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Abstract  
 

This work analyses the incidence of the parameter selection of B-spline curves, used in the design of displacement and motion func-

tions, on its degree of freedom and shape. A complete design process based on the use of non-parametric B-spline curves and the conven-

ience of selecting the curve parameters from the point of view of its practical application is shown. In order to make easy the design and 

use of the displacement function, the algorithms for derivation and integration of the B-splines used are presented. Three case studies 

validate the proposed design process and the selection of the adequate parameters. The first case presents the design of a displacement 

function of a roller follower driven by a disk cam; the corresponding cam profile and its prototype are shown. The second case presents 

the design of the motion function corresponding to the cutting unit of a manufacturing cardboard tube machine. The third case exposes 

the design of the displacement function of the bar feeding mechanism in a single-spindle automatic lathe, to produce a partial thread screw 

of hexagonal head. 
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1. Introduction 

In the mechanism and machine design process, the designer 

must often deal with specific design requirements related with 

the movement of their elements and also must ensure the con-

tinuity conditions of the displacement or motion function. This 

function describe the evolution of a kinematic variable (dis-

placement, velocity, acceleration) in function of the time or of 

one generalized coordinate. Such functions should be defined 

taking into account that they must comply with the restrictions 

associated with the technological task of a certain device. For 

example, in the case of a cam-follower mechanism, very often 

used as movement generator, its process of synthesis begins 

with the definition of the displacement function of the follow-

er according to the design requirements demanded [1]. Tradi-

tionally, for the definition of such displacement functions, 

piecewise curves have been used, defined by means of basic 

functions [1, 2] such as: cycloidal function, modified trapezoi-

dal function and polynomial function on canonical base; all of 

them allow the general design requirements to be met. How-

ever, the use of the mentioned curves is highly conditioned 

when the set design applications specify requirements, as for 

example: displacement of the follower with constant velocity, 

peak acceleration values, etc., all guaranteeing the global con-

tinuity of the displacement or motion function. 

Displacement functions are often mentioned in the special-

ized literature about cam-follower mechanisms, in which the 

use of polynomial functions by means of Bézier and B-spline 

schemes is introduced. The mentioned functions have arisen 

in the field of computer aided geometric design (CAGD), and 

are adequated for the synthesis of movement functions accord-

ing to the specific design requirements such as those men-

tioned above [1, 2]. Sahu, L. K et al [2] present a large review 

of the state of the art study about the definition of displace-

ment or motion function using basic and synthetic curves, 

particularly applied to cam-follower mechanisms. The authors 

reache the conclusion that the trend of modern cam design is 

that splines –Bsplines, NURBS and Bézier–  are replacing 

basic curves as the mathematical representation of the cam 

profile because of their versatility, ease of application and 

flexibility. Sateesh et al [3] propose the design of a velocity 

curve using a B-spline polynomial of degree three and with 

six control points, with which they obtained a B-spline curve 

equivalent to a Cycloidal curve, with lower values of maxi-

mum acceleration; thus they optimize the shape of the planar 

velocity curve and obtain, by means of the integration and 

derivation of such curves, the displacement and acceleration 

functions. The authors explain the B-splines function ad-

vantages in the design of displacement functions. Hua Qiu et 

al [4] propose a procedure to optimize the design process of a 

displacement function by means of a uniform B-spline and † This paper was recommended for publication in revised form by Associate Editor 
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optimize the values of the control points by taking the design 

requirements into account. 

Xiao and Zu [5] perform an optimization study of a cam 

profile for an internal combustion engine that is driven by 

cylindrical groove cams with translating followers –positive 

drive cams. In the paper, the authors make a comparison of the 

results of different combinations of optimization methods and 

tools in order to define the follower displacement function. 

The combination of the use of a B-spline and a Genetic Algo-

rithm method gives the authors the best results obtained in 

their work. 

Jamkhande, A. et al. [6] expose the impact of different cam 

profile options designed using Polydyne, N-Harmonic and B-

spline methods on a field problem of cam wear for high speed 

engine application. The authors conclude that the cam lobe 

designed by B-spline method gives the better results and it is 

the better design option. Neamtu, M. et al. [7] show how to 

design cam profiles using Non-Uniform Rational B-Splines 

(NURBS) curves which support functions are trigonometric 

splines. The authors conclude that the trigonometric splines 

are an attractive alternative to classical polynomial splines for 

cam design and that NURBS curves have the useful property 

that their offset are of the same type and hence they also have 

an exact NURBS representation. 

Angeles [8] proposes a synthesis method of plane curves 

that comply with the pre-established local geometrical proper-

ties using periodic splines. The author argues for the use of 

these splines due to the facility of manipulation of the ob-

tained equations. The proposed method permits a set of un-

kown interpolation points to be determined. The author also 

studies the problem of the modification of the geometrical 

properties of functions and curves as a particular case of the 

presented procedure. The author gives two examples where 

the proposed procedure is validated; the first one shows the 

synthesis of a rise phase in a follower movement function. The 

second example refers to the synthesis of the cover for a cy-

lindrical pressure vessel guaranteeing adequate continuity in 

the union between segments. As a result, the author shows that 

the use of periodic splines in the synthesis of plane curves to 

solve classical problems seems to have an advantage over the 

traditional methods. 

Hidalgo et al. [9] propose optimizing cam profiles with 

negative radius followers using Bézier curves to describe the 

follower motion function. They take a Bézier ordinate as a 

parametrization parameter. 

In previous works [10, 11], the authors of this paper have 

used non-parametric Bézier curves to synthesize the follower 

displacement functions in constant-breadth cam mechanisms 

that drive both translating and oscillating followers. The au-

thors’ works present the desmodromic condition that the fol-

lower displacement functions must meet, as well as the calcu-

lation algorithms that permit such functions to be obtained; the 

procedure that automatically guarantees their 2C global con-

tinuity is also shown. Additionally, expressions that permit the 

derivatives of the follower displacement function and the ge-

neration of the cam profile to be obtained are presented. 

Bézier curves and B-splines are both functions defined by 

control points and the difference between them is the effect 

that the change of the control points’ position has on the curve 

shape. Since, in Bézier curves, the change of position of a 

control point affects the whole curve –it produces a global 

change–, in B-spline curves this change only affects a segment 

of the curve; it means that a B-spline curve has the property of 

local control [2, 12]. Thus, the B-spline curve is a good tool 

that permits the designer to respond to stricter design require-

ments more effectively, which coincides with the criterion 

exposed by the authors above mentioned. Ganesh [13] expos-

es that use of the de Boor algorithm in the evaluation of the B-

spline curve does not requiere the kwnoledge of the B-spline 

basis function, which is a great advantage from the numerical 

evaluation point of view. 

The design of the motion function is often based on the in-

clusion of a high number of free parameters in the definition 

of the function and the subsequent adjustment of these by 

optimization procedures.  

In the present work, the authors propose to establish a set of 

parameters –pass points and derivatives in them– depending 

on the requirements of the motion function and to leave a lim-

ited number of parameters of free choice to make the final 

adjustment of the motion function. This work analyses the 

incidence of the parameter selection of B-spline curves, used 

in the design of displacement (motion) functions, on its degree 

of freedom and shape. A complete design process based on 

the use of non-parametric B-spline curves and the conven-

ience of selecting the curve parameters from the point of view 

of its practical application is shown. In order to make easy the 

design and use of the displacement function, the algorithms 

for derivation and integration of the B-splines used are pre-

sented. Three case studies validate the proposed design pro-

cess and the selection of the adequate parameters. The first 

case presents the design of a displacement function of a roller 

follower driven by a disk cam; the corresponding cam profile 

and the 3D model and a prototype of this cam are shown. The 

second case presents the design of the displacement function 

corresponding to the cutting unit of a manufacturing card-

board tube machine. The third case exposes the design of the 

displacement function of the bar feeding mechanism in a sin-

gle-spindle automatic lathe, to produce a partial thread screw of 

hexagonal head. 

 

2. Non-parametric B-splines curves: characteristics, 

De Boor algorithm, derivation and integration of a 

B-spline 

A non-parametric B-spline curve of degree n can be defined 

as the join of L polynomial segments of degree n, where each 

one is the image of an interval  1, i iu u  of the domain, with 

u being the parameter of the curve. The real numbers iu , 

which are freely chosen, are known as knots. These knots are 

given as an ascending sequence called knots vector  
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Fig. 1 Non-parametric B-splines curves of degree 3n  and its pa-

rameters. iL are polynomial segments. 

 

 0 2 2,...,  u L nu u . The curve is associated to a control po-

lygon that is defined by L n  control points d i . Segments 

with null length may exist if there are coincident knots knots 

with the same value. In such cases, only one knot with multi-

plicity m is indicated, which is equal to the number of knots 

that are initially coincident. Then the knots vector can be writ-

ten compactly by giving each knot its value and multiplicity, 

    0 0, , , , ,u i i= u m u m . The abscissae of the control 

points Greville’s abscissae i  are calculated from the 

knots vector:  1...    i i i nu u n where 

0,..., 1i L n   and the ordinates id  of these control 

points are freely chosen and can be conditioned by design 

requirements. Fig. 1 shows two B-spline curves that have been 

defined with two knots vectors with the same number of knots, 

of different values but with the same ordinates as the control 

points. 

In B-spline curves, the minimum continuity in the union be-

tween polynomial segments is given by the degree n of the B-

spline and by the multiplicity m of the knot in the mentioned 

union. Thus, in the knots with multiplicity m, the curve has a 

minimum continuity n mC  . If the multiplicity m of a knot is 

equal to the degree n of the curve, then a control point arises, 

its abscissa i  coincides with the knot and, in this case, the 

curve passes through this control point, thus obtaining a pass 

point. Fig. 1 b) shows that knots 0u and 7u have multiplicity 

3m   equal to the degree of the B-spline; therefore the end 

control points are defined as pass points of the curve and the 

Greville’s abscissae are: 0 0  u  and 7 7  u . In Fig. 1, the 

knots 4u  and 5u  are coincident knots so, in this way, they 

define a single knot of multiplicity 2 and consequently the 3L  

segment is a null length segment. In the design of a movement 

function, it is preferable or even necessary that the end points 

be also pass points and thus the end knots have multiplicity 

equal to the degree of the curve. 

To calculate the ordinates  d u of the B-spline curve 

points the de Boor algorithm can be used. It is numerically 

stable and does not require the B-spline basis function to be 

known, which is an advantage in the evaluation process of the 

curve [13] and justifies the choice of the de Boor algorithm in 

this work. 

 

2.1 de Boor algorithm 

The de Boor algorithm is used for the calculation of the or-

dinates  d u . It is a recursive algorithm with 1,..., k n m  

levels and uses the following formulation, where I is the sub-

script of the first knot of the segment that contains the u value: 

The iteration process begins with 
0 0

1 1and   i i i id d d d  

and the value of the B-spline curve in the abscissa u is: 

   1

  n m

I md u d u  (2) 

 

2.2 The Derivative of a B-spline curve 

The derivative of a non-parametric B-spline curve of degree 

n is another non-parametric B-spline curve of degree 1n . 

The derivation of a B-spline curve can be obtained from the 

knots vector  0 2 2,...,  u L n= u u , the degree n and the ordi-

nates of the control points id of the original B-spline curve. 

The knots vector u  of the derivative curve is equal to the 

knots vector of the original curve, without its first and last 

knots. Its expression is: 

 0 1 2 4 1, ...,   with   

and   0,..., 2 4

  
      

  

L n i iu u u u u

i L n

u
 (3) 

The Greville’s abscissae  i  and the ordinates 
id  of the 

control points of the derivative curve are: 

 1 1

1
...  with 0,..., 2

1
   
      


i i i nu u i L n

n
 (4) 

1  with 0,..., 2




    



i i
i

n i i

d d
d n i L n

u u
 (5) 

 

 
 

 
 

 

 
 11 1

1

1 1

 (1)

with  1,..., 1

   


     

 
 

 

     

i n k ik k k
i i i

i n k i i n k i

u u u u
d u d u d u

u u u u

i I n k I m
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2.3 Integration of a B-spline curve 

The integration process of a B-spline curve is derived from 

the expressions Eq. (4) and Eq. (5) shown in the above section. 

First of all, one knot of value equal to or lower than the first 

knot and another knot of value equal to or higher than the last 

knot should be added to the knots vector of the B-spline curve 

that is going to be integrated. Then, the new Greville’s abscis-

sae of the integrated curve are calculated and, usually, the new 

ordinates are calculated from the first one. 

In curves that pass through the first and the last control 

points, if their knots vector ,u  the degree n and the ordinates 

id  are known, the expressions that make it possible to obtain 

the integrated curve are: 

 0 1 2 0 0 1

2 2 2

' , ' ..., '   with  ' ,   ' , 

'             1,..., 2 1

 

  

 

   

L n i i

L n L n

= u u u u u u u

u u i L n

'u
 (6) 

 1 1' ' ' '  with 0,..., 1
1

       


i
i i n i i

d
d d u u i L n

n
 (7) 

 
1

' ' ... '  with 0,...,
1

     


i i i nu u i L n
n

 (8) 

To calculate the ordinates of the control points ' id , it is 

necessary to impose an integration condition on the integrated 

function, which is usually the initial value of the B-spline; 

therefore, it is equal to 0'd . 

 

3. Motion function design process using non-parame-

tric B-splines 

Usually the motion functions are designed from a set of 

global specifications –i.e. continuity–, local specifications –i.e. 

dwell segments– and free segments – without special require-

ments. The most used local specifications are: 

– Pass point: prescribed point of the motion function. 

– Straight horizontal segment: segment of the motion func-

tion with a constant value. 

– Straight segment with constant slope. 

Fig. 2 shows a planar displacement function  s with a 

set of the mentioned specifications and taking   as an inde-

pendent variable. 

The motion function design process proposed in this work 

uses a single non-parametric B-spline curve that allows the 

imposed specifications to be met. At the same time, it pro-

vides free choice parameters –ordinates of the control points 

id  and knots iu – to define the free segments. 

The motion function design process consists of the follow-

ing steps: 

1. Making a sketch of the desired motion function, taking 

the specifications of the pass points and straight segments into 

account. 

2. Defining the global continuity C of the motion function. 

Maximum continuity max 3C  has been implemented in the 

computer application to guarantee the continuity until the third 

derivative. 

3. Defining the pass points numerically and in order, in-

cluding the initial point and the final point of the straight seg- 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Specification of the motion function. 

 

ments. For each pass point it is necessary to define its abscis-

sa ix , its ordinate iy  and also its successive derivatives 
my until the degree n imposed by the continuity. Thus, the 

notation to describe the pass points is  , , ,...i i i iP x y y . To 

define a straight segment between two consecutive points, 

their first derivative must coincide with the slope of the 

straight line and the successive derivatives in such points must 

be null. 

4. Establishing the B-spline degree 0 2C 1 n , which 

does not require additional knots to be used in defining the B-

spline. 

In the case of taking the degree 0n n , 0 n n  middle 

knots must be given in the non-straight segments, thereby 

generating the additional control points that are necessary to 

guarantee the continuity of the motion function. 

In the case of taking the degree 0n n , there are some 

generated control points whose ordinates are not conditioned 

by the continuity. The choice of these non-conditioned ordi-

nates permits the shape of the curve to be modified. 

 

3.1 Examples of the design process 

Two examples of the use of the above-mentioned design 

process are presented. In the first one, Fig. 3, a double dwell 

displacement function  s  is designed using continuity 

2C  and degree 0 5 n n ; therefore in this case, addi-

tional middle knots to define the whole B-spline curve are not 

required. Here, five pass points have been defined; the first 

two points define the beginning and the end of the first dwell 

segment, the third and the fourth points define the second 

dwell segment and the fifth one defines the end point of the 

displacement function. The pass points, expressed in degrees, 

millimeters and the consistent units for the derivatives, are: 
 

   

   

 

1 2

3 4

5

0 ,10 mm,0,0 ,         40 ,10 mm,0,0 ,

240 , 40 mm,0,0 ,   300 , 40 mm,0,0 ,

and  360 ,10 mm,0,0

   

   

 

P P

P P

P

 

Thus, the displacement curve is defined by 5 knots with 

multiplicity 5 and consists of four non-null polynomial seg-

ments of degree 5. The control polygon has 21 control points, 

all of them with ordinates conditioned by the continuity; the 

knots vector written in brief is:       0º,5 , 40º,5 , 240º,5 ,=u  

   300º,5 , 360º,5 . 
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Fig. 3. Displacement function s() and its first three derivatives with 
respect to , designed with a B-spline curve (in black color) and with 
Bézier curves (in grey color, overlapped to the B-spline). A degree 
n = 5 and continuity C = 2 is used in the design of both displacement 
functions. The multiplicity of the knots of the B-spline curve is indicat-
ed numerically under the knot symbol. 

 
Fig. 4. Displacement function s() and its first three derivatives with 
respect to , designed with a B-spline curve of degree n = 4 and two 
middle knots (in black color); and with Bézier curves of a degree n = 5  
(in grey color). A continuity C = 2 is used in the design of both dis-
placement functions. 
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The graphs of Fig. 3 have been obtained with the proce-

dures described in section 2. The continuity of the proposed 

displacement function and of its three derivatives can be ob-

served in them. Fig. 3 also shows the design of the same dis-

placement function using non-parametric Bézier curves that 

are drawn in grey color. 

From Fig. 3 it can be observed that in the case of using a B-

spline of degree n = n0, which does not require additional 

knots to be used in its definition, both curves –B-spline and 

non-parametric Bézier curve– coincide, due to that control 

points of both control polygons are equally spaced and are 

conditioned by the continuity. The control points of the Bézier 

curve in the rise and return segments –free segments– are 

indicated in grey color. The pass points of both curves are 

indicated with circles drawn with thick line. 

The second example, Fig. 4, defines a displacement func-

tion with the same requirements as the previously designed 

function but using degree 4n  . In this case, where 0n n , 

it is necessary to use middle knots to define the B-spline. In 

order to guarantee the continuity of the function and simulta-

neously to have the freedom to modify the shape of the curve, 

a middle knot of multiplicity 2 is used. In the second segment 

of the curve –non straight line segment–, a middle knot with 

multiplicity 1 is included to guarantee the global continuity. 

Thus, the curve is defined by the following compact knots 

vector: 

           0º,4 , 40º,4 , 120º,2 , 240º,4 , 300º,4 , 330º,1 ,=u  

 360º,4  and consists of 6 non-null polynomial segments 

of degree 4. The control polygon has 19 control points with 

ordinates conditioned by the continuity and one with a free 

ordinate in the third polynomial segment. Fig. 4 also shows 

the design of the displacement function by means of non-

parametric Bézier curves used in the first example – with de-

gree n = 5 and continuity C = 2. For adequate the graphical 

representation of control polygons of Bézier curves to the 

scale used in the first, second and third derivatives graphs 

obtained using B-spline curve, such polygons have been lim-

ited to the size of the grid box. 

From Fig. 4 it can be observed that in the case of using a B-

spline of degree n < n0, which implies that middle knots must 

be given in the free segments, additional control points are 

necessary to guarantee the continuity of the displacement 

function. Overlapping Bézier curves in these graphs shows the 

differences between both displacement functions designed and 

their derivates, and the greater freedom of modifying the 

shape of the displacement function using B-splines instead of 

using Bézier curves. 

 

 
 

Fig. 5. Comparison between two displacement function obtained by modi-

fying the free ordinate of the previous example. 

 

Fig. 5 shows the overlap of the displacement functions de-

signed by means of B-splines of degree 4n , obtained by 

the use of different values of the free choice ordinate of the 

control point located in the rise segment. In this figure, the 

possibility of locally modifying -local control– the motion 

function by introducing middle knots is shown. The original 

displacement curve –which coincides with Bézier curve used–, 

Fig. 3, is indicated in grey. 
 

4. Considerations about the incidence of the parame-

ter selection of B-spline curves, used in the design of 

displacement or motion functions 

In this section, we present considerations about the parame-

ter selection of the B-splines curve; these parameter are: the 

degree n of the B-spline to be used, the continuity C desired in 

the displacement or motion function, the number of knots to 

use and their multiplicity m. The considerations are: 

– To guarantee the continuity C at the pass points and im-

pose on them the derivatives until order C, it is necessary to 

provide, in principle, at least  2 1C  control points be-

tween two consecutive pass points. 

– If the degree of the B-spline is n, without middle knots be-

tween two consecutive pass points, there are 1n   control 

points in the domain defined by the two pass points. This im-

plies that without middle knots, it is necessary that the mini-

mum degree of B-spline is 0 2 1n C   (Table 1). It is possi-

ble to use middle knots, which increase the number of poly-

nomial segments of the B-spline, to reduce the degree n or to 

model the shape of the motion function, as has been seen in 

the examples of the section above. Each middle knot with 

multiplicity m increases in m the number of control points. 

The minimum continuity in this knot is, in principle, n m ; 

therefore, it must be m n C   (Table 2). 

– If a degree 0n n  is used it is necessary to use middle 

knots between each pair of consecutive pass points (Table 2). 

The sum of the multiplicity of the middle knots must be, in 

principle and as a minimum, 0 n n . If the sum of the multi-

plicity is taken bigger than 0 n n  the additional control 

points that are generated have free ordinates and this can be 
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used to model the shape of the motion function. In this case, 

and if there are added knots between the ends of a straight line, 

the ordinates id  of the control points not conditioned by the 

continuity should be calculated in advance; however, it is pos-

sible to organize the algorithm to calculate the Greville’s ordi-

nates in such a way that defining the middle control points to 

guarantee the continuity should not be necessary. 

– If a straight line between two consecutive pass points 

without additional calculations is desired, in order to place the 

middle control points correctly it is necessary that the degree n 

of the B-spline must not be higher than 0 2 1 n C . 

– Table 3 shows the case of use a degree 0n n  where ap-

pear some additional control points not conditioned. Table 4 

summarizes the relation among the desired continuity C, the 

degree n of the B-spline and the number of the additional con-

trol points to guarantee the continuity. The negative values in 

the table indicate the number of control points with free ordi-

nates, not conditioned by the continuity. 
 

Table 1. Relation among the number of control points in the domain 

defined by two consecutive pass points (without middle knots between 

them), the minimum degree n0 and the continuity C 

 

C n0 
No. of control points 

conditioned by C 

1 3 4 

2 5 6 

3 7 8 

 

Table 2. Relation among the number of additional control points in the 

domain defined by two consecutive pass points (with middle knots 

between them), the degree n < n0 and the continuity C 

 

C 
n        

(n < n0) 

No. of 

middle 
knots 

Maximum 

multiplicity 
of the middle 

knots 

No. of 

additional 
control 

points 

1 2   1   1   1   

2 4 3 2 1 2 3 2 1  1 2  

3 6 5 4 1 2 3 3 2 1 1 2 3 

 

Table 3. Relation among the number of additional control points (not 

conditioned by the continuity) in the domain defined by two consecu-

tive pass, the degree n > n0 and the continuity C 

 

C n0 
n         

(n > n0) 

No. of control 
points not condi-

tioned by C 

1 3 4 5 6 1 2 3 

2 5 6 7 8 1 2 3 

3 7 8 9 10 1 2 3 

 

 

 

Table 4. Relation among the number of additional control points, the 

degree n and the continuity C 

 

  n 

  C 

2 3 4 5 6 7 

1 1 0 -1 –2 –3 –4 

2  2 1 0 –1 –2 

3   3 2 1 0 

 

5. Case studies 

Three case studies are presented to show the use of the pro-

posed design process using B-spline non-parametric curves for 

the motion function and the incidence of the chosen curve pa-

rameters is explained. The first case shows the design of a dis-

placement function of a roller follower driven by a disk cam, 

and the cam profile has been calculated and checked. Also, a 

prototype obtained by additive manufacturing is shown. In the 

second case, the design of the motion function corresponding 

to the cutting unit of a machine that produces continuous card-

board tubes is shown. The third case exposes the design of the 

displacement function of the bar feeding mechanism in a sin-

gle-spindle automatic lathe, to produce a screw of hexagonal 

head. 

 

5.1 Design of a displacement function of a roller follower 

driven by a disk cam 

In the proposed cam-follower mechanism (Fig. 6), the fo-

llower must make the following movement: i) an initial dis-

placement (rise) with a value of 17,5 mm for the first 90º of 

cam rotation angle, ii) a dwell at this value during the next 45º   

of the cam rotation angle –an intermediate dwell–, iii) a se-

cond upward displacement to reach the maximum displace-

ment max 30 mms  while the cam rotates another 90º, iv) a 

second dwell during the next 45º of rotation of the cam –upper 

dwell– and v) finally, a return to the start position. The cam 

should rotate at high velocity, so the displacement function 

requires a continuity 3C  . The following design parameters 

have been chosen: i) a commercial roller follower with a radi-

us of f = 15 mmR and ii) a base radius of the cam 

b = 50 mmR ; these parameters are necessary to generate the 

profile of the cam without singularities. 

Taking the specified design requirements into account, a 

sketch of the desired motion function is made, but not shown. 

There are six pass points defined for the displacement function 

( )s θ : the first and the last points indicate the start and the end 

of the motion function; the other 4 points are used to define 

the two dwell segments of the funtcion. Thus there are two 

straight line segments with null slope and three free segments. 

The pass points are defined consecutively as follows: 

 1 0 ,0 mm,0,0,0 , P  2 90 ,17.5 mm,0,0,0 , P

 3 135 ,17.5 mm,0,0,0 , P  4 225 ,30 mm,0,0,0 , P

 5 270 ,30 mm,0,0,0 P  and  6 360 ,0 mm,0,0,0 P . 
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Taking into account the considerations exposed in section 4, 

from the requirement of continuity 3C   a degree 7n   

 0 2 1n n C    has been chosen for the design of the dis-

placement function; thus middle knots are not required to 

guarantee the continuity and therefore there are no control 

points of free ordinates. This function is defined by a knots 

vector with 6 knots, with multiplicity 7, and consequently by 

36 conditioned control points. 

Fig. 7 shows the follower displacement function that com-

plies with the specified design requirements, and its three first 

derivatives. The continuity until the third derivative can be 

observed. 

From the designed displacement function ( )s θ , the cam 

profile according to the procedure presented by Zayas et al 

[10] is generated. Fig. 8 shows the CAD model of the ob-

tained cam and the photo of the materialization of the cam by 

means of a manufacturing additive in a 3D printer. 

 

 

 

Fig. 6. Cam-follower mechanism. Design geometrical parameters. 

 

 
 

Fig. 7. Graphs of the displacement function ( )s θ  and its three deriva-

tives with respect to the parameter θ.  
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Fig. 8. 3D Model and its prototype, whose profile is obtained from the 

displacement function presented in Fig.7. 

 

5.2 Design of motions functions of a cutting unit of a card-

board tube manufacturing machine 

This case is an example of producing individual items from 

a product obtained in continuous form. 

Cardboard tubes are used for a variety of things, for exam-

ple, as supports of paper coils, supports of fabric coils, in 

packing, etc. The cardboard tube manufacturing machine con-

sists of two modules: the main module that forms the card-

board into a continuous object, and the cutting unit, whose 

function is to cut the cardboard tube to the required length.  

Fig. 9 shows a simplified illustration of the cardboard tube 

cutting operation. The second module has a circular saw that 

is located on a sled with a displacement in the same direction 

as the axial axis of the cardboard tube. While the sled is per-

forming the cutting operation, it keeps moving at the same 

velocity as the tube and then begins the return manoeuver to 

the start position to make a new cut. This manoeuver must be 

done smoothly, without abrupt changes of velocity. So, conti-

nuity 1C is taken for the velocity motion function. In the ma-

nufacturing of a particular model of cardboard tube a velocity 

forming tube 0.4 m/sv   is used and the tube must be cut to a 

length tube 800 mml  . The cutting time is  cutting 0.5 st   

and, while the saw is making a cut, the tube and the saw are 

simultaneously moving forward a distance of 200 mm. Fig. 9 

shows the saw, which is located on the tool holder, the veloci-

ty expressed in mm/s, its derivative –the acceleration– and its 

integral –the displacement function. 

 
 

Fig. 9. Cardboard tube cutting operation. Graphs of the velocity func-

tion ( )v t , its integral –the displacement ( )s t – and its derivative –the 

acceleration ( )a t . 

 

Three pass points are taken for designing the motion func-

tion in velocity; the first point indicates the start of the motion 

function and simultaneously the beginning of the constant 
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velocity segment; the second one defines the end of this seg-

ment and the beginning of the return manoeuver and the third 

indicates the end of the function. These pass points are defined 

as:  1 0 s,400 mm/s,0P  ,  2 0.5 s,400 mm/s,0P    and 

 3 2 s,400 mm/s,0P  . According to Table 1, if continuity 
1C  is wanted and a degree 3n   is taken, a solution can be 

obtained that does not require additional control points and, 

therefore, requires no additional knots. This is not an adequate 

solution for the present case. Here, at least one additional 

freely-chosen control point must be used to guarantee the val-

ue of the integral –the displacement– at the end of the cycle. If 

a degree 4n   is used then one free additional control point 

will appear in each segment defined by two consecutive pass 

points. The ordinate of such points in the first segment is fixed 

by the fact that this segment must be a straight segment –of 

constant velocity. The ordinate of the additional control point 

in the second segment should be chosen by trial and error, or 

using Eq. (8) so that the displacement be null at the end of the 

cycle; it only requires calculating the ordinate of the last con-

trol point from the curve passing through it. Hence, the curve 

is defined by a vector of three knots with multiplicity 4 that 

generate 9 control points; 8 points with ordinates imposed by 

the continuity and the straight segment; and 1 point with a 

freely chosen ordinate to guarantee the null displacement at 

the end of the cycle. 

Alternatively, the displacement function might be designed 

first, afterwards proceeding by derivation to obtain the veloci-

ty and the acceleration laws. 

 

5.3 Design of the displacement function of the bar feeding 

mechanism in a single-spindle automatic lathe. 

The third case study is an example of producing individual 

screws obtained from a raw bar with hexagonal cross-section 

in a single-spindle automatic lathe. In automatic lathes all 

movements of cutting tools, their sequence of application, 

feeding of raw material, parting off and unloading the finished 

part, are done by the machine, without the operator’s interfer-

ence. In those lathes, automation of the movements is done by 

means of cams. 

The machining operations to produce a partial thread screw 

of hexagonal head consist of three steps (Fig. 10): 1) cylindri-

cal turning, 2) threading and 3) cutting-off. 

Fig. 10 a) shows a simplified sketch of the front view of the 

screw obtained from the hexagonal bar and also the tools ar-

rangement for the operations above mentioned. Fig. 10 b) 

exposes the dimensions of a screw of metric M8, according to 

DIN 931, in order to produce it from the raw bar and the axial 

movement of the bar and it’s clamp that makes possible to 

machining the parts of the screw (the bar also rotates around 

its axis while the tools are machining the metal; this rotation is 

not considered in the present study). Both the radial transla-

tion of the cutting tools and the axial translation of the bar are 

driving by means of cams (not showed in the simplified 

sketch), which stablish the intervention sequence of each tool 

 
 

Fig. 10 a) Simplified sketch of the front view A of the screw obtained 

from the hexagon bar and the tools arrangement for machining opera-

tions, b) Dimensions of the screw to be produce and, the axial motion 

of the hexagonal bar and of the clamp that hugs it. 

 

(by means of three radial cams) and the corresponding axial 

movement sequence of the bar (by mean of a cylindrical cam 

that drives a clamp that hugs and releases the bar according to 

the automatic machining process). The machining steps to 

produce the screw require to stablish an adequate sequence of 

intervention of each tool and also the corresponding sequence 

of movement of the bar. 

The last mentioned sequence requires to design a complex 

displacement function of the clamp that hugs and moves the 

bar. This sequence is selected to apply the proposed design 

process of section 3. From Fig. 10 b) the principal dimensions 

of the screw are: the total length ltot = 35 mm, thread length 

lthread = 22 mm, thickness head k = 5.3 mm. The normal length 

is calculated as lnorm = ltot – k = 29.7 mm. The initial position of 

the bar with respect to the head stock of the lathe is 

s0 = 25 mm; from here the manufacturing cycle starts, accord-

ing to the phases described in Table 5. The cycle duration of 

the screw machining process is tcycle = 24 s, corresponding to 

an angular velocity of the cam cam = 0.2618 rad/s. 

The displacement function s(t) of the clamp (Fig. 10 b) to 

be designed must fulfil the sequence of movement of the bar 

according to the manufacturing phases established in Table 5. 

Furthermore, it must guarantee the requirement of keeping a 

constant translation velocity of the bar and also a smooth dis-

placement of it while turning and threading operations are 
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taking place. Thus, continuity C = 2 is taken for the displace-

ment function, guarantying continuity up to the second deri-

vate. Taking into account the requirements above mentioned, 

an initial sketch of the desire displacement function is made, 

but not shown.  

There are 22 pass points defined for the displacement func-

tion s(t) that are highlighting in Fig.11; thirteen of them are 

used to define 7 dwell segments corresponding to phases 

where the tools are approaching to their working position, are 

returning to their initial position and to the cutting operation    

–indicated with the capital letter C in Fig.11– in which the bar 

(and the clamp) remains without axial motion; the last dwell 

segment corresponds to the moment when the clamp releases 

the bar, after it has been cut and separating the screw obtained. 

Other six pass points permit to stablish straight segments 

with constant slope, contained in the turning and threading 

phases –indicated with the capital letters A and B in Fig.11. It 

must be mentioned that, in these phases, the free segments that 

permit the transition between two consecutive segments are 

also considered. The last three pass points permit to define the 

three free segments located just before and after the cutting 

phase to obtain the whole displacement function. The pass 

points above mentioned are defined as: 
 

 1 0 s,25 mm,0,0P ,  2 1 s,25 mm,0,0P  
 3 1.5 s,26.5 mm,10 mm/s,0P , 
 4 4.5 s,53.2 mm,10 mm s,0P  
 5 5 s,54.7 mm,0,0P ,  6 5.5 s,54.7 mm,0,0P  
 7 6 s,25 mm,0,0P ,  8 6.5 s,25 mm,0,0P  
 9 7 s,26.5 mm, 10 mm s,0 ,P

 10 10 s, 53.2 mm,10 mm s,0P  
 11 10.55 s,54.7 mm,0,0P ,  12 11 s,54.7 mm,0,0P  
   13 1411.5 s,25 mm,0,0 , 12 s,26.5 mm,7 mm s,0 P P

   15 1615 s,45.5 mm,7 mm s,0 , 15.5 s,47 mm,0,0 P P

 17 16 s,47 mm,0,0P ,  18 16.5 s,60 mm,0,0P  
 19 20.5 s,60 mm,0,0P ,  20 21.5 s,60 mm,0,0P  
 21 23.5 s,22 mm,0,0P ,  22 24 s,25 mm,0,0P  

 

Taking into account the considerations exposed in section 4, 

from the requirement of continuity C = 2 a degree n = 5 has 

been chosen for the design of the displacement function; thus 

middle knots are not required to guarantee the continuity and 

therefore there are no control points of free ordinates. This 

function is defined by a knots vector with 22 knots, with mul-

tiplicity 5, and consequently by 106 conditioned control points. 
 

Table 5. Description and duration of the phases of a screw manufactu-

ring process. 

 

Phase dura- 

tion t(s)  

 

Phase description  

0 - 1  

 

Cylindrical turning tool approaching to 

its 1st working position (bar in its initial 

position s0 = 25 mm) 

1 - 5  

 

1st cylindrical turning pass (bar moves 

forward 29.7 mm at constant velocity) 

5 – 5.5  

 

Cylindrical turning tool move away of 

the bar (bar remains without axial mo-

tion) 

5.5 - 6  

 

Cylindrical turning tool is approaching 

to its 2nd working position (bar returns 

to its initial position) 

6 – 6.5  

 

Cylindrical turning tool keeps getting 

closer to its 2nd working position (bar 

remains without axial motion) 

6.5 – 10.5 2nd cylindrical turning pass (bar moves 

forward 29.7 mm at constant velocity) 

10.5 - 11 

 

Cylindrical turning tool returns to its 

initial position and remains there (bar 

remains without axial motion) 

11 – 11.5 

 

Threading tool approaching to its wor-

king position (bar returns to its initial 

position) 

11,5 - 15,5 Threading operation (bar moves for-

ward 22 mm at constant velocity) 

15.5 - 16  

 

Threading tool returns to its initial posi-

tion and remains there (bar remains 

without axial motion) 

16 – 16.5 

 

Cut-off tool approaching to its initial 

working position (bar moves forward 

13 mm, reaching the total length of the 

screw) 

16.5 – 20.5 Cutting operation: the tool moves 

reaching the center of the bar and sepa-

rating the screw from the bar (bar re-

mains without axial movement) 

20.5 – 21.5 Cut-off tool returns to its initial posi-

tion (bar remains without axial 

movement)  

21.5 – 23.5 

 

Clamp release the bar, and returns 38 

mm (35 mm of the screw and 3 mm of 

the cutting area). 

23.5 - 24 Clamp hugs the bar and moves 3mm 

forward its initial position (a new cycle 

begins) 
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Fig. 11. Graphs of the displacement function s(t) and its two deriva-

tives with respect to the parameter t. 

 

6. Conclusions 

A procedure is proposed that allows displacement and mo-

tion functions to be designed, by means of non-parametric B-

spline curves that are evaluated by the de Boor algorithm. The 

procedure permits to respond to a set of required requirements 

guaranteeing the global continuity of the displacement and 

motion functions. 

The paper analyzes the incidence of the selection of the pa-

rameters of the curve –degree n, continuity C, number of 

knots and their multiplicity m– on its degree of freedom and 

shape. It also establishes the convenience of selecting them 

from the point of view of the specific application of the above 

mentioned functions and allows to use a reduced number of 

parameters and usually simplify the optimization procedure. 

In order to make easy the design and use of motion function, 

the proposed design procedure includes the algorithms for the 

derivation and integration of the B-splines used; disposing of 

these algorithms permits, for example, to design the velocity 

function first and then obtain the displacement and the ac-

celeration functions. 

Three case studies have been presented in which the dis-

placement and motion functions obtained satisfy the esta-

blished design requirements and which validate the correct-

ness of the proposed procedure, and the importance of the 

analysis of the curve parameters to be use. 

The proposed procedure has advantages with respect to de-

finition of the displacement and motion functions using tradi-

tional functions and cubic splines, because: i) the function is 

defined by pass points and the order of the derivatives in them 

is equal to the desired continuity C; ii) straight segments can 

be easily defined; iii) it is possible to choose the number of 

degree of freedom –free choice parameters– that allow the 

shape of the function to be adjusted to comply with the im-

posed specifications. 

The possibility of locally modifying –local control– the mo-

tion function by introducing middle knots in a B-spline curve, 

shows the greater freedom of modifying the shape of such 

function using B-spline instead of using Bézier curves. 
 

Nomenclature 

m : multiplicity of a knot inside of knots vector u 

n : degree of the B-spline 

0n  : minimum degree of a B-spline without middle knots 

u  : knots vector of a B-spline 

u  : derivative of the knots vector of a B-spline 

'u  : integral of the knots vector of a B-spline 

iu  : knot i of a knots vector of a B-spline 

C : continuity of the motion function 

id  : Greville’s ordinates of a B-spline 

id   : derivative of the Greville’s ordinates of a B-spline 

' id  : integral of the Greville’s ordinates of a B-spline 
k

id  : intermediate points in the de Boor algorithm 

 d u  : value of a point on the B-spline curve corresponding 

 to the parameter u 

id  : control points of the polygon of control 

k : level of the de Boor algorithm; thickness head of the 

screw 

L : polynomial segments of a B-spline 

lnorm  : normal length of the screw 

ltot  : total length of the screw 

lthread  : thread length of the screw 

 s    : displacement function with respect to the cam rotation 

 s t   : displacement function with respect to the time 

s0  : initial position of the bar with respect to the head 

stock of the lathe  

t : time 
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tcycle : cycle duration of the screw machining process 

 v t   : velocity function  

 a t   : acceleration function 

r
R   : follower radius 

b
R   : base circle radius of the cam 

p
R   : prime circle radius of the cam 

i
   : Greville’s abscissae 

i
    : derivative of the Greville’s abscissae  

´
i
   : integral of the Greville’s abscissae 

  : cam rotation angle 

cam   : cam angular velocity 
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