
Data-driven Requirements Engineering in Agile

Projects: The Q-Rapids Approach

Xavier Franch1, Claudia Ayala1, Lidia López1, Silverio Martínez-Fernández2, Pilar Rodríguez3, Cristina Gómez1,

Andreas Jedlitschka2, Markku Oivo3, Jari Partanen4, Timo Räty4, Veikko Rytivaara4

1Universitat Politècnica de Catalunya (UPC)

Barcelona, Spain

{franch, llopez, cayala, cristina}@essi.upc.edu

3University of Oulu

Oulu, Finland

{pilar.rodriguez, markku.oivo}@oulu.fi

2Fraunhofer IESE,

Kaiserslautern, Germany

{silverio.martinez, andreas.jedlitschka}@iese.fraunhofer.de

4Bittium Wireless Ltd.

Oulu, Finland

{jari.partanen, timo.raty, veikko.rytivaara}@bittium.com

Abstract—Requirements identification, specification and man-

agement are key activities in the software development process.

In the last years, many approaches to these activities have

emerged, based on the exploitation of huge amounts of data gath-

ered from software repositories and system usage. The Q-Rapids

project proposes the collection and analysis of such data and its

consolidation into a set of strategic indicators as product quality,

time to market and team productivity. These indicators are visu-

alized through a dashboard designed to support decision-makers.

In this paper, we present the ongoing research undertaken in this

project. We use the concept of blocking situation to exemplify the

Q-Rapids approach.

Index Terms—Data-driven software engineering; Agile

software development; Requirements engineering; Strategic

indicator; Waiting time.

I. MOTIVATION

Following lean and agile principles, just-in-time require-

ments analysis (JITRA) proposes that requirements should only

be identified as needed and specified at the level of detail re-

quired for upcoming development1. While easy to state, JITRA

principles are not as easy to apply in a particular project. In

general, requirement engineers need to rely in their experience

and mindset in order to identify requirements and decide the

appropriate level of detail in their description.

In the last years, the requirements engineering community

is witnessing the emergence of research approaches based on

the exploitation of huge amounts of data gathered from soft-

ware repositories and system usage [1]. These approaches tack-

le research questions such as identifying candidate features [2],

predicting productivity [3] and planning releases [4].

The goal of this work is to present a summary on the ongo-

ing research in the Q-Rapids (Quality-aware Rapid Software

Development) project2. Q-Rapids is framed in this data-driven

requirements engineering movement. The project aims at iden-

tifying candidate requirements from data, analyzing their im-

pact on several selected strategic indicators and based on the

1 https://rthewitt.com/tag/requirements/
2 www.q-rapids.eu

results, deciding the most adequate action with this require-

ment: adding to the product or sprint backlog, postponing, dis-

carding, or further refining in order to make the final decision.

As the “Q” in the acronym hints, the emphasis of the project is

on quality, meaning to make decisions always considering

quality of either the final product or the development process,

typically (but not only) by identifying appropriate quality re-

quirements.

The rest of the paper is structured as follows. Section II

briefly summarizes the idea of the Q-Rapids project. Section III

presents a particular indicator that will be used to explain in

depth the concept behind Q-Rapids. Sections IV to VI elabo-

rate in detail the three main components of the approach using

the example indicator. To finalize the paper, Section VII out-

lines a research agenda.

II. THE Q-RAPIDS APPROACH

Nowadays, software quality is an essential key factor for

the success of developed software. However, current software

development methodologies still provide a limited support to

ensure that adequate levels of quality are met, while complying

with rapid development cycles.

Q-Rapids is a data-driven, quality-aware rapid software de-

velopment approach in which quality and functional require-

ments are identified from available data and evaluated with

respect to some selected indicators [5]. Q-Rapids aims to in-

crease software quality through:

 Gathering and analyzing data from project manage-

ment tools, software repositories, quality of service and

system usage. The analysis of those data permits to

systematically and continuously assess software quality

using a set of quality-related indicators based on

GQM+Strategies™ [6] Quamoco [7] and GQM [8].

 Providing decision makers with a highly informative

dashboard to help them making data-driven, require-

ments-related strategic decisions in rapid cycles. The

dashboard will aggregate the collected data into strate-

gic indicators related to factors as time to market, team

productivity, customer satisfaction, and overall quality.

© IEEE. PREPRINT. This is the author's version of the work. It is posted here by permission of IEEE for your personal use.
Not for redistribution. The definitive version will be published in the JIT-RE'17 proceedings: 2nd International Workshop
on Just-In-Time Requirements Engineering: Dealing with Non-Functional Requirements in Agile Software Development

https://jitre-workshop.github.io/
montse aragues
Texto escrito a máquina
DOI 10.1109/REW.2017.85

 Extending the agile software development process con-

sidering the comprehensive integration of quality and

functional requirements and their management in a

way that favors software quality and that brings a sig-

nificant productivity increase to the software lifecycle.

III. AN EXAMPLE: THE PROBLEM OF BLOCKING SITUATIONS

In this paper, we exemplify the Q-Rapids approach to man-

age requirements with one particular situation arising in soft-

ware development in general, and agile projects in particular,

namely the emergence of blocking situations while developing

a feature or user story.

Blocking situations increase the waiting time, which is

against the lean principle of “deliver fast” [9]. Waiting time can

be defined as the cost of waiting for a previous upstream step to

finish. It was one of the seven manufacturing waste types char-

acterized in the Toyota Production System [10].

Several studies have identified the causes behind blocking

situations and delays in projects. For instance, McConnell and

Goldratt identified the top 11 cause of delays in IT projects3. In

agile development, Sedano et al. identified a series of causes

for waiting in agile development [11]. They mentioned: slow or

unreliable tests; unreliable acceptance environment; missing

information, people or equipment; and context switching from

delayed feedback. This last reason has been reported as a cause

of hidden waste [12] and productivity decrease [13].

The identification of blocking situations can be used to

evaluate software quality and identify quality requirements. We

will show several factors causing blocking situations. For in-

stance, one of the causes related to requirements is the occur-

rence of reiterated failing tests of a feature. Among others, tests

can fail for the following reasons: because the requirements

were identified and included too early in the backlog, or be-

cause the level of detail of the requirement can be inappropriate

for the current knowledge (e.g., a quality requirement with an

unrealistic threshold required). We will show how such a

blocking situation can be detected and ameliorated through the

collection, aggregation and analysis of quantitative data gath-

ered from software and project management repositories, and

the possible actions to be taken in the process in order to miti-

gate the impact of waiting time.

IV. DATA GATHERING AND ANALYSIS

During meetings with the industry partners of the Q-Rapids

project, we identified five factors being useful to identify

blocking situations: feature definition completeness, delayed

tasks, test failing, test performance, and low quality features.

Table I shows metrics for these five factors, the data to gather

for computing them, and their corresponding data sources. By

measuring these five factors, we can have a quantitative vision

of the blocking indicator, and therefore analyze whether quality

requirements related actions should be suggested through the

Q-Rapids dashboard. Next, we respectively explain the ra-

tionale of these factors.

3 https://www.projectmanagement-training.net/appendix-1-causes-of-

delays-in-it-projects

First, feature definition completeness refers to the state in

which final information of a feature is included in the backlog,

and hence it is ready to be developed. This factor enables to

identify incomplete features, unrealistic requirements, and the

time since someone knows a feature is needed until it is com-

pletely reported.

Second, delayed tasks refers to tasks blocking others. This

factor enables to measure the total waiting time required to

finish and close opened tasks blocking other tasks. It is im-

portant to note that the impact of these delays is greater when

blocking either high priority tasks or many tasks. An example

of alert in the dashboard is when a feature is delayed and other

features depend on it. For this factor, we need to gather the

tasks (a.k.a. features or user stories) from the issue tracking

systems representing the product backlog (e.g., Redmine,

GitLab, JIRA, Mantis), as well as the dependency information

about these tasks during feature implementation.

Third, test failing refers to problems at testing of blocking

features, as well as the quality of these tests (e.g., test coverage,

independent tests, and test omitted). If a feature is not properly

tested, it may block the deployment of depending features. The

blocking impact depends on feature priority, number of de-

pending features and their priority, and test quality. We need to

gather the tests about different depending modules from con-

tinuous integration tools (e.g., Jenkins). Then, we can identify

modules that are not ready for integration, causing delays in the

deployment (i.e., the number of modules with failed tests

blocking other modules deployment).

Fourth, test performance refers to the time consumed for

the execution of tests (automated or manually). If the time is

too long, it can cause delays.

Fifth, low quality feature refers to a feature already devel-

oped and tested, but having incurred technical debt. These fea-

tures do not comply with code quality rules regarding main-

tainability, reliability, and security for static code analysis tool

(e.g., SonarQube). If they have depending features, they can

cause delays when maintainability actions are taken.

After data gathering and metrics calculation, data analysis

approaches should prioritize the features or user stories that

require urgent implementation to avoid waiting time, and iden-

tify the modules blocking continuous integration of other ready

modules. The next section reports how such analysis is report-

ed in the dashboard.

V. THE STRATEGIC DASHBOARD

The strategic dashboard is the component of the Q-Rapids

approach that will interact with the decision-maker (typically, a

requirements engineer, business analyst or product owner).

In general, the design principles of the dashboard are as fol-

lows:

 We aim at aggregating the factors into a single general

value which provides a measure of the indicator under

analysis. We plan to use Bayesian networks built as a

combination of real data and experts’ opinion in order

to compute the value of such indicator. In the example

given in this paper, we can define alerts when the

blocking situation is reaching some thresholds.

TABLE I. CRITICAL FACTORS AFFECTING BLOCKING, TOGETHER WITH THEIR CORRESPONDING METRICS AND DATA SOURCES.

Factor affecting Blocking Metric Data source and information to be gathered

Feature definition

completeness

- Number of features incomplete in the product backlog

- Average time to complete feature definition

Features from the issue tracking system (e.g., JIRA, Redmine, GitLab)

containing the product backlog. For each feature, the following fields

should be gathered: its name, the duple its status (after changes) and

corresponding timestamp, its type (e.g., development or tests), its estimated

time, its real invested time, the assigned developer, its dependencies with

other features (e.g., parent tasks), the progress reported, definition of done,

linkage to main feature or sub/feature / task, and empty fields.

Delayed tasks

- Number of blocked tasks

- Number of blocking tasks

- Waiting time to finish blocking tasks (per tasks priority)

Test failing

- Number of tests failed

- Test coverage

- Number of omitted/non-run tests

Tests from the continuous integration tool (e.g., Jenkins). For each test, the

information to gather is: the duple of the result and the corresponding

timestamp, test coverage, status of the test (i.e., active or skipped), and its

execution time. Test performance

- Time to execute tests

- Prediction estimate of development until next release

based on test status

Low quality features - Time to solve quality rule violations of the feature

From the static code analysis tool (e.g., SonarQube), the following

information should be extracted: dependencies among tasks (e.g., fan-

in/out to identify dependencies), and violations of quality rules, code

complexity.

 The dashboard will provide drill-down capabilities

making possible to visualize the behavior of an object

under measure (feature, user story, component, ...) with

a higher level of detail. This will allow to visualize, for

instance, that the reason of an alert related to a block-

ing feature is more related to test failing than to defini-

tion completeness.

 The dashboard will integrate meaningful prediction

rules in order to detect potential violations to the de-

fined thresholds. For instance, in case there is a block-

ing situation involving higher priority tasks with sever-

al critical dependences, then the dashboard will raise

the corresponding alarm.

 In order to allow the exploration of diverse blocking al-

ternatives in the solution space, we plan to include in

the dashboard what-if analysis techniques to visualize

the potential impact of each alternative. For instance,

the consequence of postponing a blocking test. Of

course, this analysis shall reflect the consequences in

all indicators, which can be in conflict and thus trade-

offs will be explored.

 The dashboard will also suggest possible mitigation ac-

tivities to improve some of the factors impacting on the

strategic indicator. For example, if we have some test-

ing problems in a blocking feature (high priority or

with a high number of features depending on it), we

can stop the development of lower-level features to use

the resources to support the development team working

on it.

 All in all, the dashboard will support decision makers

to detect and visualize meaningful situations as well as

to explore the impact of diverse solutions in order to

take informed decisions.

Due to the intrinsic characteristic of a dashboard, the visual-

ization is of utterly importance. For instance, a radar visualisa-

tion approach can be used by business high-level roles to have

a more generic visualisation. On the other hand, a spider visual-

isation can be used by product owners, who can be more inter-

ested in the status of the separate factors generating a blocking

situation. In the spider chart, where each vertex corresponds to

one of the factors included in Table 1, the user can see that the

possible blocking situation is related to the Test failing factor at

the first sight.

For some factors, the users can need not only the status at

some point in time, but analyzing trends. This is the case of the

Test failing factor. Using the measures shown in Table 1, Test

failing is characterized by the percentages of missing tests (Test

coverage), failed tests (Number of tests failed) and non-run

tests (Number of omitted/non-run tests). Having a high number

of non-run tests at the beginning of an iteration is not a block-

ing situation. But, after an initial period of time, this situation

can be considered blocking.

VI. THE PROCESS

One key element of the Q-Rapids process is flow. Flow is

essential in agile and rapid software development because it

allows a constant feature delivery pace [9][14]. The Q-Rapids

process will focus on a continuous end-to-end flow of features

by means of transparent development and automatic identifica-

tion of blocking situations (i.e., elimination and reduction of

waiting times). Automation is essential in this process as the

goal is to eliminate as many manual steps as possible to identi-

fy blocking situations [15]. Moreover, the Q-Rapids strategic

dashboard plays a fundamental role in this process, as it will

visualize blocking situations as they emerge and make sugges-

tions to decision makers on the different ways of solving the

quality issues.

As an illustrative example, we develop in this section how

the Q-Rapids process will support an optimal management of

features by a real-time identification and understanding of

‘blocking’ features (i.e. feature which implementation is pre-

venting flow). The information provides through the dash-

board, and based on the five critical factors affecting blocking

(see Table I), will serve as an input for managing product back-

logs. The strategic dashboard will inform decision makers at

different organizational levels (e.g. business owners, product

owners, etc.) about situations in which a certain feature is pre-

venting flow because it is not being implemented on time (or it

has not been selected for implementation yet). Thus, decision

makers can use this information to include/drop items in prod-

uct backlogs during decision-making meetings, reprioritize

backlogs and, in the worst-case scenario, stop-the-line if need-

ed (i.e. focusing exclusively on solving the blocking situation).

Similarly, the strategic dashboard will visualize waiting times

in decision-making when, for example, a feature that should be

implemented is queuing because it misses certain information

that is needed for its implementation (feature definition com-

pleteness).

The way to handle blocking situations caused by blocking

features will depend on the concrete organizational structure

and agile software development method being applied. Com-

panies applying Kanban will be in the best position to benefit

the best from Q-Rapids solutions to support flow. Blocking

situations will be identified at real-time, allowing fast identifi-

cation of waiting times and bottlenecks that can be used as an

input by the Kanban team to update its Kanban board. A typi-

cal situation in Scrum teams would be that the Product Owner

uses the Q-Rapids strategic dashboard as an input for prioritiz-

ing the product backlog and guiding discussions during sprint

planning meetings. Development teams will particularly benefit

from the Q-Rapids dashboard as blocking situations due to

quality issues, such as neglecting internally generated backlog

items (e.g. quality requirements), will be transparent for every-

one. Such increasing in transparency will help solve natural

tensions between the desire to deliver functionalities quickly

and the need for reliable products. Consequently, decision

makers can, then, decide upon different strategies from solving

the blocking situation, from stopping-the-line, if the blocking

situation is really critical, to reprioritizing existing backlog

items, or adding new features.

VII. RESEARCH AGENDA

The ongoing research work in Q-Rapids project shaped a

research agenda including topics as:

 Automatic identification of blocking situations pre-

venting flow and threating product quality. As illustrat-

ed in this paper, development of techniques to make

development flow transparent is essential to enable

quick and easy identification of blocking situations.

 Development of practices for seamless integration of

quality requirements in agile product backlogs. Tech-

niques that allow practitioners to ensure that focus on

customer when prioritizing backlog items does not

compromise quality levels need further research.

 Enhancement of agile and rapid software development

processes by incorporating technical infrastructure for

supporting continuous quality monitoring. The aim is

to provide a real-time understanding on quality so to

react as quickly as possible upon identified quality

challenges.

 Identification and definition of strategic indicators that

provide information related to quality in real-time. A

versatile dashboard presenting these indicators as pro-

posed in the paper should be a key asset in this ap-

proach. Such dashboard should not be invasive to agile

teams, on the contrary it needs to be seamless integrat-

ed with their current repositories and assessment tools.

 Integration and measurement of quality in agile and

rapid processes during development and at runtime.

We believe that it is possible to create a quality model

in rapid software development, consolidating the usual-

ly available data and the quality issues to be solved,

which could be the starting point for agile organiza-

tions adopting the Q-Rapids vision.

ACKNOWLEDGMENT

This work is a result of the Q-Rapids project, which has re-

ceived funding from the European Union’s Horizon 2020 re-

search and innovation programme under grant agreement No

732253.

REFERENCES

[1] W. Maalej, M. Nayebi, T. Johann, G. Ruhe. “Toward Data-

Driven Requirements Engineering”. IEEE Software 33(1), 2016.

[2] C. Iacob, R. Harrison, “Retrieving and Analyzing Mobile Apps

Feature Requests from Online Reviews”. MSR 2013.

[3] M. Choetkiertikul, H. Khanh Dam, T. Tran, A. Ghose, J.

Grundy. “Predicting Delivery Capability in Iterative Software

Development”. Transactions on Software Engineering, online.

[4] M. Nayebi, G. Ruhe, “Analytical Product Release Planning”. In

The Art and Science of Analyzing Software Data, Morgan

Kaufmann, 2015.

[5] L. Guzmán, M. Oriol, P. Rodríguez, X. Franch, A. Jedlitschka,

M. Oivo. “How Can Quality Awareness Support Rapid Software

Development? - A Research Preview”. REFSQ 2017.

[6] V. Basili et al. Aligning Organizations through Measurement -

The GQM+Strategies Approach. Springer, 2014.

[7] V. Basili et al. The Goal Question Metric Approach.

Encyclopedia of Software Engineering. Wiley, 1994.

[8] S. Wagner et al. “Operationalised Product Quality Models and

Assessment: The Quamoco Approach”. Information and

Software Technology 62, 2015.

[9] M. Poppendieck, T. Poppendieck. Implementing Lean Software

Development: From Concept to Cash. Addison-Wesley, 2006.

[10] S. Shingo, A.P. Dillon. A Study of the Toyota Production System

from an Industrial Engineering Viewpoint. CRC Press, 1989.

[11] T. Sedano, P. Ralph, C. Péraire. “Software Development

Waste”. ICSE 2017.

[12] T. Ohno. Toyota Production System: Beyond Large-scale

Production. Productivity Press, 1988

[13] S. Monsell. “Task Switching”. Trends in Cognitive Sciences

7(3), 2003.

[14] P. Rodríguez et al. “Continuous Deployment of Software

Intensive Products and Services: A Systematic Mapping Study."

Journal of Systems and Software 123, 2017.

[15] V. Mandić, M. Oivo, P. Rodríguez, P. Kuvaja, H. Kaikkonen, B.

Turhan. ”What is flowing in Lean Software Development?”. In

Lean Enterprise Software and Systems, 2010.

