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In this work we construct a bottom-up reconstruction technique for Loop Quantum Cosmology
scalar-tensor theories, from the observational indices. Particularly, the reconstruction technique
is based on fixing the functional form of the scalar-to-tensor ratio as a function of the e-foldings
number. The aim of the technique is to realize viable inflationary scenarios, and the only assumption
that must hold true in order for the reconstruction technique to work is that the dynamical evolution
of the scalar field obeys the slow-roll conditions. We shall use two functional forms for the scalar-
to-tensor ratio, one of which corresponds to a popular inflationary class of models, the α-attractors.
For the latter, we shall calculate the leading order behavior of the spectral index and we shall
demonstrate that the resulting inflationary theory is viable and compatible with the latest Planck
and BICEP2/Keck-Array data. In addition, we shall find the classical limit of the theory, and
as we demonstrate, the Loop Quantum Cosmology corrected theory and the classical theory are
identical at leading order in the perturbative expansion quantified by the parameter ρc, which is
the critical density of the quantum theory. Finally, by using the formalism of slow-roll scalar-tensor
Loop Quantum Cosmology, we shall investigate how several inflationary potentials can be realized
by the quantum theory, and we shall calculate directly the slow-roll indices and the corresponding
observational indices. In addition, the f(R) gravity frame picture is presented.

PACS numbers: 04.50.Kd, 95.36.+x, 98.80.-k, 98.80.Cq,11.25.-w

I. INTRODUCTION

The inflationary paradigm is one of the two most appealing scenarios that can successfully describe the early-
time evolution of our Universe [1–4]. An alternative early-time description of our Universe is offered by bouncing
cosmologies, see Refs. [5–15] for reviews and leading articles in the field. The latest Planck data [16] constrained
significantly the early-time era, imposing limitations on the allowed values of several observable quantities, and in
effect, the number of viable cosmologies was significantly reduced. The inflationary paradigm describes the evolution
of the Universe after the Big Bang, while in bouncing cosmology, the Universe contracts until a minimum radius is
reached, and then it starts expanding. Moreover the process, for some models, could occur infinitely many times,
although there are bouncing scenarios which can stop in a Big Rip singularity [17]. The appealing feature of bouncing
cosmologies in comparison to the inflationary scenarios is that the initial singularity problem is absent in bounce
cosmologies, although there exist works which combine a pre-bounce inflationary era preceding a bounce era [18, 19].

On the other hand, Loop Quantum Cosmology (LQC) offers a fertile theoretical ground that can harbor several
viable cosmological scenarios [20–28]. Indeed, both bounce cosmology and inflationary evolutions can be realized in
the context of LQC. Also the combination of modified gravity theories [4, 29–33] with LQC can also offer several
theoretical insights and also makes possible the realization of various viable cosmologies. An appealing feature of
LQC theories is that finite-time singularities are removed, at least when a single matter fluid of any sort, describes
the matter content of the Universe. In principle, in the context of f(R) gravity LQC, the loop quantum effects can
be introduced by holonomy corrections in the classical theory, and there are infinitely many ways that this can be
done [26]. Also, the Einstein frame formulation of LQC f(R) gravity is possible, and for a thorough examination of
various theoretical features we refer the reader in Ref. [26].

In some recent works, we introduced a bottom-up reconstruction method from the observational indices for various
modified gravities [34, 35]. Particularly, the bottom-up reconstruction method is based on fixing the functional form
of the scalar-to-tensor ratio, and from it the rest of the physical quantities of the theory is reconstructed, see [35] for
the f(R) gravity case, and also [34] for mimetic and f(φ)R theories. The purpose and main aim of this work is to
generalize the bottom-up reconstruction technique of Refs. [34, 35] in the context of Einstein frame LQC. Particularly,
we aim to realize various realistic inflationary scenarios by using a generalized bottom-up reconstruction technique in
the context of LQC. To this end, we shall present the essential features of a canonical scalar theory, in the context
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of LQC, and in the slow-roll approximation. Here is important to point out that we are dealing with the so-called
deformed algebra approach of LQC, where, in order to introduce honolomy corrections, the Asthekar connetion is
replaced by a suiatable sinus function and the anomalies appearing in the algebra of constraints are removed [36, 37],
rather than in the dressed metric approach, where the quantized perturbations evolves in a dressed metric which
encodes the quantum nature of the background (see the seminal serie of papers [38] for a detaited explanation of this
new approach to LQC).

After expressing the slow-roll indices and the observational indices as functions of the e-foldings number, we shall
specify the functional form of the scalar-to-tensor ratio and from it we shall determine the second slow-roll index, the
spectral index and the reconstructed scalar potential that can realize the given scalar-to-tensor ratio. In principle,
various scenarios can be realized, but we shall be interested in realizing a specific and quite popular class of theories,
the α-attractor theories [39–65]. Many well-known inflationary scenarios, such as the Starobinsky inflation [66, 67]
or the Higgs inflation [68], belong to the α-attractor theories. Thus, we shall assume that the functional form of the
scalar-to-tensor ratio is identical to the one corresponding to the α-attractor theories, and we shall investigate which
LQC-corrected scalar theory can realize such a scalar-to-tensor ratio. We shall find the analytic expressions of the
spectral index and of the slow-roll indices as functions of the e-foldings number, and we shall provide analytic formulas
that can be used easily to reproduce any given cosmological evolution. Apart from the α-attractors example, we discuss
some other characteristic examples, in order to illustrate how the method works, and we examine the possibility of
realizing various cosmological scenarios. Our final task in this paper is to directly realize various inflationary scenarios
in the context of LQC scalar theory, by using the formulas we developed. The difference between the two methods is
that in the second case, we will express the slow-roll indices in terms of the canonical scalar field φ, while in the first
case, the slow-roll indices and the rest of the physical quantities will be expressed in terms of the e-foldings number
N . Finally, the f(R) gravity frame description of the resulting theories shall be presented too. It is worth to mention,
that similar to our approach in the context of scalar-tensor cosmology, there exist various works in the literature, see
for example [69–72].

This paper is organized as follows: In section II we present the basic equations of LQC and how can holonomy
corrections be introduced. Also we present the Hamiltonian, along with the constraints, and also the modified
Friedmann equation in LQC. In section III we focus on a slow-rolling LQC canonical scalar field theory, and we
provide analytic expressions for the slow-roll indices and the observational indices, as functions of the scalar field.
Also, the connection with the e-foldings number shall be given too. Furthermore we shall present the bottom-up
reconstruction approach in scalar LQC theory, and we use two illustrative examples in order to show how the method
works, one of which corresponds to the α-attractor theories. Before we proceed to the examination of the examples, we
describe in full detail the bottom-up reconstruction method of LQC scalar theory, and we provide analytic formulas
of all the physical quantities used. Also, for all the examples we shall present, the confrontation of the resulting
theory with the observational data is performed, in terms of the free parameters of the theory. Also in some cases, the
classical limit of the theory is discussed. In section IV, we realized various cosmological potentials in the context of
LQC cosmology scalar theory in the slow-roll approximation, and also the f(R) gravity frame descriptions are found
too. Finally, the conclusions follow in the end of the paper.

Before we start, let us mention that for all the considerations that are going to be made in this paper, the geometric
background shall be a flat Friedmann-Robertson-Walker (FRW), with line element,

ds2 = −dt2 + a(t)2δijdx
idxj , (1)

with a(t) being as usual the scale factor of the Universe. In addition, we shall assume a torsion-less, metric compatible
and symmetric connection, the Levi-Civita connection. Finally, for notational convenience, we shall use a physical
units system in which ~ = c = 8πG = κ2 = 1.

II. ESSENTIAL FEATURES OF LOOP QUANTUM COSMOLOGY IN THE EINSTEIN FRAME

In this section we briefly review the basic features of the holonomy corrected LQC formulation (We do not deal
with inverse-volume corrections, because at present time, the status of these corrections is not clear at all due to the
fiducidal-cell dependence [73]). In the context of loop quantum cosmology, the spacetime has a discrete nature and

this is quantified in the Hamiltonian in terms of the holonomies hj = e−
iλσj

2 , where σj are the Pauli matrices. In
terms of the holonomies, the LQC Hamiltonian reads [74, 75],

HLQC = − 2V

γ3λ3
Σi,j,kε

ijkTr[hi(λ)hj(λ)h−1
i (λ){h−1

k , V }] + ρV , (2)
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where γ = 0.2375 is the Barbero-Immirzi parameter, λ =

√√
3

2 γ = 0.3203 is a parameter with dimensions of length,

whose value is equal to the square root of the minimum eigenvalue of the area operator in Loop Quantum Gravity
[76], V is the volume of a fixed fiducial cell (for a non compact spacetime), which for a flat FRW metric with scale
factor a it is equal to V = a3 and finally, ρ is the total effective energy density of the Universe. Also the parameter β
entering the Hamiltonian via the holonomies is the canonically conjugate variable of the volume V , and the Poisson
bracket of these two is {β, V } = γ

2 . By utilizing the analytic form of the holonomies and by calculating the trace
appearing in the Hamiltonian (2), the latter can be written as follows [77, 78],

HLQC = −3V
sin2(λβ)

γ2λ2
+ ρV . (3)

The imposition of the Hamiltonian constraint HLQC = 0 leads to the following holonomy corrected FRW equation,

sin2(λβ)

γ2λ2
=
ρ

3
, (4)

and in conjunction to the Hamiltonian equation V̇ = {V,HLQC} = −γ2
∂HLQC
∂β , one obtains the following equation,

H =
sin(λβ)

γλ
, (5)

or equivalently,

β =
arcsin(2λγH)

2λ
. (6)

By substituting the obtained value of the parameter β from Eq. (6) in the Hamiltonian constraint equation (4), we
obtain,

sin2(λ arcsin(2λγH)
2λ )

γ2λ2
=
ρ

3
, (7)

and we should note that the holonomy corrections modify the geometric sector of the Friedmann equation, so for
small values of the Hubble rate H, the classical limit of the Friedman equation is obtained. After some algebra, the
LQC Friedmann equation acquires its well-known form,

H2 =
ρ

3

(
1− ρ

ρc

)
, (8)

where the parameter ρc = 3
γ2λ2

∼= 258 is the so-called critical density and it is the maximum value that could reach

the energy density of the Universe. Note that the equation (8) captures all the LQC quantum effects. Indeed, when
the energy density of the universe is small compared with the critical one, the classical Friedmann equation H2 = ρ

3
is recovered, but for large values of the energy density the quantum effects have a strong effect on the theory, leading
to a bounce, and thus, modifying critically the cosmological evolution of the Universe.

III. RECONSTRUCTION OF EINSTEIN FRAME LOOP QUANTUM COSMOLOGY INFLATION
FROM THE OBSERVATIONAL INDICES

In this section, assuming that the number of e-folds of inflation was less than 70 in order to evade the trans-
planckian problem (see [79] for a detailed analysis of the evolution of modes with a physical lenght smaller than the
Planck’s one), and thus obtining the usual primordial power spectrum for perturbations in LQC, we shall develop
a general reconstruction technique of viable inflationary cosmological evolutions by specifying the functional form of
the first slow-roll index ε, in the context of a LQC canonical scalar field. In this theory, the canonical scalar controls
the dynamics of the Universe and the LQC modified Friedmann equation is given in Eq. (8). The energy density and
the total pressure of the canonical scalar field φ with scalar potential V (φ) is the following,

ρ =
φ̇2

2
+ V (φ), p =

φ̇2

2
− V (φ) , (9)
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where the “dot” denotes differentiation with respect to the cosmic time t. The equation of motion of the scalar field
is equal to,

φ̈+ 3Hφ̇+
∂V (φ)

∂φ
= 0 , (10)

and by assuming that the following slow-roll conditions apply for the dynamical evolution of the scalar field, namely,

φ̇2 � V (φ), φ̈� Hφ̇ , (11)

the equation of motion for the scalar field becomes,

3Hφ̇ ' −∂V (φ)

∂φ
. (12)

Also by combining the modified Friedmann equation (8) with Eq. (9) and also by taking into account the slow-roll
conditions (11), we obtain the following approximate relation [26],

H2 ' V (φ)

3

(
1− V (φ)

ρc

)
. (13)

The first two slow-roll indices ε and η for a canonical scalar field are defined as follows,

ε = − Ḣ

H2
, η = 2ε− ε̇

2Hε
, (14)

so for a slow-rolling scalar field in the context of LQC, the slow-roll indices can be approximated as follows [26],

ε ' 1

2

(
∂V (φ)
∂φ

V (φ)

)2
(

1− 2V (φ)
ρc

)
(

1− V (φ)
ρc

)2 , η '
1

V (φ)

∂2V (φ)

∂φ2

1(
1− V (φ)

ρc

) . (15)

The above relations are valid, since the pivot scale leaves the Hubble radius for energy densities of many orders less
than ρc, and at that moment LQC is an small perturbation of the standard Einstein-Hilbert theory. Thus the above
definition of the slow-roll parameters is approximately correct.

Finally, for a slow-rolling canonical scalar field, the spectral index of the primordial curvature perturbations ns and
the scalar-to-tensor ratio r as functions of the slow-roll indices ε and η are equal to,

ns ' 1− 6ε+ 2η, r ' 16ε , (16)

which are valid at leading order in our case too, since in the long wavelength approximation, the Mukanov-Sasaki
equations of LQC and standard Einstein-Hilbert gravity are the same.

Having presented the basic equations that control the scalar field dynamics in the context of LQC, we now demon-
strate how the reconstruction technique from the observational indices is constructed. The starting point is the first
slow-roll index ε, which we define it to have a desirable form as function of the e-foldings number N . The particular
desired form is determined essentially by the form of the scalar-to-tensor ratio we want to achieve, since r is a linear
function of the first slow-roll index ε. The slow-roll indices (15) must be expressed as functions of the e-foldings
number N , which for a LQC slow-rolling scalar field it is defined as follows [26],

N =

∫ φ∗

φend

V (φ)
∂V (φ)
∂φ

(
1− V (φ)

ρc

)
dφ , (17)

where φ∗ and φend are the scalar field values when the pivot scale crosses the Hubble radius and at the end of the
inflationary era, respectively. The differential form of the equation (17) is,

(
dN

dφ

)2

=
V (N)

(
1− V (N)

ρc

)
V ′(N)

, (18)

where the “prime” denotes differentiation with respect to the e-foldings number, and this relation will be useful in
the rest of the reconstruction method. Also the first slow-roll index expressed as a function of the e-foldings number
N can be found by combining Eqs. (15) and (18), and it is,
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ε(N) ' V ′(N)

2V (N)

(
1− 2V (N)

ρc

)
(

1− V (N)
ρc

) (19)

and in addition the second slow-roll index η as a function of N is,

η ' 1

2

(
V ′

V
+
V ′′

V ′

)
− 1

2

V ′V

ρc

1(
1− V

ρc

) . (20)

Then, by substituting the functional form of the first slow-roll index ε(N) in the first equation in Eq. (15), and by
solving the resulting differential equation we can find the explicit form of the scalar potential as a function of the
e-foldings number N , namely the function V (N). After having this function at hand, we substitute it in the slow-roll
index η in Eq. (20) and we can obtain its analytic form as function of N . Then by substituting the resulting forms of
ε(N) and η(N) in the observational indices (16), we can find these as functions of N , so the viability can be checked
directly, at leading order in N . It is conceivable that since ε(N) is appropriately chosen, the viability of the model
is possibly guaranteed from the beginning of the method, but this must be checked explicitly. Finally, by using the
functional form of the scalar potential V (N) and substituting in Eq. (18), we can find the functional form of the
potential as a function of the scalar field, by finding the function N(φ).

Let us demonstrate explicitly how the method works by using some illustrative examples. Suppose that the first
slow-roll index has the form,

ε(N) =
3α

4N2
, (21)

and in effect, the scalar-to-tensor ratio is,

r ' 12α

N2
, (22)

which is identical to the one obtained from α-attractor models in the Einstein frame. By substituting the first slow-roll
index (21) in Eq. (19), the resulting differential equation can be solved analytically, so we obtain two possible scalar
potentials V (N)

V (N) =
ρc
2

(
1±

√
1− 4V0

ρc
e−

3α
2N

)
(23)

where V0 > 0 is an integration constant. Having the explicit form of the potential at hand, will enable us to calculate
the observational indices directly. However, before proceeding to this calculation, let us investigate the classical limit
of the slow-roll indices. In this case one has,

ε ∼=
V ′

2V
η ∼=

1

2

(
V ′

V
+
V ′′

V ′

)
.

Then, for the expression (21) the potential reads V = V0e
− 3α

2N . A simple calculation leads to

η = − 1

N
+

3α

2N2
.

Then, at the classical level ns ∼= 1− 2
N −

3α
2N2 , which means that when one introduces holonomy corrections the result

has to be

ns ∼=
(

1− 2

N
− 3α

2N2

)(
1 +O

(
V0

ρc

))
. (24)

Indeed, such expansion is possible at the classical limit as we show later on. The choice of the minus or positive
sign in the potential in Eq. (23) plays no essential role for the observational indices, since the resulting form of the
slow-roll indices are identical for both the minus and positive sign. The sign however in Eq. (23) will play some
important role in the determination of the functional form of the potential as a function of the canonical scalar field



6

φ. By substituting the resulting scalar potentials V (N) from Eq. (23) in the expression appearing in Eq. (20) for the
second slow-roll index η(N), the latter can be obtained and it reads,

η =
2Nρce

3α
2N − 3αρce

3α
2N − 8NV0 + 9αV0

2N2
(

4V0 − ρce
3α
2N

) . (25)

Having the slow-roll indices at hand, namely Eqs. (21) and (25), we can find the analytic form of the spectral index
of the primordial curvature perturbations as a function of the e-foldings number N , so by substituting Eqs. (21) and
(25) in Eq. (16), the spectral index reads,

ns '
N2
(

8V0 − 2ρce
3α
2N

)
+N

(
4ρce

3α
2N − 16V0

)
+ 3α

(
ρce

3α
2N − 6V0

)
2N2

(
4V0 − ρce

3α
2N

) . (26)

We can find the leading order behavior of the spectral index for large N , so by expanding Eq. (26) in the large-N
limit, we obtain the following expression,

ns ' 1− 2

N
− 3(6αV0 − αρc)

2N2(4V0 − ρc)
−

9
(
α2ρcV0

)
2N3(4V0 − ρc)2

+O(
1

N4
) , (27)

and one can readily recognize that by taking into account only the first two terms, the leading order behavior of the
LQC-corrected spectral index is identical to the spectral index of a canonical scalar field in the Einstein frame for the
α-attractor theories [39]. In addition, it is also possible to take the large ρc limit of the spectral index (27), so one
obtains,

ns ' 1− 2

N
− 3α

2N2
− 9α2V0

2N3ρc
, (28)

and by looking the first three terms, one can readily see that these coincide with the classical limit obtained in Eq.
(24). Essentially, the third term and the higher order terms in the LQC-corrected spectral index of Eq. (27) quantify
the quantum corrections introduced by the holonomy corrections in the classical theory.

In effect, it can be seen that at leading order, the LQC-corrected spectral index is identical to the classical result
for α-attractor theories. Also, the first two terms of the quantum and of the classical expressions for the spectral
index are identical, as it can be seen by directly comparing Eqs. (27) and (28). Having the LQC-corrected theory at
hand, we can compare the quantum corrected theory with the classical theory, at leading-N order. By taking into
account the first two terms in the spectral index, the classical theory and the LQC-corrected theory are identical,
so let us see how the presence of the quantum theory parameters ρc and V0 can affect the viability of the theory.
After some extensive analysis of the parameter space, the resulting picture is that the presence of ρc and V0 in the
LQC-corrected theory, makes viable the inflationary evolution for larger values of α. In order to see this explicitly, in
Fig. 1, we present the contour plots of the spectral index (blue curves) and of the scalar-to-tensor ratio (red curves),
as functions of the e-foldings number N and of the parameter α, for the LQC-corrected theory (left plot) and for the
classical theory (right plot). We used the values V0 = O(10) and ρc ' 258. The curves correspond to the values for
ns in the range ns = [0.9595, 0.9693], which are the allowed ones from the latest Planck data [16] and for various
values of the scalar-to-tensor ratio with the constraint r < 0.07 which is imposed by the BICEP2/Keck-Array data
[80]. Also the e-foldings number takes values in the range N = [50, 60] while the parameter α in the range α = [0, 20].
Note that in both the plots, a viable inflationary theory is depicted by the overlapping red and blue curves. As it can
be seen from Fig. 1, the LQC-corrected theory can be come viable and compatible with the observational data for a
wider range of values of the parameter α.

Let us consider another characteristic example of cosmological evolution, so let us assume that the first slow-roll
index has the following form,

ε(N) =
c

N
, (29)

where c > 0, so the scalar-to-tensor ratio reads in this case,

r ' 16c

N
. (30)
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FIG. 1: Contour plots of the spectral index (blue curves) and of the scalar-to-tensor ratio (red curves), as functions of the
e-foldings number N and of the parameter α, for the LQC-corrected theory (left plot) and for the classical theory (right plot),
for V0 = O(10) and ρc ' 258. The curves correspond to the values for ns in the range ns = [0.9595, 0.9693], for various values
of the scalar-to-tensor ratio with the constraint r < 0.07 and also the e-foldings number takes values in the range N = [50, 60]
while the parameter α in the range α = [0, 20].

By substituting the first slow-roll index (29) in Eq. (19), the resulting differential equation can be solved analytically,
so the two scalar potentials V (N) read in this case,

V (N) =
ρc
2

(
1±

√
1− 4V0N2c

ρc

)
, (31)

where V0 > 0. By substituting the scalar potential V (N) (31) in Eq. (20) the second slow-roll index η(N) reads,

η =
4(3c− 1)V0N

2c − 4cρc + ρc
2N (4V0N2c − ρc)

, (32)

for both the positive or the negative sign choices in Eq. (31). By substituting Eqs. (29) and (32) in Eq. (16), the
resulting spectral index reads,

ns '
−4(3c+ 1)V0N

2c + 4V0N
2c+1 + 2cρc −Nρc + ρc

N (4V0N2c − ρc)
. (33)

We can find the leading order behavior of the spectral index in the large-N limit, so we obtain the following expression,

ns ' 1− 1

N
− 2c

N
− 4V0N

2c

ρc
+

4V0N
2c−1

ρc
, (34)

where we can see the contribution of the LQC-corrected theory quantified in the third and higher order terms. A
thorough analysis of the parameter space reveals that the LQC-corrected theory is viable and compatible with both
the Planck [16] and the BICEP2/Keck-Array data [80] for a wide range of values of the variables.

In order to explicitly demonstrate this, in Fig. 2 we present the contour plots of the spectral index (blue curves) and
of the scalar-to-tensor ratio (red curves) as functions of the e-foldings number N and of the parameter c, by choosing
V0 = O(0.5) and ρc = 258 (left plot). In the right plot we present the behavior of the classical spectral index and of
the scalar-to-tensor ratio as a function of N and of the parameter c. The values of the e-foldings number are taken
in the range N = [50, 60] and of c in the range c = [0, 1]. Also for the contour plots, the spectral index is assumed to
take values in the range ns = [0.9595, 0.9693] which is compatible with the Planck data [16], while the scalar-to-tensor
ratio takes values in the range r = [0, 0.07], which compatible with the BICEP2/Keck-Array data [80]. As it can be
seen in Fig. 2, the regions of overlapping blue and red curves indicate the regions of viability of the theory, so it can
be seen that this can be achieved for a large range of the parameters, and only for the LQC-corrected theory.
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FIG. 2: Contour plots of the spectral index (blue curves) and of the scalar-to-tensor ratio (red curves), as functions of the
e-foldings number N and of the parameter c, for the LQC-corrected theory for V0 = O(0.5) and ρc = 258 The left plot
corresponds to the LQC-corrected theory and the right plot to the classical theory.

IV. SPECIFIC POTENTIALS WITH EINSTEIN FRAME LOOP QUANTUM COSMOLOGY AND f(R)
GRAVITY PICTURE

In this section we shall realize directly the slow-roll inflationary era of various well-known scalar potentials, and
also we shall find the corresponding f(R) gravity frame description. In the Jordan frame, for the flat FRW metric of
Eq. (1) and in the absence of matter component, the action is given by,

SJF =

∫
1

2
f(R)a3dt, (35)

The passage to the Einstein frame is found by performing the conformal transformation ā =
√
F (R)a, and dt̄ =√

F (R)dt, where F (R) = fR(R). Then, in this frame the action is given by

SEF =

∫ (
1

2
R̄+ Lmatt

)
ā3dt̄, (36)

where Lmatt is the matter Lagrangian, which for an scalar field is the pressure, is given by

Lmatt = p =
φ̇2

2
− V (φ). (37)

where,

φ ≡
√

3

2
ln (F (R)) , and V (φ) ≡ RF (R)− f(R)

2F 2(R)
. (38)

Now, at the background level, it is formally easy to introduce holonomy correction effects. On can do it as usual,

considering the Hamiltonian H = −3H̄2 + ρ and performing the replacement H̄ → sin(γλH̄)
γλ [20], where, once again, γ

is the Barbero-Immirzi parameter and λ is the minimum eigenvalue of the area operator in Loop Quantum Gravity.
Equivalently, in the context of the Lagrangian formalism, replacing R̄ by R̄ + g(S̄) where S̄ is an scalar that for our
metric satisfies S̄ = −6H̄2 and g is bi-valued quantity given by [81–83],

g(S̄) = ρc

(
1−

√
1− s2 − s arcsin s

)
− S̄, (39)
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where s ≡
√
− 2S̄
ρc
, and the sign of the square root has been chosen to be positive (respectively negative) in the lower

(respectively upper) branch and arcsin s ≡
∫ s

0
1√

1−s̄2 ds̄ in the lower branch, whereas arcsin s ≡
∫ s

0
1√

1−s̄2 ds̄+π, in the

upper one, with the same criteria for the sign of the square root.
The scalar S could be the torsion obtained using the Weitzenbök connection [84], the extrinsic curvature [85], i.e.

given a field ϕ satisfying −∇µφ∇µφ = 1 one can consider S̄ ≡ (∇ν∇µφ)(∇ν∇µφ)− (∇µ∇µφ)2 or one obtained from

the Carminati-McLenaghan invariants [86, 87], i.e., S̄ ≡ −6 R̄3

R̄2
− R̄

2 , where,

R̄2 ≡
1

4
R̄νµR̄µν , and R̄3 ≡ −

1

8
R̄νµR̄µγR̄γν , (40)

with R̄µν being the trace-less Ricci tensor.
In effect, the difference between the quantum and the classical Einstein frame theory is that the Friedmann equation,

for synchronous co-moving observers, is given in Eq. (8). The difference in comparison with the standard classical
Friedmann equation H̄2 = ρ

3 , is that the usual one represents in the plane (H̄, ρ) a parabola which is an unbounded
curve, and thus, allowing the Big Bang and various types of rip singularities. However, the LQC modified Friedman
equation is represented by an ellipse, which is closed and bounded, and consequently, crushing type singularities are
removed, because the Hubble parameter and the energy density are always bounded.

On the other hand, from equation (38) we obtain the differential equation,

F (R)R =
√

6
d

dφ

(
e2
√

2
3φV (φ)

)
, (41)

which together with φ =
√

3
2 lnF (R) leads to the algebraic equation,

R

F
=
√

6

[
2

√
2

3
V

(√
3

2
lnF

)
+ Vφ

(√
3

2
lnF

)]
, (42)

which, in principle, could be solved for any potential V and allows us to reconstruct the corresponding f(R) theory.

As a simple example we consider the potential V (φ) = V0

(
cosh

(√
2
3φ
)
− 1
)

, which leads to the equation,

3F (R)2 − 4F (R) + 1− R

V0
= 0, (43)

the solution of which is,

F (R) =
1

3

(
2±

√
1 +

3R

V0

)
, (44)

but the only physical solution is F (R) = 1
3

(
2 +

√
1 + 3R

V0

)
, because for small values of R one has F (R) ∼= 1, and

thus, f(R) ∼= R recovering GR.

Let us focus on the realization of some specific potentials in LQC. We consider the model f(R) = R + aRn, with
1 < n ≤ 2, with leads to the potential,

V (φ) =
1

2
(n− 1)a

(
1

na

) n
n−1

e
2−n
n−1

√
2
3φ
(

1− e−
√

2
3φ
) n
n−1

, (45)

which for the particular case n = 2 leads to the well-known potential,

V (φ) =
1

8a

(
1− e−

√
2
3φ
)2

. (46)

In LQC the dynamical evolution implied by this potential is very simple. Since it has only one global minimum at
φ = 0, the scalar field is at early times, during the contracting phase, at the minimum and starts to oscillate growing
its energy density up to the critical energy density ρc. At that point the Universe bounces and enters in the contracting
phase, where the scalar field slow-rolls in the potential producing an inflationary era. Finally, when it arrives to the
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minimum, it starts to oscillate releasing its energy and creating enough particles to reheat the Universe. Note that,
this behavior agrees with the one depicted in [88] for the isotropic case. Effectively, in that paper it has been showed
that taken initical conditions at very late times in the contracting phase, the scalar field oscillates approximately
as an harmonic oscillator, and for a wide range of initial conditions the number of e-folds is smaller than 70, and
consequently, evading the trans-planckian problem.

To study inflation, we first consider the case n = 2, i.e., the well known potential coming form R2 gravity, which
in the Einstein Frame, is given by, (46). By using introducing the parameter V0 = 1

8a , the definition of the slow-roll
indices and of the e-foldings number which we developed in the previous section, namely Eqs. (15) and (17), for the
potential (46), for large field values we obtain,

ε∗ ∼=
4

3
e−
√

8
3φ∗

1− 2V0

ρc(
1− V0

ρc

)2 , η∗ ∼= −
4

3
e−
√

2
3φ∗

1

1− V0

ρc

, (47)

and the number of e-foldings is given by,

N ∼=
3

4
e
√

2
3φ∗

(
1− V0

ρc

)
. (48)

By combining the above, we obtain,

ε∗ ∼=
3

4N2

(
1− 2V0

ρc

)
, η∗ ∼= −

1

N
. (49)

In effect, the observational indices (16) read,

ns = 1− 2

N
, r =

12α

N2
, (50)

where we have defined α = 1 − 2V0

ρc
. Hence, in the classical limit ρc � V0, one acquires the observational indices of

the well-known Starobinsky model [66].
If we consider the potential,

V = V0

(
1− e−

√
2
3φ
)2n

, (51)

a simple calculation leads to,

ε∗ ∼=
3

4N2

(
1− 2V0

ρc

)
, η∗ ∼= −

1

N
. (52)

and thus,

ns = 1− 2

N
, r =

12α

N2
, (53)

and once again we defined α = 1 − 2V0

ρc
. In this case too, at leading order and for ρc � V0, one gets asymptotically

the Starobinsky model.
Let us now consider the potential,

V = V0 tanh2n

(
φ√
6

)
, (54)

in which case the first slow-roll index reads,

ε∗ =
4n2

3

1

sinh2
(√

2
3φ∗

) 1− 2V0

ρc(
1− V0

ρc

)2
∼=

16n2

3
e−
√

8
3φ∗

1− 2V0

ρc(
1− V0

ρc

)2 , (55)

and accordingly, the second slow-roll index reads,

η∗ ∼= −
2n

3

1

cosh2 (φ∗)

1

1− V0

ρc

∼= −
8n

3
e−
√

2
3φ∗

1

1− V0

ρc

. (56)
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Also, the e-foldings number as a function of the scalar field is,

N ∼=
3

8n
e
√

2
3φ∗

(
1− V0

ρc

)
. (57)

In effect, we have,

ε∗ ∼=
3

4N2

(
1− 2V0

ρc

)
, η∗ ∼= −

1

N
, (58)

and therefore the observational indices are,

ns = 1− 2

N
, r =

12α

N2
, (59)

where α = 1 − 2V0

ρc
. In this case the reconstruction method for the Jordan frame leads to the following algebraic

equation,

R = 2V0F

(
F − 1

F + 1

)2n−1
[
−n
(
F − 1

F + 1

)2

+ 2
F − 1

F + 1
+ n

]
. (60)

In principle it is hard to solve the above algebraic equation analytically, however it is important to note that for
R = 0, a solution is F = 1 what means that for small values of R one has F ∼= 1 and thus f(R) ∼= R recovering
the standard Einstein-Hilbert gravity. Therefore, in the inflationary regime the f(R) theory for both potentials

V = V0

(
1− e−

√
2
3φ
)2n

and V = V0 tanh2n
(
φ√
6

)
is the same, given by f(R) = R2

8V0
.

As a final example, let us consider the potential V = V0e
−
√

2
qφ, and some variant forms of it later on. When the

correspondence with the f(R) gravity frame is considered, one obtains the following algebraic equation,

R

F (R)
= 2V0

(
2−

√
3

q

)
F (R)

−
√

3
q , (61)

which has the following solution,

F (R) =

 R

2V0

(
2−

√
3
q

)
 1

1−
√

3
q

, (62)

which is a rather unphysical Jordan frame theory, because for small values of R, the standard Einstein-Hilbert solution
is not recovered.

We have seen that for potentials like the one coming from R2 gravity, the LQC effects reduce the ratio of tensor to
scalar perturbations which is a good feature because observational data leads to a very small value of this quantity
(r ≤ 0.12). However, this does not happen for all the models, as an example we consider the an extension of the

potential V = V1e
−
√

2
qφ, which as we have showed just above, leads to an unphysical f(R) theory. However, in order

for this theory to be viable, it has to be matched with another potential, which for small values of the the field leads

to F (R) ∼= 1. For example, it could be matched with V = V0 tanh2n
(
φ√
6

)
. So, the resulting potential is,

V =

 V0 tanh2n
(
φ√
6

)
for φ ≤ φ̄

V1e
−
√

2
qφ for φ ≥ φ̄ > 0,

(63)

where V1 = V0 tanh2n
(
φ̄√
6

)
e

√
2
q φ̄. In this case we obtain,

ε∗ =
1

q

1− 2V∗
ρc(

1− V∗
ρc

)2 η∗ =
2

q

1

1− V∗
ρc

, (64)
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where V∗ is V∗ = V0e
− 2
qN . Since the number of e-foldings is approximately N ∼=

√
q
2φ∗, one has V∗ = V0e

− 2
qN ∼=

V0e
− 120

q , for 60 e-foldings. Then, for LQC the critical energy density ρc is always greater than V for the allowed

values of the scalar field, meaning that ρc ≥ V0e
− 120

q , and thus, for values of the parameter q of the order 1, one has
ρc � V∗. Consequently, the slow roll parameters are in this case,

ε∗ =
1

q
and η∗ =

2

q
, (65)

and coincide with the values obtained in the standard Einstein-Hilbert theory.
A final remark about the dynamics is in order: All the potentials we studied have only a global minimum, in

effect, for the LQC theory, at very early times when the Universe is in the contracting phase, the scalar field is at the
minimum of the potential. Hence, due to the fact that in the contracting phase the energy density of the scalar field
increases, it starts to oscillate around the minimum of the potential, releasing energy. During the oscillating phase,
when the energy density reaches the critical value ρc, the Universe bounces off, entering in the expanding phase, where
the field starts to slow-roll down to its minimum. In effect, the Universe enters in the inflationary epoch that ends
when the scalar field starts to oscillate around the minimum, releasing its energy to produce enough particles coupled
with the field and this provides a reheating mechanism for the Universe.

V. CONCLUSIONS

In this work we extended the bottom-up reconstruction approach from the observational indices of Refs. [34, 35]
in the case of a LQC scalar field, in the slow-roll approximation. In order for the method to work, the functional
form of the scalar-to-tensor ratio as a function of the e-foldings number must be given, and from it, all the observable
quantities and all the physical quantities of the theory can be determined analytically in terms of the e-foldings
number. Also, in some cases, if the function φ(N) can be inverted, the scalar potential can be found analytically in
terms of the scalar field, and in the contrary case, some approximation must be used. Also, we provided analytic
and detailed formulas for the slow-roll indices and the observational indices as functions of the e-foldings number,
and in principle any arbitrary cosmological evolution can be realized. We used two simple examples, one of which
corresponds classically to the α-attractors scalar theories. For this example, we investigated the essential features
of the LQC-corrected theory and we provided analytic formulas for the slow-roll indices and for the observational
indices. Also we investigated the classical limit of the theory, and we showed explicitly that the classical and the
quantum theory coincide at leading order in the inverse ρc-expansion, in the case ρc � ρ. It is vital to note that in
order for the method to work, the slow-roll approximation must hold true at all stages of the reconstruction technique.
Hence, scalar theories for which one of the two slow-roll indices is of the order O(1) cannot be realized by using this
technique. In the second part of this work, we used the formalism of LQC scalar theory in order to find directly the
LQC-corrected version of the theory. In principle, the two-approaches should coincide, and they do to some extent,
however some discrepancies can be found, due to the fact that for the shake of analytic results, the approximations
made in the second approach may make the resulting theory to be different at higher order, in comparison to the first
method results. However, at leading order these two should coincide.

Finally, it would be interesting to extend the bottom-up reconstruction method we developed in this paper, to the
case of LQC-corrected f(R) gravity, however, finding the LQC-corrected slow-roll indices in the Jordan frame is a
challenging task, that must be addressed carefully in another work focused exactly on this issue. We hope to address
this challenging task in a future work.
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[38] I. Agulló, A. Ashtekar and W. Nelson, Phys. Rev. Lett. 109, 251301 (2012) [arXiv:1209.1609]; Phys. Rev. D87, 043507

(2013) [arXiv:1211.1354]; Class. Quant. Grav. 30, 085014 (2013) [arXiv:1302.0254].
[39] R. Kallosh and A. Linde, JCAP 1307 (2013) 002 [arXiv:1306.5220 [hep-th]].
[40] S. Ferrara, R. Kallosh, A. Linde and M. Porrati, Phys. Rev. D 88 (2013) no.8, 085038 [arXiv:1307.7696 [hep-th]].
[41] R. Kallosh, A. Linde and D. Roest, JHEP 1311 (2013) 198 [arXiv:1311.0472 [hep-th]].
[42] M. Galante, R. Kallosh, A. Linde and D. Roest, Phys. Rev. Lett. 114 (2015) no.14, 141302 [arXiv:1412.3797 [hep-th]].
[43] S. Cecotti and R. Kallosh, JHEP 1405 (2014) 114 [arXiv:1403.2932 [hep-th]].
[44] J. J. M. Carrasco, R. Kallosh and A. Linde, JHEP 1510 (2015) 147 [arXiv:1506.01708 [hep-th]].
[45] A. Linde, JCAP 1505 (2015) 003 doi:10.1088/1475-7516/2015/05/003 [arXiv:1504.00663 [hep-th]].
[46] D. Roest and M. Scalisi, Phys. Rev. D 92 (2015) 043525 doi:10.1103/PhysRevD.92.043525 [arXiv:1503.07909 [hep-th]].
[47] R. Kallosh, A. Linde and D. Roest, JHEP 1408 (2014) 052 doi:10.1007/JHEP08(2014)052 [arXiv:1405.3646 [hep-th]].
[48] Z. Yi and Y. Gong, arXiv:1608.05922 [gr-qc].



14

[49] Q. Gao and Y. Gong, arXiv:1703.02220 [gr-qc].
[50] Z. Yi and Y. Gong, arXiv:1709.04252 [gr-qc].
[51] R. Kallosh and A. Linde, Phys. Rev. D 91 (2015) 083528 doi:10.1103/PhysRevD.91.083528 [arXiv:1502.07733 [astro-

ph.CO]].
[52] E. V. Linder, Phys. Rev. D 91 (2015) no.12, 123012 doi:10.1103/PhysRevD.91.123012 [arXiv:1505.00815 [astro-ph.CO]].
[53] S. D. Odintsov and V. K. Oikonomou, Phys. Rev. D 94 (2016) no.12, 124026 doi:10.1103/PhysRevD.94.124026

[arXiv:1612.01126 [gr-qc]].
[54] S. D. Odintsov and V. K. Oikonomou, Class. Quant. Grav. 34 (2017) no.10, 105009 doi:10.1088/1361-6382/aa69a8

[arXiv:1611.00738 [gr-qc]].
[55] R. Kallosh, A. Linde and D. Roest, Phys. Rev. Lett. 112 (2014) no.1, 011303 doi:10.1103/PhysRevLett.112.011303

[arXiv:1310.3950 [hep-th]].
[56] K. Dimopoulos and C. Owen, arXiv:1712.01760 [astro-ph.CO].
[57] A. Karam, T. Pappas and K. Tamvakis, Phys. Rev. D 96 (2017) no.6, 064036 doi:10.1103/PhysRevD.96.064036

[arXiv:1707.00984 [gr-qc]].
[58] T. Miranda, J. C. Fabris and O. F. Piattella, JCAP 1709 (2017) no.09, 041 doi:10.1088/1475-7516/2017/09/041

[arXiv:1707.06457 [gr-qc]].
[59] G. Narain, JCAP 1710 (2017) no.10, 032 doi:10.1088/1475-7516/2017/10/032 [arXiv:1708.00830 [gr-qc]].
[60] K. Nozari and N. Rashidi, Phys. Rev. D 95 (2017) no.12, 123518 doi:10.1103/PhysRevD.95.123518 [arXiv:1705.02617

[astro-ph.CO]].
[61] K. Dimopoulos and C. Owen, JCAP 1706 (2017) no.06, 027 doi:10.1088/1475-7516/2017/06/027 [arXiv:1703.00305 [gr-qc]].
[62] L. Jarv, A. Racioppi and T. Tenkanen, arXiv:1712.08471 [gr-qc].
[63] T. Markkanen, T. Tenkanen, V. Vaskonen and H. Veermae, arXiv:1712.04874 [gr-qc].
[64] M. Artymowski and J. Rubio, Phys. Lett. B 761 (2016) 111 doi:10.1016/j.physletb.2016.08.024 [arXiv:1607.00398 [astro-

ph.CO]].
[65] G. K. Karananas and J. Rubio, Phys. Lett. B 761 (2016) 223 doi:10.1016/j.physletb.2016.08.037 [arXiv:1606.08848 [hep-

ph]].
[66] A. A. Starobinsky, Phys. Lett. B 91 (1980) 99. doi:10.1016/0370-2693(80)90670-X
[67] J. D. Barrow and S. Cotsakis, Phys. Lett. B 214 (1988) 515. doi:10.1016/0370-2693(88)90110-4
[68] F. L. Bezrukov and M. Shaposhnikov, Phys. Lett. B 659 (2008) 703 doi:10.1016/j.physletb.2007.11.072 [arXiv:0710.3755

[hep-th]].
[69] Q. Gao and Y. Gong, arXiv:1703.02220 [gr-qc].
[70] J. Lin, Q. Gao and Y. Gong, Mon. Not. Roy. Astron. Soc. 459 (2016) no.4, 4029 doi:10.1093/mnras/stw915

[arXiv:1508.07145 [gr-qc]].
[71] T. Miranda, J. C. Fabris and O. F. Piattella, JCAP 1709 (2017) no.09, 041 doi:10.1088/1475-7516/2017/09/041

[arXiv:1707.06457 [gr-qc]].
[72] Q. Fei, Y. Gong, J. Lin and Z. Yi, JCAP 1708 (2017) no.08, 018 doi:10.1088/1475-7516/2017/08/018 [arXiv:1705.02545

[gr-qc]].
[73] M. Bojowald, Class.Quant.Grav. 26, 075020 (2009) [arXiv:0811.4129].
[74] A.Ashtekar, M. Bojowald and J.Lewandowski, Adv.Theor.Math.Phys. 7, 233- 268 (2003) [arXiv:0304074].
[75] M. Bojowald, Living Rev. Rel. 8, 11 (2005) [arXiv:0601085].
[76] P. Singh, J.Phys.Conf.Ser. 140, 012005 (2008) [arXiv:0901.1301].
[77] J. Haro, E. Elizalde, EPL 89, 69001 (2010).
[78] P. Dzierzak, P. Malkiewicz and W. Piechocki, Phys. Rev. D 80, 104001 (2009) [arXiv:0907.3436].
[79] K. Martineau, A. Barrau and J. Grain, A first step towards the inflationary trans-planckian problem treatment in Loop

Quantum Cosmology [arXiv:1709.03301].
[80] P. A. R. Ade et al. [BICEP2 and Keck Array Collaborations], Phys. Rev. Lett. 116 (2016) 031302

doi:10.1103/PhysRevLett.116.031302 [arXiv:1510.09217 [astro-ph.CO]].
[81] R. C. Helling, Higher curvature counter terms cause the bounce in loop cosmology, (2009) [arXiv:0912.3011 [gr-qc]].
[82] G. Date and S. Sengupta, Effective Actions from Loop Quantum Cosmology: Correspondence with Higher Curvature

Gravity, Class. Quant. Grav. 26, 105002 (2009) [arXiv:0811.4023 [gr-qc]].
[83] J. de Haro, Future singularity avoidance in phantom dark energy models, JCAP 1207, 007 (2012) [arXiv:1204.5604 [gr-qc]].
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