. a fixed number of children of the same kind in a

sequence). The point is that we cannot decide whether

a repetition is unnumbered or not without human par-

ticipation. How could we decide (based on a finite set

of finite documents) that there is a potentially infinite

repetition of elements? Since we cannot, we should de-

cide first if we are interested in generating numbered or

unnumbered repetitions.

If we wanted to generate (a) numbered repetitions,

we should just consider that each sibling element is a

completely different one and we can use again the same

algorithms. For example, in order to be able to treat the

XML document “<a><b>brother</b><b>sister</b></a>”, we

should transform this document into “<a><b1>brother</b1>

<b2>sister</b2></a>”. This would work specially well for

ordered elements, where the position indicates which

sibling they are. In the example, the first one would

always be identified as b1, and the second as b2. Do-

ing it this way, a different position indicates a different

internal structure.

If we wanted to generate (b) unnumbered repeti-

tions, another problem would appear. As stated before,

since in databases we are dealing with unordered doc-

uments, repeated elements result in undistinguishable

twins, which should have the same intensional inter-

nal structure. Otherwise, if the twins had a different

structure, there would be a conceptual design prob-

lem in the documents. Even when dealing with semi-
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WE = {[(a), {1111}], [(a, b), {1100}], [(a, b, c), {1000}], [(a, d), {1111}], [(a, d, e), {1011}]}

L
o
o
p

1

s1 = 1000, s2 = 0111
WE1 = {[(a), {1000}], [(a, b), {1000}], [(a, b, c), {1000}], [(a, d), {1000}], [(a, d, e), {1000}]}

M1
0 = > 1

1β
≥ 0

M1
1 = ∃a.(∃b.∃c.⊥ u ∃d.∃e.⊥) 0

1β
< 5

5α+5·1β
WE2 = {[(a), {0111}], [(a, b), {0100}], [(a, b, c), {0000}], [(a, d), {0111}], [(a, d, e), {0011}]}

M2
0 = > 3

3β
≥ 0

M2
1 = ∃a.∃d.⊥ 2

3β
≥ 6

9α+2·3β
M2

2 = ∃a.∃d.∃e.⊥ 1
3β

< 8
9α+3·3β

r(M1, d1) = 5
5+0α+0β

r(M2, d1) = 3
3+2α+0β

r(M1, d2) = 3
3+0α+2β

r(M2, d2) = 2
2+1α+1β

r(M1, d3) = 3
3+0α+2β

r(M2, d3) = 3
3+0α+0β

r(M1, d4) = 3
3+0α+2β

r(M2, d4) = 3
3+0α+0β

L
o
o
p

2

s1 = 1100, s2 = 0011
WE1 = {[(a), {1100}], [(a, b), {1100}], [(a, b, c), {1000}], [(a, d), {1100}], [(a, d, e), {1000}]}

M1
0 = > 2

2β
≥ 0

M1
1 = ∃a.(∃b.⊥ u ∃d.⊥) 1

2β
≥ 6

8α+3·2β
M1

2 = ∃a.(∃b.∃c.⊥ u ∃d.∃e.⊥) 0
2β

< 8
8α+5·2β

WE2 = {(a), {0011}], [(a, b), {0000}], [(a, b, c), {0000}], [(a, d), {0011}], [(a, d, e), {0011}]}
M2

0 = > 2
2β
≥ 0

M2
1 = ∃a.∃d.∃e.⊥ 1

2β
≥ 6

6α+3·2β
M2

2 = ∃a.∃d.∃e.⊥ 0
2β

< 6
6α+3·2β

r(M1, d1) = 5
5+0α+0β

r(M2, d1) = 3
3+2α+0β

r(M1, d2) = 3
3+0α+2β

r(M2, d2) = 2
2+1α+1β

r(M1, d3) = 3
3+0α+2β

r(M2, d3) = 3
3+0α+0β

r(M1, d4) = 3
3+0α+2β

r(M2, d4) = 3
3+0α+0β

M = (∃a.(∃b.∃c.⊥ u ∃d.∃e.⊥)) t (∃a.∃d.∃e.⊥);E1 = {d1, d2};E2 = {d3, d4}

Fig. 10 Example of dividing the documents into two classes
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Fig. 11 Graphical representation of classes and resemblance

structured data, two elements of the same (undistin-

guishable) class should share the same semi-structure.

Thus, we have two different problems. The first one is

deciding when there exists an unnumbered repetition,

and the second one is how to find the internal structure

common to all repetitions of the element.

To face these two problems, we should modify the

parser of documents that capture the elements. If the

parser finds a repetition, it should use a special mark

showing the presence of sibling elements, and indicat-

ing the number s of them existing in the correspond-

ing parent. However, because of syntactical issues, we

need to visit all the descendants of the parent before we

know the number of twins. Therefore, we should keep

in memory the whole set of elements of each document,

to generate s, without a second pass.

If there exists only one repetition of “t” in a million

of documents, substituting “t” by “t+” does improve

the resemblance, which is clearly not representative of

the million documents. The problem is that once the tag

“t” belongs to the MP, replacing it by “t+” increases

wc, decreases wp, but does not affect wm. This means

that we should never consider “t” instead of “t+” if

only one document contains a repetition. This is quite

drastic and unrealistic. Therefore, we took the approach

of changing “t” by “t+” if there are m documents con-
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taining repetitions of “t”, and elements appearing m

times improve resemblance.

Thus, in order to decide whether the MP should

show a repetition or not, if the first phase of the algo-

rithm (Figure 4) finds the special parsing mark, then

(t1, .., tn) and (t1, .., tn+) should both be increased in

WE. During the second phase, on adding (t1, .., tn+),

we should change tn into tn+ from M . Notice that the

appearance of (t1, .., tn) will always be higher than that

of (t1, .., tn+), because we always increase the counter

of the first (if we find the element), while only increase

the latter if there is a repetition of that element. The

second phase does not need to be modified.

Regarding the problem of finding the internal struc-

ture of repetitions, the second phase does not need any

modification, either. When, during the first phase of the

algorithm, we find a subelement in any of the repeti-

tions, we should just increase the counter of the corre-

sponding element in 1
s , where s is the number of sib-

lings in the parent element. By doing this, we avoid

overweighting the subelements of repetitions, and keep

the basic idea of the algorithm still true (i.e. a child

cannot appear more times in the documents than its

parent).

document5: <a><b>Single</b></a>
document6: <a><b>Twin2</b><b> Twin1 </b></a>
document7: <a><b>FlatTwin</b><b><c>ComTwin</c></b></a>

WE = {[(a), 3], [(a, b), 3], [(a, b+), 2], [(a, b, c), 0.5]}

Fig. 12 Example of documents with repetitions

Figure 12 exemplifies how repetitions are treated

by the algorithm. In this case, “(a)” weights three, be-

cause appears in three documents. The same happens

for “(a,b)”, because three documents contain such el-

ement. Moreover, there are two documents containing

repetitions of “(a,b)”, which is recorded by the appear-

ance of “(a,b+)”. Finally, “(a,b,c)” appears once in one

document. Nevertheless, it is part of a repetition of two

twins, so that its weight is 1
2 = 0.5.

7 Conclusions and future work

Along this paper, we have studied the possibility of ap-

proximating the schema of a set of documents. Based

on a given measure of resemblance, we are able to find

the MP of the set. We began by considering only a

restricted class of schemas (having neither repetition

nor choice), and it has been generalized to any schema.

Thus, we are able to approximate the collection of doc-

uments as much as we want (by considering a limited

number of alternative classes). Taking this to the ex-

treme, we would get an exact matching. Besides that,

we can also find the relevant documents in the original

set with regard to the generated MP, which would ease

the obtaining of the best grammar expression of each

element. The general algorithm using k-means cluster-

ing is quadratic in the number of documents and linear

in the number of different elements, while it is only lin-

ear in the whole number of elements (counting repeti-

tions) if not considering the choice construct (i.e. with-

out clustering).

Our experiments in Appendix A show that these

approximated schemas are much simpler and ease user

understanding. People spend less time and, if resem-

blance is high enough, they make less mistakes (even

compensating the loss in the approximation).
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A Experimental study

We have conducted the experiments in two different direc-
tions. On the one hand, we have analyzed the usefulness of
the obtained schema, and how informative and useful it is with
regard to the perfect-matching (in Section A.1). On the other
hand, we have also tested the performance of the algorithm to
find one MP (shown in Section A.2), by means of randomly
generated documents. The performance on finding different
classes has not been analyzed, because it strictly depends on
the cost of the clustering algorithm used (i.e. k-means in our
case), and this is out of the scope of this work.

A.1 Usefulness

This section scrutinizes the usefulness of approximating the
schema of a set of documents instead of using the perfect-
matching. Four different sets of real-life documents have been
used in the experiment (in Sections A.1.1, A.1.2, A.1.3 and
A.1.4), so that an approximated schema has been generated
for each of them6. These have been used in a user study of
usability against the perfect ones (in Section A.1.5).

A.1.1 Religious texts

The documents in this section are authored by Jon Bosak7,
and correspond to four religious texts (i.e. “The Old Testa-
ment”, “The New Testament”, “The Quran”, and “The Book
of Mormon”). LHS of Figure 13 shows the MP of the four doc-
uments under consideration. Characteristics of the documents
and parameters are as follows:

Number of documents: 4
Real number of classes: 4
Used number of classes: 1

With those parameters, we obtain a resemblance of 47.6%.
This would mean that documents are quite different, and we
should define different classes of documents. However, this
does not make sense if we only have four documents. Surpris-
ingly, we would get 93.5% (not 100%) of resemblance for four
different classes. This is because not even the repetitions of
the same element inside a document share the same structure.

Notice that elements like “suracoll”, “sura” and “wit-
ness” are not considered relevant. Nevertheless, some that
were optional, like “coverpg”, “titlepg”, and “preface”) ap-
pear enough times to be in the output.

6 α = β = 1 unless explicitly said otherwise.
7 http://www.oasis-open.org/cover/bosakShakespeare200.html
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<!-- DTD for testaments J. Bosak -->

<!-- Early versions 1992-1998 -->

<!-- Major revision Copyright (c) Jon Bosak September 1998 -->

<!ENTITY % plaintext "#PCDATA|i">

<!ELEMENT tstmt (coverpg?,titlepg?,preface?,(bookcoll|suracoll)+)>

<!ELEMENT coverpg ((title|title2)+, (subtitle|p)*)>

<!ELEMENT titlepg ((title|title2)+, (subtitle|p)*)>

<!ELEMENT title (%plaintext;)*>

<!ELEMENT title2 (%plaintext;)*>

<!ELEMENT subtitle (p)+>

<!ELEMENT preface ((ptitle|ptitle0)+,p+,witlist?)+>

<!ELEMENT witlist (witness)+>

<!ELEMENT ptitle (%plaintext;)*>

<!ELEMENT ptitle0 (%plaintext;)*>

<!ELEMENT witness (%plaintext;)*>

<!ELEMENT bookcoll (book|sura)+>

<!ELEMENT book (bktlong,bktshort,epigraph?,bksum?,chapter+)>

<!ELEMENT suracoll (sura+)>

<!ELEMENT sura (bktlong,bktshort,epigraph?,bksum?,v+)>

<!ELEMENT bktlong (%plaintext;)*>

<!ELEMENT bktshort (%plaintext;)*>

<!ELEMENT bksum (p)+>

<!ELEMENT chapter (chtitle,chstitle?,epigraph?,chsum?,(div+|v+))>

<!ELEMENT chtitle (%plaintext;)*>

<!ELEMENT chstitle (%plaintext;)*>

<!ELEMENT div (divtitle, v+)>

<!ELEMENT divtitle (%plaintext;)*>

<!ELEMENT chsum (p)+>

<!ELEMENT epigraph (%plaintext;)*>

<!ELEMENT p (%plaintext;)*>

<!ELEMENT v (%plaintext;)*>

<!ELEMENT i (%plaintext;)*>

<!-- Automatically generated DTD -->

<!ELEMENT tstmt (bookcoll,coverpg,preface,titlepg)>

<!ELEMENT coverpg (subtitle+,title,title2)>

<!ELEMENT titlepg (title, title2)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT title2 (#PCDATA)>

<!ELEMENT subtitle (p)>

<!ELEMENT preface (p+,ptitle)>

<!ELEMENT ptitle (#PCDATA)>

<!ELEMENT bookcoll (book+)>

<!ELEMENT book (bktlong,bktshort,chapter+)>

<!ELEMENT bktlong (#PCDATA)>

<!ELEMENT bktshort (#PCDATA)>

<!ELEMENT chapter (chtitle,v+)>

<!ELEMENT chtitle (#PCDATA)>

<!ELEMENT v (#PCDATA)>

<!ELEMENT p (#PCDATA)>

Fig. 13 Religious texts

A.1.2 Shakespeare texts

The documents in this section are authored by Jon Bosak8,
and show a set of the plays of William Shakespeare. LHS
of Figure 14 shows the DTD of the thirty-seven documents
under consideration. Characteristics of the documents and
parameters are as follows:

Number of documents: 37
Real number of classes: 27
Used number of classes: 1

With those parameters, we obtain the schema at RHS
of Figure 14, resulting in a resemblance of 90%. This would
mean that the 37 kinds of documents are quite similar. The
maximum resemblance would be for 37 classes, which results
in 96%. As in Section A.1.1, this is because not even the repe-
titions of the same element inside a document share the same
structure. Just by adding optional elements to the schema in
Figure 14, we get a 98.5% of resemblance.

Notice that some optional elements like “EPILOGUE”,
“PROLOGUE” and “INDUCT” do not appear in the MP,
because only few documents contain them (for instance, “IN-
DUCT” appears in just 2 out of 37 documents). Thus, it
seems clear that to understand the meaning of a “PLAY”,
“INDUCT” is not relevant. The same can be said on “ACT”.
If you want to explain your child what an act is, you would
just say that it has a title, and one or more scenes. Only if
s/he is really interested and old enough, you would point out
that it may contain subtitles, prologue and epilogue.

On the other hand, “PERSONA” and “PGROUP” are
important enough to appear in the MP. They are not optional
nor a choice, because most documents contain them. All doc-
uments contain “PERSONA”, and only four documents do
not contain “PGROUP” inside “PERSONAE”.

A.1.3 Response/Request documents

The documents in this section are authored by Age Foto-
stock, which is an imagery agency in all areas (both rights
protected and royalty free). Age provides a technical host-
ing platform (THP) for the sharing of images among imagery

8 http://www.oasis-open.org/cover/bosakShakespeare200.html

agencies around the world. In this example, four classes of
documents are provided, which correspond to a licensed pro-
tocol for B2B image sharing. First, an agency needs to request
the existing resolutions for one or more images (classes one
and three). Secondly, an agency requests an specific high-
resolution file for one or more images (classes two and four).
The documents have been extracted from the service log files
of the company. Thus, there was no available DTD. Charac-
teristics of the documents and parameters are as follows:

Number of documents: 189
Real number of classes: 6
Used number of classes: 4

If we try to find the MP of these documents, it results in a
resemblance of 36.8%. This means that there exist completely
different kinds of documents. By looking for four classes, we
obtain those in Figure 15, which results in a resemblance of
99.3%. Looking for less than four classes results in unrealistic
DTDs where some of those four are united. This effect can
be avoided by increasing β above one (1.2 was enough in our
experiments).

A.1.4 Photo documents

The documents in this section are also authored by Age Foto-
stock, and are an stratified random extraction of the imagery
database. Thus, again, there was no available DTD. Charac-
teristics of the documents and parameters are as follows:

Number of documents: 2497
Real number of classes: ∼100
Used number of classes: 1

All elements found in the MP (those at LHS of Fig-
ure 16) appear in more than two thousand documents. Thus,
it looks reasonable to consider them as mandatory. On the
other hand, optional elements (those new at RHS of Fig-
ure 16) appear in less than one thousand. The resemblance
obtained to the MP is 91%, which increases up to 97.4% if we
also consider the optional elements. This means that there is
only one class of documents, that can be well described by
the obtained MP.
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<!-- DTD for Shakespeare J. Bosak 1994.03.01, 1997.01.02 -->

<!-- Revised for case sensitivity 1997.09.10 -->

<!-- Revised for XML 1.0 conformity 1998.01.27 (thanks to Eve Maler) -->

<!ENTITY amp "&#38;#38;">

<!ELEMENT PLAY (TITLE, FM, PERSONAE,SCNDESCR,PLAYSUBT,INDUCT?,

PROLOGUE?,ACT+,EPILOGUE?)>

<!ELEMENT TITLE (#PCDATA)>

<!ELEMENT FM (P+)>

<!ELEMENT P (#PCDATA)>

<!ELEMENT PERSONAE (TITLE,(PERSONA | PGROUP)+)>

<!ELEMENT PGROUP (PERSONA+,GRPDESCR)>

<!ELEMENT PERSONA (#PCDATA)>

<!ELEMENT GRPDESCR (#PCDATA)>

<!ELEMENT SCNDESCR (#PCDATA)>

<!ELEMENT PLAYSUBT (#PCDATA)>

<!ELEMENT INDUCT (TITLE, SUBTITLE*,(SCENE+|(SPEECH|STAGEDIR|SUBHEAD)+))>

<!ELEMENT ACT (TITLE, SUBTITLE*,PROLOGUE?, SCENE+, EPILOGUE?)>

<!ELEMENT SCENE (TITLE, SUBTITLE*,(SPEECH | STAGEDIR | SUBHEAD)+)>

<!ELEMENT PROLOGUE (TITLE, SUBTITLE*,(STAGEDIR | SPEECH)+)>

<!ELEMENT EPILOGUE (TITLE, SUBTITLE*,(STAGEDIR | SPEECH)+)>

<!ELEMENT SPEECH (SPEAKER+,(LINE | STAGEDIR | SUBHEAD)+)>

<!ELEMENT SPEAKER (#PCDATA)>

<!ELEMENT LINE (#PCDATA | STAGEDIR)*>

<!ELEMENT STAGEDIR (#PCDATA)>

<!ELEMENT SUBTITLE (#PCDATA)>

<!ELEMENT SUBHEAD (#PCDATA)>

<!-- Automatically generated DTD -->

<!ELEMENT PLAY (ACT+,FM,PERSONAE,PLAYSUBT,SCNDESCR,TITLE)>

<!ELEMENT TITLE (#PCDATA)>

<!ELEMENT FM (P+)>

<!ELEMENT P (#PCDATA)>

<!ELEMENT PERSONAE (PERSONA+,PGROUP+,TITLE)>

<!ELEMENT PGROUP (GRPDESCR,PERSONA+)>

<!ELEMENT PERSONA (#PCDATA)>

<!ELEMENT GRPDESCR (#PCDATA)>

<!ELEMENT SCNDESCR (#PCDATA)>

<!ELEMENT PLAYSUBT (#PCDATA)>

<!ELEMENT ACT (SCENE+,TITLE)>

<!ELEMENT SCENE (SPEECH+,STAGEDIR+,TITLE)>

<!ELEMENT SPEECH (LINE,SPEAKER)>

<!ELEMENT SPEAKER (#PCDATA)>

<!ELEMENT LINE (#PCDATA)>

<!ELEMENT STAGEDIR (#PCDATA)>

Fig. 14 Shakespeare texts

<!-- Class 1 -->

<!ELEMENT request (getResolutions,login,password)>

<!ELEMENT getResolutions (imagecode)>

<!ELEMENT imagecode (#PCDATA)>

<!ELEMENT login (#PCDATA)>

<!ELEMENT password (#PCDATA)>

<!-- Class 2 -->

<!ELEMENT request (getUrlHires,login, password)>

<!ELEMENT getUrlHires (imagecode,imageresolution,imagesaveas,imageusage)>

<!ELEMENT imagecode (#PCDATA)>

<!ELEMENT imageresolution (#PCDATA)>

<!ELEMENT imagesaveas (#PCDATA)>

<!ELEMENT imageusage (#PCDATA)>

<!ELEMENT login (#PCDATA)>

<!ELEMENT password (#PCDATA)>

<!-- Class 3 -->

<!ELEMENT response (resolutions,status)>

<!ELEMENT resolutions (imagecode,resolution+,status)>

<!ELEMENT imagecode (#PCDATA)>

<!ELEMENT resolution (#PCDATA)>

<!ELEMENT status (#PCDATA)>

<!-- Class 4 -->

<!ELEMENT response (status,urlHires)>

<!ELEMENT urlHires (imagecode,status)>

<!ELEMENT imagecode (#PCDATA)>

<!ELEMENT status (#PCDATA)>

Fig. 15 Requests/Responses (Four classes of documents)

<!-- Without optional elements -->

<!ELEMENT photo (agency,photographer,general_data,imagecode,

license_terms,original_code)>

<!ELEMENT agency (code,collection,name)>

<!ELEMENT code (#PCDATA)>

<!ELEMENT collection (#PCDATA)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT photographer (name)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT general_data (creation_date,documentation,photocrypt)>

<!ELEMENT creation_date (#PCDATA)>

<!ELEMENT documentation (description,keywording)>

<!ELEMENT description (#PCDATA)>

<!ELEMENT keywording (#PCDATA)>

<!ELEMENT photocrypt (resolution+)>

<!ELEMENT resolution (#PCDATA)>

<!ELEMENT imagecode (#PCDATA)>

<!ELEMENT license_terms (#PCDATA)>

<!ELEMENT original_code (#PCDATA)>

<!-- With optional elements -->

<!ELEMENT photo (additional_info?,agency,photographer,general_data,

imagecode,license_terms,original_code)>

<!ELEMENT additional_info (model_release?,property_release?,usage_conflict?)>

<!ELEMENT model_release (#PCDATA)>

<!ELEMENT property_release (#PCDATA)>

<!ELEMENT usage_conflict (country*)>

<!ELEMENT country (iso?,name?)>

<!ELEMENT iso (#PCDATA)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT agency (code,collection,name)>

<!ELEMENT code (#PCDATA)>

<!ELEMENT collection (#PCDATA)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT photographer (code?,name)>

<!ELEMENT code (#PCDATA)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT general_data (cdrom?,creation_date,documentation,photocrypt)>

<!ELEMENT cdrom (#PCDATA)>

<!ELEMENT creation_date (#PCDATA)>

<!ELEMENT documentation (description,keywording,large_description?)>

<!ELEMENT description (#PCDATA)>

<!ELEMENT keywording (#PCDATA)>

<!ELEMENT large_descr (#PCDATA)>

<!ELEMENT photocrypt (resolution+)>

<!ELEMENT resolution (#PCDATA)>

<!ELEMENT imagecode (#PCDATA)>

<!ELEMENT license_terms (#PCDATA)>

<!ELEMENT original_code (#PCDATA)>

Fig. 16 Photos (without/with optional elements)

A.1.5 Usability test

In this section, we study the comprehensibility of approxi-
mated schemas against perfect-matching. First of all, let’s see
the usability and maintainability measures defined in [22]:

Size is the number of nodes in the graph representing the
schema.

Complexity is defined as the number of edges, plus one, mi-
nus the number of nodes (i.e. the number of edges that
should be removed to obtain a tree, which would mean
zero complexity).

Depth is the maximum depth of the graph representing the
schema.

Fan-In is the maximum number of children among the ele-

ments of the schema.
Fan-Out is the maximum number of parents among the ele-

ments of the schema.

Table 2 shows those metrics in the schemas considered
in previous sections (from A.1.2, we use the approximated
schema without optional elements). Just notice that only in
one case (i.e. A.1.3) these metrics are not affected. In this
case, only the optionality of some elements has changed. In
the other three pairs of schemas, we can observe that all us-
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Size Complexity Depth Fan-In Fan-out

A.1.1 (perfect) 27 34 5 6 5

A.1.1 (approx.) 17 7 4 4 2

A.1.2 (perfect) 22 42 5 9 7

A.1.2 (approx.) 16 12 4 6 4

A.1.3 (perfect) 15 5 3 4 4

A.1.3 (approx.) 15 5 3 4 4

A.1.4 (perfect) 24 5 4 7 4

A.1.4 (approx.) 16 2 3 6 2

Table 2 Usability metrics as in [22]

ability metrics have been improved, which means that the
approximated schema is much simpler in any sense.

In order to demonstrate the efficiency and effectiveness of
the approximated schemas, a user study has been conducted.
Some schemas (some perfect and other approximated) have
been given to each individual, besides a list of five randomly
chosen elements from the perfect one (notice that some of
these may not be present in the approximated one) for each
schema. The individual had to answer the number of paths
leading to each element, the depth of each one of these paths
and whether the path must be in every document or not (i.e.
the optionality of the path). In the approximated schema, the
queried element may not be present or if present, it may have
been considered non-optional (when, actually, it is optional).
Any of these cases has also been considered a user error. An-
other important point in the study is that the mistakes have
been weighted by the importance of the element (i.e. a mis-
take in an optional leaf that only appears from time to time
counts proportionally less than a mistake in the root or any
other mandatory element).

Perfect Approx. T-test Resem.

# avg stdev # avg stdev

A.1.1 7 394 132 9 176 30 0.002 47.6%

A.1.2 9 319 110 7 196 129 0.03 90%

A.1.3 8 342 149 10 298 144 0.27 99.3%

A.1.4 9 264 109 8 187 81 0.06 91%

Table 3 Efficiency

Table 3 shows the average time expressed in seconds (col-
umn “#” shows the number of individuals that answered ev-
ery questionnaire). In all four cases, the approximated schema
results in less average time for users to answer. A T-test has
been done in order to discard that those results have been
obtained by chance. For the first one, second one and fourth
one, there is a probability of 0.2%, 3% and 6% respectively of
obtaining these results just by chance. Only in the third one
(that has a really high similarity) the probability of obtaining
these results by chance can be considered high (i.e. 27%).

Perfect Approx. T-test Resem.

# avg stdev # avg stdev

A.1.1 8 4.12 0.61 9 3.3 0.10 0.003 47.6%

A.1.2 9 4.17 0.62 8 3.74 0.74 0.11 90%

A.1.3 8 4.43 0.47 10 4.71 0.23 0.08 99.3%

A.1.4 9 4.57 0.51 8 4.12 0.83 0.11 91%

Table 4 Effectiveness

Regarding the effectiveness, Table 4 summarizes the ex-
perimental results. Each of the five queried elements counts
by one, so the maximum score would be 5 (meaning answers
for all five elements are correct) and the minimum would be 0

(meaning that the five elements are mandatory and all five an-
swers are wrong). In the first case, since the resemblance was
really low (i.e. 47.6%), users made much more mistakes work-
ing on the approximated schema and this is not by chance
(0.3% in the T-test). Third and fourth cases have similar re-
semblances, and so are the experimental results. Users make
more mistakes with the approximated schema and there is an
11% of probability of making such mistakes by chance. How-
ever, the most surprising result is the third one. In this case,
the effectiveness is improved with the approximated schema

(with a probability of only 8% of being by chance). Notice
that in this case, the resemblance is really high.

Perfect Approx. T-test

# avg stdev # avg stdev

Efficiency 9 319 110 8 313 118 0.45

Effectiveness 9 4.17 0.62 8 4.48 0.51 0.14

Table 5 Efficiency and effectiveness for A.1.2 with 95% of
resemblance

Thus, to check the influence of different resemblances, we
clustered the documents in A.1.2 into five clusters and gen-
erated a new approximated schema, whose resemblance to
the perfect one is now 95% (instead of 90% as the previous
approximation). Giving this new schema to eight people, we
obtained the results in Table 5. As in the previous experi-
ment, when the resemblance is high, there is not any relevant
difference between the average time users spend in under-
standing the schema, either perfect or approximated. How-
ever, as also happened in the other case of high resemblance,
the effectiveness has been improved (just a 14% of having this
improvement by chance), since individuals have more correct
answers.

These experiments corroborate our intuition that giving
simpler schemas to the users, they will spend less time work-
ing with them. If these schemas are too different (resemblance
91% or bellow in our experiments), users make mistakes due
to the information loss we have in the approximation of the
schema. However, if the resemblance we obtain is high enough
(95% or above in our experiments) the effectiveness of users
compensates the loss in the approximation. Thus, spending
the same time, users understand the contents of the schema
much better and make less mistakes.

A.2 Performance

This section contains experimental performance results ob-
tained from a self generated data set. These sets have been
generated randomly from the schema in the LHS of Figure 17,
parametrizing the probability of appearance of repeated and
optional elements as follows:
+ 0.25 ∗ 0.75n−1 (being n the number of repetitions)
* 0.25 ∗ 0.75n (being n the number of repetitions)
? 0.75
| k

n(n+1)

2

(for the element at position k in a choice of n ele-

ments)

In the LHS of Figure 17, we have the original schema,
while its RHS shows the obtained MP from one thousand ran-
domly generated documents. Resulting resemblance is 65%.
However, we should not analyze it in this case, because the
purpose of this test is just to corroborate the linear behaviour
of the algorithm and the documents used are senseless. Char-
acteristics of the set and parameters used are as follows:
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<!-- Original DTD -->

<!ELEMENT root (a,b+,c*,d?)>

<!ELEMENT a (e,f)>

<!ELEMENT b (g,h)>

<!ELEMENT c (i|j?)>

<!ELEMENT d (#PCDATA)>

<!ELEMENT e (#PCDATA)>

<!ELEMENT f (k?,l)>

<!ELEMENT g (m|n|o)>

<!ELEMENT h (#PCDATA)>

<!ELEMENT i (p|q)>

<!ELEMENT j (r,s)>

<!ELEMENT k (#PCDATA)>

<!ELEMENT l (#PCDATA)>

<!ELEMENT m (#PCDATA)>

<!ELEMENT n (#PCDATA)>

<!ELEMENT o (#PCDATA)>

<!ELEMENT p (#PCDATA)>

<!ELEMENT q (#PCDATA)>

<!ELEMENT r (#PCDATA)>

<!ELEMENT s (#PCDATA)>

<!-- Automatically generated DTD -->

<!ELEMENT r (a,b+,c)>

<!ELEMENT a (e,f)>

<!ELEMENT b (g,h)>

<!ELEMENT c (#PCDATA)>

<!ELEMENT e (#PCDATA)>

<!ELEMENT f (l)>

<!ELEMENT g (#PCDATA)>

<!ELEMENT h (#PCDATA)>

<!ELEMENT l (#PCDATA)>

Fig. 17 Random documents

Number of documents: 1000
Real number of classes: ∼180
Used number of classes: 1

Fig. 18 Performance on getting an MP

Figure 18 shows the time (in milliseconds) to obtain the
MP of 10, 20, 30, and 40 thousand documents following the
previous DTD. We can see that, as expected, it increases
linearly on the number of documents.

B Proofs

This section contains the proofs of the different theorems (“s”
stands for “size”, to make equations shorter).

B.1 Proof of Theorem 1

Proof Let be C and C’ two schemas so that r(C,E) ≥ r(C′, E).
Expanding equations, we get:

wc(C,E)
wc(C,E)+α·wp(C,E)+β·wm(C,E)

≥ wc(C
′,E)

wc(C′,E)+α·wp(C′,E)+β·wm(C′,E)

∑
d∈E s(lcs(C, d))∑

d∈E s(lcs(C, d)) + α · (s(d) − s(lcs(C, d))) + β · (s(C) − s(lcs(C, d)))

≥
∑
d∈E s(lcs(C′,d))∑

d∈E s(lcs(C′,d))+α·(s(d)−s(lcs(C′,d)))+β·(s(C′)−s(lcs(C′,d)))

By crossing denominators,

(
∑
d∈E

s(lcs(C, d))) ·

(
∑
d∈E

s(lcs(C
′
, d)) + α · (s(d) − s(lcs(C′, d))) + β · (s(C′) − s(lcs(C′, d))))

≥

(
∑
d∈E

s(lcs(C
′
, d))) ·

(
∑
d∈E

s(lcs(C, d)) + α · (s(d) − s(lcs(C, d))) + β · (s(C) − s(lcs(C, d))))

Simplifying (
∑
d∈E s(lcs(C, d))) · (

∑
d∈E s(lcs(C

′, d))) at
both sides results in:

(
∑
d∈E s(lcs(C, d)))(α ·

∑
d∈E s(d) + β ·

∑
d∈E s(C′))

≥ (
∑
d∈E s(lcs(C′, d)))(α ·

∑
d∈E s(d) + β ·

∑
d∈E s(C))

This can also be written like

∑
d∈E s(lcs(C, d))

α ·
∑
d∈E s(d) + β· | E | ·s(C)

≥
∑
d∈E s(lcs(C′, d))

α ·
∑
d∈E s(d) + β· | E | ·s(C′)

which shows that all we need to compare are common
elements (in numerator), and the sizes of both schemas (in
denominator). �

B.2 Proof of Lemma 1

Proof Let be C and C’ two schemas and e an element so that
C = C′ uDL⊥(e), and r(C,E) > r(C′, E) (i.e. C contains one
more element and this improves resemblance). Retaking the
inequality at the end of proof of Theorem 1:

∑
d∈E s(lcs(C, d))

α ·
∑
d∈E s(d) + β· | E | ·s(C)

>

∑
d∈E s(lcs(C′, d))

α ·
∑
d∈E s(d) + β· | E | ·s(C′)

Which by adding and subtracting s(lcs(C′, d)) to every term
in the left numerator, and s(C′) to the left denominator re-
sults in:∑

d∈E(s(lcs(C′,d))+(s(lcs(C,d))−s(lcs(C′,d))))
α·

∑
d∈E s(d)+β·|E|·(s(C′)+(s(C)−s(C′)))

>

∑
d∈E s(lcs(C′,d))

α·
∑
d∈E s(d)+β·|E|·s(C′)

And reordering sums, we obtain
∑
d∈E s(lcs(C′,d))+

∑
d∈E((s(lcs(C,d))−s(lcs(C′,d))))

α·
∑
d∈E s(d)+β·|E|·s(C′)+β·|E|·(s(C)−s(C′))

>

∑
d∈E s(lcs(C′,d))

α·
∑
d∈E s(d)+β|E|·s(C′)

Which (given that a+b
c+d
≥ a

c
iif b

d
≥ a

c
) is true if and only if

∑
d∈E((s(lcs(C, d)) − s(lcs(C′, d))))

β· | E | ·((s(C) − s(C′)))
>

∑
d∈E s(lcs(C′, d))

α ·
∑
d∈E s(d) + β· | E | ·s(C′)

Since we assume that the size of adding a non-optional el-
ement to a schema is always equal to the size of the schema
plus the added element, we can transform the left hand side
as follows:
∑
d∈E((s(lcs(C, d)) − s(lcs(C′, d))))

β· | E | ·((s(C) − s(C′)))
=

∑
dvDL>(e) s(e)

β· | E | ·s(e)
=

∑
dvDL>(e) 1

β· | E |

Therefore, either adding an element or not does not depend
on the size of the element, but on the number of times it ap-
pears in the documents. Thus, if adding an element is worth-
while, so it is adding any set of elements appearing the same
number of times. �
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B.3 Proof of Corollary 1

Proof Since by hypothesis, k1 > k2, then k1

β·|E| >
k2·s(e2)
β·|E|·s(e2)

.

Therefore, if e2 improved the resemblance (i.e. by proof of

Lemma 1, we know that k2
β·|E| ≥

∑
d∈E s(lcs(C,d))

α·
∑
d∈E s(d)+β·|E|·s(C)

), then

e1 improves it even more:

k1

β· | E |
≥

∑
d∈E s(lcs(C, d)) + (k2 · s(e2))

α ·
∑
d∈E s(d) + β· | E | ·s(C) + (β· | E | ·s(e2))

. �

B.4 Proof of Theorem 2

Proof By hypothesis, let’s suppose that there is an MP M =d
i=1..q DL⊥(ei) that maximizes the resemblance and is not

a conjunction of LCSs. Let’s define EC = {d ∈ E | d v C},
and divide the proof in three steps:

Step 1: Every element in M subsumes some document in E

(i.e. ∀i ∈ 1..q : EDL>(ei) 6= ∅)

Let’s suppose not (proof by contradiction), i.e. ∃i = 1..q :
EDL>(ei) = ∅. We can remove the last k tags from ei until
there exists some document d with an element matching
e′i (being e′i = (t1, t2, .., tli−k)). Now, d v DL>(e′i). Let be
M ′ = DL⊥(e1)u ...uDL⊥(ei−1)uDL⊥(e′i)uDL⊥(ei+1)u
...uDL⊥(eq). It is easy to see that wc(M,E) = wc(M ′, E),
wp(M,E) = wp(M ′, E), and wm(M,E) > wm(M ′, E). So,

r(M,E) ≤ r(M ′, E)

which means they are either equal (if β = 0) or con-
tradicts the hypothesis of r(M,E) being the maximum
resemblance. Therefore, we can assume that ∀i = 1..q :
EDL>(ei) 6= ∅.

Step 2: All elements ei in M are leafs of lcs(EDL>(ei)) (i.e.,
lcs(EDL>(ei)) v DL⊥(ei), which is only possible if every
ei is a leaf of some document)

Let’s suppose not, because exists ei so that the corre-
sponding chain of existentials in lcs(EDL>(ei)) is longer
than DL⊥(ei) (notice that it can never be shorter, by con-
struction of EDL>(ei) and definition of the LCS). This
means that ei is not a leaf of any document in E.
Let’s call eL to (t1, t2, .., tli , .., tli+k) so that it results in
the corresponding chain of existentials of lcs(EDL>(ei)),
and let be M ′ = DL⊥(e1) u ... uDL⊥(ei−1) uDL⊥(eL) u
DL⊥(ei+1) u ... u DL⊥(eq). Therefore, since eL must be
present in all documents in EDL>(ei), we can see the fol-
lowing equalities:

wc(M
′
, E) = wc(M,E)+ | EDL>(ei)

| ·(s(DL⊥(eL)) − s(DL⊥(ei)))

wp(M
′
, E) = wp(M,E)+ | EDL>(ei)

| ·(s(DL⊥(ei)) − s(DL⊥(eL)))

wm(M
′
, E) = wm(M,E)+ | E\EDL>(ei)

| ·(s(DL⊥(eL))−s(DL⊥(ei)))

Notice that ∀d ∈ E \ EDL>(ei) : s(lcs(d,DL>(eL))) =
s(lcs(d,DL>(ei))), because if exists a document with an
element e′ so that DL>(eL) v DL>(e′) @ DL>(ei), by
definition it belongs to EDL>(ei).
By hypothesis, r(M,E) ≥ r(M ′, E) (M maximizes resem-
blance). Thus, expanding both resemblances (“ei” stands
for “DL⊥(ei)”, and “eL” stands for “DL⊥(eL)”),

wc(M,E)

wc(M,E) + αwp(M,E) + βwm(M,E)

≥

wc(M,E)+ | Eei | ·(s(eL) − s(ei))

(wc(M,E) + αwp(M,E) + βwm(M,E)) + ((1 − α)· | Eei | +β | E \ Eei |)(s(eL) − s(ei))

Let be e′i = (t1, t2, .., tli−1). Since, as stated before, by
hypothesis, ei is not a leaf in any document, ∀d ∈ E \
EDL>(ei) : s(lcs(d,DL>(e′i))) = s(d,DL>(ei)). Thus, as
before, we can define M ′′ = DL⊥(e1) u ... uDL⊥(ei−1) u
DL⊥(e′i) uDL⊥(ei+1) u ... uDL⊥(eq):

wc(M
′
, E) = wc(M,E)+ | EDL>(ei)

| ·(s(DL⊥(e
′
i)) − s(DL⊥(ei)))

wp(M
′
, E) = wp(M,E)+ | EDL>(ei)

| ·(s(DL⊥(ei)) − s(DL⊥(e
′
i)))

wm(M
′
, E) = wm(M,E)+ | E\EDL>(ei)

| ·(s(DL⊥(e
′
i))−s(DL⊥(ei)))

By hypothesis, r(M,E) ≥ r(M ′, E) (M maximizes resem-
blance). Thus, expanding both resemblances (“ei” stands
for “DL⊥(ei)”, and “e′i” stands for “DL⊥(e′i)”),

wc(M,E)

wc(M,E) + αwp(M,E) + βwm(M,E)

≥

wc(M,E)− | Eei | (s(ei) − s(e
′
i))

(wc(M,E) + αwp(M,E) + βwm(M,E)) − ((1 − α)· | Eei | +β | E \ Eei |)(s(ei) − s(e
′
i
))

However, both inequalities (i.e. a
b
≥ a+ck

b+dk
and a

b
≥ a−ck′

b−dk′ )

are not possible at the same time, because s(DL⊥(eL))−
s(DL⊥(ei)) and s(DL⊥(ei)) − s(DL⊥(e′i)) (which corre-
spond to k and k′ respectively) are both strictly posi-
tive numbers. Therefore, the hypothesis is not true and
ei must be a leaf of lcs(EBi).

Step 3: All elements in lcs(EDL>(ei)) are also elements of M
(i.e. M v lcs(EDL>(ei)))

This means that ei appears exactly in | EDL>(ei) | doc-
uments, and by definition of LCS, all other elements in
lcs(EDL>(ei)) appear at least in those documents. There-
fore, by Lemma 1, all those elements also belong to M.

Therefore, since EDL>(ei) is never empty (as shown in
step 1), and being M v

d
lcs(EDL>(ei)) v

d
DL⊥(ei) (as

shown in steps 2 and 3), then by the equivalence of M (M ≡d
DL⊥(ei)) we get that M ≡

d
lcs(EDL>(ei)). �

B.5 Proof of Lemma 2

Proof Let’s suppose not (i.e. Si ⊆ Sj). Then, by definition of
LCS, we get that lcs(Si) v lcs(Sj)

1. If lcs(Si) ≡ lcs(Sj) then we can remove one of them from
the schema.

2. If lcs(Si) @ lcs(Sj) then lcs(Si)u lcs(Sj) ≡ lcs(Si). There-
fore, we can remove Sj from the schema.

�


