ON THE NUMBER OF DEFINING RELATIONS FOR
NONFIBERED KAHLER GROUPS
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The fundamental groups of complex algebraic and compact Kahler va-
rieties have been found to form a special and remarkable class among all
groups, with properties related to the geometry of the manifolds that
realize them. One such property is the dichotomy between fibered and
non—fibered manifolds, i.e. the fact that the existence of irregular pen-
cils on a given complex algebraic manifold depends exclusively on its
fundamental group (Beauville [5], Siu [10], [4] in the noncompact case).
A measure of the complexity of the fundamental groups of nonfibered
manifolds, referred to as nonfibered groups, is that they do not admit
presentations with few defining relations, which basically means that
they differ considerably from free groups. This is the so—called theo-
rem of the few defining relations, of which several versions for compact
Kéhler manifolds have been proved recently by Gromov ([9]) using L?
cohomology, Green and Lazarsfeld (]7]) studying deformations of line
bundles, Catanese ([6]) with a simple topological argument, the first
author ([1]) using Hodge theory, and by the second author ([4]) and
Arapura ([2]) in the quasiprojective setting. The diversity of methods
has resulted in several different bounds.

It has been our aim in this note to reach the optimal bound for
the deficiency (=minimal difference between relations and generators
in all presentations of the group) of these nonfibered groups, found in
[1] in the compact K&hler case and unpublished in the quasiprojective
case, to prove it in a unified way and by the simplest available method.
This consists in using the Castelnuovo—de Franchis theorem, both in its
classical and its logarithmic version of [4], Hodge theory for quasipro-
jective manifolds, and deriving from the inexistence of isotropic pencils
of 1-forms bounds for the image of their cup products by a standard
cone argument as in [1]. To translate the bound on the second Betti
number of the manifold into a bound on the deficiency, we have used
the straightforward topological argument employed in [6], [4].
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We start recalling the algebraic topologic tools we will require:

Lemma 1. If a group I' admits a presentation with n generators and
s defining relations, then

sSs—nNn Z bz(r) - bl(F)

Proof. If I admits a presentation (zy,...,2,|71,...,7s), then one may
build a classifying space K = K(I',1) with O-skeleton K° a single
point, 1-skeleton K! a bouquet of n circumferences corresponding to
the generators z1,...,z, and 2-skeleton K? formed by s 2-cells with
attaching maps given by the relations rq,..., 7.

Let us compute H;, Hy(T',Z) through the cellular homology of this
classifying space. All the 1-cells are cycles, and the 2-cell e; with
attaching map the relation r; has as boundary the image of the relation
r; in the abelianization of the free group generated by z,,...,z,. so
we have

b1(F') =n — dimIm 0,
b2(T') < s — dimIm 0,
from which our sought inequality follows. O

Given a finite type CW complex X, there exists a cofibration X —
K(m1(X),1) inducing an isomorphism H!(r(X),Z) = H'(X,Z) and
a monomorphism H?(m(X),Z) — H?*(X,Z). Tt follows that

(1) s —n > dimIm (/\2H1(X) Y H?(X)) — by (X)

We will find lower bounds for this dimension in nonfibered manifolds.
In the compact case this is done in [1] 5.4,5.5 (cf. also [3] IV) in the fol-
lowing way: The classical Castelnuovo-de Franchis theorem shows that
if X is nonfibered the cup product of holomorphic/antiholomorphic 1-
forms cannot be zero. One uses this together with the Hodge decompo-
sition of H*(X) and an elementary projective geometry argument: the
cone of decomposable elements of A2E, resp. F ® F, contains a linear
subspace of dimension 2 dim E — 3, resp. dim E+dim F'—1. Thus these
are the least ranks for the image of linear mappings arising from those
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spaces whose kernels meet the cone of decomposable elements only at
the origin. In this way one arrives at:

Proposition 2. Let X be a nonfibered compact Kdahler manifold with
b1(X) = 2q. Then

(i) dimIm (U : H"(X) A HY(X) — H?>°(X)) > 2¢— 3.

(ii) dim Im (U : H*Y(X) A H*(X) — H*?(X)) > 2q — 3.

(iii) dim Im (U : HY(X)A H*Y(X) — HYY(X)) > 2¢ — 1.

In the quasi—projective case we may repeat the above counting argu-
ment using the logarithmic Castelnuovo—de Franchis theorem of [4] and
Deligne’s mixed Hodge structure on the cohomology of the manifold X.

Let v : X — X be a smooth compactification of X withY = X\ X a
normal crossing divisor. The isomorphism H*(X,C) = H*(Q% (logY))
induces the following weight filtration on H'(X, C):

Wo=0,W; = H' (Q%), Wa = H' (Q% (logY))
and the Hodge filtration
F’ = H' (Q%(ogY)), F' = H(Q%(logY)), F* = 0.
The wedge product induces a morphism of mixed Hodge structures
U: A’HY(X,C) — H%*(X,C), C linearly isomorphic to the graduate
morphism
N (Grw H'(X, C)) ™™ Grw H(X, C)

We will bound the rank of the image of U on every component, and

use the Hodge filtration in those where it is nontrivial. We remind the
reader of the isomorphism

(2) W/Wi(H'(X,C)) = H'(Q(logY))/H*(Q ) ,

and set ¢ = dim H°(Q%), h = dim H°(Q% (logY))/H* (% ).

Recall that a morphism of mixed Hodge structures of type (r,r)
from (A, W, F) to (B,W', F') is a linear morphism ¢ : A — B such
that o(W,,) C W, o, @(FP) C F*". Such morphisms are strict. This
means that

(W) = Wy ia, NImop
and
o(FP) = F"" NImg
for all m,p (see [8], Lemma 1.13). In the case of cup products this
means:

Lemma 3. (i) Let w € H*(Q%(logY)) \ H*(Q%) and n € H°(Q%).
If wAneW,H*X,C) thenw An=0.
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(ii) Let wy,ws € H'(Q%(logY)) be such that wy A w, € W3H?*(X,C),

then there exists a form n € H°(Q%) such that wy A (wp — 1) = 0.
Proof. (i): The morphism w A . : H(X) — H?*(X) has type (1,1)

Wo(H*(X))NIm(wA.) =wAWo(HY (X)) =0
(ii): Consider as before the morphism of type (1,1) w; A. : H(X) —
H?(X). By strictness we get
W3 (H*(X))NIm(w; A.) = w; A Wi (H' (X))
Therefore there exists a cohomology class e € Wy (H'(X)) = H(Q%) &

HO(Q}() with w; A e = w; A wy. If we separate the Hodge components
e = e"?4¢%! and use that w;Ue € F?(H?(X)) it follows that w; Ae™! =
0, so we may choose e = e and realize it by a form n € H(Q%). O

SO

The quasiprojective version of Prop. 2 is

Proposition 4. If X is a quasiprojective manifold not admitting any
logarithmic irregular pencil:
(1) dim Im(Gr2U : /\2W1/W0H1(X, (C) — W2/W1H2(X, (C)) > 4(]—6
(11) If h > 0, dlmIm(GT’gu : W2/W1H1(X, (C) X Wl/W()Hl(X, (C) —
W3 /WyH?(X,C)) > 2+ 2h —2.
(iii) dim Im (GryU : A2Wy/W1HY (X, C) — Wy /W3H?*(X,C)) > 2h —
3.

Proof. (i): by the classical Castelnuovo—de Franchis theorem, if the
kernel of the cup product contains any decomposable element 17, Any €
A2H®(Q%) then X, thus also X, fibers over a hyperbolic C. Therefore,
as in the compact Kahler case, if X does not admit such a fibering
dim U(A?H®(Q0%) > 2¢ — 3. This image lies in the component (2,0) of
the Hodge decomposition of W,/W;H?(X). Conjugation shows that

dim U(A?H(2%)) > 2¢ — 3, and this image lies in the component (0,2)
of the Hodge decomposition, so we may add our bounds.

(ii): We will require the canonical isomorphism Wi H'(X, C) = H°(Q%)®
H°(Q%), mapping the two terms of the latter sum to the (1,0), resp.
(0,1), components of the Hodge decomposition of Wy /WyH'(X, C).

If the kernel of GrsU contains any decomposable element w ® n
with 7 € H°(Q%), by Lemma 3 w An = 0 € H*(X,C), thus also in
H°(Q%(logY)). It follows now from the log-CdF theorem of [4] that
X fibers over a log-hyperbolic curve. As a consequence, dim Grz U
(Wa/WiHY(X,C) ® H(Q%)) > g+ h — 1 if X does not admit such a
fibering. This image has Hodge type (2,1) in the pure Hodge decom-
position of weight 3 of W3/W,H?(X).
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By conjugation in the morphism of pure Hodge structures of weight 3
GrsU the above argument also shows that dim GrsU(W, /W H' (X, C)®
H°(Q%)) > ¢+ h — 1 if X is nonfibered. This image has Hodge type
(1,2) in W3/WoH?(X), so we may add its lower bound to that of the
Hodge component (2,1).

(iii): Assume now that the cup—product GrsU contains a nontrivial
decomposable element in its kernel. By the identification of (2) this
means that there exist holomorphic 1-forms wi,w, € H*(Q% (logY))
such that they are linearly independent modulo H°(Q%) and wi Aw, €
W3H?(X,C). Strictness Lemma 3 shows that we may choose the forms
so that w; A we = 0, and by the log-CdF theorem of [4] X fibers over
a log—hyperbolic curve. Therefore, if X does not admit such a fibering
Gry must have image of rank at least 2h — 3. O

By the C-linear isomorphisms with the Hodge, resp. weight, graded
spaces in Props. 2 and 4 simply adding up the ranks of the images
yields a lower bound for by(X), and applying inequality (1) we get
a new version of the theorem of the few defining relations that gives
bounds both in the compact Kahler and in the quasi—projective case.
In the cases with h = 0, resp. ¢ = 0, we only consider the relevant
terms (i),(ii), resp. (iii).

Theorem 5. Let X be a complex manifold not admitting an irrequ-
lar pencil, and m(X) = (x1,...,2,]|7r1,...,7s) a presentation of its
fundamental group with n generators and s relations.

(i) If X is compact Kéhler, then s —n > 2b;(X) — 7.

(ii) If X is quasiprojective and h,q > 0, then s —n > 2b;(X)+h—11.
(iii) If X is quasiprojective and h = 0,q > 0, then s — n > by (X) — 6.
(iv) If X is quasiprojective and h > 0,q =0, then s —n > b (X) — 3.

Remark 6. If by (X) = 0, Lemma 1 shows directly that s —n > 0.

Remark 7. One may replace the inequality (1) by a less straightforward
study of the Malcev algebra of m;(X) as in [1]. This yields the same
bounds as in Thm. 5, but it locates in which term of the lower central
or the derived series of the free group (1, ..., z,) are found the defining
relations.
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