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Abstract 
 
This work examines a balancing problem wherein the objective is to minimize both the ergonomic risk 
dispersion between the set of workstations of a mixed-model assembly line and the risk level of the 
workstation with the greatest ergonomic factor. A greedy randomized adaptive search procedure 
(GRASP) procedure is proposed to achieve these two objectives simultaneously. This new procedure is 
compared against two mixed integer linear programs: the MILP-1 model that minimizes the maximum 
ergonomic risk of the assembly line and the MILP-2 model that minimizes the average deviation from 
ergonomic risks of the set of workstations on the line. The results from the case study based on the 
automotive sector indicate that the proposed GRASP procedure is a very competitive and promising tool 
for further research. 
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1. Introduction 

 
Assembly line balancing problems have been widely studied in scientific literature (Salveson, 1955). In 
fact, this problem has been categorized according to the restrictions imposed by line features (Baybars, 
1986; Scholl and Becker, 2006; Boysen et al., 2007, 2008; Simaria et al., 2009; Battaïa and Dolgui, 
2013). This type of problem arises from dividing the necessary tasks or operations to assemble or disas-
semble a product among the set of workstations in series that make up the line. This assignment of tasks 
within workstations must satisfy the line’s constraints, and optimize some performance measures. For 
example, the simplest category of problems, simple assembly line balancing problems (SALBP), only 
considers the two cumulative constraints that are associated with the available work time at workstations 
(i.e., cycle time) and precedence constraints that are established by the order in which tasks should be 
implemented. Accordingly, the SALBP focuses on optimizing the number of workstations, the cycle 
time, or both, depending on the problem type. 

Other families of problems consider more attributes of the line when addressing the assignment of 
tasks. One recent example is the family of problems known in the literature as the time and space as-
sembly line problems with ergonomics or TSALBP_erg (Bautista et al., 2016a, b). 

The TSALBP_erg family focuses not only on balancing the line in accordance with economic and 
managerial aspects, such as the cycle time, the number of workstations, or the spatial area required by 
the workload of workstations, but also on the ergonomic aspects (Otto and Scholl, 2011; Bautista et al., 
2013a, b; Bortolini, 2017; Otto and Battaïa, 2017). Achieving appropriate ergonomic balance involves 
a prior assessment of all elements that could lead to an occupational injury or illness for operators, as 
well as of mental and physical demands to which operators from an assembly line are subjected during 
the workday. In this regard, the assessment of physical factors resulting from postural loads, repetitive 
movements, and manual handling take on special relevance in industrial environments.  

As a result of this previous ergonomic study, tasks are cataloged according to their ergonomic risk 
factor. The ergonomic factor, together with the processing time of tasks, determines the ergonomic risk 
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of each one of the tasks. Thus, the ergonomic risk not only depends on the physical load of the task, but 
also on the time at which the operator is exposed to this risk.   

Based on the aforementioned facts, the TSALBP_erg can be defined by the following three elements 
and their characteristics or attributes: 

 

1. The set of tasks needed to assemble or disassemble a product—the tasks, in turn, entail a set of 
attributes that must be also considered: 

a. The temporal attribute linked with the processing time of tasks or operations 
b. The spatial attribute linked with the necessary area or workspace to carry out each task 
c. The ergonomic attribute linked with the ergonomic risk level that each task involves 

2. The set of workstations on the line, which can be finite or infinite 
3. The set of sequencing constraints, such as the precedence relationships between tasks, incompatibil-

ity between tasks, and restrictions that may affect the workstations with respect to their assignable 
time, their available area, and their admissible risk 
  

Like the SALBP (Baybars, 1986; Scholl and Becker, 2006) and TSALBP families (Bautista and Pereira, 
2007; Chica et al., 2010, 2013, 2016, 2018), the TSALBP_erg family focuses on assigning all tasks to 
workstations in order to achieve maximum efficiency regarding some of the considered attributes, while 
all constraints imposed are fulfilled. Accordingly, this family of problems also comprises a set of prob-
lem types in accordance with the optimization criteria. 

One of the first approaches studied in literature consisted of introducing the ergonomic concept 
through a new constraint for limiting maximum and minimum ergonomic risks while the number of 
workstations, the cycle time, or the spatial area were optimized (Bautista et al., 2013a, b). Then, the 
ergonomic risk was incorporated into the problem through the objective function. In this case, the ob-
jective of the problem was minimizing the maximum ergonomic risk associated with the workload of 
workstations. Later, a new mathematical model was proposed in order to reduce differences between 
workstations. Specifically, the new model minimized the average absolute deviation of the ergonomic 
risks of the set of workstations (see Bautista et al., 2016a). 

In line with previous research (Bautista et al., 2016a, b), this work presents a new non-exact proce-
dure to ensure assembly lines achieve the lowest possible level of risk for operators and the most bal-
anced risk distribution among the set of workstations. Specifically, the proposed approach considers two 
hierarchized objectives: 

  

1. The minimization of the maximum ergonomic risk of the assembly line 
2. The minimization of the standard deviation from ergonomic risks of the line, which is contingent 

upon the first objective 
 

Additionally, given the variety of resolution procedures for balancing problems, in this work, we solve 
the problem with two different resolution approaches: mixed integer linear programming (MILP) and a 
new greedy randomized adaptive search procedure (GRASP). This type of algorithm (Feo and Resende, 
1995) has been widely used in combinatorial optimization problems with diverse applications (Resende 
and Ribeiro, 2010). Indeed, the proposed problem combines the necessary qualities for its use—first, 
because the line balancing involves a sequence of decisions on the assignment of a set of tasks; and 
second, because it is a procedure that is highly competitive in time against other metaheuristics and other 
exact procedures, such as MILP. 

The remainder of this study is organized as follows. In the next section, we outline the mathematical 
model for the problem. The proposed GRASP is described in section 3. Section 4 assesses the two res-
olution procedures though a case study, and finally, we conclude in section 5.  

2. Mathematical model: min R_SD(R) 

An assembly line is ergonomically comfortable when it presents the lowest possible ergonomic risk at 
any of its workstations, and there is little difference between the ergonomic risk levels of workstations. 
Therefore, it is possible to obtain ergonomically comfortable line configurations by solving the assembly 
line balancing problem in different ways: 

 

(i) Minimizing both objectives simultaneously 
(ii) Subordinating one objective to the other one 
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(iii) Solving the problem mono-objectively and determining the other objective afterwards 
 

In accordance with the second way, and taking the previous work (Bautista et al., 2016a) as a refer-
ence, a mathematical model to minimize the maximum ergonomic risk of the line first, and then, the 
ergonomic risk dispersion between workstations, is presented. Specifically, in this work, the ergonomic 
risk dispersion is measured through the standard deviation, unlike Bautista et al. (2016a), where the 
average absolute deviation was considered. The parameters, variables, and the mathematical model for-
mulation are shown below: 

Parameters:  
𝐽𝐽 Set of elemental tasks (𝑗𝑗 = 1, … , |𝐽𝐽|) needed to assemble a product 
𝐾𝐾 Set of workstations (𝑘𝑘 = 1, … , |𝐾𝐾|) that make up the line 
Φ Set of ergonomic risk factors (𝜙𝜙 = 1, … , |Φ|) (mental or physical factors) 
𝑡𝑡𝑗𝑗 Processing time of elemental task (𝑗𝑗 = 1, … , |𝐽𝐽|) at normal activity levels 

𝑎𝑎𝑗𝑗 Linear area required by the elemental task (𝑗𝑗 = 1, … , |𝐽𝐽|) 

𝜒𝜒𝜙𝜙,𝑗𝑗 Category of task 𝑗𝑗 (𝑗𝑗 = 1, … , |𝐽𝐽|) associated with the risk factor 𝜙𝜙 (𝜙𝜙 = 1, … , |Φ|)  

𝑅𝑅𝜙𝜙,𝑗𝑗 Ergonomic risk of task 𝑗𝑗 (𝑗𝑗 = 1, … , |𝐽𝐽|) associated with the risk factor 𝜙𝜙 (𝜙𝜙 = 1, … , |Φ|). 
Here, 𝑅𝑅𝜙𝜙,𝑗𝑗 = 𝑡𝑡𝑗𝑗 ∙ 𝜒𝜒𝜙𝜙,𝑗𝑗 

𝑃𝑃𝑗𝑗 Set of immediate precedent tasks of task 𝑗𝑗 (𝑗𝑗 = 1, … , |𝐽𝐽|) 

𝐹𝐹𝑗𝑗∗ Set of following tasks of task 𝑗𝑗 (𝑗𝑗 = 1, … , |𝐽𝐽|) 

𝑐𝑐 Cycle time: standard time assigned to each station to process its workload (𝑆𝑆𝑘𝑘) 
𝑚𝑚 Number of workstations 𝑚𝑚 = |𝐾𝐾|, which is known and fixed 
𝐴𝐴 Available space or linear area assigned to each workstation 

𝑅𝑅𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚 Average ergonomic risk present at each workstation regarding the risk factor 𝜙𝜙 ∈ Φ, that is, 
𝑅𝑅𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚 = 1

𝑚𝑚
∑ 𝑅𝑅𝜙𝜙,𝑗𝑗

|𝐽𝐽|
𝑗𝑗=1 , ∀𝜙𝜙 ∈ Φ 

𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 Average ergonomic risk of the line or ideal ergonomic risk of each workstation, 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 ≡
1

|Φ| ∙ ∑ 𝑅𝑅𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚
|Φ|
𝜙𝜙=1  

Variables:  
𝑥𝑥𝑗𝑗,𝑘𝑘 Binary variable equal to 1 if the elemental task 𝑗𝑗 (𝑗𝑗 = 1, … , |𝐽𝐽|) is assigned to the work-

station 𝑘𝑘 (𝑘𝑘 = 1, … , |𝐾𝐾|), and to 0 otherwise 
𝑆𝑆𝑘𝑘 Workload of station 𝑘𝑘: set of tasks assigned to the station 𝑘𝑘 ∈ 𝐾𝐾: 𝑆𝑆𝑘𝑘 = �𝑗𝑗 ∈ 𝐽𝐽: 𝑥𝑥𝑗𝑗,𝑘𝑘 = 1� 

𝑅𝑅𝜙𝜙(𝑆𝑆𝑘𝑘) Ergonomic risk for the factor 𝜙𝜙 ∈ Φ associated with the workload 𝑆𝑆𝑘𝑘 (𝑘𝑘 ∈ 𝐾𝐾), that is, 
𝑅𝑅𝜙𝜙(𝑆𝑆𝑘𝑘) = ∑ 𝑅𝑅𝜙𝜙,𝑗𝑗𝑗𝑗∈𝑆𝑆𝑘𝑘  

𝑅𝑅(𝑆𝑆𝑘𝑘)  Average ergonomic risk associated with the workload 𝑆𝑆𝑘𝑘 (𝑘𝑘 ∈ 𝐾𝐾) with respect to all set of 
ergonomic risk factors Φ, 𝑅𝑅(𝑆𝑆𝑘𝑘) = 1

|Φ| ∙ ∑ 𝑅𝑅𝜙𝜙(𝑆𝑆𝑘𝑘)|Φ|
𝜙𝜙=1  

𝑅𝑅𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚 Maximum ergonomic risk for the risk factor 𝜙𝜙 ∈ Φ, 𝑅𝑅𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚= max
𝑘𝑘∈𝐾𝐾

𝑅𝑅𝜙𝜙(𝑆𝑆𝑘𝑘) 

𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 Average maximum ergonomic risk with respect to the full set of ergonomic risk factors Φ,  
𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 = 1

|Φ| ∙ ∑ 𝑅𝑅𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚
|Φ|
𝜙𝜙=1   

 

 
min R_SD(R) Model: 
 

min ℛ(Φ,𝐾𝐾) ≡ 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 ≺ 𝑆𝑆𝑆𝑆�𝑅𝑅(𝑆𝑆𝑘𝑘)� (1) 

Subject to: 
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�𝑥𝑥𝑗𝑗,𝑘𝑘

|𝐾𝐾|

𝑘𝑘=1

= 1 (𝑗𝑗 = 1, … , |𝐽𝐽|) (2) 

�𝑡𝑡𝑗𝑗 ∙ 𝑥𝑥𝑗𝑗,𝑘𝑘

|𝐽𝐽|

𝑗𝑗=1

≤ 𝑐𝑐 (𝑘𝑘 = 1, … , |𝐾𝐾|) (3) 

�𝑎𝑎𝑗𝑗 ∙ 𝑥𝑥𝑗𝑗,𝑘𝑘

|𝐽𝐽|

𝑗𝑗=1

≤ 𝐴𝐴 (𝑘𝑘 = 1, … , |𝐾𝐾|) (4) 

𝑅𝑅𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚 −�𝑅𝑅𝜙𝜙,𝑗𝑗 ∙ 𝑥𝑥𝑗𝑗,𝑘𝑘

|𝐽𝐽|

𝑗𝑗=1

≥ 0 (𝑘𝑘 = 1, … , |𝐾𝐾|) ⋏ (𝜙𝜙 = 1, … . , |Φ|) (5) 

�𝑘𝑘�𝑥𝑥𝑖𝑖,𝑘𝑘 − 𝑥𝑥𝑗𝑗,𝑘𝑘�
|𝐾𝐾|

𝑘𝑘=1

≤ 0 ∀{𝑖𝑖, 𝑗𝑗} ⊆ 𝐽𝐽: 𝑖𝑖 ∈ 𝑃𝑃𝑗𝑗 (6) 

�𝑘𝑘 ∙ 𝑥𝑥𝑗𝑗,𝑘𝑘

|𝐾𝐾|

𝑘𝑘=1

≤ 𝑚𝑚 (𝑗𝑗 = 1, … , |𝐽𝐽|) (7) 

�𝑥𝑥𝑗𝑗,𝑘𝑘

|𝐽𝐽|

𝑗𝑗=1

≥ 1 (𝑘𝑘 = 1, … , |𝐾𝐾|) (8) 

𝑅𝑅𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 0 (𝜙𝜙 = 1, … . , |Φ|) (9) 
𝑥𝑥𝑗𝑗,𝑘𝑘 ∈ {0,1} (𝑗𝑗 = 1, … , |𝐽𝐽|) ⋏ (𝑘𝑘 = 1, … , |𝐾𝐾|) (10) 
 
where, 
𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 is the average from the maximum ergonomic risks associated with each one of ergonomic risk 

factors considered in the set Φ: 

𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 ≡
1

|Φ| ∙ � 𝑅𝑅𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚
|Φ|

𝜙𝜙=1

=
1

|Φ| � max
𝑘𝑘∈𝐾𝐾

𝑅𝑅𝜙𝜙(𝑆𝑆𝑘𝑘)
|Φ|

𝜙𝜙=1

 (11) 

𝑆𝑆𝑆𝑆�𝑅𝑅(𝑆𝑆𝑘𝑘)� is the standard deviation from the set of ergonomic risks of the line considering both the 
workstations (𝐾𝐾) and the risk factors of tasks (Φ): 

  

𝑆𝑆𝑆𝑆�𝑅𝑅(𝑆𝑆𝑘𝑘)� = �
1
𝑚𝑚
∙�(𝑅𝑅(𝑆𝑆𝑘𝑘) − 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚)2
𝑚𝑚

𝑘𝑘=1

 (12) 

and 𝑅𝑅(𝑆𝑆𝑘𝑘) values are calculated as follows: 

𝑅𝑅(𝑆𝑆𝑘𝑘) =
1

|Φ| ∙ � 𝑅𝑅𝜙𝜙(𝑆𝑆𝑘𝑘)
|Φ|

𝜙𝜙=1

=
1

|Φ| ∙ ��𝑅𝑅𝜙𝜙,𝑗𝑗 ∙ 𝑥𝑥𝑗𝑗,𝑘𝑘

|𝐽𝐽|

𝑗𝑗=1

|Φ|

𝜙𝜙=1

 (13) 

Objective function (1) expresses the minimization of the ℛ(Φ,𝐾𝐾) function that responds to two hi-
erarchized criteria—the first, 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚, which corresponds to the average from the maximum ergonomic 
risks by factors, and the second, 𝑆𝑆𝑆𝑆�𝑅𝑅(𝑆𝑆𝑘𝑘)�, which is linked with the risk dispersion of the line and 
measures the standard deviation from the risks of workstations with respect to the risk factors. Constraint 
(2) forces the assignment of all tasks. Constraints (3) and (4) impose the maximum limitation for the 
cycle time and the maximum linear area allowed by station. Constraint (5) determines implicitly the real 
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ergonomic risk associated with the workload at each workstation (𝑅𝑅𝜙𝜙(𝑆𝑆𝑘𝑘)), as well as the maximum 
ergonomic risks (𝑅𝑅𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚). Constraint (6) corresponds to the precedence task bindings. Constraints (7) and 
(8) limit the number of workstations and ensure there are no empty workstations, respectively. Finally, 
constraints (9) and (10) force ergonomic variables to be non-negative and variables of assignment to be 
binary. 

It should be noted that the formulated mathematical model could not be solved by MILP without 
modifying the objective function, because it is not linear. Therefore, to solve the problem by MILP, we 
will consider the third way, that is, we will solve the problem mono-objectively, and determine the other 
objective afterwards. 

3. GRASP for solving the min R_SD(R) problem 

A GRASP procedure is proposed for solving the above mathematical problem with a hierarchized ob-
jective function. GRASP is a multi-start metaheuristic algorithm (Feo and Resende, 1995) with two 
phases: 

 

1. A Construction phase, wherein an initial solution is built through a non-deterministic greedy proce-
dure 

2. An Improvement phase, wherein a local optimum is sought in one or more neighborhoods of the 
solution obtained in the constructive phase—these two phases are consecutively applied until a stop-
ping criterion is satisfied, and finally, GRASP gives as a final solution the best solution found be-
tween all iterations 
 

The first phase gives solutions that are acceptable regarding the objective function, and representative 
of various regions from the exploration space. 

To ensure solution diversity, given a sequence of decisions linked with a partial solution, the possible 
alternatives are randomly selected among the restricted candidate list (𝑅𝑅𝑅𝑅𝑅𝑅). This list may contain all 
possible alternatives or a set of them. In the last case, the set of alternatives is selected based on the best 
values for a function (bound, index, etc.) that are in line with the overall objective of the problem. 
Briefly, an optimization problem solved through GRASP implies the following: 

 

1. To define the greedy and the randomization procedure used for selecting a solution among the can-
didate alternatives 

2. To define the neighborhood of a solution, and how to explore it 
3. To define the stopping criterion based on runtime or number of iterations 
 

Specifically, the GRASP proposed in this paper is similar to that in Bautista et al. (2016a). However, in 
this work, the main goal is to minimize the ergonomic risk of the critical workstation (station with great-
est risk), and subject to this first objective, the second goal is to minimize the standard deviation (SD) 
from the ergonomic risks of the assembly line. 
Therefore, the construction phase consists of progressively building a sequence of tasks 𝜋𝜋(𝑁𝑁) =
(𝜋𝜋1, . . . ,𝜋𝜋𝑁𝑁) according to a restricted candidate list 𝑅𝑅𝑅𝑅𝑅𝑅 that is created from all possible tasks that can 
be incorporated into the sequence. Thus, at each stage associated with the position 𝑛𝑛 (𝑛𝑛 = 1, . . . ,𝑁𝑁) of 
the sequence 𝜋𝜋(𝑁𝑁), the 𝑅𝑅𝑅𝑅𝑅𝑅(𝑛𝑛) list is made up for tasks that have not yet been incorporated into the 
𝜋𝜋(𝑛𝑛 − 1) = (𝜋𝜋1, . . . ,𝜋𝜋𝑛𝑛−1) sequence, but whose precedent tasks have already been assigned to 
𝜋𝜋(𝑛𝑛 − 1). Once the 𝑅𝑅𝑅𝑅𝑅𝑅(𝑛𝑛) list is built, it is ordered according the following hierarchical priority indi-
ces: 
 
1. Pending linear area according to the assigned task, 𝑗𝑗 ∈ 𝑅𝑅𝑅𝑅𝑅𝑅(𝑛𝑛), and its followings tasks 𝐹𝐹𝑗𝑗∗ : 

𝑓𝑓𝑗𝑗
(𝑛𝑛) = 𝑎𝑎𝑗𝑗 + � 𝑎𝑎ℎ      

ℎ∈𝐹𝐹𝑗𝑗
∗

∀𝑗𝑗 ∈ 𝑅𝑅𝑅𝑅𝑅𝑅(𝑛𝑛) (14) 

2. Pending ergonomic risk according to the assigned task, 𝑗𝑗 ∈ 𝑅𝑅𝑅𝑅𝑅𝑅(𝑛𝑛), and its followings tasks 𝐹𝐹𝑗𝑗∗ : 
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𝑔𝑔𝑗𝑗
(𝑛𝑛) = � 𝑅𝑅𝜙𝜙,𝑗𝑗

𝜙𝜙∈Φ

+ � � 𝑅𝑅𝜙𝜙,ℎ
ℎ∈𝐹𝐹𝑗𝑗

∗𝜙𝜙∈Φ

     ∀𝑗𝑗 ∈ 𝑅𝑅𝑅𝑅𝑅𝑅(𝑛𝑛) (15) 

After having calculated the indices (𝑓𝑓𝑗𝑗
(𝑛𝑛), 𝑔𝑔𝑗𝑗

(𝑛𝑛)), the 𝑅𝑅𝑅𝑅𝑅𝑅(𝑛𝑛) list is ordered in descending order of 

the 𝑓𝑓𝑗𝑗
(𝑛𝑛) values or in descending order of the 𝑔𝑔𝑗𝑗

(𝑛𝑛) values in case of a tie. Subsequently, the list is reduced 
by the admission factor, Λ. The Λ factor is defined as the percentage of tasks that are sorted among the 
best candidates. Thus, the 𝑅𝑅𝑅𝑅𝑅𝑅������(𝑛𝑛,Λ) list is obtained for the selection process. 

The constructive phase (see Algorithm 1) makes sure the final task sequence 𝜋𝜋(𝑁𝑁) is consistent with 
precedent and succession constraints, and it does not accumulate required linear area and ergonomic 
risk at the end of the assembly line. 

 
Algorithm 1 An algorithm for the constructive phase of the task sequence 𝜋𝜋(𝑁𝑁) 
1: // Initialization 
2: input  Λ, 𝐽𝐽, �𝑡𝑡𝑗𝑗 ,𝑎𝑎𝑗𝑗 ,𝜒𝜒𝜙𝜙,𝑗𝑗 ,𝑅𝑅𝜙𝜙,𝑗𝑗 ,𝑃𝑃𝑗𝑗 ,𝐹𝐹𝑗𝑗∗� ∀𝑗𝑗 ∈ 𝐽𝐽 ∀𝜙𝜙 ∈ Φ 
3: initialize 𝑛𝑛 = 0,𝜋𝜋(𝑛𝑛) = {∅},𝑁𝑁 = |𝐽𝐽| 
4: // Create the candidate set 
5: while (𝑛𝑛 ≤ 𝑁𝑁) do 
6:    set 𝑛𝑛 = 𝑛𝑛 + 1 
7:    set 𝑅𝑅𝑅𝑅𝑅𝑅(𝑛𝑛) = �𝑗𝑗 ∈ 𝐽𝐽 ∶  𝑗𝑗 ∉ 𝜋𝜋(𝑛𝑛 − 1) ⋏ 𝑃𝑃𝑗𝑗 ⊆ 𝜋𝜋(𝑛𝑛 − 1)� 
8: // Evaluate alternative 
9:    for all (𝑗𝑗 ∈ 𝑅𝑅𝑅𝑅𝑅𝑅(𝑛𝑛)) do 
10:        set 𝑓𝑓𝑗𝑗

(𝑛𝑛) = 𝑎𝑎𝑗𝑗 + ∑ 𝑎𝑎ℎ      ℎ∈𝐹𝐹𝑗𝑗
∗  

11:        set 𝑔𝑔𝑗𝑗
(𝑛𝑛) = ∑ 𝑅𝑅𝜙𝜙,𝑗𝑗𝜙𝜙∈Φ + ∑ ∑ 𝑅𝑅𝜙𝜙,ℎℎ∈𝐹𝐹𝑗𝑗

∗𝜙𝜙∈Φ  
12:    end for 
13: // Sort alternatives 
14:    sort 𝑅𝑅𝑅𝑅𝑅𝑅(𝑛𝑛): set 𝑅𝑅𝑅𝑅𝑅𝑅������(𝑛𝑛) as the ordered list from 𝑅𝑅𝑅𝑅𝑅𝑅(𝑛𝑛) according the 𝑓𝑓𝑗𝑗

(𝑛𝑛) and 𝑔𝑔𝑗𝑗
(𝑛𝑛) values 

15: // Select alternative 
16:    set  𝑝𝑝𝑝𝑝𝑠𝑠Λ = ⌈Λ × |𝑅𝑅𝑅𝑅𝑅𝑅������(𝑛𝑛)| × 𝑅𝑅𝑁𝑁𝑆𝑆⌉ 
17:    set  𝑗𝑗Λ = 𝑗𝑗 ∈ 𝑅𝑅𝑅𝑅𝑅𝑅������(𝑛𝑛): 𝑝𝑝𝑝𝑝𝑠𝑠𝑗𝑗 = 𝑝𝑝𝑝𝑝𝑠𝑠Λ 
18: // Update 
19:    set  𝜋𝜋(𝑛𝑛) = 𝜋𝜋(𝑛𝑛 − 1) ∪ {𝑗𝑗Λ} 
20: end while 

 

From the 𝜋𝜋(𝑁𝑁) sequence, the following stage consists of designing an assembly line configuration 
by imposing a fixed number of workstations 𝑚𝑚 ≥ 2. Indeed, given a number of workstations (𝑚𝑚), the 
𝜋𝜋(𝑁𝑁) sequence is divided into 𝑚𝑚 segments. These segments have the following properties: 

(i) They are compatible with constraints (3) and (4) 
(ii) They are made up by adjacent tasks in the sequence 

(iii) They are not empty 
(iv) They are disjoint between them, and their union corresponds with the set of tasks 𝐽𝐽 

Given a feasible solution obtained in the constructive phase, the improvement phase of the GRASP 
relies on sequentially applying four descent algorithms on four neighborhoods, until the solution does 
not improve at any stage. Between two solutions compatible with the cycle time and the maximum 
available area (constraints (3) and (4)), the solution with a lower average from maximum ergonomic 
risk will be considered as the best, and in case of tie, the solution with lower standard deviation will be 
saved during iterations. In particular, the stages of the improvement phase of GRASP are as follows: 

1. Insertion_1: Inserting a task from the station with the greatest ergonomic risk (critical workstation) 
to any other station—the workstation with the greatest ergonomic risk inserts all its tasks, one by 
one, first into any previous station, and second, into any next station. Obviously, constraints (2)-(10) 
from the mathematical model must be satisfied, and the average from maximum ergonomic risks 
(𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚) must improve. In case of a tie, the insertion will be consolidated if the standard deviation 
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(𝑆𝑆𝑆𝑆�𝑅𝑅(𝑆𝑆𝑘𝑘)�) from the ergonomic risks is improved. 
2. Insertion_2: Inserting a task from any station to the station with the lowest ergonomic risk—the 

workstation with the lowest ergonomic risk increases its workload with the last task from any previ-
ous station and/or the first task from any next station. Constraints (2)–(10) from the model must be 
satisfied, and the improvement conditions to consolidate the insertion are identical to those from 
previous stage. 

3. Exchange_1: Exchanging tasks from the critical workstation with any other station—this stage con-
sists of exchanging the tasks from the critical workstation, one by one, with the first task from the 
following workstations, and then, the last task from previous stations. The exchange will be consol-
idated when the conditions from the above stages are fulfilled. 

4. Exchange_2: Switching tasks between workstations—the last step consists of exchanging tasks be-
tween two stations. Obviously, the exchanges will be consolidated in line with previous stages. 

4. Case study: Nissan-9Eng 

In order to assess the performance of the procedure above, a computational experiment is carried out, 
which is focused on analyzing the performance of GRASP-3 against other procedures based on linear 
programming. Obviously, this comparison takes into account the quality of solutions given by each 
procedure type and the CPU times used by each procedure to obtain the line configurations. 

The results given by the proposed GRASP are compared with those obtained by two mono-objective 
mathematical models because MILP does not support hierarchical objective functions. Specifically, the 
exact procedures are the MILP-1 and MILP-2, wherein their objectives are minimizing the maximum 
ergonomic risk of the assembly line and minimizing the risk dispersion between workstations, respec-
tively (see Bautista et al., 2016a). 

It should be noted that MILP-2 minimizes the absolute average deviation. Therefore, it will be nec-
essary to calculate the standard deviation once the model has been run. 
Like Bautista et al. (2016a, b), the analysis lies with a case study from Nissan’s plant in Barcelona—an 
assembly line where nine types of engines that are grouped into three families (SUVs - sport utility 
vehicle, vans and trucks) are assembled with a cycle time of 180 seconds. Figure 1 shows an M1 type 
engine that belongs to the SUVs - sport utility vehicles family. 
 

 
 

Fig. 1.  Nissan Pathfinder Engine. Characteristics: (i) 747 parts and 330 references, (ii) 378 elemental assembly 
tasks grouped in 140 production line tasks. 
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The assembly line features are as follows: 
 

• Number of workstations: |𝐾𝐾| ≡ 𝑚𝑚;  𝑚𝑚 = {19, 20, 21, 22, 23, 24, 25} 
• Number of elemental tasks: |𝐽𝐽| = 140 (𝑗𝑗 = 1, . . . ,140) 
• Cycle time: 𝑐𝑐 = 180 𝑠𝑠 
• Available linear area by workstation: 𝐴𝐴 = {4, 5, 10} 𝑚𝑚𝑚𝑚𝑡𝑡𝑚𝑚𝑚𝑚𝑠𝑠 
• Number of risk factors: |Φ|=1 (𝜙𝜙 = 1) 
• Number of demand plans: |Ε| = 1 ( 𝜀𝜀 = 1) 
• Daily demand: 𝑇𝑇 ≡ 𝑆𝑆𝜀𝜀 = 270 𝑚𝑚𝑛𝑛𝑔𝑔𝑖𝑖𝑛𝑛𝑚𝑚𝑠𝑠 ( 𝜀𝜀 = 1) 
 

The computational features are as follows: 
 

1. MILP-1: 𝑚𝑚𝑖𝑖𝑛𝑛 − 𝑚𝑚𝑎𝑎𝑥𝑥 𝑅𝑅 model (see Bautista et al., 2016a): 
a. Its objective function minimizes the average from maximum ergonomic risks of workstations 

of the assembly line in accordance with the risk factors and without considering the risk disper-
sion between stations. 

b. The mathematical model is compiled and run on a DELL Inspiron-13 (Intel(R) Core(TM) i7-
7500U @ 2.70 GHz CPU 2.90 GHz, 16 GB of RAM, x64 Windows 10 Pro) using IBM ILOG 
CPLEX solver (Optimization Studio v.12.2, win-x86-64). 

c. The maximum CPU time available to run each dataset is equal to 1,000 seconds. 
d. The number of datasets that is executed is equal to 21—one instance associated with a demand 

plan with seven possible values for 𝑚𝑚 (19…25), and three for 𝐴𝐴 (4, 5, 10). 
2. MILP-2: 𝑚𝑚𝑖𝑖𝑛𝑛 𝐴𝐴𝐴𝐴𝑆𝑆_𝑅𝑅 model (see Bautista et al., 2016a): 

a. Its objective function forces an equal sharing of risk between all workstations by minimizing 
the average absolute deviations from risks of workstations and without considering the maxi-
mum risk minimization. 

b. The mathematical model is compiled and run on a DELL Inspiron-13 (Intel(R) Core(TM) i7-
7500U @ 2.70 GHz CPU 2.90 GHz, 16 GB of RAM, x64 Windows 10 Pro) using IBM ILOG 
CPLEX solver (Optimization Studio v.12.2, win-x86-64). 

c. The maximum CPU time available to run each dataset is 1,000 seconds. 
d. A total of 21 datasets are executed—seven possible values for 𝑚𝑚 (19…,25), and three for 𝐴𝐴 (4, 

5, 10). 
3. GRASP-3: GRASP procedure aimed at hierarchically minimizing the average maximum ergonomic 

risk for the line and the risk dispersion between workstations, through the standard deviation: 
a. It is run on a DELL Inspiron-13 (Intel(R) Core(TM) i7-7500U @ 2.70 GHz CPU 2.90 GHz, 16 

GB of RAM, x64 Windows 10 Pro). 
b. The maximum number of iterations per execution is 10,000. 
c. Three possible values are assumed for the admission factor Λ = {33%, 66%, 100%} (63 exe-

cutions: seven values for 𝑚𝑚, three values for 𝐴𝐴, and three possible values for Λ). 
d. The average CPU time per execution used by the two GRASP phases is equal to 197.06 seconds. 

 
Table 1 shows the best results with respect to the average maximum ergonomic risk 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚, from MILP-
1, MILP-2 and GRASP-3, and for the 21 datasets of the problem 𝜃𝜃 ∈ Ζ. The winning algorithm for each 
dataset is highlighted. The unity gains of GRASP-3 versus MILP-1 (∆𝐺𝐺3𝑣𝑣𝑣𝑣1) and MILP-2 (∆𝐺𝐺3𝑣𝑣𝑣𝑣2), 
and MILP-1 versus MILP-2 (∆𝑣𝑣1𝑣𝑣𝑣𝑣2), are determined as follows (16). 
 
 

∆𝒫𝒫𝑣𝑣𝒫𝒫′(𝜃𝜃) =
𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚,𝒫𝒫′

(𝜃𝜃) − 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚,𝒫𝒫
(𝜃𝜃)

𝑚𝑚𝑖𝑖𝑛𝑛 �𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚,𝒫𝒫′
(𝜃𝜃),𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚,𝒫𝒫

(𝜃𝜃)�
 

∀𝜃𝜃 ∈ Ζ,∀𝒫𝒫 ∈ {𝐺𝐺𝑅𝑅𝐴𝐴𝑆𝑆𝑃𝑃 − 3,𝑣𝑣𝑀𝑀𝑅𝑅𝑃𝑃 − 1},∀𝒫𝒫′ ∈ {𝑣𝑣𝑀𝑀𝑅𝑅𝑃𝑃 − 1,𝑣𝑣𝑀𝑀𝑅𝑅𝑃𝑃 − 2} 
(16) 

 

From Table 1, we can conclude the following points about the average from the maximum ergonomic 
risk of the assembly line: 

 
• No procedure guarantees optimal solutions. 
• No procedure gives a solution for assembly lines with 19 and 20 workstations and an available area 

of 4 meters. IBM ILOG CPLEX solver proves that instances 19/4 and 20/4 are infeasible. 
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• MILP-1 also does not give solution when the assembly line has 21, 22 and 23 workstations and 4 
meters. MILP-2 does not give solution when the assembly line has 25 workstations and 4 meters. 

• MILP-1 is the winner with respect to the number of best solutions, with 10 successes over all 21 
datasets. GRASP-3 is in the second position with 9 victories, and finally, MILP-2 with six successes. 

• MILP-1 is also the winning procedure with respect to the unity gain, provided that datasets without 
solutions (21/4, 22/4 and 23/5) are not considered. The overall average unity gain of MILP-1 against 
GRASP-3 is 0.24%, and approximately 2.36% against MILP-2. Under this criterion, MILP-2 is the 
procedure with the worst results. Indeed, MILP-2 is overtaken by GRASP-3 with an overall average 
unity gain of 4.94% (without data set 25/4). 

• MILP-1 wins in ten datasets, loses in six, and ties in three datasets in a comparison of its results with 
those given by MILP-2. Specifically, MILP-1 improves solutions from MILP-2 by 6.0%, but when 
it loses, solutions become worse by 6.2%, respectively, in terms of average unity gain. 

• GRASP-3 wins MILP-2 in ten datasets, loses six times, and ties in three datasets, considering the 19 
cases in which GRASP-3 gives a solution. The average gain of GRASP-3 against MILP-2 is 11.92% 
and the average loss is 3.05%, considering the 18 cases in which MILP-2 gives a solution. 

• Comparing GRASP-3 against MILP-1, the first one wins in 8 datasets, loses in eight, and ties in three 
instances. However, the unity gains of one procedure against the other one are unbalanced—2.77% 
when MILP-1 wins and 3.64% when GRASP-3 is the winner. 

• MILP-1 and MILP-2 use 1,000 seconds per dataset (CPU limit), while GRASP-3 needs 591.17 sec-
onds on average to solve each dataset, accumulating the time for the three admission factor values. 
 

Table 1 
𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 value for each data set θ ∈ Ζ in accordance with the different procedures (MILP-1, MILP-2, GRASP-3). 
Unity gain between pairs of procedures (∆𝐺𝐺3𝑣𝑣𝑣𝑣1,∆𝐺𝐺3𝑣𝑣𝑣𝑣2,∆𝑣𝑣1𝑣𝑣𝑣𝑣2), best solution 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚∗ , and winning algo-
rithm. 

 
𝜃𝜃 ∈ Ζ 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚: Average from maximum risk  ∆𝒫𝒫𝑣𝑣𝒫𝒫′(𝜃𝜃): Gain 𝒫𝒫 𝑣𝑣𝑚𝑚𝑚𝑚𝑠𝑠𝑣𝑣𝑠𝑠 𝒫𝒫′   
𝑚𝑚/𝐴𝐴 MILP-1 MILP-2 GRASP-3 ∆𝐺𝐺3𝑣𝑣𝑣𝑣1 ∆𝐺𝐺3𝑣𝑣𝑣𝑣2 ∆𝑣𝑣1𝑣𝑣𝑣𝑣2 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚∗  𝑊𝑊𝑖𝑖𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚 
19/4 - - - - - - Infeasible - 
19/5 375 390 405 -0.08  -0.04  0.04  375 M1 

19/10 355 375 350 0.01  0.07  0.06  350 G3 
20/4 - - - - - - Infeasible - 
20/5 340 420 345 -0.01  0.22  0.24  340 M1 

20/10 325 335 330 -0.02  0.02  0.03  325 M1 
21/4 - 450 435 - 0.03  - 435 G3 
21/5 310 320 320 -0.03  0.00  0.03  310 M1 

21/10 315 300 310 0.02  -0.03  -0.05  300 M2 
22/4 - 420 345 - 0.22  - 345 G3 
22/5 300 315 300 0.00  0.05  0.05  300 M1-G3 

22/10 285 285 295 -0.04  -0.04  0.00  285 M1-M2 
23/4 - 435 320 - 0.36  - 320 G3 
23/5 280 280 285 -0.02  -0.02  0.00  280 M1-M2 

23/10 278 280 280 -0.01  0.00  0.01  278 M1 
24/4 300 320 300 0.00  0.07  0.07  300 M1-G3 
24/5 275 281 270 0.02  0.04  0.02  270 G3 

24/10 265 260 270 -0.02  -0.04  -0.02  260 M2 
25/4 280 - 270 0.04  - - 270 G3 
25/5 285 255 260 0.10  -0.02  -0.12  255 M2 

25/10 255 255 255 0.00  0.00  0.00  255 all 
𝐴𝐴𝑣𝑣𝑚𝑚𝑚𝑚𝑎𝑎𝑔𝑔𝑚𝑚 - - - -0.002  0.049 0.024  - - 

 

Table 2 shows best results with respect to the relative standard deviation 𝑅𝑅𝑆𝑆𝑆𝑆 from the three procedures 
using 21 datasets. In order to measure the dispersion between stations, the standard deviation from the 
ergonomic risk 𝑆𝑆𝑆𝑆�𝑅𝑅(𝑆𝑆𝑘𝑘)� is used. Additionally, the relative standard deviation 𝑅𝑅𝑆𝑆𝑆𝑆 is used to compare 
the quality of solutions given by a pair of procedures. The 𝑅𝑅𝑆𝑆𝑆𝑆 values are determined as follows (17): 
 

 



PostPrint: Bautista J, Alfaro R (2018) Progress in Artificial Intelligence. https://doi.org/10.1007/s13748-018-0153-9  

10 
 

𝑅𝑅𝑆𝑆𝑆𝑆(𝒫𝒫𝑣𝑣𝒫𝒫′(𝜃𝜃)) ≡
𝑆𝑆𝑆𝑆�𝑅𝑅(𝑆𝑆𝑘𝑘)�𝒫𝒫′(𝜃𝜃)

𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚(𝜃𝜃) −
𝑆𝑆𝑆𝑆�𝑅𝑅(𝑆𝑆𝑘𝑘)�𝒫𝒫(𝜃𝜃)

𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚(𝜃𝜃)  

∀𝜃𝜃 ∈ Ζ,∀𝒫𝒫 ∈ {𝐺𝐺𝑅𝑅𝐴𝐴𝑆𝑆𝑃𝑃 − 3,𝑣𝑣𝑀𝑀𝑅𝑅𝑃𝑃 − 1},∀𝒫𝒫′ ∈ {𝑣𝑣𝑀𝑀𝑅𝑅𝑃𝑃 − 1,𝑣𝑣𝑀𝑀𝑅𝑅𝑃𝑃 − 2} 
(17) 

 
 
Table 2 
𝑆𝑆𝑆𝑆�𝑅𝑅(𝑆𝑆𝑘𝑘)� values per procedure and instance 𝜃𝜃 ∈ Ζ (MILP-1, MILP-2, GRASP-3)). 𝑅𝑅𝑆𝑆𝑆𝑆 differences between 
pairs of procedures (𝑅𝑅𝑆𝑆𝑆𝑆(𝐺𝐺3𝑣𝑣𝑣𝑣1,𝐺𝐺3𝑣𝑣𝑣𝑣2,𝑣𝑣1𝑣𝑣𝑣𝑣2)), best solution 𝑆𝑆𝑆𝑆(𝑅𝑅)∗ and winning algorithm. 
  

𝜃𝜃 ∈ Ζ 𝑆𝑆𝑆𝑆�𝑅𝑅(𝑆𝑆𝑘𝑘)�  𝑅𝑅𝑆𝑆𝑆𝑆(𝒫𝒫𝑣𝑣𝒫𝒫′(𝜃𝜃)): Gain 𝒫𝒫 𝑣𝑣𝑚𝑚𝑚𝑚𝑠𝑠𝑣𝑣𝑠𝑠 𝒫𝒫′   
𝑚𝑚/𝐴𝐴 MILP-1 MILP-2 GRASP-3 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 𝐺𝐺3𝑣𝑣𝑣𝑣1 𝐺𝐺3𝑣𝑣𝑣𝑣2 𝑣𝑣1𝑣𝑣𝑣𝑣2 𝑆𝑆𝑆𝑆(𝑅𝑅)∗ 𝑊𝑊𝑖𝑖𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚 
19/4 - - - 323.4 - - - Infeasible - 
19/5 54.56 42.96 55.94 323.4 -0.00  -0.04  -0.04  42.96 M2 

19/10 38.53 19.33 32.31 323.4 0.02  -0.04  -0.06  19.33 M2 
20/4 - - - 307.3 - - - Infeasible - 
20/5 43.57 37.32 38.52 307.3 - -0.00  - 37.32 M2 

20/10 23.81 10.17 25.31 307.3 -0.00  -0.05  -0.04  10.17 M2 
21/4 - 71.70 82.98 292.6 - -0.04  - 71.70 M2 
21/5 29.07 19.67 32.87 292.6 -0.01  -0.05  -0.03  19.67 M2 

21/10 25.19 5.29 14.21 292.6 0.04  -0.03  -0.07  5.29 M2 
22/4 - 57.71 59.37 279.3 - -0.01  - 57.71 M2 
22/5 16.79 12.83 23.30 279.3 -0.02  -0.04  -0.01  12.83 M2 

22/10 5.03 4.56 15.35 279.3 -0.04  -0.04  -0.00  4.56 M2 
23/4 - 59.27 47.68 267.2 - 0.04  - 47.68 G3 
23/5 15.23 7.16 16.44 267.2 -0.00  -0.03  -0.03  7.16 M2 

23/10 9.62 6.75 7.45 267.2 0.01  -0.00  -0.01  6.75 M2 
24/4 47.07 38.40 34.70 256.0 0.05  0.01  -0.03  34.70 G3 
24/5 16.19 7.49 14.65 256.0 0.01  -0.03  -0.03  7.49 M2 

24/10 10.51 3.13 5.27 256.0 0.02  -0.01  -0.03  3.13 M2 
25/4 32.41 - 26.74 245.8 0.02  - - 26.74 G3 
25/5 35.46 5.20 14.85 245.8 0.08  -0.04  -0.12  5.20 M2 

25/10 11.35 4.96 6.20 245.8 0.02  -0.01  -0.03  4.96 M2 
𝐴𝐴𝑣𝑣𝑚𝑚𝑚𝑚𝑎𝑎𝑔𝑔𝑚𝑚     0.012  -0.022  -0.039  - - 

 
In accordance with the risk dispersion values (see Table 2), we can state the following: 

 

• No procedure guarantees optimal solutions. 
• No procedure gives a solution for assembly lines with 19 and 20 workstations and an available area 

of 4 meters. IBM ILOG CPLEX solver proves that instances 19/4 and 20/4 are infeasible. 
• MILP-2 does not give solution when the assembly line has 25 workstations and 4 meters. MILP-1 

also does not give solution when the assembly line has 21, 22 and 23 workstations and 4 meters. 
• MILP-2 is the winning procedure in terms of best RSD value. Indeed, considering all data sets, MILP-

2 achieves 16 best solutions, GRASP-3 achieves three (datasets 23/4, 24/4 and 25/4), and MILP-1 
does not get the best solution in any dataset. 

• MILP-2 also wins in terms of average gain of RSD. The overall average gain of MILP-2 against 
GRASP-3 and MILP-1 is 2.17% and 3.87%, respectively. MILP-1 is the loser, as its results are im-
proved by GRASP-3 by 1.20%. 

• MILP-2 improves results given by MILP-1 in 18 datasets out of 19. Indeed, RSD average gain when 
MILP-2 wins against MILP-1 is  3.87%; however, when MILP-1 wins against MILP-2 it is because 
MILP-2 does not find a solution (dataset 25/4). 

• GRASP-3 obtains 13 best solutions and six worst solutions against MILP-1, considering only 19 data 
sets. GRASP-3 improves solutions given by MILP-1 by an average gain of 2.97%, while MILP-1 
improves results from GRASP-3 by 1.45%, when it gives better solutions than GRASP-3. 

• GRASP-3 gets a worse solution than MILP-2 in 16 instances out of 19 and wins in three cases. 
However, the RSD average gains are not so relevant— 2.89% when GRASP-3 wins against MILP-
2, and 2.79%in the opposite case. 
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• It should be noted that MILP-1 and MILP-2 require 1,000 seconds per data set, while GRASP-3 only 
requires 591.17 seconds on average, accumulating the time for the three admission factor values 
(197.06 seconds per execution). 

5. Conclusions 

We proposed, in this work, a GRASP procedure for solving a mixed-model assembly line problem. The 
studied approach focused on minimizing both the maximum ergonomic risk of the assembly line, and 
the standard deviation from risk of workstations. 

The procedure designed for the problem, GRASP-3, was compared with two different problem ap-
proaches—MILP-1 and MILP-2—which were solved by mixed integer linear programming. Although 
the reference models, MILP-1 and MILP-2, have different mono-objective functions, they allowed us to 
assess the performance of the GRASP-3 against an exact procedure, such as linear programming. 

Therefore, the three procedures were compared through a case study based on an assembly line from 
Nissan’s engine plant in Barcelona. Specifically, the computational experiment was to obtain different 
line configurations in accordance with different values for the number of workstations and the maximum 
available area. This variety in the line’s attributes allowed us to assess the procedures’ quality with 
respect to two metrics: (a) the maximum ergonomic risk from each line configuration, and (b) the stand-
ard deviation from the different risk levels between stations. 

Results show that GRASP-3 and MILP-1 are the best procedures with respect to the maximum er-
gonomic risk of the line. MILP-2 is the procedure that gets a higher degree of risk in a greater number 
of line configurations. 

However, as expected, MILP-2 wins against the other procedures with respect to the standard devi-
ation from ergonomic risk of workstations. GRASP-3 is in the second position, and MILP-1 is the pro-
cedure that offers the worst results. 

Although not optimal in terms of average maximum risk or standard deviation, GRASP-3 is very 
competitive in average terms. Indeed, the results differ by only 0.24% on average from the best results 
for the average maximum ergonomic risk (MILP-1), and by 2.17% from the best results for the standard 
deviation (MILP-2). In addition, GRASP-3 is clearly the most competitive procedure with respect to the 
CPU time, using 591.17 seconds per dataset or 197.06 seconds per execution, against the 1,000 seconds 
per dataset used by the linear programming. 

In future works, we will attempt to formulate new models and procedures with the aim of minimizing 
the range of ergonomic risk and maximizing the productivity of assembly lines with restrictions on both 
the maximum ergonomic risk and linear area. 
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Appendix A 

Table A1 
Instance 𝜀𝜀 = 1 from Nissan-9Eng: Set of elemental tasks (𝑗𝑗 = 1, … ,140) and subsets of immediate precedent tasks 
of task 𝑗𝑗: 𝑃𝑃𝑗𝑗  (𝑗𝑗 = 1, … , |𝐽𝐽|).  
 
𝑗𝑗 ∈ 𝐽𝐽 Precedent tasks: 𝑃𝑃𝑗𝑗  𝑗𝑗 ∈ 𝐽𝐽 Precedent tasks: 𝑃𝑃𝑗𝑗  𝑗𝑗 ∈ 𝐽𝐽 Precedent tasks: 𝑃𝑃𝑗𝑗  

1 - 48 46 95 94 
2 3, 31 49 42, 43 96 93, 95, 99 
3 1 50 47, 48, 49 97 93, 95, 99 
4 3, 5 51 47, 48, 49 98 92 
5 1 52 47, 48, 49 99 89, 90, 91 
6 4, 5 53 47, 48, 49 100 98, 99 
7 1 54 47, 48, 49 101 98, 99 
8 1 55 47, 48, 49 102 100, 101 
9 1 56 47, 48, 49 103 100, 101 

10 1 57 50, 51, 52, 53, 54, 55, 56 104 102, 103 
11 1 58 57, 59, 60 105 106 
12 11 59 41 106 100, 101 
13 1 60 42, 43 107 100, 101, 104 
14 1, 13 61 57, 58 108 100, 101, 104 
15 9, 10, 11, 13, 14 62 61 109 108 
16 9, 10, 11, 13, 14 63 57 110 108 
17 9, 10, 11, 13, 14 64 57 111 11, 109 
18 9, 10, 11, 13, 14 65 61, 62, 63, 64 112 11, 109 
19 9, 10, 11, 13, 14 66 61, 62, 63, 64 113 108 
20 9, 10, 11, 13, 14 67 66 114 113 
21 9, 10, 11, 13, 14 68 65, 67 115 113 
22 26, 27 69 68 116 111, 112, 114, 115 
23 26, 27 70 67 117 118 
24 26, 27 71 68 118 116 
25 26, 27 72 68 119 116 
26 15, 16, 17, 18, 19, 20, 21 73 71, 72 120 119 
27 15, 16, 17, 18, 19, 20, 21 74 68, 69, 70, 73 121 105, 107, 117, 120 
28 22, 23, 24, 25 75 74 122 121 
29 28 76 74 123 122 
30 29 77 75 124 123 
31 6, 7, 8, 30 78 79 125 124 
32 31 79 74 126 125 
33 32 80 76, 77, 78 127 126 
34 32 81 76, 77, 78 128 117, 12 
35 36 82 80, 81 129 126 
36 32 83 82 130 127, 128, 129 
37 32, 35 84 83 131 12, 117 
38 33, 34, 36, 37 85 75, 84 132 131 
39 33, 34, 36, 37 86 82 133 130 
40 33, 34, 36, 37 87 82 134 132 
41 38, 39, 40 88 84 135 134 
42 38, 39, 40 89 88 136 135 
43 38, 39, 40 90 88 137 136 
44 41, 42, 43 91 85, 86, 87, 88 138 136 
45 41, 42, 43 92 89, 90, 91 139 137, 138 
46 44, 45 93 92 140 133, 139 
47 46 94 89, 90, 91   
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Table A2 
Instance 𝜀𝜀 = 1 from Nissan-9Eng: Set of elemental tasks (𝑗𝑗 = 1, … ,140), processing time of elemental tasks (𝑡𝑡𝑗𝑗), 
linear area required by the elemental tasks (𝑎𝑎𝑗𝑗) and category of tasks (𝜒𝜒𝜙𝜙,𝑗𝑗) associated with the risk factor 𝜙𝜙.  

 
𝑗𝑗 ∈ 𝐽𝐽 𝑡𝑡𝑗𝑗 𝑎𝑎𝑗𝑗 𝜒𝜒𝜙𝜙,𝑗𝑗 𝑗𝑗 ∈ 𝐽𝐽 𝑡𝑡𝑗𝑗 𝑎𝑎𝑗𝑗 𝜒𝜒𝜙𝜙,𝑗𝑗 𝑗𝑗 ∈ 𝐽𝐽 𝑡𝑡𝑗𝑗 𝑎𝑎𝑗𝑗 𝜒𝜒𝜙𝜙,𝑗𝑗 

1 60.00 300 1 48 35.00 50 3 95 20.00 50 3 
2 75.00 200 2 49 5.00 50 3 96 10.00 50 3 
3 20.00 50 1 50 15.00 50 3 97 5.00 50 3 
4 60.00 100 1 51 25.00 0 3 98 80.00 0 2 
5 20.00 50 1 52 30.00 0 3 99 30.00 0 3 
6 60.00 150 1 53 15.00 0 3 100 10.00 50 2 
7 45.00 100 2 54 15.00 0 3 101 10.00 50 2 
8 10.00 50 2 55 20.00 0 3 102 20.00 50 2 
9 20.00 50 2 56 10.00 0 3 103 30.00 50 2 

10 30.00 50 2 57 10.00 50 3 104 5.00 0 3 
11 15.00 50 2 58 20.00 50 2 105 30.00 50 2 
12 15.00 50 2 59 5.00 0 3 106 25.00 50 2 
13 15.00 100 1 60 20.00 50 3 107 5.00 0 3 
14 10.00 50 2 61 45.00 100 2 108 5.00 0 2 
15 8.00 100 2 62 30.00 50 2 109 5.00 50 2 
16 8.00 50 2 63 30.00 50 2 110 5.00 0 2 
17 80.00 100 2 64 10.00 50 2 111 10.00 0 2 
18 40.00 50 2 65 5.00 0 2 112 10.00 0 2 
19 5.00 50 2 66 10.00 50 2 113 15.00 50 2 
20 5.00 50 2 67 15.00 50 2 114 20.00 0 2 
21 5.00 50 2 68 60.00 150 2 115 20.00 0 2 
22 7.00 50 2 69 10.00 50 2 116 45.00 100 2 
23 7.00 50 2 70 30.00 100 2 117 20.00 50 2 
24 30.00 50 2 71 10.00 50 2 118 25.00 0 2 
25 30.00 50 2 72 10.00 50 2 119 25.00 0 2 
26 5.00 50 2 73 40.00 150 2 120 20.00 50 2 
27 5.00 50 2 74 25.00 50 2 121 45.00 150 2 
28 30.00 100 2 75 10.00 50 2 122 15.00 50 1 
29 10.00 50 2 76 10.00 100 2 123 10.00 50 1 
30 15.00 100 2 77 15.00 50 2 124 10.00 0 1 
31 10.00 0 2 78 15.00 50 2 125 20.00 100 1 
32 15.00 50 2 79 15.00 50 2 126 30.00 50 2 
33 30.00 100 3 80 10.00 50 2 127 10.00 50 2 
34 10.00 50 3 81 10.00 100 2 128 25.00 50 2 
35 5.00 50 3 82 10.00 0 2 129 30.00 50 2 
36 25.00 100 2 83 20.00 50 2 130 30.00 75 2 
37 15.00 0 3 84 10.00 0 2 131 40.00 50 2 
38 5.00 50 3 85 20.00 50 3 132 25.00 100 1 
39 5.00 50 3 86 25.00 50 2 133 25.00 50 1 
40 5.00 50 3 87 20.00 50 2 134 20.00 50 1 
41 60.00 50 3 88 15.00 25 3 135 15.00 50 1 
42 15.00 150 3 89 20.00 50 3 136 20.00 50 1 
43 15.00 150 3 90 30.00 50 3 137 30.00 50 2 
44 25.00 50 3 91 20.00 50 3 138 30.00 50 2 
45 25.00 50 3 92 25.00 50 3 139 15.00 100 2 
46 5.00 50 3 93 10.00 50 3 140 120.00 0 1 
47 35.00 50 3 94 5.00 50 3     
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