
Safe Parallelism: Compiler Analysis Techniques

for Ada and OpenMP

Sara Royuela1, Xavier Martorell1, Eduardo Quinones1, and Luis Miguel Pinho2

1 Barcelona Supercomputing Center
sara.royuela,xavier.martorell,eduardo.quinones@bsc.es

2 CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto lmp@isep.ipp.pt

Abstract. There is a growing need to support parallel computation in
Ada to cope with the performance requirements of the most advanced
functionalities of safety-critical systems. In that regard, the use of parallel
programming models is paramount to exploit the benefits of parallelism.
Recent works motivate the use of OpenMP for being a de facto stan-
dard in high-performance computing for programming shared memory
architectures. These works address two important aspects towards the in-
troduction of OpenMP in Ada: the compatibility of the OpenMP syntax
with the Ada language, and the interoperability of the OpenMP and the
Ada runtimes, demonstrating that OpenMP complements and supports
the structured parallelism approach of the tasklet model.
This paper addresses a third fundamental aspect: functional safety from a
compiler perspective. Particularly, it focuses on race conditions and con-
siders the fine-grain and unstructured capabilities of OpenMP. Hereof,
this paper presents a new compiler analysis technique that: 1) identifies
potential race conditions in parallel Ada programs based on OpenMP or
Ada tasks or both, and 2) provides solutions for the detected races.

1 Introduction

The parallel computation paradigm has irrupted in all computing domains, in-
cluding safety-critical systems, to cope with the increasing need of higher levels
of performance to implement advanced functionalities (e.g. autonomous driv-
ing [1]). Despite the clear benefits of parallel computation, it also introduces
hazards regarding safety and reliability, crucial concepts for critical systems.

This trend has also arrived to Ada [2], a language used in safety-critical and
high-security domains, and designed to keep safeness. Two main (and comple-
mentary) research lines are tackling the extension of Ada to support parallelism:
a) the simple yet powerful tasklet model [3–7] that, based on a fully strict fork-
join model, is able to exploit structured parallelism on shared memory archi-
tectures, and b) the incorporation of OpenMP into Ada, to efficiently exploit
structured and unstructured parallelism [8, 9] (Section 3 provides more details
of the two approaches). This paper is framed in the latter case.

OpenMP [10] has become a de facto standard for shared-memory systems as
a result of being successfully used for decades in high-performance computing

Royuela, S. [et al.]. Safe parallelism: Compiler analysis techniques for Ada and OpenMP. A: International Conference
on Reliable Software Technologies. "Reliable Software Technologies, Ada-Europe 2018 23rd Ada-Europe
International Conference on Reliable Software Technologies: Lisbon, Portugal, June 18-22, 2018: proceedings".
Berlín: Springer, 2018, p. 141-157.
The final authenticated version is available online at https://doi.org/10.1007/978-3-319-92432-8_9

(HPC). The model has recently gained much attention in the embedded field as
it addresses key issues for such systems: a) the coupling of a main processor to
one or more accelerators, b) the tasking model, capable of expressing fine-grain
and highly-dynamic parallelism, and c) its time predictability properties.

Current works have addressed two fundamental pillars towards the adop-
tion of OpenMP into Ada: 1) the compatibility of the OpenMP syntax with the
Ada language [8], and 2) the compatibility of the OpenMP and the Ada exe-
cution models [9]. The former proves that OpenMP provides an equivalent and
compatible interface to that of the tasklet model, guaranteeing the same safety
features. The latter analyses the interoperability between the OpenMP and the
Ada runtimes with a threefold objective: a) fulfill both specifications without
jeopardizing safety, b) use OpenMP as an implementation of the tasklet model,
and c) incorporate OpenMP directives in Ada programs. This paper focuses on
the third fundamental and yet unaddressed pillar: ensure functional safety in
the presence of parallel computation from a compiler perspective.

The most frequent errors in parallel computation are deadlocks, race con-
ditions and starvation, among others. Most of these errors can effectively be
identified and solved using compiler techniques. Furthermore, compilers may
always take a conservative approach overreacting when the solution is not decid-
able at compile time. In this regard, recent works propose to extend the Ada [4]
and the OpenMP [11] specifications to include new aspects and directives, re-
spectively, to address race conditions and deadlocks (among other issues) when
whole-program analysis is not possible.

In particular, this paper focuses on race conditions because this kind of er-
ror is closely related with the exploitation of the fine-grained and unstructured
parallel capabilities of the OpenMP tasking model. In this context, this paper
advances one step towards safe parallel execution in Ada by proposing a new
compiler analysis technique that: 1) allows identifying race conditions that can
potentially appear in Ada programs parallelized with both OpenMP and Ada
tasks, and 2) provides solutions for the detected races. The specific contributions
of the paper are the following:

1. A control flow graph that represents the semantics of Ada and OpenMP, and
allows the analysis of a program combining, or not, such languages.

2. The adaptation of OpenMP compiler analysis techniques developed for se-
quential languages (C, C++ and Fortran) to the Ada concurrent language.

3. A compiler method based on techniques for enhancing the programmability
of OpenMP, that: 1) detects race conditions in Ada programs using or not
OpenMP, and 2) provides users with directions to solve the errors.

2 Background

2.1 The Ada concurrent model

The Ada concurrency model is based on the notion of task, a unit of concur-
rency that represents an independent thread of control. All, the tasks and the

mechanisms for inter-task communication and synchronization, are introduced at
language level in order to allow building safer programs. As an illustration, Ada
95 [12] introduced protected objects to allow controlling how data is accessed,
thus eliminating race conditions.

Additionally, in 1997, Burns et al. introduced the Ravenscar profile [13], a
subset of the Ada programming language that allows high integrity applications
to be analyzed for their timing properties by pursuing three main goals: 1) ensur-
ing predictable execution, 2) simplifying the runtime support, and 3) eliminating
constructs with high overhead. The limitations imposed by the Ravenscar profile
have an inevitable impact in the complexity of correctness analyses, e.g. tasks
can only communicate through shared objects (tasks entries are not allowed,
so the rendezvous mechanism cannot be used), tasks are assumed to be non-
terminating, and tasks and protected objects cannot be dynamically allocated.

Along the same lines, SPARK [14], a language that subsets Ada to enable
the formal verification of programs, eliminates race conditions by forcing any
global object referenced from a task to be marked as Part Of that task, or be
a synchronized object3 [15].

2.2 The OpenMP tasking model

The tasking model appears in OpenMP 3.0 from the need of productively imple-
menting certain types of parallelism: unbounded loops, recursion, unstructured
parallelism, etc. It is based on the notion of task4, a specific instance of ex-
ecutable code and its data environment, generated when a thread encounters
certain language construct (e.g. task, taskloop and parallel). Other con-
structs, such as taskwait and depend, allow for tasks synchronization. The
runtime system is responsible of creating and executing the tasks, which can be
executed immediately after creation, or deferred. This depends on two factors:
1) task scheduling constraints (e.g. dependencies with other tasks described in
the depend clauses), and 2) thread availability.

The uncertainty introduced by the tasking model regarding when the tasks
are executed represents a challenge with respect to determining which portions
of code are concurrent. Furthermore, the relaxed-consistency memory model
of OpenMP (allowing private, firstprivate, lastprivate and shared
attributes), and the way data-sharing attributes may be defined5 add extra com-
plexity for the user, reducing the programmability, and increasing the possibili-
ties of introducing errors.

3 Spark considers the following synchronized objects: protected objects, atomic objects
(all accesses are atomic), and suspension objects (a kind of private semaphore).

4 The term task in OpenMP is not related to Ada tasks. OpenMP tasks are lightweight
parts of the code that can be executed in parallel by worker threads. In that regard,
OpenMP tasks are very similar to Ada tasklets [16].

5 OpenMP allows three ways to determine the data-sharing attributes: predetermined,
implicitly determined, and explicitly determined. The first two kinds are defined by
several rules in the specification, the latter requires explicit definition by the user.

3 Related work

In the last years, several works are leading the introduction of fine-grain paral-
lelism in Ada. This is so due to the increasing demand of computational capa-
bilities of the systems using such a programming language. There are two main
approaches: 1) the implementation of a parallel model built in the Ada core
language, named tasklet model [3–7], and 2) the introduction of OpenMP in
pure Ada applications [8,9]. The latter is gaining attention lately due to several
reasons: a) OpenMP is a mature parallel programming model, under continuous
revision by an expert and experienced committee, b) OpenMP is flexible yet
robust, allowing the definition of both structured and unstructured parallelism,
as well as the use of heterogeneous architectures, and c) most compiler (e.g.
GNU, Intel) and chip vendors in HPC (e.g. Intel, ARM, PowerPC, etc.) and the
real-time domain (e.g. Kalray MPPA, TI Keystone II) support OpenMP.

In this context, different works have already explored the safety requirements
necessary for OpenMP to be used in safety-critical environments, and they point
to two main directions: time predictability and functional safety. About the
former, the OpenMP tasking model has been proven to be analyzable regarding
its time properties [17–20], thus valid to ensure that deadlines can be fulfilled.
About the latter, different studies conclude that including some modifications in
the OpenMP specification, as well as implementing some guidelines in OpenMP
frameworks (including both the compiler and the runtime), may enable OpenMP
programs to meet the correctness requirements of a safety-critical system [8,11].

This paper focuses on how the compiler can address functional safety. In this
context, several compiler analysis techniques exist to check OpenMP programs
for diverse errors, mainly deadlocks and race conditions. Among the former,
Kroenig et al. developed a technique for detecting deadlocks in C/Pthreads pro-
grams [21] that can easily be applied to OpenMP because Pthreads mutexes
(e.g. pthread mutex lock) are comparable to OpenMP locking routines (e.g.
omp set lock). Among the latter, Ma et al. created a tool for detecting race
conditions in OpenMP programs with a fixed number of threads [22], and Basu-
palli et al. developed a robust technique for detecting race conditions in OpenMP
programs using affine constructs [23]. Finally, Royuela et al. developed a series
of algorithms focused on the OpenMP tasking model to find incoherences in
data-sharing and dependence clauses, as well as race conditions [24].

On another level, several methodologies exist to analyze Ada concurrent pro-
grams. These include two important aspects: 1) the representation used to de-
scribe the concurrent semantics of Ada programs, and 2) the technique used to
implement analysis on top of a given representation. Regarding the former, the
most common representations used for Ada analytics are Petri nets [25], control
flow graphs [26], and different forms of task graphs such as program reachabil-
ity graphs [27], real-time task digraphs [28] and system dependence nets [29].
Concerning the latter, most analysis techniques for Ada are based on model

checking6, which allows the automatic verification of a system’s correctness. In
this sense, Faria et al. developed ATOS [30], a tool that automatically extracts
a SPIN model [31] from an Ada program, as well as a set of desirable prop-
erties from a specification annotated by the user in the program, inspired by
the SPARK annotation language. Resembling ATOS, GNATprove [32] is a for-
mal verification tool for Ada, based on the GNAT compiler [33] and Meyer’s
design by contract paradigm [34]. These contracts must be explicitly stated by
programmers as preconditions and postconditions for functions and procedures,
and loop invariants, all in the syntax of Ada 2012.

4 Motivation

The Ada Reference Manual [35] distinguishes three kinds of errors: 1) those
that can be detected at compile time, 2) those that can be detected at run
time, and 3) those that do not need to be detected. The nature of Ada is to
prevent users from making errors, providing a series of mechanisms for data
synchronization and mutual exclusion, among others. Still, it is the responsibility
of the programmers to use these mechanisms in order to avoid errors such as race
conditions and deadlocks. Section 3 introduces some state-of-the-art techniques
for correctness checking. On the one hand, model checking based techniques are
very mature, although their usefulness depends on contracts that are also written
by programmers, hence are liable to have errors. On the other hand, techniques
based on petri-nets or reachability graphs mostly tackle deadlocks, because these
representations do not describe data flow information, but states. Hence, there
is a lack of static techniques for data race detection in Ada programs.

OpenMP also provides mechanisms for data synchronization and mutual ex-
clusion, but the correct use of these mechanisms relies on the programmer. This is
stated in the specification, when it says that “application developers are respon-
sible for correctly using the OpenMP API to produce a conforming program7”.
Still, many static and dynamic techniques have been developed for OpenMP
correctness checking to enhance productivity in parallel programming, as we in-
troduce in Section 3. Two of them are particularly interesting to us because,
although developed to enhance the programmability of OpenMP, they are also
useful to detect race conditions. The first technique, named auto-scope, automat-
ically defines the scope of the variables in a task construct (i.e. the data-sharing
clauses) [36], and the second technique, named auto-deps, discovers the depen-
dencies among tasks (i.e. dependence clauses) [37]. If whole program analysis is
possible, the only limitation of the algorithms concerns the use of third-party

6 Model checking mechanisms allow exhaustively and automatically checking a given
model regarding a given specification. Typically, hardware or software components
are checked against safety requirements such as the absence of deadlocks and other
critical states that can cause a system to crash.

7 An OpenMP conforming program is that which follows all rules and restrictions of
the OpenMP specification.

libraries which code is not visible. Anyhow, the algorithms are sound and, when
a variable cannot be automatically determined, it is reported to the user.

Overall, despite the specification of both Ada and OpenMP do not require
correctness checking mechanisms to ensure programs are free from errors, in-
cluding those is fundamental to increase productivity in parallel programming.
In that regard, we note a lack of mechanisms for detecting race conditions in
Ada, which is particularly important in case of safety environments to ensure a
correct operation of the system. This paper considers the algorithms developed
for OpenMP and propose the adaptation of these to handle Ada semantics. With
this, we are able to detect race conditions in pure Ada programs and in mixed
Ada/OpenMP programs as well.

The work uses for this paper the Ada Ravenscar profile, due to its simpler
concurrency model. This restriction is not related to the safety of the analysis,
which is independent from the model, but to the complexity of the control flow
graph that needs to be extracted and analysed. Section 5.4 provides information
on how the approach extends to less restrictive models, being the goal that the
approach is used with full Ada.

5 Proposal: compiler analysis for mixed Ada and

OpenMP tasks

This section explains our proposal to solve race conditions in mixed Ada and
OpenMP programs. It is structured as follows: first we present the singularities
of Ada/OpenMP programs, then we show how we represent Ada/OpenMP pro-
grams, next we introduce the algorithm used to detect race conditions in such
programs, and finally we show the results of applying the algorithm to a partic-
ular test case. For illustration purposes, we use the Ada application Ravenscar,
defined in Section 7 of the Ada Ravenscar Profile Guide [38] as test case. The sys-
tem modeled in this application includes a periodic process (Regular Producer)
that handles offers for a variable amount of workload (Small Whetstone). When
the requested workload exceeds a given threshold (Due Activation), the excess
load is processed by a sporadic process (On Call Producer). Additionally, inter-
rupts may appear at any point (External Event Server), and different priorities
are used to ensure preference among the different tasks.

Fig. 1 shows the HRT-HOOD8 representation of the Ravenscar application.
There, red dashed boxes represent tasks, blue dotted boxes represent packages
with functions and procedures, and yellow double-lined boxes represent pro-
tected objects with entries and procedures. The Ravenscar code illustrates the
expressiveness of the Ravenscar profile, for it includes several features of Ada
that are of our interest: protected objects, other shared data, synchronous and
asynchronous synchronizations, etc.

To exemplify how the analysis handles the two levels of parallelism (Ada
coarse grain tasks and OpenMP fine grain tasks), we have introduced an OpenMP

8 Hard Real-Time Hierarchical Object-Oriented Design (HRT-HOOD) is an object-
based structured design method for hard real-time systems [39].

REGULAR PRODUCER
7 C

ON CALL PRODUCER
5 S

REQUEST BUFFER

Deposit

Extract

9 Pr

EXTERNAL EVENT SERVER
11 I

EVENT_QUEUE

Handler

Wait

Signal

Pr

PRODUCTION WORKLOAD

Small_Whetstone

P

ACTIVATION LOG READER
3 S

EVENT_QUEUE

Interrupt_Simulator

‘Last I

ACTIVATION LOG

Read

Write

Pr ACTIVATION LOG READER

Signal

Wait

P

AUXILIARY

Due_Activation

Check_Due

P

ON CALL PRODUCER

Start

P

ACTIVATION MANAGER

Synchronize_Activation_Cyclic

Synchronize_Activation_Sporadic

P

Task

Protected Object

Function/Procedure

PACKAGE NAME

Subprogram name

priority Type

P Passive object

Pr Protected object

S Sporadic object

C Cyclic object

I Interrupt sporadic object

Fig. 1: HRT-HOOD representation of the Ravenscar application.

computation in the Small Whetstone procedure, which turns into the entry point
of a sensor fusion operation. This new functionality is described in Fig. 2 using
the syntax proposed in Ada to use OpenMP [8]. There, the parallel construct
initiates parallel execution by creating a team of threads. Then, the single con-
struct indicates that only one thread will execute the inner statements. Finally,
the taskloop construct indicates that the iterations of the most outer loop
are split into chunks that can be executed in parallel by the threads in the cur-
rent team using OpenMP tasks. In this implementation, the parameter of the
Small Whetstone procedure indicates the operation to carry out: 1 means read-
ing sensor A, 2 means reading sensor B, and 3 means fusing the two sensors by
adding up its values. Sensor A is read periodically from Regular Producer, sen-
sor B is read sporadically from On Call Producer, and the fusion is performed
sporadically from Activation Log Reader.

5.1 Mixing Ada and OpenMP

As introduced previously, pure Ada programs define concurrency by means of
tasks, while OpenMP creates parallelism by means of the parallel construct,
and distributes it by means of worksharing and tasking constructs. When both
languages are used together, concurrency may be defined at multiple levels:
between Ada tasks, between OpenMP tasks, and between Ada and OpenMP
tasks. Table 1 summarizes our approach to resolve race conditions in each case.

Ada protected objects are a robust and lightweight mechanism for mutual
exclusion and data synchronization. For this reason, they are to be used when-
ever possible to solve race conditions, i.e. when race conditions occur between

1 package body Production_Workload is

2 type Dim is range 1 .. 512;

3 type M is array (Dim, Dim) of Float;

4 M_A, M_B, M_C: M;

5

6 procedure Read_Sensor_A is begin

7 pragma OMP (parallel);

8 pragma OMP (single);

9 pragma OMP (taskloop);

10 for I in Dim loop

11 for J in Dim loop

12 M_A(I,J) := sensor(1, I, J);

13 end loop;

14 end loop;

15 end Read_Sensor_A;

16

17 procedure Read_Sensor_B is begin

18 pragma OMP (parallel);

19 pragma OMP (single);

20 pragma OMP (taskloop);

21 for I in Dim loop

22 for J in Dim loop

23 M_B(I,J) := sensor(2, I, J);

24 end loop;

25 end loop;

26 end Read_Sensor_B;

27

28 procedure Fuse_Sensors is

29 begin

30 pragma OMP (parallel);

31 pragma OMP (single);

32 pragma OMP (taskloop);

33 for I in Dim loop

34 for J in Dim loop

35 M_C(I,J) := M_A(I,J) + M_B(I,J);

36 end loop;

37 end loop;

38 end Fuse_Sensors;

39

40 procedure Small_Whetstone

41 (Workload: Positive) is

42 begin

43 case Workload is

44 when 1 => Read_Sensor_A;

45 when 2 => Read_Sensor_B;

46 when 3 => Fuse_Sensors;

47 when others => null;

48 end case;

49 end Small_Whetstone;

50

51 end Production_Workload;

Fig. 2: OpenMP code inserted in the Production Workload package of the
Ravenscar application.

Race condition between Solution

Ada tasks

Ada and OpenMP tasks

different binding regions

Ada mechanisms: protected object

OpenMP tasks
same binding region

OpenMP mechanisms:

* Synchronization constructs and clauses:

taskwait, barrier, depend

* Mutual exclusion constructs:

critical, atomic

* Data-sharing attributes:

private, firstprivate, lastprivate

Table 1: Solutions for race conditions in an Ada/OpenMP application.

Ada tasks, between Ada and OpenMP tasks, and between OpenMP tasks that
belong to different binding regions9. The last case is particularly interesting
because in C/C++/Fortran OpenMP10 programs, tasks belonging to different
binding regions cannot be concurrent unless there are nested parallel regions.
Tasks in such situation cannot be synchronized, and only data synchronization
is available via the flush operation, a highly unrecommended mechanism when
safety is essential due to the difficulty of analyzing its behavior. The extra layer

9 In OpenMP, the binding region is the enclosing region that determines the execution
context. The binding region of a task is the innermost enclosing parallel region.

10 The OpenMP API is an specification for defining parallelism in C, C++ and Fortran
programs.

of concurrency introduced by Ada unlocks this scenario, hence only protected
objects are safe enough to synchronize data. Finally, to exploit the flexibility
of OpenMP, race conditions between OpenMP tasks that belong to the same
binding region are to be solved using OpenMP mechanisms: mutual exclusion
constructs (i.e. atomic and critical constructs), synchronization constructs
(e.g. taskwait and barrier), synchronization clauses (i.e. depend) and data-
sharing clauses (e.g. private, firstprivate and lastprivate).

5.2 Representation of an Ada/OpenMP program

As introduced in Section 3, several representations allow expressing the semantics
of an Ada program (e.g. reachability graphs, Petri nets, control flow graphs, etc.).
However, some representations are not suitable for our purpose, for instance Petri
nets and reachability graphs, because these express states whereas data flow
information is hidden. Furthermore, these representations have other limitations
such as the state explosion problem, and the inability of representing recursive
programs. Hence, to represent the behavior of an Ada/OpenMP program we
use the classic control flow graph (CFG) representation extended to support
Ada concurrency and OpenMP parallelism. Our graph draws from the parallel
control flow graph for C/C++ and OpenMP/OmpSs [40] developed by Royuela
et al. [24], and the control flow graph for Ada developed by Fechete et al. [26].

To ease the reading we show the CFGs of the original Ravenscar application
and the new OpenMP code separately, in Fig. 3 and Fig. 4 respectively (the
complete CFG of the Ada code is displayed in Appendix A). The CFG of the
original Ravenscar code shows the code executed at elaboration time (top of the
figure), and the Ada code run during the execution of the program (rest of the
figure). Each partial CFG represents a task (Regular Producer, On Call Producer
and Activation Log Reader). The special nodes En and Ex express the entry and
the exit points of each task, and the OpenMP code is pointed with dashed-dotted
purple lines. Finally, the turquoise square boxes at the bottom represent some
significant shared data, and the edges relating this boxes to the CFG nodes
symbolize the type of access to the data: read (dotted dark red), write (solid
yellow) and read/write (dashed green).

Regarding the OpenMP code, it is independent from the Ada code because
the data structures being used are different. However, it is important to note that
the OpenMP parallel tasks are inherently concurrent because they are called
from within different Ada tasks, which are in turn concurrent.

Definition 1. A block of concurrency, or concurrent block, is a set of portions
of code that may execute in parallel.

Since the application meets the Ravenscar profile, the CFG is particularly
simple because all tasks are created at library level, meaning that they start
executing at the beginning of the program (after elaboration) and terminate
when the program ends (task allocators, task termination and abortion, and task
hierarchies, among others, are not allowed). Hence, there are only two blocks of

Request_Buffer.

Deposit

Activation_Manager.

Synchronize_Activation_

Sporadic

Activation_Log

_Reader.Wait

Production_Workload.

Small_Whetstone

Activation_Log.

Read

En

Ex

Activation_Manager.

Synchronize_Activation_

Cyclic

Production_Workload.

Small_Whetstone

Auxiliary.

Due_Activation

On_Call_Producer.

Start

Auxiliary.

Check_Due

Activation_Log

_Reader.Signal

En

Ex

Activation_Manager.

Synchronize_Activation_

Sporadic

En

Request_Buffer.

Extract

Production_Workload.

Small_Whetstone

Ex

On_Call_Producer

Activation_Manager.

Initialize

Regular_Producer Activation_Log_Reader

Activation_Time

OPENMP CODE

My_Request_Buffer(Insert_Index) Local_Suspension_Object

Read

Write

Elaboration

time

Program

execution

Fig. 3: Simplified CFG of the Ravenscar application.

En

I := 1

J := 1

M_A(I,J) := 1.0

J := J + 1

I := I + 1

En

Ex

En

Regular_Producer.

Small_Whetstone(1)

I

On_Call_Producer.

Small_Whetstone(2)

Activation_Log_Reader.

Small_Whetstone(3)

J

M_A(I,J)

I := 1

J := 1

M_B(I,J) := 1.0

J := J + 1

I := I + 1

Ex

I J

M_B(I,J)

I := 1

J := 1

M_C(I,J) :=

M_A(I,J) + M_B(I,J)

J := J + 1

I := I + 1

Ex

I J

M_C(I,J)

taskloop

Read_Sensor_B Fuse_Sensors

OpenMP

parallelism

Ada

concurrency

Read

Write

Read/Write

taskloop taskloop

Read_Sensor_A

Fig. 4: CFG of the OpenMP code introduced in the Small Whetstone
procedure.

concurrency (split by blue lines in the CFG) that correspond to the code executed
during elaboration, and the rest of the code.

5.3 Correctness analysis

Inspired by the algorithms presented in the scope of OpenMP to automatically
determine the data-scoping attributes [36] and the dependence clauses [37] of
an OpenMP task, we present an algorithm able to find data-race conditions
in Ada concurrent programs, containing or not OpenMP tasks. The high-level
description of the algorithm is outlined in Listing 1.

Algorithm 1 High-level description of the race detection algorithm.

1.Build the inter-procedural CFG of the program.
2.Recognize the blocks of concurrency (in a Ravenscar application this is as
simple as splitting the elaboration code and the rest of the code).

3.For each concurrent block, look for concurrent accesses to shared data, where
at least one of the accesses is a write. If that occurs:
(a)If all accesses to the shared data are within OpenMP tasks that belong

to the same binding region, then:
–If the operations are commutative [41], then protect the accesses
with an atomic or a critical construct.
–Otherwise, there are two approaches:

∗Use full synchronizations: insert a taskwait or barrier con-
struct between the two accesses.

∗Use partial synchronizations: follow the algorithm to automati-
cally determine the dependence clauses of an OpenMP tasks [37].

(b)Otherwise, propose to wrap the shared data in a protected object.

Applying the two first steps of the algorithm to our test case results in the
CFGs presented in Section 5.2. All Ada and OpenMP tasks correspond to the
same block of concurrency, hence potential race conditions may occur among
all Ada and OpenMP tasks. However, since OpenMP and Ada tasks manage
different share data, we can treat them separately.

Applying the third step on the original Ravenscar code reveals that: a) Ac-
tivation Time is not in a race condition because the read and the write accesses
are in different concurrent blocks, b) Local Suspension Object is not in a race
condition because the operations performed on it are atomic with respect to each
other, as the standard says, and c) My Request Buffer(Insert Index) is not in a
race condition because this object is part of the protected object Request Buffer.
The results of the algorithm on the original Ravenscar application successfully
found that the code contains no race conditions.

Regarding the analysis of the OpenMP code note that the OpenMP data-
sharing rules indicate that there is a private copy of the induction variable of the
taskloop for each thread. As a result, applying the third step of the algorithm
on the OpenMP code reveals that accesses to variables I and J are not in a race

condition. On the other hand, accesses to the matrices M A and M B are in a
race condition because the write access to M A and M B from Read Sensor A
and Read Sensor B respectively collide with the read access to both variables
from Fuse Sensor. The results of the algorithm indicate the use of partial syn-
chronizations in the form of task dependence clauses, which are shown in Fig. 5.

1 procedure Read_Sensor_A is begin

2 pragma OMP (parallel);

3 pragma OMP (single);

4 pragma OMP (taskloop, depend=>in, M_A(0:Dim,0:Dim));

5 ...

6 end Read_Sensor_A;

7

8 procedure Read_Sensor_B is

9 begin

10 pragma OMP (parallel);

11 pragma OMP (single);

12 pragma OMP (taskloop, depend=>in, M_B(0:Dim,0:Dim));

13 ...

14 end Read_Sensor_B;

15

16 procedure Fuse_Sensors is

17 begin

18 pragma OMP (parallel);

19 pragma OMP (single);

20 pragma OMP (taskloop, depend=>in, M_A(0:Dim,0:Dim), M_B(0:Dim,0:Dim),

21 depend=>out, M_C(0:Dim,0:Dim));

22 ...

23 end Fuse_Sensors;

Fig. 5: Snippet of the OpenMP code inserted in the Production Workload
package of the Ravenscar application including the dependence clauses

proposed by the correctness analysis.

5.4 Safe parallelism beyond the Ravenscar profile

This work currently assumes a restricted model, where Ada applications follow
the Ravenscar profile [38], and considering only the sharing of variables declared
in the same scope. This restriction is not related to the approach per se, but to
the complexity of the CFG as well as the program code visibility required for the
analysis. Hence, to support the full Ada concurrency model, the CFG must be
extended as to include further edges between tasks (e.g. master dependencies,
task termination, rendezvous, etc.). These edges must be taken into account
to determine the concurrency blocks (considering when tasks come to life and
terminate), and also to tune the accuracy of the results of the race condition
algorithm (considering when data is actually accessed, if possible). The compiler
approach in this analysis must always be conservative in the sense that false
positives are acceptable, but false negatives are inadmissible.

Another important consideration is the introduction of full program analysis
to allow the algorithm addressing the data sharing of variables declared in any
scope. In this sense, we consider the proposals for both Ada [4] and OpenMP [11]
to cope with this limitation, both consisting in annotations added to APIs of

those applications which are to be used as third-party libraries. The Ada annota-
tions include the aspects Global and Potentially Blocking to resolve race
conditions and deadlocks respectively, and the OpenMP annotations include the
directives globals and usage to resolve race conditions and illegal nesting11

(including nested regions that can cause deadlocks).

6 Conclusions

This paper provides one step further in the work to enable OpenMP fine-grained
parallelism in Ada, by addressing the safety of the code in the presence of paral-
lel computation. For this, the paper proposes compiler analysis techniques that
can identify potential race conditions in Ada, both considering Ada tasks and
parallel OpenMP code. These techniques are built on top of three components:
a) a graph representation that includes both control- and data-flow dependencies
of concurrent and parallel code, b) an adaptation of existent compiler techniques
developed for sequential languages to consider Ada tasks, and c) compiler meth-
ods that detect data races and guide the programmer in solving them.

Together with previous works, this paper provides a solution to enable the
use of the OpenMP fine-grained tasking model, which can be used together with,
or supporting, the existent Ada parallel tasklet model.

7 Acknowledgments

This work was supported by the Spanish Ministry of Science and Innovation
under contract TIN2015-65316-P, and by the FCT (Portuguese Foundation for
Science and Technology) within the CISTER Research Unit (CEC/04234).

References

1. NVIDIA: Automotive. https://www.nvidia.com/en-us/self-driving-cars (2017)
2. Liu, S., Tang, J., Zhang, Z., Gaudiot, J.L.: Adacore automotive. (2018)
3. Pinho, L.M., Moore, B., Michell, S.: Parallelism in Ada: status and prospects.

In George, L., Vardanega, T., eds.: 19th Ada-Europe International Conference on
Reliable Software Technologies, Springer (2014) 91–106

4. Taft, S.T., Moore, B., Pinho, L.M., Michell, S.: Safe parallel programming in Ada
with language extensions. ACM SIGAda Ada Letters 34(3) (2014) 87–96

5. Pinho, L.M., Moore, B., Michell, S., Taft, S.T.: An Execution Model for Fine-
Grained Parallelism in Ada. In de la Puente, J.A., Vardanega, T., eds.: 20th
Ada-Europe International Conference on Reliable Software Technologies, Springer
(June 2015) 196–211

6. Pinho, L.M., Moore, B., Michell, S., Taft, S.T.: Real-time fine-grained parallelism
in ada. ACM SIGAda Ada Letters 35(1) (2015) 46–58

11 The OpenMP specification (Section 2.17 [10]) defines a series of rules that determine
which constructs cannot be nested within each other.

7. Taft, T., Moore, B., Pinho, L.M., Michell, S.: Reduction of Parallel Computation
in the Parallel Model for Ada. ACM SIGAda Ada Letters 36(1) (2016) 9–24

8. Royuela, S., Martorell, X., Quiñones, E., Pinho, L.M.: OpenMP Tasking Model for
Ada: Safety and Correctness. In Blieberger, J., Bader, M., eds.: 22nd Ada-Europe
International Conference on Reliable Software Technologies, Springer (June 2017)
184–200

9. Royuela, S., Pinho, L.M., Quiñones, E.: Converging Safety and High-performance
Domains: Integrating OpenMP into Ada. In de Supinski, B.R., L., O.S., Terboven,
C., Chapman, B.M., Müller, M.S., eds.: Design, Automation & Test in Europe
Conference & Exhibition, IEEE (March 2018)

10. Board, O.A.R.: OpenMP Application Programming Interface 4.5.
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf (2015)

11. Royuela, S., Duran, A., Serrano, M.A., Quiñones, E., Martorell, X.: A Functional
Safety OpenMP* for Critical Real-Time Embedded Systems. In de Supinski, B.R.,
L., O.S., Terboven, C., Chapman, B.M., Müller, M.S., eds.: Scaling OpenMP for
Exascale Performance and Portability – 13th International Workshop on OpenMP,
Springer (September 2017) 231–245

12. Ada Resource Association: Ada 95 Reference Manual. ISO/IEC 8652:1995(E) with
COR.1. http://www.adaic.org/resources/add content/standards/95lrm/RM.pdf
(2000)

13. Burns, A., Dobbing, B., Romanski, G.: The Ravenscar tasking profile for high
integrity real-time programs. In Asplund, L., ed.: 3rd Ada-Europe International
Conference on Reliable Software Technologies, Springer (June 1998) 263–275

14. Barnes, J.G.P.: High integrity software: the spark approach to safety and security:
sample chapters. Pearson Education (2003)

15. Taft, S.T., Schanda, F., Moy, Y.: High-Integrity Multitasking in SPARK: Static
Detection of Data Races and Locking Cycles. In Babiceanu, R., Waeselynck, H.,
Paul, R.A., Cukic, B., Xu, J., eds.: 17th International Symposium on High Assur-
ance Systems Engineering, IEEE (2016) 238–239

16. Michell, S., Moore, B., Pinho, L.M.: Tasklettes – a fine grained parallelism for
Ada on multicores. In Keller, H.B., Erhard, P., Dencker, P., Klenk, H., eds.: 18th
Ada-Europe International Conference on Reliable Software Technologies, Springer
(June 2013) 17–34

17. Serrano, M.A., Melani, A., Vargas, R., Marongiu, A., Bertogna, M., Quiñones, E.:
Timing characterization of OpenMP4 tasking model. In Iyer, R., Garg, S., eds.:
International Conference on Compilers, Architecture and Synthesis for Embedded
Systems, IEEE Press (October 2015) 157–166

18. Serrano, M.A., Melani, A., Bertogna, M., Quiñones, E.: Response-time analysis of
DAG tasks under fixed priority scheduling with limited preemptions. In: Design,
Automation & Test in Europe Conference & Exhibition, IEEE (March 2016) 1066–
1071

19. Melani, A., Serrano, M.A., Bertogna, M., Cerutti, I., Quiñones, E., Buttazzo, G.:
A static scheduling approach to enable safety-critical OpenMP applications. In:
22nd Asia and South Pacific Design Automation Conference, IEEE (January 2017)
659–665

20. Sun, J., Guan, N., Wang, Y., He, Q., Yi, W.: Scheduling and analysis of real-
time openmp task systems with tied tasks. In: Proceedings of Real-Time Systems
Symposium. (2017)

21. Kroening, D., Poetzl, D., Schrammel, P., Wachter, B.: Sound static deadlock
analysis for C/Pthreads. In Lo, D., Apel, S., Khurshid, S., eds.: 31st International
Conference on Automated Software Engineering, IEEE (September 2016) 379–390

22. Ma, H., Diersen, S.R., Wang, L., Liao, C., Quinlan, D., Yang, Z.: Symbolic analysis
of concurrency errors in openmp programs. In Bilof, R., ed.: 42nd International
Conference on Parallel Processing, IEEE (October 2013) 510–516

23. Basupalli, V., Yuki, T., Rajopadhye, S., Morvan, A., Derrien, S., Quinton, P.,
Wonnacott, D.: ompVerify: polyhedral analysis for the OpenMP programmer,
Springer (June 2011) 37–53

24. Royuela, S., Ferrer, R., Caballero, D., Martorell, X.: Compiler analysis for OpenMP
tasks correctness. In: 12th International Conference on Computing Frontiers, ACM
(May 2015) 7

25. Evangelista, S., Kaiser, C., Pradat-Peyre, J.F., Rousseau, P.: Quasar: a new tool
for concurrent Ada programs analysis. In: Ada-Europe, Springer (2003) 168–181

26. Fechete, R., Kienesberger, G.: A Framework for CFG-Based Static Program Anal-
ysis of Ada Programs. In Kordon, F., Vardanega, T., eds.: 13th Ada-Europe In-
ternational Conference on Reliable Software Technologies, Springer (June 2008)
130–143

27. Qi, X., Xu, B.: An approach to slicing concurrent Ada programs based on pro-
gram reachability graphs. International Journal of Computer Science and Network
Security 6(1) (2005) 29–37

28. Mohaqeqi, M., Abdullah, J., Guan, N., Yi, W.: Schedulability analysis of syn-
chronous digraph real-time tasks. In O’Conne, L., ed.: 28th Euromicro Conference
on Real-Time Systems, IEEE (July 2016) 176–186

29. Wang, B., Gao, H., Cheng, J.: Definition-Use Net and System Dependence Net
generators for Ada 2012 programs and their applications. Ada User Journal 38(1)
(2017) 37–55

30. Faria, J.M., Martins, J., Pinto, J.S.: An Approach to Model Checking Ada Pro-
grams. In Brorsson, M., Pinho, L.M., eds.: 17th Ada-Europe International Con-
ference on Reliable Software Technologies, Springer (June 2012) 105–118

31. Holzmann, G.J.: The model checker SPIN. IEEE Transactions on software engi-
neering 23(5) (May 1997) 279–295

32. Project Hi-Lite: GNATprove. http://www.open-do.org/projects/hi-lite/gnatprove
(2017)

33. GNU: GNAT. https://www.gnu.org/software/gnat (2016)
34. Meyer, Bertrand: Object-oriented software construction. Volume 2. Prentice hall

New York (1988)
35. Ada Resource Association: Ada Reference Manual, ISO/IEC 8652:2012(E).

http://archive.adaic.com/standards/83lrm/html (2012)
36. Royuela, S., Duran, A., Liao, C., Quinlan, D.J.: Auto-scoping for OpenMP Tasks.

In Chapman, B.M., Massaioli, F., S., M.M., Rorro, M., eds.: OpenMP in a Hetero-
geneous World – 8th International Workshop on OpenMP, Springer (June 2012)
29–43

37. Royuela, S., Duran, A., Martorell, X.: Compiler automatic discovery of ompss
task dependencies. In Kasahara, H., Kimura, K., eds.: International Workshop
on Languages and Compilers for Parallel Computing, Springer (September 2012)
234–248

38. Burns, A., Dobbing, B., Vardanega, T.: Guide for the use of the Ada Ravenscar
Profile in high integrity systems. ACM SIGAda Ada Letters 24(2) (2004) 1–74

39. Burns, A., Wellings, A.J.: HRT-HOOD: A structured design method for hard
real-time systems. Real-Time Systems 6(1) (Jan 1994) 73–114

40. Duran, A., Ayguadé, E., Badia, R.M., Labarta, J., Martinell, L., Martorell, X.,
Planas, J.: Ompss: a proposal for programming heterogeneous multi-core architec-
tures. Parallel Processing Letters 21(02) (2011) 173–193

41. Lippe, E., van Oosterom, N.: Operation-based merging. In: Proceedings of the
Fifth ACM SIGSOFT Symposium on Software Development Environments. SDE
5, New York, NY, USA, ACM (1992) 78–87

A Complete CFG of the Ravenscar application

This appendix includes the complete CFG of the Ada code used to illustrate the
proposal of this paper, extracted from the Ada Ravenscar Profile Guide [38].

R
e

q
u

e
st

_
B

u
ff

e
r.

D
e

p
o

si
t

A
ct

iv
a

ti
o

n
_

M
a

n
a

g
e

r.

S
y
n

ch
ro

n
iz

e
_

A
ct

iv
a

ti
o

n
_

S
p

o
ra

d
ic

A
ct

iv
a

ti
o

n
_

Lo
g

_
R

e
a

d
e

r.
W

a
it

P
ro

d
u

ct
io

n
_

W
o

rk
lo

a
d

.

S
m

a
ll_

W
h

e
ts

to
n

e

A
ct

iv
a

ti
o

n
_

Lo
g

.

R
e

a
d

E
n

E
x

A
ct

iv
a

ti
o

n
_

M
a

n
a

g
e

r.

S
y
n

ch
ro

n
iz

e
_

A
ct

iv
a

ti
o

n
_

C
y
cl

ic

P
ro

d
u

ct
io

n
_

W
o

rk
lo

a
d

.

S
m

a
ll_

W
h

e
ts

to
n

e

A
u

xi
li
a

ry
.

D
u

e
_

A
ct

iv
a

ti
o

n

O
n

_
C

a
ll_

P
ro

d
u

ce
r.

S
ta

rt

A
u

xi
li
a

ry
.

C
h

e
ck

_
D

u
e

A
ct

iv
a

ti
o

n
_

Lo
g

_
R

e
a

d
e

r.
S

ig
n

a
l

E
n

E
x

A
ct

iv
a

ti
o

n
_

M
a

n
a

g
e

r.

S
y
n

ch
ro

n
iz

e
_

A
ct

iv
a

ti
o

n
_

S
p

o
ra

d
ic

E
n

R
e

q
u

e
st

_
B

u
ff

e
r.

E
xt

ra
ct

P
ro

d
u

ct
io

n
_

W
o

rk
lo

a
d

.

S
m

a
ll_

W
h

e
ts

to
n

e

E
x

A
ct

iv
a

ti
o

n
_

M
a

n
a

g
e

r.

S
y
n

ch
ro

n
iz

e
_

A
ct

iv
a

ti
o

n
_

S
p

o
ra

d
ic

E
v
e

n
t_

Q
u

e
u

e
.

H
a

n
d

le
r.

W
a

it

A
ct

iv
a

ti
o

n
_

Lo
g

.W
ri

te

E
n

E
x

O
n

_
C

a
ll

_
P

ro
d

u
ce

r A
ct

iv
a

ti
o

n
_

M
a

n
a

g
e

r.

In
it

ia
liz

e

R
e

g
u

la
r_

P
ro

d
u

ce
r

A
ct

iv
a

ti
o

n
_

Lo
g

_
R

e
a

d
e

r
E

xt
e

rn
a

l_
E

v
e

n
t_

S
e

rv
e

r

E
v
e

n
t_

Q
u

e
u

e
.

H
a

n
d

le
r.

S
ig

n
a

l

E
n

E
x

In
te

rr
u

p
t_

S
im

u
la

to
r

A
ct

iv
a

ti
o

n
_

T
im

e

B
a

rr
ie

r

A
ct

iv
a

ti
o

n
_

C
o

u
n

te
r

O
P

E
N

M
P

 C
O

D
E

R
e

q
u

e
st

_
C

o
u

n
te

r

R
u

n
_

C
o

u
n

t

F
a

ct
o

r

R
e

a
d

W
ri

te

R
e

a
d

/W
ri

te

C
u

rr
e

n
t_

S
iz

e

In
se

rt
_

In
d

e
x

B
a

rr
ie

r

R
e

sp
o

n
se

M
y

_
R

e
q

u
e

st
_

B
u

ff
e

r(
In

se
rt

_
In

d
e

x)

T
a

sk
_

S
ta

rt
_

T
im

e

S
y

st
e

m
_

S
ta

rt
_

T
im

e

N
e

xt
_

T
im

e

Lo
ca

l_
S

u
sp

e
n

si
o

n
_

O
b

je
ct

A
ct

iv
a

ti
o

n
_

T
im

e

P
o

ll_
T

im
e

 :
=

A
d

a
.R

e
a

l_
T

im
e

.C
lo

ck
 +

W
a

it
T

im
e

;

d
e

la
y

u
n

ti
l

P
o

ll
_

T
im

e
;

P
o

ll_
T

im
e

 :
=

 P
o

ll_
T

im
e

+
 W

a
it

T
im

e
;

P
o

ll
_

T
im

e

W
a

it
_

T
im

e
 E
la

b
o

ra
ti

o
n

ti
m

e

P
ro

g
ra

m

e
xe

cu
ti

o
n

Fig. 6: Control flow graph of the Ravenscar application defined in Section 7 of
the Ada Ravenscar Profile Guide, containing accesses to shared data.

