

E-EON: Energy-Efficient and
Optimized Networks for Hadoop

Renan Fischer e Silva

ADVERTIMENT La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del r e p o s i t o r i i n s t i t u c i o n a l
UPCommons (http://upcommons.upc.edu/tesis) i el repositori cooperatiu TDX
(h t t p : / / w w w . t d x . c a t /) ha estat autoritzada pels titulars dels drets de propietat intel·lectual
únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza
la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc
aliè al servei UPCommons o TDX. No s’autoritza la presentació del seu contingut en una finestra
o marc aliè a UPCommons (framing). Aquesta reserva de drets afecta tant al resum de presentació
de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom
de la persona autora.

ADVERTENCIA La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del repositorio institucional UPCommons
(http://upcommons.upc.edu/tesis) y el repositorio cooperativo TDR (http://www.tdx.cat/?locale-
attribute=es) ha sido autorizada por los titulares de los derechos de propiedad intelectual
únicamente para usos privados enmarcados en actividades de investigación y docencia. No
se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde
un sitio ajeno al servicio UPCommons No se autoriza la presentación de su contenido en una
ventana o marco ajeno a UPCommons (framing). Esta reserva de derechos afecta tanto al
resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes
de la tesis es obligado indicar el nombre de la persona autora.

WARNING On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the i n s t i t u t i o n a l r e p o s i t o r y UPCommons
(http://upcommons.upc.edu/tesis) and the cooperative repository TDX (http://www.tdx.cat/?locale-
attribute=en) has been authorized by the titular of the intellectual property rights only for private
uses placed in investigation and teaching activities. Reproduction with lucrative aims is not
authorized neither its spreading nor availability from a site foreign to the UPCommons service.
Introducing its content in a window or frame foreign to the UPCommons service is not authorized
(framing). These rights affect to the presentation summary of the thesis as well as to its contents.
In the using or citation of parts of the thesis it’s obliged to indicate the name of the author.

http://upcommons.upc.edu/tesis
http://www.tdx.cat/
http://www.tdx.cat/?locale-attribute=es
http://www.tdx.cat/?locale-attribute=es
http://upcommons.upc.edu/tesis
http://www.tdx.cat/?locale-attribute=en
http://www.tdx.cat/?locale-attribute=en

E-EON: Energy-Efficient and

Optimized Networks for Hadoop

RENAN FISCHER E SILVA

Barcelona, Spring 2018

E-EON: Energy-Efficient and Optimized Networks for Hadoop

by

RENAN FISCHER E SILVA

Departament d’Arquitectura de Computadors

A thesis submitted in fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Architecture

Departament d’ Arquitectura de Computadors (DAC)

Universitat Politècnica de Catalunya (UPC)

Barcelona, Spain

PhD Supervisor Tutor

Dr. Paul M. Carpenter Dra. Rosa M. Bad́ıa

Spring 2018

iii

This page has been intentionally left blank.

iv

Have the courage to follow your heart and intuition.

They somehow already know what you truly want to become. . .

Steve Jobs

Abstract
E-EON: Energy-Efficient and Optimized Networks for Hadoop

by Renan Fischer e Silva

Energy efficiency and performance improvements have been two of the major concerns of

current Data Centers. With the advent of Big Data, more information is generated year

after year, and even the most aggressive predictions of the largest network equipment

manufacturer have been surpassed due to the non-stop growing network traffic generated

by current Big Data frameworks.

As, currently, one of the most famous and discussed frameworks designed to store, re-

trieve and process the information that is being consistently generated by users and

machines, Hadoop has gained a lot of attention from the industry in recent years and

presently its name describes a whole ecosystem designed to tackle the most varied re-

quirements of today’s cloud applications. This thesis relates to Hadoop clusters, mainly

focused on their interconnects, which is commonly considered to be the bottleneck of such

ecosystem. We conducted research focusing on energy efficiency and also on performance

optimizations as improvements on cluster throughput and network latency. Regarding

the energy consumption, a significant proportion of a data center’s energy consump-

tion is caused by the network, which stands for 12% of the total system power at full

load. With the non-stop growing network traffic, it is desired by industry and academic

community that network energy consumption should be proportional to its utilization.

Considering cluster performance, although Hadoop is a network throughput-sensitive

workload with less stringent requirements for network latency, there is an increasing

interest in running batch and interactive workloads concurrently on the same cluster.

Doing so maximizes system utilization, to obtain the greatest benefits from the capital

and operational expenditures. For this to happen, cluster throughput should not be

impacted when network latency is minimized.

The two biggest challenges faced during the development of this thesis were related to

achieving near proportional energy consumption for the interconnects and also improv-

ing the network latency found on Hadoop clusters, while having virtually no loss on

cluster throughput. Such challenges led to comparable sized opportunity: proposing

new techniques that must solve such problems from the current generation of Hadoop

clusters.

We named E-EON the set of techniques presented in this work, which stands for Energy

Efficient and Optimized Networks for Hadoop. E-EON can be used to reduce the network

energy consumption and yet, to reduce network latency while cluster throughput is

vi

improved at the same time. Furthermore, such techniques are not exclusive to Hadoop

and they are also expected to have similar benefits if applied to any other Big Data

framework infrastructure that fits the problem characterization we presented throughout

this thesis.

With E-EON we were able to reduce the energy consumption by up to 80% compared

to the state-of-the art technique. We were also able to reduce network latency by up to

85% and in some cases, even improve cluster throughput by 10%. Although these were

the two major accomplishment from this thesis, we also present minor benefits which

translate to easier configuration compared to the stat-of-the-art techniques. Finally,

we enrich the discussions found in this thesis with recommendations targeting network

administrators and network equipment manufacturers.

Acknowledgements

I start by thanking God for all the endeavors listed below in this Acknowledgment. I also

thank Him for the health and capacity to start pursuing the Ph.D. degree and specially,

for being able to successfully reach the end of this writing.

I want to express my deepest gratitude to my mentor, my boss and also my thesis advisor

Paul, for having selected me for this project. Paul allowed me to have an incredible

freedom in the way I decided to conduct my research. Yet, he was always there to

discuss a new idea and for understanding my unorganized thoughts which would finally

lead to presentable results. For his generosity granting his time on tight deadlines.

Without him, this thesis wouldn’t have half of the quality it has now.

To Barcelona Supercomputing Center, its director Prof. Mateo Valero and also to

all its employees which somehow supported the development of this thesis, my most

sincere Acknowledgment. Having its financial support allowed me to have an worry-free

employment time and to focus on what really matters.

To my friends made in Barcelona. Thanks to all of you, I had a memorable time. It

would be very hard to translate in these words the importance you had during these

four years, but I guarantee I will always remember all the memories lived, stories, trips

and fun time we shared. Thanks to all these experiences, I felt like these four years were

a real sabbatical period in my life.

The real support of all this work is my family. I am lucky to be part of a family with

beautiful values, which they always taught me and made me the man I am today. Their

visits warmed my heart every single time and I thank my mom, dad and twin brother

for just being there during these years. It would be much more difficult without felling

you all always around.

To the pre-defense committee and specially to the external reviewers of this thesis,

which helped me to improve the quality of this manuscript providing me constructive

and detailed comments.

F inally, my Ph.D. adventure in Barcelona ends with the writing of this Acknowledgment.

I am very grateful for all the personal, professional and academic growth and for all the

experiences I was able to live during this season. I consider myself a grateful lucky man...

Author

vii

viii

The research leading to this thesis has received funding from the European Union’s Sev-

enth Framework Programme (FP7/2007–2013) under grant agreement number 610456

(Euroserver). The research was also supported by the Ministry of Economy and Compet-

itiveness of Spain under the contracts TIN2012-34557 and TIN2015-65316-P, Generali-

tat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272), HiPEAC-3 Network

of Excellence (ICT- 287759), and the Severo Ochoa Program (SEV-2011-00067) of the

Spanish Government.

Contents

Abstract/abstract v

Acknowledgements vii

Contents ix

List of Figures xii

List of Tables xiv

1 Introduction 1

1.1 Cloud Computing Traffic . 2

1.1.1 A Brief Story About the Hadoop Ecosystem 4

1.2 The Energy Consumption Problem . 5

1.3 Opportunity for Performance Optimization 6

1.4 Thesis Contributions . 7

1.5 Thesis Organization . 9

2 Background and Related Work 10

2.1 Energy Efficient Ethernet . 10

2.2 MapReduce and Hadoop . 13

2.3 TCP in Modern Data Centers . 14

2.4 Controlling latency and buffer occupancy 16

2.4.1 Active Queue Management . 16

2.4.2 Explicit Congestion Notifications 16

2.4.3 Data Center TCP . 17

2.5 Related Work . 18

2.5.1 EEE Under Specific Network Traffic Patterns 18

2.5.2 Controlling latency and Buffer Occupancy on Data Center networks 18

3 Methodology 21

3.1 Simulation Environment and Workloads 21

3.2 Hardware configuration . 22

3.3 Topology . 23

ix

Contents x

4 Energy Efficient Ethernet on MapReduce Clusters 25

4.1 Summary . 25

4.2 Methodology . 26

4.2.1 Hardware configuration . 26

4.2.2 Workloads . 27

4.2.3 EEE settings . 28

4.2.4 Summary of configurations . 29

4.2.5 Total runtime vs. Average runtime 29

4.3 Results . 30

4.3.1 Fixed link latency . 30

4.3.2 Standard EEE and stall timer . 32

4.3.3 Optimum Energy Savings on MapReduce Cluster 33

4.3.3.1 Uniform EEE settings . 33

4.3.3.2 Non-uniform EEE settings 36

4.3.3.3 Analysis by link type . 37

4.3.3.4 Load impact on coalescing settings 38

4.4 Discussion and Recommendations . 40

Recommendations for system administrators: 40

Recommendations for equipment vendors: 40

How buffering and burstiness really affect Hadoop: 41

4.5 Conclusions . 42

5 Controlling Delay Mechanisms on MapReduce Clusters 43

5.1 Summary . 43

5.2 Methodology . 44

5.2.1 Simulation Environment and Workload Characterization 45

5.3 Results . 48

5.3.1 Random Early Detection (RED) 48

5.3.2 Controlled Delay (CoDel) . 50

5.3.3 CoDel x RED . 51

5.4 Discussion and Recommendations . 52

5.5 Conclusions . 53

6 High Throughput and Low Latency on Hadoop Clusters 55

6.1 Summary . 55

6.2 The Problem and Motivation . 57

6.2.1 A deeper look at TCP packet marking 58

6.2.2 Proposed and evaluated solutions 60

6.3 Simulation Environment and Workload Characterization 62

6.4 Results . 64

6.4.1 Random Early Detection (RED) 64

6.4.2 Controlled Delay (CoDel) . 66

6.4.3 Summary of Results . 67

6.5 Discussion and Recommendations . 68

Recommendations for equipment vendors: 69

Recommendations for network administrators: 70

6.6 Related Work . 70

Contents xi

6.7 Conclusions . 72

7 Energy Savings and Lower Latency Networks 73

7.1 Summary . 73

7.2 Motivation . 75

7.2.1 Packet Coalescing . 75

7.2.2 Buffer density and Hadoop Network Latency 75

7.3 Methodology . 77

7.3.1 Simulation Environment and Workload Characterization 77

7.4 Results . 79

7.4.1 Buffer density and Packet Coalescing on Hadoop 79

7.4.2 Combining Packet Coalescing with ECN/AQM/RED 81

7.4.3 Summary of Results . 82

7.5 Discussion and Recommendations . 83

Recommendations for equipment vendors: 83

Recommendations for network administrators: 83

7.6 Conclusions . 84

8 Conclusion and Future Work 85

8.1 Future work . 86

8.2 List of Publications . 89

Bibliography 90

List of Figures

1.1 Traditional vs. Cloud Data Center Traffic Distribution 2

1.2 North-South and East-West traffics on a graphical representation sample
(reproduced from [4]) . 3

1.3 Global Data Center Traffic Distribution by Destination 3

2.1 Timeline of a link using Energy Efficient Ethernet 11

2.2 Normalized link power consumption as a function of utilization, assuming
Poisson arrivals (redrawn from [14]) . 12

3.1 Leaf-spine Cluster Topology . 23

4.1 Average and total runtime vs. load (Quincy scheduler) 30

4.2 Runtime vs. fixed link latency per link . 31

4.3 Runtime vs. stall time without packet coalescing (small tasks) 32

4.4 Average energy per port vs. stall time without packet coalescing (small
tasks) . 32

4.5 Average energy consumption (comparison with legacy Ethernet) 33

4.6 All runtimes and energy consumption of workloads using different settings 34

4.7 All runtimes and energy consumption of workloads using different settings
(Zoomed-in) . 34

4.8 Average Runtime and Energy Consumption of MapReduce jobs 35

4.9 Energy consumption (optimized configuration) 36

4.10 Detailed energy consumption by NICs . 37

4.11 Total runtime as CPU load is varied (Terasort) 38

4.12 Energy consumption as CPU load is varied (Terasort) 39

4.13 Energy–delay product as CPU load is varied (Terasort) 39

5.1 Shuffle Characterization . 46

5.2 Normalized Results for Auto RED Queue 49

5.3 Normalized Results for Random Early Detection Queue 49

5.4 Normalized Results for Controlled Delay Queue 50

5.5 Normalized Results for CoDel x RED Queues 51

6.1 Hadoop job execution time affected by Active Queue Management 56

6.2 Typical snapshot of a network switch queue in a Hadoop cluster 59

6.3 Hadoop Runtime - RED . 65

6.4 Cluster Throughput - RED . 65

6.5 Network Latency - RED . 65

6.6 Hadoop Runtime - CoDel . 66

xii

List of Figures xiii

6.7 Cluster Throughput - CoDel . 67

6.8 Network Latency - CoDel . 67

7.1 Buffer density impact on network latency on Hadoop 76

7.2 Packet coalescing impact on network latency considering different buffer
sizes . 79

7.3 Packet coalescing impact on runtime and throughput considering different
buffer sizes . 80

7.4 Packet Coalescing impact on energy consumption of 10GbE considering
different buffer sizes . 80

7.5 Congestion control impact on network latency on deep buffers 81

7.6 Runtime, Latency, Throughput and Energy values for Packet Coalescing
combined with RED and ECN . 81

7.7 Runtime, Latency, Throughput and Energy values for Packet Coalescing
combined with RED and ECN . 82

List of Tables

2.1 EEE single-frame efficiency . 11

4.1 Simulated Environment . 27

4.2 Simulated benchmarks . 28

4.3 EEE packet coalescing settings . 29

5.1 Simulated Environment . 45

5.2 Auto Random Early Detection Settings 49

5.3 Random Early Detection Settings . 49

5.4 Controlled Delay Settings . 51

6.1 ECN codepoints on TCP header . 61

6.2 ECN codepoints on IP header . 61

6.3 Simulated Environment . 62

6.4 Auto Random Early Detection Settings 62

6.5 Controlled Delay (CoDel) Settings . 63

7.1 Simulated Environment . 77

7.2 EEE wake and sleep operations . 78

7.3 Ethernet Specs . 78

xiv

To my loved parents. . .

xv

Chapter 1

Introduction

In the last two years more data was created than the previous 5,000 years of human-

ity. It is also believed that in 2017, more data will be created in one year alone [1].

As a consequence, the significance of data is expanding across a wide-range of indus-

tries: biotech, energy, IoT, healthcare, automotive, space and deep sea explorations,

cybersecurity, social media, telecom, consumer electronics, manufacturing, gaming and

entertainment [1]. Such an enormous amount of generated data brings up a challenge on

how to design effective infrastructures that are able to store and retrieve data correctly

and within an expected time and yet to process and analyse all this data in a way that

business and science can take advantage of it. This phenomenon started about a decade

ago and presents a non-stop growing scale on both velocity and size. It is commonly

referred as Big Data.

As, currently, one of the most famous and discussed frameworks designed to store, re-

trieve and process the information that is being consistently generated by users and

machines, Hadoop has gained a lot of attention from the industry in recent years and

currently its name describes a whole ecosystem designed to tackle the most varied re-

quirements of today’s cloud applications. Given its importance, the scope of this thesis

relates to Hadoop clusters, mainly focused on their interconnects, which is commonly

considered to be the system bottleneck. We conducted research focusing on energy ef-

ficiency and also on performance optimizations as improvements on cluster throughput

and network latency. As a starting point, looking to the past may help when trying

to predict the trends for the future. In the next section we discuss the past and also

the future predictions for the network traffic generated on Data Centers which shows

how significant cloud computing traffic has become and its distribution on global Data

Centers.

1

Chapter 1 Introduction 2

1.1 Cloud Computing Traffic

This thesis was started in early 2014, and back then we had access to Cisco’s Global Index

forecast encompassing the period between 2013 and 2018 [2]. As seen in Figure 1.1a,

the trend was clear; Cloud Computing traffic had already became dominating on Data

Centers and in comparison to traditional Data Center traffic, it already represented

60% of the total Data Center traffic in 2014, with predictions indicating that it would

reach more than 3/4 of the total global traffic by the year of 2018. Cloud Computing

traffic is associated with cloud consumer and business applications; e.g. Gmail. On the

other hand, traditional Data Center traffic is associated with noncloud consumer and

business applications such as the traditional email servers which are considered nowadays

obsolete.

(a) Between 2013-2018 (b) Between 2015-2020

Figure 1.1: Traditional vs. Cloud Data Center Traffic Distribution

Currently, looking to Cisco’s latest prediction [3], Data Center traffic has already grown

at a faster rate than previously expected. The same happened with Cloud Computing

traffic. As seen in Figure 1.1b, by 2015 Cloud Computing traffic already represented

more than 80% of the Data Center traffic, and the predictions point it will have reached

more than 90% by 2020.

Another traffic characterization from Cisco relates to the source and destination of Data

Center traffics. It can be one of 3 types; Data Center-to-user, Data Center-to-Data

Center and finally Within Data Center. Examples from the type of services are:

• Data Center-to-User: Such traffic is generated by services offered to users such as

web, email and Video on Demand (VOD).

• Data Center-to-Data Center: Inter Data Center traffic is generated by tasks such

as replication, Content Delivery Networks (CDN) and intercloud links.

Chapter 1 Introduction 3

• Within Data Center: Consists in storage, production and development data. Big

Data is a significant driver of its traffic. It is also defined as east-west traffic, which

is traffic among servers inside the same data center.

As illustrated in Figure 1.2, the north-south traffic which, on the contrary to the east-

west traffic, is network traffic that leaves the Data Center, corresponds to only a small

fraction of global generated traffic. As seen in Figure 1.3a, only 1/4 of the global

generated traffic actually leaves the Data Center and by the latest report, as seen in

Figure 1.3b, the Data Center traffic distribution is likely to remain equal for the next

years.

Figure 1.2: North-South and East-West traffics on a graphical representation sample
(reproduced from [4])

(a) Between 2013-2018 (b) Between 2015-2020

Figure 1.3: Global Data Center Traffic Distribution by Destination

It is important to mention that intra-rack traffic is not accounted by Cisco for such

traffic distribution. If intra-rack traffic was considered, traffic within Data Center would

account for more than 90% of the Global Data Center Traffic distribution [3]. Hadoop,

Chapter 1 Introduction 4

which is the considered workload on this thesis, schedules its tasks regarding where

data resides. If the task is small enough to be executed by servers residing within the

same rack, inter-rack communication will not be necessary. Therefore, this workload

generates a considerable amount of intra-rack and inter-rack traffic which fits with the

current trends and give us the opportunity to make a significant contribution to improve

figures related to energy consumption and performance optimization of this ecosystem.

1.1.1 A Brief Story About the Hadoop Ecosystem

As told by Marko Bonaci [5], the story about how Hadoop emerged can be defined as a

quest to make the entire Internet searchable. The origin has two important moments.

The start of the Lucene project and a paper published by Google which described their

solution for processing large data sets on large clusters.

The Lucene project started in 1997 by the Yahoo! employee Doug Cutting when he

created a full text search library. By the year of 2001, the project was already moved

to Apache Software Foundation, having a thriving Apache Lucene community by the

end of the same year. Still in 2001, a subproject of Lucene named Apache Nutch was

created by Mike Cafarella, in an effort to index the entire Web.

The problem with Apache Nutch is that it was not scalable, basically because it was

running on 4 machines and data interchange between them had to be done manually.

Any attempt to increase the number of machines would have resulted in an exponential

rise of complexity. An underlying cluster management platform was made extremely

necessary so the core problem of indexing the Web could be tackled again.

A couple of years after, more precisely in October 2003, Google published a paper

presenting the Google File System [6]. It took some time but Cutting and Cafarella

were able to follow Google’s blueprints and after what was considered a remarkable

job, Nutch Distributed File System (NDFS) was available bringing some key features as

hiding operational complexity from users and that it could be built out of inexpensive

commodity hardware components.

After having solved the operational problems to have a fully distributed file system,

Cutting and Carafella started exploring various data processing models trying to reach

the highest level of parallelism. Again, Google came up with the idea to do so and in

December 2004 they published the now famous MapReduce: Simplified Data Processing

on Large Clusters [7]. The framework was designed with the goal of processing large data

sets in a reduced amount of time. Google’s MapReduce algorithm solved 3 problems in

2004: parallelization, distribution and fault-tolerance.

Chapter 1 Introduction 5

By February 2006, Cutting removed the implemented code from GFS and MapReduce

out of the Nutch code base and created a new project under the Lucene project which

was named Hadoop. It consisted of Hadoop Common core and libraries, the HDFS

(finally with the popular Hadoop File System name) and the MapReduce workload.

After that, its adoption was a matter of time with companies as Yahoo!, Facebook,

Twitter, LinkedIn and many others performing very serious work with Hadoop and

contributing back to its open source ecosystem. By 2012, Yahoo!’s Hadoop cluster was

already composed with 42000 nodes and the number of Hadoop contributors reached

1200.

If in its early age Hadoop was originally designed for batch-processing, after almost a

decade evolving the plataform to fit industry requirements, Hadoop is today capable of

online processing which can help reducing the demand from SQL-on-Hadoop gap and

also enabling IoT to finally spur Hadoop’s case. Deeper details from the framework are

covered on the next Chapter where we present the background and related work.

1.2 The Energy Consumption Problem

One of the greatest concerns in the design of data centers is the need to reduce energy

consumption. In recent years, the number of data centers has multiplied, and worldwide,

they are now responsible for a significant proportion of global electricity consumption [8].

Recently, in 2014, U.S. data centers were responsible for 1.8% of total U.S. electricity

consumption. At an average cost of 10 cents per kWh, the annual energy cost of U.S.

data centers is about $7 billion per year [9]. Another study even showed that the cost

of energy of current data centers had exceeded the cost of the hardware [10].

A significant proportion of a data center’s energy consumption is caused by the network.

D. Abts et al. [11] recently showed that a typical data center network consumes 12%

of the total system power at full load, and even more when the CPU and memory are

not fully utilized, which is common in data centers. Another study put the total energy

consumption for network switches at 30% [12], divided among top of rack switches (15%),

which typically use 1GbE links; and aggregation switches (10%) and core switches (5%),

both typically employing 10GbE links. The proportion of energy consumed by the

network is likely to increase, as processors and other components continue to improve

in energy efficiency and energy proportionality.1 There is still opportunity to reduce

network energy consumption through energy proportionality, since interconnect links,

which consume up to 65% of the total network power [13], always consume full power,

1The term “energy proportional” means that a component’s energy consumption should be propor-
tional to its utilization.

Chapter 1 Introduction 6

even when the link is idle [14]. Broadcom estimates that it could translate into a

reduction of CO2 emissions by up to 2.85 million metric tons per year only in U.S [15].

The Energy Efficient Ethernet (EEE) standard, approved by IEEE in 2010, improves

Ethernet energy proportionality by defining a link sleep mode known as Low Power

Idle (LPI). Although the standard defines the low-level mechanisms for entering and

leaving LPI mode, its designers chose to promote competition between vendors by not

defining how to decide when to enter and leave sleep mode. EEE was initially analysed

for Small Office/Home Office (SOHO) environments, but ongoing efforts are analysing

its deployment for data center applications, including video streaming [16] and scientific

computing [17]. Since EEE can incur significant performance overheads, many system

vendors still advise their customers to disable it in production use [18–20], at least until

its impact on real applications is better understood.

MapReduce[7] presents a specific traffic pattern, including all-to-all communication in

the shuffle phase, between mappers and reducers. As mentioned before, more than 75%

of the total traffic nowadays remains inside the data center [2]. Therefore there is still

opportunity to reduce network energy consumption through energy proportionality, since

interconnect links, which consume up to 65% of the total network power [13], always

consume full power, even when the link is idle [14].

1.3 Opportunity for Performance Optimization

With the advent of Big Data, data center applications are processing multi-terabyte

datasets, in parallel on large clusters, across hundreds to thousands of nodes. Big data

workloads based on Hadoop or similar frameworks generate significant communication

among servers within the same data center. In particular, as explained below, the shuf-

fle phase of MapReduce involves an all-to-all communication, which presents a stressful

load on the network.

Although Hadoop is a network throughput-sensitive workload with less stringent re-

quirements for network latency, there is an increasing interest in running batch and

interactive workloads concurrently on the same cluster. Doing so maximizes system uti-

lization, to obtain the greatest benefits from the capital and operational expenditures.

Recent studies have analysed how to reduce latency on systems with high-throughput

workloads to enable heterogeneous classes of workloads to run concurrently on the same

cluster [21]. Also, numerous Hadoop distributions are appearing with the aim of provid-

ing low-latency services, which may in future share the same infrastructure as MapRe-

duce workloads on a heterogeneous cluster with controlled latency [22]. As recently

Chapter 1 Introduction 7

pointed out, 46% of IoT applications have low latency requirements on seconds, or even

on milliseconds [23].

Current network switches offer much higher buffer density due the employment of

SDRAM memory. Many new solutions are targeting expensive equipment with deep

buffers, in comparison with what was offered a few years ago. For example, not so long

ago, a switch offering 1 MB of buffer density per port would be considered a deep buffer

switch [24]. New products are arising and with them, a buffer density per port 10×
bigger [25]. All this can make the Bufferbloat problem [26] even worse, with latency on

these networks reaching up to tens of milliseconds for certain classes of workloads.

1.4 Thesis Contributions

This thesis discusses two major problems of Hadoop clusters. Our research focused on

energy consumption and performance optimization at the interconnect level (on net-

work switches and server NICs). To do so, we faced several challenges throughout the

thesis development which led us to reach a deeper level of knowledge so we became

able to analyse, characterize and propose changes to state-of-the-art techniques that if

adopted by the industry and network equipment manufacturers, they will push for the

improvement of Hadoop’s network performance while also reducing its energy footprint.

As it refers to the title of this work, E-EON stands for Energy Efficient and Optimized

Networks for Hadoop. We selected E-EON to reference the set of techniques presented

on this work which can be used to reduce the network energy consumption and yet, to

reduce network latency while cluster throughput is improved at the same time. Also,

such techniques are not exclusive to Hadoop and they are also expected to have similar

benefits if applied to any other Big Data workload and cluster that fits the problem

characterization we presented throughout this thesis. We provide more details from the

contributions bellow:

1. We were the first to evaluate Energy Efficient Ethernet on Hadoop clusters. We

found that good energy savings can be obtained by leaf interconnects, but at the

aggregation level packet coalescing is necessary to reduce the energy footprint to

near ideal level. Our study produced two publications; the first was a best paper

nominee [27] and the second a journal extension [28].

2. Our second contribution stands for the first analysis of Active Queue Management

and TCP protocol extensions that enable the use of ECN such as ECN standalone

and DCTCP. We were able to reduce Hadoop’s network latency to 85% while

Chapter 1 Introduction 8

maintaining cluster throughput on 95% from the baseline. Yet, we concluded that

it is not a trivial task to configure such queues. This study was awarded one

publication [29].

3. The third contribution from this Thesis comes from a deeper study to understand

why AQMs are so difficult to configure on Hadoop clusters. We identified the

reasons for that and we characterized the traffic pattern for it to happen. Later

on we suggested modifications on how switch queues handle ECN marked pack-

ets. We were able to reduce network latency while on some cases even improving

throughput by 10%. We also solved the configuration problem providing effortless

configuration. Any other Big Data workload that follows the same traffic pattern

will benefit from this study, which carried on one publication [30] and has another

work currently under review and for publication during the year of 2018.

4. Finally, our last contribution resides on identifying the right conditions to combine

Energy Efficient Ethernet using Packet Coalescing together with Active Queue

Management. From such work is possible to achieve very low energy consump-

tion combined with very low latency networks. Such study yielded a conference

paper [31].

Below are publications list related to the contributions of this thesis.

• [LCN15] Renan Fischer e Silva and Paul M. Carpenter, Exploring Interconnect

Energy Savings Under East-West Traffic Pattern of MapReduce Clusters. on the

40th IEEE Conference on Local Computer Networks 2015, best paper nominee [27].

• [LCN16] Renan Fischer e Silva and Paul M. Carpenter, Controlling Network

Latency in Mixed Hadoop Clusters: Do We Need Active Queue Management? on

the 41st IEEE Conference on Local Computer Networks 2016 [29].

• [CLUSTER17] Renan Fischer e Silva and Paul M. Carpenter, High Throughput

and Low Latency on Hadoop Clusters using Explicit Congestion Notification: The

Untold Truth on the 19th IEEE International Conference on Cluster Computing

2017 [30].

• [LCN17] Renan Fischer e Silva and Paul M. Carpenter, Interconnect Energy

Savings and Lower Latency Networks in Hadoop Clusters: The Missing Link on the

42nd IEEE Conference on Local Computer Networks 2017 [31].

• [Transactions on Networking] Renan Fischer e Silva and Paul M. Carpenter,

Energy Efficient Ethernet on MapReduce Clusters: Packet Coalescing To Improve

10GbE Links on the IEEE/ACM Transactions on Networking, October 2017 [28].

• [- 2018] Renan Fischer e Silva and Paul M. Carpenter, TCP Proactive Congestion

Control Revamped: the Marking Threshold, under review.

Chapter 1 Introduction 9

1.5 Thesis Organization

The rest of this thesis is organized as follows. The next chapter presents background and

literature, which discusses the necessary background to follow this thesis work. Chapter

3 presents the general methodology used during our experimentations. Chapters 4, 5, 6

and 7 discuss the four contributions of this thesis as presented above. Finally Chapter

8 concludes this thesis.

Chapter 2

Background and Related Work

In this chapter we cover the background studied during the development of this work.

It describes the most important problems encountered in modern data center networks

and this chapter also describes the main solutions, both current practices and state-

of-the-art. Some of the problems presented here may already have been solved for the

current generation of Data Centers but they still need additional study of how they will

behave on a particular workload or scenario. This chapter also summarizes the Hadoop

framework and MapReduce programming model.

2.1 Energy Efficient Ethernet

IEEE 802.3az Energy Efficient Ethernet (EEE) was approved by IEEE in September

2010 [32]. Since Ethernet is the dominant technology for wire-line LANs, the power

saving mechanisms of EEE are expected to bring considerable energy savings [16]. EEE

has already been deployed, but many system vendors advise their customers to disable

it in production use [18–20], since it has a poorly understood impact on real world

application performance, with no visibility of the performance–energy tradeoff.

Cisco published a study of Energy Efficient Ethernet that showed a 16% reduction in

system power for synthetic Ethernet traffic [18]. The same study recommends that

EEE should be used only for edge devices. Yamaha Audio advises their customers to

disable Energy Efficient Ethernet for audio and video streaming [19]. Dell also presents

a troubleshooting section related to EEE [20].

The Energy Efficient Ethernet standard defines the low-level mechanisms for entering

and leaving sleep mode, known as Low Power Idle (LPI). Figure 2.1 shows the timeline of

a link, which is initially active. Transitioning into LPI mode requires time Ts. While the

10

Chapter 2 Background and Related Work 11

link remains in LPI mode, the transmitter sends periodic refresh signals, each of duration

Tr, to allow the receiver to continue to adapt to channel characteristics and to recognise

if the link is physically disconnected. Before transmitting a frame, the link must first

be woken from LPI mode, and doing so requires time Tw, which is approximately 4 µs

for 10GbE and 16 µs for 1GbE, similar to the time to transmit a small number of 1,500-

byte Ethernet frames. Power consumption is at full when the link is active and during

wake and sleep transitions, but in LPI mode, the average power consumption, including

refresh, is reduced to about 10%. The EEE standard does not define the strategy for

deciding when to enter and leave low-power mode. This subject is an active area of

research.

Figure 2.1: Timeline of a link using Energy Efficient Ethernet

Table 2.1: EEE single-frame efficiency

1,500-byte frame 150-byte frame
Speed Min.

Tw

(µs)

Min.
Ts

(µs)
Tframe

(µs)

Effi-
ciency

(%)
Tframe

(µs)

Effi-
ciency

(%)

100Base-TX 30.5 200 120 34.2 12 4.9
1000Base-T 16.5 182 12 5.7 1.2 0.6
10GBase-T 4.48 2.88 1.2 14.0 0.12 1.6

The energy efficiency of EEE is therefore impacted by a) the idle power consumption

(about 10%) and b) the wake/sleep overheads. The idle power consumption is a fixed

cost, unaffected by the strategy for entering and leaving low-power mode, which affects

only the wake/sleep overheads. When the load is moderate to high, the energy overhead

of transitioning in and out of LPI mode can be amortised over a number of packets.

When the load is moderate to low, however, it may be necessary to wake and sleep the

link to transmit a single frame, incurring high energy and latency penalties in relative

terms [33]. The extreme case is illustrated in Table 2.1, which summarises the energy

efficiency, assuming that the link wakes and sleeps to transmit a single frame. The

numbers are achieved by dividing the time spent to transmit a single frame by the total

time to leave LPI mode and return to this state.

Chapter 2 Background and Related Work 12

Figure 2.2: Normalized link power consumption as a function of utilization, assuming
Poisson arrivals (redrawn from [14])

To understand the context, Figure 2.2 (reproduced from Christensen et al. [14]) indicates

the efficiency of EEE, for Poisson arrivals. The ideal power consumption (assuming

that the idle power consumption cannot be avoided) is given by the line from 0% link

utilisation (for which the power consumption is 10%) to 100% utilisation and power.

The figure also shows how the baseline, which is legacy Ethernet, is always at full power

irrespective of link utilization. Standard EEE works well at very low link utilisation

because, although the relative efficiency of each packet is poor, the low packet frequency

means that the total power overheads are also low. It is in fact at moderate loads that

Standard EEE has poor energy efficiency. At 10% link utilization it already uses almost

half of the baseline power of legacy Ethernet and at 20% link utilization it reaches 70%

of the baseline power.

Previous studies show that the energy savings depend on the traffic pattern (which

often deviate significantly from Poisson) and network load [14, 33]. Proposals include

Power Down Threshold [17], or stall timer, which initiates sleep after a defined period

of inactivity, typically about 50 µs. Another technique, packet coalescing (also known

as packet aggregation), intentionally delays any packet that arrives while the link is in

LPI mode. If additional packets arrive within a short time, then the link can be woken

once to transmit them back-to-back, amortising the wake and sleep energy over multiple

packets [14, 33].

Packet coalescing introduces a significant and variable latency, and it is not clear which

workloads can tolerate the extra latency and burstiness. It is usually characterised

using two parameters: the trigger, which is the maximum number of packets to hold

Chapter 2 Background and Related Work 13

(or alternatively, the buffer size in KB) and the timer, or holding time, which is the

maximum time to hold a packet. The right configuration is critical for maximum energy

savings and low performance overhead [34]. Christensen et al. [14] suggest using either

a timer of 12 µs and a trigger of 10 packets or 120 µs and 100 packets. Their results,

also included in Figure 2.2, as before, assume that the traffic is characterised as Poisson

arrivals. For Poisson network traffic, packet coalescing was able to reach a power use

much closer to ideal, specially at the latter setting.

Although Figure 2.2 illustrates well the problem and the solution for it, the best setting

always depends on the distribution of the traffic on the network. For example, another

publication uses substantially different values [33], of 1 ms and 10 ms as timers, in both

cases with 1,000 packets as trigger. We show the effect for MapReduce workloads in

Chapter 4, where we modify the parameters, including configuring different devices to

use different settings. Even if the application is not expected to be latency sensitive,

larger holding times and larger numbers of packets lead to greater burstiness, which we

found to cause Ethernet packet loss. This is especially problematic for commodity data

centers, whose switches have relatively small buffers. Spending more money on high-end

switches could reduce or eliminate this problem, but it is unlikely to lead to a low cost

or low energy solution. Next section resumes the MapReduce programming model.

2.2 MapReduce and Hadoop

In 2004 Google introduced the MapReduce programming model for reliable fault-tolerant

processing of huge data sets on large commodity clusters [7]. MapReduce is a pipelined

data processing framework. The pipeline is broken down in three different phases: map,

shuffle and reduce. Each node of the cluster runs a Daemon, which also defines the type

of service run by each server in the cluster.

JobTracker is an essential Daemon which runs on the NameNode. The NameNode is

responsible for the Hadoop housekeeping.

TaskTracker is another Daemon from Hadoop framework which runs on every DataN-

ode. DataNodes will run Map and Reduce tasks, which are executed by the TaskTracker

of the nodes. TaskTrackers will be in constant communication with the JobTracker

signalling the progress of the task in execution.

MapTasks will be issued by the JobTracker at the initial phase of the pipeline.

Map phase: Initially, the JobTracker is responsible for dividing the dataset from a given

job into many data splits. Such splits are independent chunks, which are processed in

Chapter 2 Background and Related Work 14

parallel by map tasks assigned to TaskTrackers. Each TaskTracker can lunch several

MapTasks, each one related to one split of data. The Mappers process the original

input and convert it into intermediate results organized in <key,value> pairs and stored

into a temporary output file, which is also split into several data partitions where each

data partition will be intended for being processed by a ReduceTask .

The JobTracker also issues ReduceTasks to be executed by the TaskTrackers. Reduc-

eTasks play their role during the second and third phases of the MapReduce pipeline.

Shuffle phase: Each ReduceTask fetches their corresponding data partitions from the

output files of every MapTask. It leads to the so-called shuffle stage, which involves all-to-

all data transfers among nodes, with the merged data finally passed to the ReduceTasks.

Reduce phase: Each ReduceTask finally processes the merged segments. The final

result is then stored into the distributed file system known as HDFS (Hadoop Distributed

File System).

One important reason that the MapReduce framework has became so popular is the pos-

sibility for programmers to rely on the framework to be responsible for many complex

implementation details while writing their MapReduce applications. The programmer is

given a data abstraction in terms of map and reduce operations on key/value pairs, and

the framework takes care of the implementation details including automatic paralleliza-

tion, task scheduling with data locality, monitoring, redundant distributed data storage,

and re-executing failed tasks. The input and output data for the MapReduce jobs are

stored on the distributed filesystem which uses disks attached to the same nodes used for

computation. Also, the JobTracker tries to schedule tasks to run on nodes where data

is already present, resulting in high data locality [35]. Several open-source MapReduce

frameworks have been developed over the years, with by far the most popular one being

Apache Hadoop [35]. The next section presents the challenges found on Data Center

networks.

2.3 TCP in Modern Data Centers

The Transmission Control Protocol (TCP) is one of the main protocols from the Internet

Protocol (IP) suite and provides reliable stream–oriented connections, which comple-

ments the IP protocol and is also referred as TCP/IP [36]. TCP is a mature protocol

that has been extensively studied over a number of years and in a wide range of networks

as LANs, WANs, data centers, campus networks and enterprise networks [37].

Chapter 2 Background and Related Work 15

TCP was initially designed for Wide Area Networks (WANs) [38], and certain aspects

of its design, such as the minimum Retransmission Timeout (RTO) of 200 ms are better

suited to WANs than data center LANs.

Recent studies show that 97% of the traffic in current data centers is carried by IP

packets, either as TCP or UDP segments depending on the workload [39]. In 2010,

Microsoft Research published a study of 150 TB of network traces that showed that, for

their data center, TCP segments made up more than 99% of their internal traffic [40].

Problems that arise in such a low-latency environment include (a) TCP Incast [38], a

dramatic loss in throughput for many-to-one communication patterns, where congestion

leads to packet loss, (b) TCP Outcast [41], where (surprisingly) the throughput to a

congested node may be much lower from nearby nodes than from more distance ones,

and (c) Bufferbloat [26], where congestion causes excessive packet buffering, leading to

high and variable latency.

The goal of any transport protocol as TCP is to maximize the usage of the network.

TCP, or any other congestion protocol, will be probing the network, trying to find how

many packets the network can carry until it loses the packet and then back-off. On

other words, TCP is always pushing the network into congestion and then backing-off.

Using deeper buffer equipments will automatically increase the average delay per packet

in order to obtain some gain on throughput and bursty tolerance. It is a trade-off

between adding extra latency to the network while having more tolerance to bursty

communication and also obtaining a higher throughput.

There are two situations where network equipment most benefit from larger buffers.

Firstly, in upper-layer devices, at the aggregation and core layers, when bursty traffic

on multiple incoming links is redirected to the same outgoing port, the switch will have

to queue the packets before transmitting them. Secondly, in the access layer; i.e. in the

Top-of-Rack (ToR) switches, incoming traffic going to the server nodes may arrive on a

link that has higher bandwidth than the link to the server; e.g. packets arrive at 10GbE

but must be transmitted at 1GbE.

In an ideal case, data center networks should accommodate long flows, which require

high throughput, and also allow short flows to have low latency in scenarios where buffers

are heavily used. Doing so may not be possible on some workloads, and trade-offs have

to be considered to adjust each case to the best possibility.

Chapter 2 Background and Related Work 16

2.4 Controlling latency and buffer occupancy

This sections presents the mechanisms studied here to control network latency and buffer

occupancy.

2.4.1 Active Queue Management

AQM schemes have been proposed to manage buffer occupancy to keep the average

latency of the buffers below a determined threshold. The goal is eliminate the problem

found on DropTail queues that tend to penalize bursty flows and also introduce high

latency into the network. Bursty flows are penalized when TCP global synchronization

happens. Instead, an AQM scheme aims to keep the delay controlled by providing

feedback to the end points through appropriately dropping packets. Another goal of

these smarter queues is to support the use of Explicit Congestion Notifications, found

on TCP network protocol, that allow end points to react before congestion happens. On

this thesis we selected two AQMs to compare, Random Early Detection (RED) [42] and

Controlled Delay (CoDel) [43].

Random Early Detection (RED) was proposed in 1993 [42] and since then, it has been

widely studied and adopted. Implementations of RED are found on Linux, Solaris, and

FreeBSD [44]. It is also implemented by network equipment vendors including Cisco [45]

and Juniper Networks [46]. RED uses configurable thresholds to decide when to mark

packets if combined with ECN, and drops packets based on a probability that grows

with the queue occupancy.

Controlled Delay (CoDel) was proposed in 2012 and since then, it has gained more

attention. Its usage is recommended by the Bufferbloat initiative [26] [47]. It promises

to be easier to configure than RED, which has several parameters and variants to be

configured. CoDel claims it has no parameters to set at all, but still, the user needs to

configure the target delay, which is the tolerable delay per-packet when queued until it

is transmitted, and the interval how often the delay per packet of transmitted packets

within the interval is evaluated. If any packet has a delay grater that the target, the

interval is shortened, otherwise it is reset at the end of its cycle.

2.4.2 Explicit Congestion Notifications

ECN are helpful to indicate a pre-state of congestion on the network and allow senders

to proactively react before it happens. Instead of waiting for the buffer to drop packets

and trigger the fast recovery state of TCP, which can lead to a RTO timeout and causes

Chapter 2 Background and Related Work 17

TCP to reset to its slow start state, the sender reduces its congestion window by the

number of marked packets, alleviating the pressure under the buffer that signalized

the congestion, which helps to reduce latency and specially jitter. Therefore, proactive

congestion control is helpful for two reasons. First, the default value of 200 ms is not

suitable for low–latency networks. Finally, even if the RTO is configured to a much

smaller value on these networks (typically 1 ms) RTO timeouts lead to the slow start

phase which can temporally decrease throughput.

Yet, on data center networks, using proactive congestion control by enabling ECN was

found to reduce throughput of applications while keeping the latency and buffer occu-

pancy low, which may not be desired on frameworks with high throughput requirements.

As an alternate solution, DCTCP has been proposed which involves some modifications

on the TCP network protocol to specifically fit data center network requirements: high

throughput and small latency.

2.4.3 Data Center TCP

DCTCP is an extension to the TCP network protocol proposed by Microsoft Research

Center as an alternate solution to specifically reduce the latency on data center networks

without affecting throughput. In comparison with ECN, DCTCP extends the ECN

processing to estimate the fraction of bytes that encounter congestion, rather than simply

detecting that some congestion has occurred. In short, while ECN reduces the congestion

window by the number of ACK packets echoed to the source, DCTCP modifies how the

source handles the received ACKs to estimate a more gentle reduction on the congestion

window, which is more suitable for low–latency networks. DCTCP then scales the TCP

congestion window based on this estimate. This method achieves high burst tolerance,

low latency, and high throughput with shallow-buffered switches [40].

On its evaluation using commodity switches, DCTCP was able to deliver even better

performance than ECN itself. Currently, network equipment manufactures are iterating

into their lineup and recommending the usage of deep buffer switches for Big Data

frameworks, specially Hadoop, which demands more analyses of how DCTCP performs

on such type of workloads and using these new network equipments.

The next section presents related work to specific network traffic patterns using Energy

Efficient Ethernet followed by the related work to controlling latency mechanisms found

on Data Center networks.

Chapter 2 Background and Related Work 18

2.5 Related Work

2.5.1 EEE Under Specific Network Traffic Patterns

De la Oliva et al. conducted a study of the effect of Energy Efficient Ethernet on a

video streaming service using UDP traffic [16]. Their simulation results showed that

UDP video streaming could achieve good energy savings without the need for advanced

techniques such as packet coalescing. They mention, however, that using TCP rather

than UDP would have led to lower energy savings, due to TCP acknowledgements and

TCP congestion control mechanisms.

In the field of High-Performance Computing (HPC), Saravanan et al. established that

although scientific applications have high peak communication demand and therefore

need a high-performance interconnect, the average traffic is usually low [17]. This work

led to an adaptive control mechanism for Energy Efficient Ethernet that maximises

energy savings subject to a bound on the percentage increase in execution time [48].

Dickov et al. presented an analysis of data compression for InfiniBand network energy

savings [49]. They also introduced a novel power reduction software manager for In-

finiBand links [50, 51]. Both techniques of Dickov et al. are implemented in the MPI

software layer, so they are only applicable to workloads written using MPI.

There are several differences between our approach and the above related work in HPC.

Firstly, HPC workloads have complex dependencies and require low latency, leading to

the conclusion that packet coalescing would not be useful [17]. Both Dickov and Sar-

avanan use high-level simulation models that abstract away fine-grain details, whereas

we use a detailed packet-level simulator. We found that in our context, especially with

switches with shallow buffers, packet-level phenomena, such as Ethernet packet loss and

TCP/IP congestion avoidance, have a critical effect on both performance and energy.

Accurate quantitative results could therefore only be obtained using a packet-level sim-

ulator, described on our Methodology on the next chapter.

2.5.2 Controlling latency and Buffer Occupancy on Data Center net-

works

Heterogeneous clusters are becoming relatively more common on modern data centers

as an attempt to reduce cost and avail the built infrastructure. As an example, Apache

Myriad is a open source project that enables Apache Hadoop to run side-by-side with

other type of applications, dynamically sharing cluster resources [52].

Chapter 2 Background and Related Work 19

Several vendors are positioning themselves for the Big Data market and have introduced

network equipment with the promise of increased performance for Big Data applications.

Arista Networks is marketing their new 7048T, 7280E and 7500R switch series with large

buffers as recommended solutions for optimum performance for Hadoop [24]. Cisco

published a study that found that network latency has little impact on job completion

time, among other factors such as availability and resiliency, burst handling queuing,

over-subscription ratio and data node network speed [53]. In the same study, burst

handling queuing capability was considered as the second most important factor that

affects job completion time.

A lot of attention so far has focused on RED, which is widely used as a baseline for the

evaluation of new AQMs. Also it has based versions implemented by network vendors

as Cisco [45] and Juniper Networks [46].

The CoDel IETF draft [54] suggests that CoDel would be useful in environments other

than the normal Internet, including in data center switches, particularly for MapRe-

duce clusters. As described, a CoDel queue tuned for such an environment promises to

minimize packet drops, while keeping throughput high and latency low.

DCTCP was presented before CoDel, reason why we believe an evaluation using CoDel

was not considered at that moment. Its evaluation used only a variant of the RED queue,

with recommended values of the minimum and maximum thresholds both equal to 65

packets. When DCTCP was compared to RED, it was suggested that although RED

combined with ECN would dramatically reduce network throughput in data centers,

DCTCP would maintain high throughput (while providing low queue occupancy and low

delay). The explanation was that, instead of dramatically cutting the TCP congestion

window by the number of marked acknowledges, DCTCP reduces the window gently to

maintain high throughput.

Wu et al. presented a comprehensive study on the tuning of ECN for data center

networks, which they described as ECN* [55]. Their new approach performs as well

as DCTCP, but it requires modifications to the ECN marking scheme in the network

switches (the transport protocol and end points are not modified). They proposed

marking packets when they leave the network queue (“dequeue marking”) instead of

when they enter the network queue (classical “enqueue marking”, as used in RED).

Dequeue marking seems to deliver similar results to DCTCP’s gentle congestion control.

This proposal also came before the introduction of CoDel, which also marks packets

when dequeue occurs, suggesting that CoDel would also deliver better performance than

RED. Big Data workloads or deep buffer switches were not considered, missing a more

profound analysis of the scenarios that typically present bufferbloat phenomena. When

specifically compared using NS–2 simulations with synthetically generated traffic with

Chapter 2 Background and Related Work 20

a Pareto distribution, CoDel delivered lower latency than RED but the latter was still

considered as a good candidate for an AQM [56].

Incast was shown to have little significant impact on the performance of Hadoop, assum-

ing a well-tuned Hadoop cluster. Incast is characterized by many-to-one communication

where the buffer on the receiver pipe is heavily pressured so packets are lost. But its

effect is specially devastating on partition/aggregation workloads which perform small

queries, because the default RTO (Retransmission Timeout) penalty of 200 ms repre-

sents a big overhead on the overall performance. Hadoop presents many-to-one network

communication in its shuffle phase, but on a well-configured system there is not signif-

icant overhead caused by incast. Also, buffers of network equipments are highly used,

especially during the shuffle and write phases [57]. As we demonstrate in our results,

Hadoop is highly throughput-sensitive. Therefore, in contrast to the recommendation

to use a smaller minRTO in data centers, specially when using big buffer equipments

which tolerate more bursty communication, reducing the RTO from 200 ms to 1 ms can

impact on a fake RTO penalty. For example, an in-flight packet could still be queued in

a buffer and since on bufferbloat scenarios the average latency per packet can be higher

than such small RTO, TCP would trigger its timeout even if the packet is not dropped.

For this reason our simulations use the default TCP minRTO of 200 ms and the overall

results can be verified on the next chapters. Next chapter covers the methodology used

to obtain the results presented on this thesis.

Chapter 3

Methodology

This chapter presents the overall methodology used throughout the development of this

thesis to generate the necessary results so we could carry on with our deeper analisis

and either confirm previous insights or even obtain new findings based on results which

came to be contrary to the naive assumption.

3.1 Simulation Environment and Workloads

We evaluate the impact of Energy Efficient Ethernet as a function of the network topol-

ogy, workload, and control algorithm, using the NS–2 packet-level network simulator [58].

This simulator has been extended with a model of Energy Efficient Ethernet [59], which

has been previously validated [14] and used extensively in previous work [60]. The net-

work simulator is driven by the MRPerf MapReduce simulator [61], which allows

researchers to carry experiments on the MapReduce framework while using NS–2 to

simulate the underlying networks.

MRPerf was presented not so long ago as an option for researchers which desire to use

the already consolidated NS–2 to carry research on this well-known and trusted packet

level simulator. MRPerf was recently extensively evaluated [62], and although it has

limitations in precisely measuring some steps from the MapReduce framework, MRPerf

is still recognized to achieve high accuracy for the simulation of the impact of network

topologies and also for simulating the behaviors related to underlying networks. Our

main contributions from this work is not related to the computation phase of MapRe-

duce, but to its shuffle phase, which is when data is moved across the cluster. Therefore

the improvements on TCP throughput measured here can be translated to a production

environment. The real gain on the MapReduce runtime will depend on how much is the

extent of each workload regarding the proportion of computation and communication.

21

Chapter 3 Methodology 22

We also evaluated control delay mechanisms as a function of the network topology,

hardware configuration, and transport protocol, using the NS-2 packet-level network

simulator [58]. The simulator has also been extended with CoDel [63] and DCTCP [64]

implementations. Extensive evaluation has been done with RED, CoDel and DCTCP

using NS-2 which brings us to a fair comparison with our results. NS–2, MRPerf, CoDel

and DCTCP are open source and EEE module can be obtained contacting referenced

authors [59], so using the parameters described in this chapter and also in each specific

methodology from each of the next chapters, our simulation methodology has the ad-

vantage that it can be reproduced and future work can be carried out on it. We could

not use real hardware because the EEE control algorithm is implemented in NIC and

switch firmware, and no hardware was available for which we were able to change the

packet coalescing settings.

3.2 Hardware configuration

An important question is the power consumption of the 1GbE and 10GbE links. 1GbE

(1000BASE-T) cards were originally expected to consume about 1 W, but current NICs

using 110 nm silicon technology require just 0.5 W [65]. On the other hand, 10GbE

(10GBASE-T) NICs are still considered to be power hungry. The previous generation,

at 40 nm, consumed about 5 W, while the current generation at 28 nm is expected to

consume between 2 W and 4 W [66]. Our main contributions are related to energy

savings in the 10GbE links, so we conservatively chose relatively power efficient 10GbE

links. In summary, we assume 0.5 W per port for 1GbE and 2.5 W per port for 10GbE.

On real hardware, numbers can still vary depending on the vendor’s to be considered.

We restricted the power consumption to the NICs as considering power consumption for

the servers could translate to an even wider range of values and great imprecision since

different architectures and solutions could be adopted (going from low end commodity

servers to high end more expensive ones). Therefore we reduced the scope of this work

to estimate the energy consumption of the links themselves, which can be verified on

the next chapters.

We provide results for both commodity and more expensive switches. Hadoop clusters

often use inexpensive commodity switches, which have small (shallow) buffers. Small

buffers can cause excessive packet loss, leading to the incast and outcast problems de-

scribed in Chapter 2. These problems can be alleviated using expensive switches with

larger (deep) buffers.

The over-subscription ratio on the 10GbE links is never higher than 4:1. Specifically in

the following chapter we explored multiples network over-subscription as 1.2:1, 2.5:1 or

Chapter 3 Methodology 23

4:1. For the rest of the thesis we considered fixed network over-subscription after we

understood its impact in Chapter 4. Selecting a network over-subscription not higher

than 4:1 matches Cisco’s recommendation that MapReduce clusters should be deployed

with an over-subscription ratio of 4:1 or lower at the access layer [53].

3.3 Topology

Figure 3.1: Leaf-spine Cluster Topology

The data center architecture selected for this work was the leaf-spine architecture [67],

as seen in Figure 3.1. Contrary to the traditional hierarchical three–layer network, which

is recommended for north-south traffic, the leaf-spine architecture is the recommended

architecture for warehouse scale computers [68] when focusing on east-west traffic among

servers of the same cluster [69]. The topology brings spine and leafs switches similar

to the access and aggregation switches found on the classical k-ary fat tree [70]. The

advantage of leaf-spine when compared to the k-ary fat free is its full mesh connectivity

between leaf and spine switches, yet it follows indeed a two-tier clos architecture. Each

leaf switch, also known as top-of-rack (ToR) switch, is connected to the spine switch,

regularly named aggregation switch on the fat tree model, using a single 10GbE link. It

can ”scale out” to a fairly large numbers of servers by adding more switches, although

it also brings a concern to the amount of cables and the cost of the network equipment

required, once each leaf switch must be connected to each spine switch [69].

It is also important to mention that the leaf-spine topology can also be categorized as a

2-level fat-tree topology, i.e. without the aggregation layer between the edge and the core

layer, and it is not organized in pods [71] [72]. Since the focus of this work was to analyze

MapReduce workloads in depth we decided to consider only the leaf-spine topology for

Chapter 3 Methodology 24

this thesis, which seems to be recommended for Hadoop, as seen in various references

for cluster design [24] [73] [68]. Also, the NS-2 simulator has scalability problems due to

its packet-level nature and therefore, considering the addition of the super-spine layer

on top of the spine layer would require many more nodes to be added so we could

organize the cluster on a larger folded clos topology (organized in three tiers). Such

extra layer would require the addition of many more nodes to justify the larger topology

and therefore we limited the cluster size on our experiments. Nevertheless, from the

results obtained on this work we expect similar phenomena in many other distributed

applications that are throughput sensitive and use the 2–layer fat-tree topology, which is

comparable to the leaf-spine topology, or either use the more traditional 3–layer fat-tree

topology, typically employed on large clusters.

On our cluster we used the multiPath option from NS-2 that simulates the equal cost

multi-path routing through two equal cost routes. Equal Cost Multi Path (ECMP)

feature is essential for a representative analysis of this cluster topology, which offers

multiple routes and loaded over-subscription. Recent work [74] shows the benefit of us-

ing multipath TCP achieving improved network utilization and better reliability. Since

multipath TCP is not yet commonly adopted in the mainstream and we want to specif-

ically investigate the impact of latency control mechanisms and DCTCP on Hadoop we

decided to bound the scope of this work using only ECMP feature.

Regarding differences in topology seen in the next chapters, we evaluated different cluster

sizes throughout the development of this work. The Energy Efficient Ethernet module

available for NS-2 is implemented in a different layer than the duplex-links used with

AQMs. During the development of this work we found that the EEE implementation

available for NS-2 does not support multiple routes and therefore, it was not possible to

conduct experiments with EEE and simulating larger cluster topologies. The simulation

of large topologies is a task that is only possible when the ECMP feature is available and

this way it translates into the multiple paths being fully utilized. For such reason, in

Chapter 4 and in Chapter 7 we simulated a smaller cluster with 2-racks and 1 aggrega-

tion switch. We understand it could be considered a limitation so we compensated it by

analyzing three different network over-subscription ratios as mentioned before. There-

fore, we strongly believe we were able to obtain realistic figures for the results related

to Energy Efficient Ethernet. In Chapter 5 and in Chapter 6 we utilized the full cluster

as seen in Figure 3.1.

Chapter 4

Energy Efficient Ethernet on

MapReduce Clusters

This chapter presents the first analysis from Energy Efficient Ethernet on MapReduce

clusters.

4.1 Summary

This chapter estimate the suitability of EEE for applications that follow the MapReduce

programming model, in terms of both performance and energy. As mentioned in Chap-

ter 1, EEE was initially analysed for Small Office/Home Office (SOHO) environments,

but ongoing efforts are analysing its deployment for data center applications, includ-

ing video streaming [16] and scientific computing [17]. Since EEE can incur significant

performance overheads, many system vendors still advise their customers to disable it

in production use [18–20], at least until its impact on real applications is better under-

stood. Yet, there is still opportunity to reduce network energy consumption through

energy proportionality, since interconnect links, which consume up to 65% of the total

network power [13], always consume full power, even when the link is idle [14].

With this study we found optimum energy savings for 10GbE links only when packet

coalescing is enabled. With packet coalescing, switches intentionally delay outgoing

packets while the link is in LPI mode, so that they can be transmitted back-to-back

with subsequent packets. The packet coalescing settings, however, must be carefully

chosen to avoid an excessive loss in performance.

This chapter also presents the discussion to evaluate how to adjust the static packet

aggregation settings as a function of the traffic load. At low load, packet aggregation

25

Chapter 4 Energy Efficient Ethernet on MapReduce Clusters 26

settings must avoid excessively increasing the latency, and thereby affecting performance.

At high load, more aggressive settings are needed to obtain the greatest energy savings.

At last, we quantified these recommendations. Throughout our experimentation using

suggested settings from literature we feed network equipment manufactures with insights

and recommendations for best settings of network cards deployed at the access and

aggregation level of data center networks.

In short, the contributions presented on this chapter are threefold:

1. The first evaluation of the performance impact and energy savings from using EEE

on a MapReduce cluster.

2. Analysis of packet coalescing, including the tradeoff between performance, energy

and load.

3. Dissolution of the different energy profiles of 1GbE and 10GbE links and recom-

mended settings for each.

The rest of this chapter is organized as follows: Section II describes the experimental

methodology. Section III presents the quantitative results and analysis, from which Sec-

tion IV distils the most important recommendations. Finally, Section V concludes the

chapter.

4.2 Methodology

This section describes the experimental methodology employed in this chapter. Part

of our methodology which is common from this thesis is described in Chapter 3. The

specific methodology for this Chapter is described here in this section.

4.2.1 Hardware configuration

The simulated hardware is shown in Table 4.1. We simulate a two-rack cluster with up

to 80 nodes, each node having the throughput of a two-core Xeon at 2.5 GHz and a single

1GbE link to the top-of-rack (ToR) switch. Each top-of-rack switch is connected to the

aggregation switch using a single 10GbE link. The over-subscription ratio on the 10GbE

links is equal to 1.2:1, 2.5:1 or 4:1. Lower over-subscription ratios improve network

performance at higher cost [75], so we explored multiple points along this performance–

cost tradeoff.

Chapter 4 Energy Efficient Ethernet on MapReduce Clusters 27

Table 4.1: Simulated Environment

Category Parameter Value

Simulated hardware
System Number of nodes 24, 50 or 80

Number of racks 2

Node CPU Intel Xeon 2.5 GHz L5420
Number of cores 2
Number of processors 2

Network Each node 1GbE: 1 —
Each top-of-rack (ToR) switch 1GbE: 〈# Nodes〉/2 10GbE: 1
Aggregation switch — 10GbE: 2

Buffers Shallow buffers 128 KB per port
Deep buffers 10 MB per port

Link power 1GbE 0.5 W
10GbE 2.5 W

Simulated workload
MapReduce Configuration Number of job trackers 1

Number of workers 23, 49 or 79
Maps per node 2
Reduces per node 2

Jobs Maps per job Small jobs: 10 Batch jobs: 2×〈# Workers〉
Reduces per job Small jobs: 1 Batch jobs: 2×〈# Workers〉
Block size per job Small jobs: 64 MB Batch jobs: 2×128 MB

TCP buffer Default Max. 64 KB per connection
Optimized Max. 1 MB per connection

Manufacturers rarely disclose the buffer sizes in the product data sheet, so we followed

the best public source we could find [76], giving 128 KB per port for the shallow buffer

switches and 10 MB per port for switches with deep buffers.

An important question is the power consumption of the 1GbE and 10GbE links. 1GbE

(1000BASE-T) cards were originally expected to consume about 1 W, but current NICs

using 110 nm silicon technology require just 0.5 W [65]. On the other hand, 10GbE

(10GBASE-T) NICs are still considered to be power hungry. The previous generation,

at 40 nm, consumed about 5 W, while the current generation at 28 nm is expected to

consume between 2 W and 4 W [66]. Our main contributions are related to energy

savings in the 10GbE links, so we conservatively chose relatively power efficient 10GbE

links. In summary, as shown in Table 4.1, we assume 0.5 W per port for 1GbE and

2.5 W per port for 10GbE. On real hardware, numbers can still vary depending on the

vendor’s to be considered.

4.2.2 Workloads

Table 4.1 also shows the configuration of the simulated workloads. We reserve one node

for Hadoop housekeeping, to serve as namenode and jobtracker, with the remaining

nodes used as worker nodes for processing map and reduce tasks. We chose two work-

loads, small and batch (large). The small workload consists of a sequence of small jobs,

each with ten map tasks and one reduce task. The average CPU utilization is about

40%, except in Section 4.3.3.4, where it is varied between 5% and 55%. The default 40%

Chapter 4 Energy Efficient Ethernet on MapReduce Clusters 28

load is consistent with a study of traces obtained at Facebook, which shows that most

of the jobs were small, with few maps and one reduce tasks, and that the cluster as a

whole had a relatively low utilization of about 40% [77]. The large workload is closer to

batch processing for big data applications [78], and we engage the whole system using

a single large job, with the number of map and reduce tasks both equal to twice the

number of worker nodes.

Table 4.2: Simulated benchmarks

Benchmark % of jobs
Aggregate size

Input
(MB)

Shuffle
(MB)

Output
(MB)

Small jobs
TeraSort 33% 640 640 640
Search 33% 640 0.033 0.033
Index 33% 640 114 114

Batch (large) jobs
TeraSort (23 nodes) 100% 5888 5888 5888
TeraSort (49 nodes) 100% 12544 12544 12544
TeraSort (79 nodes) 100% 20224 20224 20224

Table 4.2 lists the benchmarks that were used for the evaluation. Each benchmark com-

prises a sequence of one or more MapReduce jobs, each released at a particular time.

The small workload contained a mixture of TeraSort, Search and Index jobs. The batch

workload contained a single TeraSort job. Batch processing normally involves large jobs

of several gigabytes or terabytes, but the communication, most of which is in the shuffle

stage, is close to proportional to the workload size. Since the communication pattern

is also repetitive, we can obtain representative figures using a workload of 128 MB per

core, which is sufficient to maximise cluster utilization.

Since packet coalescing can increase latency, which implies more buffering in software,

we present results for two different values for the maximum TCP buffer size per con-

nection: the default value of 64 KB and an optimized setting of 1 MB. The optimized

setting also enables the TCP Window Scale option, which allows the congestion window

to grow above 64 KB. The default value of 64 KB is known to be small, so in production

use the global settings must be changed and the application restarted [79].

4.2.3 EEE settings

We assume the sleep and wake timings given in Table 2.1, and evaluate several control

algorithms. We begin by evaluating Power Down Threshold [48], or stall timer, without

the use of packet coalescing. We use the best stall timer value, with the packet coalescing

settings in Table 4.3.

Chapter 4 Energy Efficient Ethernet on MapReduce Clusters 29

Table 4.3: EEE packet coalescing settings

Label Holding time Trigger

nopa No Packet coalescing
12us10 12 µs 10 packets
120us100 120 µs 100 packets
1ms1000 1 ms 1000 packets
10ms1000 10 ms 1000 packets

Finally, we include an ideal case, for which sleep and wake transitions are both instan-

taneous and zero energy. In this case, the link is optimally controlled by simply entering

LPI mode as soon as it becomes inactive, providing perfect energy proportionality with-

out affecting runtime. This result gives a lower bound on energy consumption.

4.2.4 Summary of configurations

In summary we have the following configurations:

Number of nodes 24, 50 or 80

Switches Shallow or deep buffers

Workload Small jobs or batch job

TCP window size Default or optimized

Packet coalescing See previous subsection

4.2.5 Total runtime vs. Average runtime

On a cluster running several jobs in parallel, the performance can be measured using

either the total execution time for all jobs (total runtime) or the average execution

time per job (average runtime). Each benchmark contains multiple MapReduce jobs,

and the total runtime is the wallclock time from the start of the first job to the end of

the last job. A single job’s runtime is the wallclock time from the time the job is ready

to be scheduled until it finishes executing, and the average runtime is the average of

these single job runtimes.

The MapReduce scheduler plays an important role in both total runtime and average run-

time, and extensive research has been carried on this topic [80]. The MrPerf MapReduce

simulator provides multiple scheduler implementations, but the recommended scheduler

is Quincy [81], which provides fair scheduling with data locality [82].

Chapter 4 Energy Efficient Ethernet on MapReduce Clusters 30

Total runtime and average runtime both grow with cluster utilization, but the relation-

ship between them depends on the scheduler. Figure 4.1 shows the behavior using the

Quincy scheduler. Although both grow linearly, the total runtime widens in relation to

the average runtime as the load increases once it is more impacted by the time comple-

tion of the last job. A detailed analysis of the effect of the scheduler is outside the scope

of this work, which focusses on the performance–energy tradeoff of Energy Efficiency

Ethernet.

Figure 4.1: Average and total runtime vs. load (Quincy scheduler)

4.3 Results

This section presents the quantitative results, giving the energy savings and performance

overheads for MapReduce workloads using Energy Efficient Ethernet.

4.3.1 Fixed link latency

Since EEE primarily affects execution time via its effect on latency, we begin by evalu-

ating the effect of link latency on MapReduce performance. We added a fixed latency

on each link, without using EEE, for both workloads: small tasks and batch processing.

This experiment used the default TCP settings for the receive and send buffers and the

scale window.

As shown in Figure 4.2, for small tasks the runtime begins to increase only when the

latency per link exceeds about 100 µs. Batch processing is less sensitive to latency:

Chapter 4 Energy Efficient Ethernet on MapReduce Clusters 31

the performance starts to degrade only when the latency exceeds about 5 ms per link.

The difference between the two is that batch processing has most of its communication

concentrated during a single shuffle phase, whereas small tasks have the communication

more distributed over time. Since small tasks experience less congestion, the baseline

bandwidth is higher, and a smaller latency is sufficient to exceed the buffers.

Figure 4.2: Runtime vs. fixed link latency per link

We conclude that, for both workloads, and even with the default TCP settings, the

impact of the 1GbE wakeup latency of 16.5 µs on MapReduce performance should be

negligible. Since the latency is added per link, these results already include the effect of

consecutive wakeups on multiple hops.

The simplest EEE control algorithm puts the link into Low Power Idle (LPI) mode as

soon as it becomes inactive [32]. A more advanced method, known as Power Down

Threshold or stall timer, enters LPI mode after a defined period of inactivity, which is

typically about 50 µs (see Chapter 2.1). If the stall timer is small, then the link may

frequently enter and leave LPI mode, incurring a large performance penalty. On the

other hand, if the stall timer is large, the links will seldom enter LPI mode, yielding

poor energy savings. We would therefore expect to reproduce previous findings that the

stall timer provides a trade-off between performance and energy [17].

We evaluated the effect of the stall timer setting, as shown in Figure 4.3 (runtime)

and Figure 4.4 (energy consumption per port). Figure 4.4 shows the average energy

consumption of the 1GbE and 10GbE ports, as well as the average of all ports of the

data center (DC). These results show that, for MapReduce, the stall timer offers lit-

tle advantage over the simple algorithm, since, even for our worst-case results, a stall

timer of zero gives a small performance overhead of about 1% that is hard to distinguish

Chapter 4 Energy Efficient Ethernet on MapReduce Clusters 32

Figure 4.3: Runtime vs. stall time without packet coalescing (small tasks)

from scheduling and other noise. We therefore use the simple control algorithm without

packet aggregation (nopa), which we refer to as Standard EEE.

4.3.2 Standard EEE and stall timer

Figure 4.4: Average energy per port vs. stall time without packet coalescing (small
tasks)

Figure 4.5 compares the energy consumption of legacy Ethernet (without EEE) and

Standard EEE. It also shows the ideal case, which has instantaneous zero energy sleep

Chapter 4 Energy Efficient Ethernet on MapReduce Clusters 33

and wake transitions. In this figure and in the next subsection, energy consumption

is always normalized to the current state of the art, which is Standard EEE (without

packet coalescing). In Figure 4.5, standard EEE reduces the energy consumption by a

factor between five and eight, depending on the workload and network over-subscription

ratio. The ideal results, which are closely matched using packet coalescing, show a

further factor of two improvement.

Figure 4.5: Average energy consumption (comparison with legacy Ethernet)

4.3.3 Optimum Energy Savings on MapReduce Cluster

This section investigates the optimum settings for EEE across the whole network.

The results show that, in contrast to previous recommendations for the deployment of

EEE [14, 33], packet coalescing should be enabled for the 10GbE links, but it is necessary

to carefully choose the packet coalescing parameters and TCP settings. All results in

this section were normalized to the standard Energy Efficient Ethernet (without packet

coalescing).

4.3.3.1 Uniform EEE settings

The broad results in more detail are shown in Figure 4.6. Figure 4.7 displays more details

as it brings the same results zoomed-in. Results are given for the five packet aggregation

settings from Table 4.3, with default or optimised TCP buffers, and shallow or deep

switch buffers. The main conclusion is that, with shallow buffer switches, with 64 KB

per connection, the 1ms1000 and 10ms1000 settings have unacceptably large overheads.

Chapter 4 Energy Efficient Ethernet on MapReduce Clusters 34

The same results are summarized in Figure 4.8, which shows the performance and energy

results averaged across all six scenarios (workloads and over-subscription ratios).

Figure 4.6: All runtimes and energy consumption of workloads using different settings

Figure 4.7: All runtimes and energy consumption of workloads using different settings
(Zoomed-in)

Chapter 4 Energy Efficient Ethernet on MapReduce Clusters 35

Figure 4.8: Average Runtime and Energy Consumption of MapReduce jobs

Regarding performance first, the 12us10 and 120us100 settings have overheads of less

than 5%, for all six scenarios, with little variation among the scenarios. With deep buffer

switches, of 1 MB per connection, the 1ms1000 setting is also acceptable for batch work-

loads, with or without tuned TCP settings. Batch workloads fully utilise the network

during the shuffle phase, and the resulting congestion means that full throughput can

be achieved using a relatively small TCP congestion window. This traffic is, in fact,

sufficient to usually trigger the 1000-packet threshold without waiting for the timeout,

giving lower additional latency and also a similar runtime for 1ms1000 and 10ms1000. In

contrast, with small tasks, the shuffle phases of different jobs happen at different times,

so network utilization is spread out in time and there is less network congestion. For

small tasks, the additional latency introduced by aggressive packet coalescing therefore

requires a tuned TCP congestion window.

The average runtime follows the same pattern as total runtime, except for deep buffer

switches and default TCP using 10ms1000 setting. Surprisingly, we see that scenarios

with more servers show a slightly lower performance degradation than scenarios with

fewer servers. In other words, lower over-subscription ratios lead to greater performance

Chapter 4 Energy Efficient Ethernet on MapReduce Clusters 36

degradation, contrary to what would be naively expected and also to what is seen on

the rest of the results. On such situation switch buffers are not the bottleneck of the

system, and having more servers offers the scheduler the possibility to achieve better

average runtime, even if the same is not verified on total runtime.

Turning to the energy results in Figure 4.8, it is clear that the best packet aggregation

settings depend on the context. With deep buffers and tuned TCP settings, the best

energy savings are obtained using 1ms1000: the energy consumption was reduced to 55%

at an overhead of less than 2%. With shallow buffers, the same settings would increase

the total runtime by an unacceptable 25%. The best settings for shallow buffers are

12us10 and 120us100, which increase runtime by less than 1% but reduce energy to

75% and 60% of Standard EEE, respectively. The next experiment consists in using

1ms1000 for the 10GbE NICs, and 12us10 or 120us100 for 1GbE links. We expect to

save additional energy and get closer to the ideal model.

4.3.3.2 Non-uniform EEE settings

In Section 4.3.3.1, the packet aggregation settings were uniform across all switches in

the network. This section investigates the benefit of non-uniform packet aggregation

settings. Specifically, the new settings, 12us10+ and 120us100+ are the same as 12us10

and 120us1000, respectively, for the 1GbE links, but they use 1ms1000 on the 10GbE

links.

Figure 4.9: Energy consumption (optimized configuration) [runtime remains about
the same]

As shown in Figure 4.9, using different settings of packet aggregation for different NICs

improved the energy savings. The aggregation switch has better energy savings using

1ms1000, since 12us10 and 120us100 present good savings for a moderate load but not

for high load. Under high load, 1ms1000 gets closer to ideal savings for 10GbE links

(12us10+ and 120us100+).

Chapter 4 Energy Efficient Ethernet on MapReduce Clusters 37

4.3.3.3 Analysis by link type

Whereas Figure 4.9 showed the average energy consumption across all the network links,

Figure 4.10 shows separate energy consumption results for (a) the 10GbE links and (b)

the 1GbE links. As before, values are normalized in comparison with Standard EEE.

The greatest savings are obtained for the 10GbE links, which benefit most from packet

coalescing, as shown in Figure 4.10a. In contrast, Figure 4.10b shows little benefit from

packet coalescing for the 1GbE links in comparison with Standard EEE. Considering the

complexity and the cost for new 1GbE interfaces that would deploy packet coalescing for

almost negligible benefits, the adoption of packet coalescing technique on edge interfaces

is not necessary. For this reason, our last experiment (see the following results) focus on

using packet coalescing technique only on 10GbE link (aggregation layer). 1 GbE links

remain with Standard EEE, which means no packet aggregation on edge links.

(a) 10GbE

(b) 1GbE

Figure 4.10: Detailed energy consumption by NICs

Chapter 4 Energy Efficient Ethernet on MapReduce Clusters 38

4.3.3.4 Load impact on coalescing settings

Packet coalescing settings were previously evaluated for a fixed typical cluster utilization

of 40%, measured by the CPU load. This section extends the evaluation to consider to

what extent the conclusions depend on the CPU load. It complements previous work [14]

discussed in Section 2.5, which explored the relationship between network utilization

and power for Poisson arrivals. For workloads like MapReduce, the connection between

cluster utilization and energy is more complicated, due to the non-linear relationships

between cluster utilization, measured using the CPU load, and both network utilization

and runtime.

Figure 4.11: Total runtime as CPU load is varied (Terasort)

We concentrated on Terasort jobs on switches with shallow buffers, and varied the CPU

load between 5% to 55%. Figure 4.11 shows the runtime results. The differences between

ideal, standard EEE, 12us10 and 120us100 are small, whereas 1ms1000 has a large

overhead below 40% utilization, rising to a performance degradation of 20% at 5%

utilization. The extra delays of up to 1 ms, caused by packet coalescing, require a larger

Bandwidth–Delay Product (BDP), and more in-flight packets to compensate for the

extra latency. Switches with shallow buffers cannot accommodate the Incast congestion

that happens on the link connecting the Top-of-Rack switch to the reduce node (see

Chapter 2.5). It is therefore impossible to increase the BDP, even using optimized

TCP settings, because congestion limits the number of packets in flight. Note that this

problem does not happen with deep buffer switches.

Turning to the energy consumption, shown in Figure 4.12, the lowest energy consumption

is always achieved using 1ms1000. As previously mentioned, however, below about 40%

Chapter 4 Energy Efficient Ethernet on MapReduce Clusters 39

utilization, the increase in runtime, visible in Figure 4.11, becomes too large, so the best

option, with small difference in energy, would be 120us100.

Figure 4.12: Energy consumption as CPU load is varied (Terasort)

Figure 4.13: Energy–delay product as CPU load is varied (Terasort)

Finally, Figure 4.13 combines performance and power into a single metric, which shows

the normalized energy–delay product. When cluster utilization is higher than 10%, the

energy–delay metric in fact indicates a better trade-off for the 1ms1000 setting. On the

other hand, when the cluster utilization is lower than 10%, the 120us100 setting has

a better trade-off. Back to 1ms1000, it is important to notice that even with better

results from the energy–delay metric, from 10% to 40% of cluster utilization, the better

energy savings are achieved at the cost of a performance penalty previously mentioned.

Chapter 4 Energy Efficient Ethernet on MapReduce Clusters 40

This therefore has to be taken into account when choosing the proper packet coalescing

setting.

4.4 Discussion and Recommendations

Recent switches that implement Energy Efficient Ethernet (EEE) already have support

for energy proportionality, but until a good understanding of the impact on real appli-

cation performance has been reached, these features are likely to remain switched off in

practice, unnecessarily increasing the energy consumption. This chapter contributes to

the necessary understanding by analysing this tradeoff in detail for MapReduce work-

loads, which are representative of modern applications dominated by east–west traffic.

The recommendations in this section have been divided into a) recommendations for

system administrators, and b) recommendations for equipment vendors.

Recommendations for system administrators: The first finding of this chap-

ter is that the “standard” Energy Efficient Ethernet algorithm, which turns the link

off immediately when it becomes idle, and that doesn’t use packet coalescing, obtains

significant energy savings with negligible performance overhead. This is in contrast to

previous work in the context of HPC, which found that a Power Down Threshold timer

was needed to limit the performance overhead of repeated link wakeups [17]. The result

is that system administrators should not be afraid to enable EEE, even when the general

guidelines from the system integrator are to disable it.

Recommendations for equipment vendors: The limited configurability of ex-

isting switches mean that the remaining recommendations are currently targeted at

equipment vendors. We show that the standard algorithm is, in fact, sufficient for 1GbE

edge links. An ideal model, that sets EEE overheads to zero, gives an upper bound

energy consumption of 20% below that of EEE. Our investigation of packet coalescing

settings, however, found a maximum benefit of just 5%.

For 10GbE, however, packet coalescing delivers further energy savings, reducing the

energy consumption to half or less. For this reason, equipment vendors should certainly

implement packet coalescing, especially for 10GbE links. We were able to find packet

coalescing settings, for all evaluated loads and workloads, that save between 35% to 75%

more energy, in comparison with standard EEE, and that reach close to the ideal case

(Figure 4.12).

Chapter 4 Energy Efficient Ethernet on MapReduce Clusters 41

We found, however, that the energy–performance tradeoff is strongly affected by the

packet coalescing settings. Coalescing packets does not simply introduce a delay on

links. It also increases the burstiness, which, especially on shallow buffers, leads to

packet loss, ultimately impacting performance. This is especially true for workloads like

MapReduce that have a many-to-one communication pattern. We extended our previous

analysis [27] by investigating the effect of cluster utilization. When utilization is low,

the best setting was 120us100, which provided good energy savings without hurting

performance. When utilization is high, a more aggressive setting of 1ms1000 obtained

better energy savings with little performance loss.

Some server NIC vendors implement a technique known as interrupt coalescing, which

amortises the overhead of interrupting the CPU, by generating a single interrupt to

process multiple received or transmitted packets [83]. Interrupt coalescing is most com-

monly deployed on the receiver side, in which case it has no effect on how packets are

presented on the network links, and it is therefore not directly relevant to this study of

Ethernet energy efficiency. When deployed on the transmitting side, interrupt coalescing

may be an effective means of implementing packet coalescing on the outgoing edge links.

Higher-bandwidth network links would still need packet coalescing to be implemented

in the switches. We did not model interrupt coalescing in this study, but our results

indicate that relatively aggressive interrupt coalescing, on both transmit and receive,

would not be expected to significantly impact Hadoop performance.

We investigated the effect of over-subscription on these findings, as shown in Figure 4.9.

Generally speaking, the larger over-subscription ratios use a smaller number of 10GbE

links, so the energy savings in these links have lower effect on the total network energy

consumption. Nevertheless, even with the largest over-subscription factor of 4:1, packet

coalescing reduced the energy consumption by 20%. The benchmarks with small tasks

distributed network utilization over longer periods of time, during which the utilization

was lower, leading to a greater benefit from packet coalescing.

How buffering and burstiness really affect Hadoop: The results presented here

are aligned with a study presented on the next chapter, which investigated the impact of

using DCTCP and also AQM queues combined with ECN to reduce buffer occupancy on

Data Centers. The best performance on batch workloads is achieved using deep buffers

switches without Active Queue Management on the network buffers. Contrary to the

naive assumption, TCP works well under congestion and burstiness scenarios as long as

there is enough buffer to accommodate the bursty traffic. Limiting buffer utilization can

also degrade performance of batch workloads such as Hadoop [29].

Chapter 4 Energy Efficient Ethernet on MapReduce Clusters 42

4.5 Conclusions

An important challenge of modern data centers is to reduce energy consumption, of

which a substantial proportion is due to the network. The Energy Efficient Ether-

net (EEE) standard, approved by IEEE in 2010, implements low-level mechanisms to

improve Ethernet energy efficiency. Such standards, however, will not be adopted in

practice until their effects on workload performance are well understood.

We evaluated the performance impact and energy savings, and found that the MapRe-

duce programming model is not sensitive to the overheads of EEE, even with packet

coalescing, contradicting the general guidelines from vendors to disable EEE. For 1GbE

links, it is sufficient to switch links off as soon as they become idle, but optimum energy

savings in the 10GbE links are only possible with packet aggregation. We therefore sug-

gest to adopt a simple management algorithm for edge devices (1GbE), and to enable

the system administrator to modify the packet coalescing parameters for core devices

(10GbE). This approach improves the energy savings between 20% and 60% in compar-

ison with standard EEE, depending on the workload and the network over-subscription

ratio. At last, our findings widen on this study demonstrated how cluster utilization

plays an important role when choosing the settings for packet coalescing.

Chapter 5

Controlling Delay Mechanisms on

MapReduce Clusters

This chapter presents the first analysis of mechanisms that can be employed in Hadoop

clusters to control packet delay.

5.1 Summary

For Big Data workloads, the highest performance is achieved using expensive network

equipment with large buffers, which are better able to accommodate congestion and

network traffic bursts. Large buffer switches, however, suffer from the bufferbloat phe-

nomenon, in which TCP (greedily) makes full use of the available buffers, even when

maximum performance can be achieved using much less buffering. Bufferbloat has been

found to cause excessive packet delays within data centers [26]. Nevertheless, it is rea-

sonable to expect that bufferbloat would have little direct effect on Hadoop, since its

communication is dominated by long network flows.

Throughput-sensitive big data applications are, however, often executed in the same

data center as other workloads that directly interact with external users, and these

workloads are sensitive to network latency. In this case, the network is shared between

both classes of application, so it should therefore provide not only the maximum possible

throughput, but also the lowest possible latency.

This chapter presents the first analysis of mechanisms to control packet delay in a

Hadoop cluster. We study Active Queue Management (AQM) and Explicit Congestion

Notifications (ECN), both of which are supported in modern network switches. We

perform a quantitative evaluation of the tradeoff between throughput and latency, for

43

Chapter 5 Controlling Delay Mechanisms on MapReduce Clusters 44

four different approaches for controlling buffer occupancy and latency: Random Early

Detection (RED) and CoDel queues, both standalone and also combined with ECN and

Data Center TCP (DCTCP). This is done in the context of MapReduce and Apache

Hadoop [35], which present a specific traffic pattern in the shuffle phase.

Our work provides recommendations to administrators of Hadoop clusters. We show

experimental results at the network level, in terms of network throughput and packet

latency. More importantly, we also show the impact on Hadoop job execution time. Pre-

vious analysis suggested that CoDel and other techniques that reduce buffer occupancy

would also translate to better performance during Hadoop’s all-to-all communication

phase [54]. We find that TCP already functions well, so Hadoop execution time is not

improved by such techniques. Moreover, in some cases a poorly-chosen AQM configu-

ration increases the execution time by an unacceptable 20%. We do, however, identify

good AQM configurations that are able to maintain Hadoop execution time gains from

larger buffer to within 5%, while reducing packet latency caused by bufferbloat by 85%.

In short, our contributions are threefold:

1. A study of mechanisms that can be employed on Hadoop clusters to control packet

delay.

2. A quantitative evaluation of the tradeoff between throughput and latency for RED

and CoDel queues, both standalone and also combined with ECN and DCTCP.

3. Recommendations to cluster administrators to improve latency without degrading

throughput.

The rest of the chapter is organized as follows: Section II presents the specific method-

ology for this chapter while Section III presents the quantitative results and analysis,

from which Section IV distills the most important recommendations. Finally, Section V

concludes the chapter.

5.2 Methodology

This section describes the experimental methodology specific from this chapter.

Chapter 5 Controlling Delay Mechanisms on MapReduce Clusters 45

Table 5.1: Simulated Environment

Category Parameter Value

Simulated hardware
System Number nodes 160

Number racks 4

Node CPU Intel Xeon 2.5 GHz L5420
Number cores 2
Number processors 2

Network Each node 1GbE: 1 —
Each leaf switch 1GbE: 40 10GbE: 2
Each spine switch — 10GbE: 4

Buffers Commodity switches 200 packets - max. 300 KB per port
Expensive switches 2000 packets - max. 3 MB per port

5.2.1 Simulation Environment and Workload Characterization

The simulated hardware is shown in Table 5.1. We simulate a 4-rack cluster with 40

nodes per rack, each node having the throughput of a two-core Xeon at 2.5 GHz and a

single 1GbE link to the top-of-rack (ToR) switch.

We provide results for both shallow and deep buffer switches. Hadoop clusters often

use inexpensive commodity switches, which have small (shallow) buffers. Small buffers

can cause excessive packet loss over bursty communication, and network equipment ven-

dors are already promoting deeper buffered equipments for Hadoop clusters as seen in

Chapter 2.5. Tasks such as small queries are typically completed in a latency of a few

milliseconds and therefore, they tend to be severely impacted by packet drops. In some

cases it can translate into a performance loss that reaches a full second due to several

retransmission timeouts [24]. Small buffering can also lead to unfair bandwidth alloca-

tion between different flows [24]. In our experiments we found that for long-lived TCP

flows with bursty communication, fully avoiding packet loss by using larger buffers can

improve TCP throughput performance by about 10%, which means the time spent on

communication during the shuffle phase of Hadoop can decrease compared to results

obtained by using shallow buffer switches. Yet, as seen in recent work [21], restricting

the buffer utilization of network equipment can also translate into a performance degra-

dation of 20% for batch workloads such as Hadoop. Related work comparing Active

Queue Management tends to use packets instead of buffer size so we selected two differ-

ent values for queue size: 200 packets or 2000 packets. For packets using the maximum

payload size of 1500 bytes the maximum capacity per port is 300 KBytes or 3 MBytes

respectively. Additionally, for the average payload size of 500 bytes the average capacity

per port is 100 KBytes or 1 MByte respectively.

Chapter 5 Controlling Delay Mechanisms on MapReduce Clusters 46

Table 5.1 also shows the configuration of the simulated workloads. We reserve one node

for Hadoop housekeeping, to serve as namenode and jobtracker, with the remaining

nodes used as worker nodes for processing map and reduce tasks. On our previous work

presented in Chapter 4 [27] [28] we simulated a smaller cluster with different type of

workloads to understand the nuances found on a MapReduce cluster. We found small

variability, most caused by the Hadoop scheduler. As for this work we expanded the size

of our cluster, to limit the noise introduced by different scheduling decisions, we used

MRPerf (see Chapter 3.1) to generate a single Terasort job configured to sort 6.4 GBytes

(random elements) with 100 mappers. Using more nodes on this experiment would lead

to numbers where the shuffle phase would represent a much wider proportion of the total

runtime, as seen in similar experiment [84]. Terasort is a popular batch benchmark com-

monly used to measure MapReduce performance on a Hadoop cluster. In order to make

it representative we characterized the shuffle phase as shown in Figure 5.1, to be consis-

tent with a study of traces obtained at Facebook, which shows that most of the jobs were

small [77] and the shuffle phase which represents in average 33% of the jobs execution

time can be slightly more than 50% of the total runtime for nearly one quarter of the jobs

which have reduce phase [84]. Shuffle is considered the MapReduce phase that mostly

stresses the network because its all-to-all communication between mappers and reducers.

Figure 5.1: Shuffle Characterization

With the purpose of having a scenario where the network is characterized as the bottle-

neck of the system, we run the experiment as mentioned before. Figure 5.1 was obtained

using shallow buffer switches, running the same Terasort job and changing the number

of map inputs and the chunk size value (the total size of the Terasort task) while fixing

the number of reducers to the recommended, which is the number of workers in order to

use the full system [85]. In a real cluster is recommended to use the factor 0.95 and leave

a few nodes free in case of node failures. Since MRPerf does not simulate failing nodes

we modeled the Terasort task divided by servers, each of them handling a proportion

of the output from the map nodes. As our cluster has capacity of 2 mapslots and 2

Chapter 5 Controlling Delay Mechanisms on MapReduce Clusters 47

reduce slots per node it gives us relatively low utilization of not more than 40% which

also matches with production tracers [77]. The communication, most of which is in the

shuffle stage, is close to proportional to the workload size, but increases as the network

becomes the bottleneck. It leads to a situation where the servers would spend more

time with data transfer and therefore, since the data size that each reducer receives is

constant, increasing the time spent during the shuffle phase also increases the reduce

phase (final computation phase of Hadoop). In other words, the benefits of speeding

up the initial computation phase (map phase) are not translated into a linear decrease

of the total computation time once the linear increment on communication also affects

the time completion of the final computation phase (reduce phase). Since the commu-

nication pattern is also repetitive, we can obtain representative figures using only one

task as network and cluster utilization were proportionally designed based on available

tracers.

We use three performance metrics: the runtime which is the total time needed to finish

the Terasort workload, found to be inversely proportional to the effective throughput

of the cluster; the average throughput per node and the average end-to-end latency per

packet.

For throughput and runtime we used the same baseline for the whole set of results which

is the DropTail queue for shallow buffers. This way we were able to compare improve-

ments on runtime when using deep buffer equipments as promoted by new vendors.

For latency we considered two baselines. The naive assumption would be assuming

congestion is something rare that happens only when there are peaks during the com-

munication. On networks, congestion happens all the time, which means it is the steady

state of the network. The goal of any transport protocol as TCP is to maximize the

usage of the network. TCP, or any other congestion protocol, will be probing the net-

work, trying to find how many packets the network can carry until it loses the packet

and then back-off. On other words, TCP is always pushing the network into conges-

tion and then backing-off. Using deeper buffer equipments will automatically increase

the average delay per packet in order to obtain some gain on throughput and bursty

tolerance. It is a trade-off between adding extra latency to the network while having

more tolerance to bursty communication and also obtaining a higher throughput. For

this reason we considered the DropTail queue of each set of simulations as the baseline

for latency. When comparing the delay on shallow buffers, the smaller DropTail queue

is the considered baseline. The same happens with the deep buffer set of results, which

means the larger DropTail queue is the baseline for latency on bufferbloat scenarios.

Although the techniques utilized on this work could be used to obtain some improved

figures regarding the tail latency, their focus is on reducing the queue length and the

Chapter 5 Controlling Delay Mechanisms on MapReduce Clusters 48

average latency of the network [86]. Reducing queue utilization and average latency

is the first step towards the employment of new applications to run in parallel while

sharing the same network resources on Hadoop clusters. We consider that a proper

study focused on reducing the network tail latency is an important requirement that

should be carried on, specially when scaling up the cluster size. We also point it as

future work to be derived from this thesis as seen on Chapter 8.

5.3 Results

This section presents the quantitative results, giving the runtime, throughput and la-

tency for Hadoop using control delay mechanisms.

5.3.1 Random Early Detection (RED)

The default implementation of Random Early Detection queue needed to be adapted

for the high-speed networks found on data centers. RED is typically implemented using

the average queue length for decisions of marking or drop of packets. We tried to use

the average queue length on our experimentation but our results were too similar to the

DropTail queue. Therefore, to allow simplification we do not include them. Instead,

we used the instant queue length on all our simulations with RED queue. We don’t

claim novel on this as previous works already demonstrated that instant queue length

fits better for high speed networks as within the data center, we just confirmed and

emphasize what was already demonstrated on previous evaluation [40].

RED offers an auto configuration setting that needs only one parameter: the target

delay [44]. Such feature takes in consideration the speed of the network interface card

and based on the ”packet time constant”, which is the maximum number of average

sized packets that can be transmitted per second. If the network interface is fast enough

and the target delay is also big enough, the thresholds will not be useful and the queue

will behave as a DropTail queue. We couldn’t find any references on literature so we

performed a sweep using different values as found in Table 5.2. Results are found in

Figure 5.2.

We also considered different values found on previous publications and also proposed

new values. Our considered values for RED are found in Table 5.3. Results for fixed

settings are found in Figure 5.3.

It is easy to verify that RED auto configuration feature shows a clear tradeoff between

latency and throughput. It seems to simplify the process of tuning the queue as we can

Chapter 5 Controlling Delay Mechanisms on MapReduce Clusters 49

Figure 5.2: Normalized Results for Auto RED Queue

Table 5.2: Auto Random Early Detection Settings

Target delay 1 GbE thresholds 10 GbE thresholds

100 µs 12.5 -37.5 125 - 375
250 µs 31.25 - 93.75 312.5 - 937
500 µs 62.5 - 187.5 625 - 1875
1 ms 125 - 375 NO AQM
2 ms 250 - 750 NO AQM
4 ms 500 - 1500 NO AQM

Figure 5.3: Normalized Results for Random Early Detection Queue

Table 5.3: Random Early Detection Settings

Min Th. Max Th. Reference

Config 1 70 70 [40]
Config 2 25 51 [87]
Config 3 25 75 Proposal 1
Config 4 50 150 Proposal 2

Chapter 5 Controlling Delay Mechanisms on MapReduce Clusters 50

clearly see that small values as 100 µs will drop the performance by unacceptable 30%.

As the values increase, we can see the average delay also increasing. To compare with

the other values proposed on literature we decided to use 1 ms as it was able to reduce

the latency by 85% on bufferbloat scenario while still keeping a improvement of 5% on

execution time.

When analyzing the fixed settings we can see that the first three configurations (config

1, config 2 and config 3) didn’t perform well for RED, increasing the runtime in 10%.

Configuration 4 was able to maintain the same execution time and still reduce latency

by up to 90%.

5.3.2 Controlled Delay (CoDel)

For Controlled Delay queue we used the available implementation without any modifi-

cation. CoDel is considered a parameterless queue, but the network administrator still

has to provide two values, target and interval as described on Related Work (see Chap-

ter 2.5). For our evaluation we considered values found on previous publications and

we also proposed new values as well to tolerate a bigger delay on bufferbloat scenarios.

The used values on our simulations can be found in Table 5.4. Still, we couldn’t find

many references specifically related to tune CoDel for data center networks. We can

list the values found on Bufferbloat project [47] which recommends the use of 500 µs for

target and 20 ms for interval. Another short paper [87] tested different range of values

for CoDel recommending 300 µs for target and the much smaller 750 µs for interval. We

also proposed 400 µs and 1 ms; and 800 µs and 1.5 ms for target and interval respectively

as found in Table 5.4. Results can be found in Figure 5.4.

Figure 5.4: Normalized Results for Controlled Delay Queue

Starting by the results with shallow buffers, CoDel was able to reduce the average delay

per packet by half using our second proposal (config 4) with virtually no loss on through-

put. When using the settings recommended by the Bufferbloat project (config 1) the

Chapter 5 Controlling Delay Mechanisms on MapReduce Clusters 51

Table 5.4: Controlled Delay Settings

Target
delay

Interval Reference

Config 1 500 µs 20 ms [47]
Config 2 300 µs 0.75 µs [87]
Config 3 400 µs 1 ms Proposal 1
Config 4 800 µs 1.5 ms Proposal 2

delay dropped about 25% when combined with classical TCP. For all configurations, the

smaller delay was achieved with standalone CoDel, followed by CoDel + ECN and at

last, DCTCP showed the higher delay. On bufferbloat scenarios, we see that configu-

rations that tolerate a higher delay also offer similar higher throughput. The settings

recommended by Bufferbloat project were able to reduce the latency by 35% and still

keep about 10% improvement on execution time. As the baseline for such scenarios

has an average delay per packet of about 6 ms, for latency sensitive applications the

configurations using CoDel stand alone were able to reduce latency to less than 700 µs

with config 4 and even less than 400 µs using config 2. As a downside, specially config-

urations 2 and 3 were too aggressive reducing the congestion window and throughput

was severely impacted. On the next subsection we compare the best values observed on

CoDel and on RED.

5.3.3 CoDel x RED

Figure 5.5: Normalized Results for CoDel x RED Queues

Figure 5.5 compares the best settings of each queue side-by-side. When comparing

CoDel and RED side-by-side we selected the two best values of each. The first pair

are the settings that offer the best throughput but do not have a considerable cut on

latency. The last pair are the settings which offer the best reduction on delay while still

Chapter 5 Controlling Delay Mechanisms on MapReduce Clusters 52

maintain some gain on throughput. We can see that even though CoDel and RED use

values that are more or less at the same scale (800 µs vs. 1 ms), RED tend to achieve

smaller latency than CoDel. On the other hand, CoDel was able to achieve the best

runtime. One explanation for such difference is that RED is using the instant queue

length, which turns out to be more responsive than the dynamic calculation performed

by CoDel. Also, CoDel feature of marking packets on dequeuing, when combined with

DCTCP, seems to be too conservative on reducing the congestion window and therefore

does not reduce the latency as much as standalone CoDel or CoDel combined with ECN.

By choosing other settings as 2 ms or 4 ms from RED auto configuration we would be

able to match CoDel’s performance but latency would be increased as well.

5.4 Discussion and Recommendations

As mentioned in the introduction, data center networks are starting to employ a new

generation of switches with larger buffers, in order to accommodate bursty communi-

cations and deliver better application performance. A major portion of applications

currently use TCP as the transmission protocol, so they will suffer from large packet

latency, due to TCP’s tendency to fully utilize the available buffering. Recent switches

that implement AQM already support ECN, but until a good understanding of the

impact of congestion control on real application performance has been reached, these

features are likely to remain switched off, unnecessarily forgoing a feature that could

significantly reduce latency.

This chapter contributes to the necessary understanding by analyzing the tradeoff in de-

tail for MapReduce workloads, which are representative of modern big data applications

in modern data centers.

When congestion happens at an AQM queue, if combined with ECN, it will tell the

sender proactively. The naive assumption would be to think that packet loss is always

destructive, but an equally naive assumption is to believe that something even more

destructive would be the reduction in the size of the congestion window. As seen in the

results section, CoDel combined with DCTCP can be too conservative on reducing the

congestion window. Therefore the delay is not reduced as much as it was on standalone

CoDel or CoDel combined with ECN while the throughput remained about the same.

Surprisingly, with standalone RED or RED combined with ECN, we were able to con-

siderably reduce the latency on bufferbloat scenarios by 85%, and still maintain perfor-

mance gains from larger buffers within 5%. Using instantaneous queue length instead

of the average queue length was extremely necessary to obtaining these results. It also

Chapter 5 Controlling Delay Mechanisms on MapReduce Clusters 53

open discussions whether CoDel should have faster converging mode, once its interval,

even smaller than 1 ms, seems to deliver much higher latency on similar bases as RED,

specially when it is combined with DCTCP.

Finally we finish with recommendations for system administrators. We observed that

DCTCP could not achieve the best cuts on latency. That can be explained because

DCTCP had not been yet analyzed on scenarios with deep buffers. In deep buffer sce-

narios, the baseline for latency is considerably higher and the original recommendation

as a minimum 65 of packets, which was presented in DCTCP’s evaluation, does not suit

for such scenarios. Also, as we mention previously, it may not perform well with just any

AQM, as it was the case with CoDel. Therefore we recommend careful consideration

before deploying DCTCP on bufferbloat scenarios.

In summary, our observations and recommendations are threefold:

1. Contrary to what could be expected, both RED and CoDel queues may perform

better standalone than combined with ECN or DCTCP.

2. For high-speed networks, using instant queue length on RED turned it more re-

sponsive than CoDel and its dynamic evaluation.

3. DCTCP delivered the highest latency per set of configuration on both RED and

CoDel, but it was not translated on considerable gains on throughput to justify

its usage.

5.5 Conclusions

A new challenge for modern data centers is to reduce latency caused by large buffers in

the network equipment. Specific efforts to reduce latency are related to the requirements

of particular workloads. Such actions, however, should not be considered trivial, because

the choice of congestion control has a significant effect on throughput and performance,

and should not be adopted in practice until the effects on workload performance are well

understood.

This chapter presented our new work investigating the effects of latency control mech-

anisms on a Hadoop cluster. We demonstrated how throughput and burst tolerance

play important roles for such big data workloads. We evaluated the performance impact

on execution time, throughput and latency, when using RED or CoDel, both combined

with and without ECN and at last DCTCP as the transport protocol, and found that

the MapReduce programming model is not sensitive to the latency but it is sensitive to

Chapter 5 Controlling Delay Mechanisms on MapReduce Clusters 54

even small reductions in the network throughput. We demonstrated that in some cases

with poorly-chosen AQM configuration the execution time increases by an unacceptable

20%. We also identified good AQM configurations that were able to maintain Hadoop

execution time gains from larger buffer to within 5%, while reducing packet latency

caused by bufferbloat by 85%.

Therefore we suggest that cluster administrators carefully consider whether to adopt

such techniques, depending on the cluster design and its utilization. For a heterogeneous

cluster also running latency-sensitive workloads concurrently, it is important to reduce

latency and buffer occupancy caused by larger buffers. In contrast, clusters used only for

batch big data processing can neglect the latency, and benefit from the lowest execution

time.

Chapter 6

High Throughput and Low

Latency on Hadoop Clusters

This chapter presents a solution for the difficulty in configuration of Active Queue Man-

agement in Hadoop clusters.

6.1 Summary

Once large data center operators have ownership of their network, they can optimize

their end-to-end network connections. Doing so offers the potential to reduce latency,

without degrading throughput. Over time, multiple such solutions have been proposed,

for example the well-known DCTCP [40], an extension of the TCP protocol that re-

duces network latency and buffer utilization, without degrading throughput. In general,

DCTCP is considered to be particularly promising, and the details of its deployment in

production environments are being extensively discussed [88].

As presented in the previous chapter, in certain settings however, recent studies have

found that attempts to reduce latency often cause a degradation in throughput or per-

formance [21, 29]. In particular, workloads with fully-distributed traffic, long-lived flows

and high throughput requirements tend to fill up the buffers of the network equip-

ment. Attempts to control buffer utilization have been found to reduce overall perfor-

mance [21, 29]. This chapter investigates why, and it proposes a solution.

Figure 6.1 demonstrates how Hadoop job execution time is affected when network latency

is controlled using classical TCP extended with either ECN or DCTCP, both relying on

Active Queue Management (AQM) to mark ECT-capable packets (”how it is”). It also

shows how the performance ”should be” if congestion control were performed by marking

55

Chapter 6 High Throughput and Low Latency on Hadoop Clusters 56

ECT-capable packets using a true marking scheme, as proposed in this chapter. This

figure was generated using the methodology of Section 6.3.

Figure 6.1: Hadoop job execution time affected by Active Queue Management

The shuffle phase of Hadoop, which involves an all-to-all communication among servers,

presents a stressful load on the network. Recent tracers from Facebook show that in some

cases the shuffle time can even be responsible for more than 70% of the total runtime in

the worst cases [84]. Less computation and more communication leads to the network

infrastructure constantly being the bottleneck to develop new type of solutions. In

parallel with the increase in the capability of network switches, Hadoop also has evolved

from a batch oriented workload to a more responsive and interactive type of framework.

Currently it presents many different flavors and distributions, and reducing its latency

has become of interest to the industry to allow new types of workloads that would benefit

from the analysis capability of Hadoop and much more interactive solutions [21, 29]. For

that, the network latency on current Hadoop clusters has to be decreased.

This work provides recommendations to network equipment manufacturers and network

administrators on how to reduce network latency on Hadoop clusters without degrading

performance. We expect to make it easy to understand the problem and wish to open

new discussions and promote research towards new solutions. We present experimental

results in terms of cluster throughput and network latency. Aligned with the study

presented on the previous chapter, we show the impact on Hadoop job execution time.

In short, our main contributions are:

1. We analyse why extensions of TCP intended to reduce latency, e.g. ECN and

DCTCP, fail to provide robust performance and effortless configuration.

Chapter 6 High Throughput and Low Latency on Hadoop Clusters 57

2. We characterize the scenarios that provoke this problem and propose a small

change to the way that non-ECT-capable packets are handled in the network

switches.

3. We evaluate the proposed solution in terms of cluster throughput and network

latency, as well as its expected impact on Hadoop job execution time.

4. We provide a set of recommendations to network equipment manufacturers and

cluster administrators in order to benefit from this work.

The rest of this chapter is organized as follows. Section II describes the problem and

its solution. Section III describes our infrastructure and methodology and Section IV

presents the evaluation and results. Based on these results, Section V distills the most

important recommendations. Section VI compares our approach with related work.

Finally, Section VII concludes the chapter.

6.2 The Problem and Motivation

Network transport protocols, such as TCP, traditionally signal congestion to the sender

by dropping packets. This mechanism is simple, but it reduces throughput due to

potential timeouts and the need to re-transmit packets. Recent extensions, such as

Explicit Congestion Notification (ECN) and Data Center TCP (DCTCP) avoid these

overheads by indicating imminent congestion using marked packets (as explained below

in Section 6.2.1). Such congestion control based on proactive signaling was conceived

with the premise that it was better to identify congestion before dropping packets and

waiting for the sender to react [40]. And the idea was not wrong!

When DCTCP was originally proposed, it was evaluated using a simple marking scheme.

Although the marking scheme was, we believe, one of the key points of DCTCP, it was

considered to be a straightforward aspect of DCTCP, and it was not debated enough.

The authors claimed that the simple marking scheme could be easily mimicked on ex-

isting network switches that supported Random Early Discard (RED)[42]. RED is an

Active Queue Management (AQM) scheme typically implemented by switch manufac-

turers. They recommended setting the RED minimum and maximum intervals both to

the same value of 65 packets, which they found to be necessary and sufficient to reach

the full throughput of a 10 Gbps link. The authors believed that this approach would

be able to mimic the behavior of a marking scheme on ECN-capable switches.

Chapter 6 High Throughput and Low Latency on Hadoop Clusters 58

The problem is that RED and other AQM queues that support ECN, treat ECN Capable

Transport (ECT)–capable packets differently from non-ECN-capable packets. The ECT-

capable packets support ECN and can be marked to indicate congestion, but in the same

situation the non-ECT-capable packets would be dropped.

6.2.1 A deeper look at TCP packet marking

The main role of the network switch buffers is to absorb burstiness in packet arrivals,

which is often found in data center networks. A recent study from Cisco showed how

deep (large) buffers help the switches to better absorb such burstiness. For Big Data

applications such as Hadoop, Cisco investigated how the network affects job completion

time, and found that the second most important characteristic, after network availability

and resiliency, was the network’s ability to handle bursts in traffic [53].

TCP connections will greedily use the available buffering on their network path. There-

fore persistently full deep buffers can cause a problem known as Bufferbloat [26]. For

this reason, throughput-intensive applications, such as batch workloads like Hadoop,

should not share the same infrastructure as low-latency applications, such as SQL or

SQL in Hadoop, which will access a replicated filesystem derived as a production from

the batch workload.

Latency increasing on Data Centers has become a major problem and with that, DCTCP

gained much more attention. A recent study [88] that extensively debated the most

common pitfalls in DCTCP deployment pointed out that TCP and DCTCP traffic should

never co-exist on the same infrastructure, because, while DCTCP data packets are ECT-

capable and can be marked, classical TCP packets are not, so they will be dropped. They

even pointed to a possible problem with the opening of new connections. Since SYN

packets are not ECT-capable, congestion could cause an excessive dropping of SYN

packets, which would prevent new connections from being established.

Recent studies focusing on Hadoop clusters present experiments with ECN and DCTCP

in an attempt to improve the network latency without degrading throughput or per-

formance [21, 29]. In the latter study, presented in the previous chapter of this thesis,

we were able to provide useful configurations, but fine-tuning the AQM queues was

considered to be non-trivial.

On this study, after careful investigation considering snapshots from the egress port of

network equipment, specifically on the queue level, we finally understood why previous

work failed to achieve high throughput and low latency for Hadoop. Figure 6.2 illus-

trates the problem which is typical in Hadoop clusters. Limiting buffer utilization while

Chapter 6 High Throughput and Low Latency on Hadoop Clusters 59

explicitly avoiding early drops of ECT-capable packets that will persistently fill up the

queues will allow low space to remain for other type of packets that may arrive in bursts.

On Hadoop, limiting the buffer utilization will cause a disproportionate number of ACK

packets to be dropped, even ACKs that contain ECE bits, which are useful to indicate

congestion. The worst problem happens when a full TCP sliding window is dropped.

Figure 6.2: Typical snapshot of a network switch queue in a Hadoop cluster

ACK packets are short (typically 150 bytes) but RED is typically implemented with

thresholds being defined per-packet rather than per-byte. On the other hand, a true

marking scheme would mark packets but never drop packets unless its buffer was full.

That is what we have found to unleash not only the potential of DCTCP on Hadoop

clusters as we also verified that, especially for commodity switches, a classical TCP

extended with ECN can outperform DCTCP, and we investigate why this happens. Our

simulations show that using ECN as congestion control actually works well with long

lived TCP flows.

By using a true simple marking scheme instead of trying to mimic one using an AQM,

senders are able to reduce their send rate proactively while keeping the typical sawtooth

behavior of TCP on a small scale. The throughput of the network is maximised because

there is much lower overhead of retransmitting packets. The major problem with trying

to use proactive congestion control as ECN or DCTCP when data packets are marked

by AQM queues is that packets that cannot be marked will be dropped. Dropping a

class of packets while a distinguished set of packets will benefit from an only-marking-

no-dropping approach to signalize congestion can degrade TCP performance, specifically

on a framework with an all-to-all communication pattern as Hadoop.

This problem was not detected in the original evaluation of DCTCP, nor has it appeared

in more recent experiments because the experimental testbed considered simple topolo-

gies with many senders and one receiver. Although such an approach recreates a network

bottleneck, which allows to benchmark congestion for both TCP and DCTCP, such an

evaluation does not involve data packets sharing the same egress port as ACKs. Another

situation we verified is the reason why, on recent studies and evaluations, DCTCP out-

performed TCP extended with ECN. Partition/Aggregation type of workloads have the

Chapter 6 High Throughput and Low Latency on Hadoop Clusters 60

network traffic typically being consistently comprised of short query messages. For short

messages, for which the TCP congestion window never grows significantly, a severe cut

of the congestion window on the first indication of congestion can significantly decrease

throughput.

Currently, it seems that TCP extended with ECN has already been discarded as an

option for data centers. In its most recent evaluation [88], the authors considered ECT-

capable flows as only DCTCP flows, considering that TCP and DCTCP traffic cannot

share the same infrastructure. They did not evaluate TCP extended with ECN, because,

as above, it seems to have been already discarded as a solution for data center networks.

On the other hand, in this work, we present results using TCP extended with ECN,

which outperforms DCTCP in a specific situation. We will refer to TCP extended with

ECN as TCP–ECN, which also carries ECT-capable packets.

On Hadoop, whose shuffle phase involves many-to-many communication, employing ei-

ther TCP-ECN or DCTCP will degrade the cluster throughput when relying on miscon-

figured AQM to mark ECT-capable packets. This problem happens because on Hadoop

a large part of the cluster, if not the whole cluster, will be engaged during the Map/Re-

duce communication phase known as shuffle, where data is moving across all the nodes.

Therefore, data packets and ACKs will typically share the same bottlenecks, and at the

minimal pressure on the buffers, packets that are not ECT-capable will be dropped.

This effect can be devastating for TCP as not only new connections will be prevented

from being established [88] but also ACKs will be constantly dropped. ACKs have an

important role to ensure proper signalling of congestion. Congestion should be signal-

ized soon enough, before packets are dropped, to avoid timeouts and retransmission, and

ECN uses the ACK packets to echo congestion experienced on data packets back to the

sender. Also, ACKs are used to control the TCP sliding window, which controls how

many packets can be in flight so the receiver can absorb and process them. If a whole

TCP sliding window is lost, it will also cause TCP to trigger RTO and its congestion

window will be reduced to a single packet, affecting throughput.

6.2.2 Proposed and evaluated solutions

Regarding the problem described previously, we propose two distinct solutions. Our

first proposal consists in modifying the AQM implementation to allow an operational

mode which, if ECN is enabled, protects the packets that contain ECE-bit on their TCP

header, as seen in Table 6.1. As seen in Table 6.2, current AQM implementations only

check for ECT(0) or ECT(1) bits on the packets IP header, when deciding between

marking or early dropping the packet. If a ECT(0) or ECT(1) bit is found, CE-bit is

Chapter 6 High Throughput and Low Latency on Hadoop Clusters 61

marked so a replied ACK can echo the congestion experienced back to the sender with

the ECE-bit set on their TCP header. Protecting packets which have the ECE-bit set

means a partial proportion of ACKs will be prevented from an early drop, which are

those ACKs marked with ECE-bits to echo a congestion experienced signal back to the

TCP sender. It will also protect SYN and SYN-ACK packets, which are necessary to

initialize a TCP connection. When ECN is configured, SYN packets have their ECE-bit

marked on its TCP header to signalize a ECT-capable connection. SYN-ACK packets

are replied having both ECE and CWR bits set by the receiver so that the sender can

finally enable an ECT-capable connection. In short, when ECN is configured, ECT-

capable packets and also SYN, SYN-ACK and the ACKs which have ECE-bit set won’t

be early dropped. As we demonstrate with our results this approach is the one which

achieves lowest latency while also alleviates the performance loss on cluster throughput.

Table 6.1: ECN codepoints on TCP header

Codepoint Name Description

01 ECE ECN-Echo flag
10 CWR Congestion Window Reduced

Table 6.2: ECN codepoints on IP header

Codepoint Name Description

00 Non-ECT Non ECN-Capable Transport
10 ECT(0) ECN Capable Transport
01 ECT(1) ECN Capable Transport
11 CE Congestion Encountered

Our second proposal is to finally implement a true simple marking scheme on switches,

independently of the buffer density per port. For shallow buffer devices this solution

will allow cluster throughput to be improved beyond the baseline of a DropTail queue.

While the translated latency of this approach will be a slightly higher than our first

proposal, cluster throughput is maximized, specially on commodity switches which offer

shallow buffer density per port.

In the next section we present the experimental methodology, then followed by the re-

sults with the new proposals. We demonstrate that if signalized correctly, congestion,

which is the steady state of the network during the shuffle phase of Hadoop, can be dra-

matically reduced. Meanwhile, the performance of TCP can be even improved, specially

for commodity switches as long as any important packet which is not ECT-capable is al-

lowed to be kept on the resilient buffer that remains available when using tight marking

thresholds.

Chapter 6 High Throughput and Low Latency on Hadoop Clusters 62

6.3 Simulation Environment and Workload Characteriza-

tion

Table 6.3: Simulated Environment (based on Chapter 5)

Category Parameter Value

Simulated hardware
System Number nodes 160

Number racks 4

Node CPU Intel Xeon 2.5 GHz L5420
Number cores 2
Number processors 2

Network Each node 1GbE: 1 —
Each leaf switch 1GbE: 40 10GbE: 2
Each spine switch — 10GbE: 4

Buffers Commodity switches 200 packets - max. 300 KB per port
Expensive switches 2000 packets - max. 3 MB per port

The topology selected for this work was the leaf–spine architecture [67], based on a

two-tier Clos architecture, were every lower-tier switch (leaf layer) is connected to each

of the top-tier switches (spine layer) in a full-mesh topology as seen in Figure 3.1 and

described in Chapter 3. Additionally, most part of the methodology described here is

also replicated from last chapter.

We considered two AQMs to mark ECT-capable packets, which are RED and CoDel. Im-

plementations of Random Early Detection are found on Linux, Solaris, and FreeBSD [44].

It is also implemented by network equipment vendors including Cisco [45] and Juniper

Networks [46]. RED uses configurable thresholds to decide when to mark packets if com-

bined with ECN, and drops packets based on a probability that grows with the queue

occupancy.

Table 6.4: Auto Random Early Detection Settings

Target delay 1 GbE thresholds 10 GbE thresholds

100 µs 12.5–37.5 125–375
200 µs 25–75 250–750
300 µs 37.5–112.5 375–1125
400 µs 50–150 500–1500
500 µs 62.5–187.5 625–1875
1 ms 125–375 1250–3750*
2 ms 250–750 2500*–7500*
4 ms 500–1500 5000*–15000*

First threshold is when the queue starts to mark or early dropping packets, both based

on probability. Second threshold defines when a packet will be either always marked or

Chapter 6 High Throughput and Low Latency on Hadoop Clusters 63

always dropped, with probability reaching 100%. Table 6.4 shows the used settings for

the autoRED configuration. Since the max capacity of deep buffers was limited on 2000

packets, some values will not produce effect for 10 GbE. For 1 ms the second threshold

will not be reached, so early drops will still be done based on probability, which will not

reach 100%. For 2 ms and 4 ms the egress queue will behave as a DropTail queue, never

marking or never early dropping packets.

Controlled Delay is recommended by the Bufferbloat initiative [26, 47]. The user needs

to configure the target delay, which is the tolerable delay-per-packet from the time it is

queued until it is transmitted, and the interval, which is how often the delay-per-packet

of transmitted packets is evaluated. If any packet has a delay greater that the target,

then the interval is shortened, otherwise it is reset at the end of its cycle. Table 6.5

shows the configured settings for CoDel queue.

Table 6.5: Controlled Delay (CoDel) Settings

Aggressiveness
level

Target delay Interval Reference

1 500 µs 20 ms [47]
2 800 µs 1.5 ms [29]
3 400 µs 1 ms [29]
4 300 µs 0.75 ms [87]

We modified both AQM queues to simulate, in addition to their normal behavior, the

two operational modes described on the previous section. First, we protected all the

packets that contain ECE-bit in their TCP header. Finally, we repeated the same set

of experiments expanding both AQM queues to correctly mimic a true simple marking

scheme. We could identify the problem related the the extra ACKs which are neither

ECT-capable nor have the ECE-bit set on their header. To characterize the problem,

we repeated the same experiments and kept the drop capability on these queues. Yet,

we also forced the queues to protect the following packets from an early drop: ECT-

capable packets, packets which have ECE-bits on the TCP header and all the remaining

ACK packets. Therefore, all the following packets are protected from an early drop: all

data packets (which are ECT-capable), all SYN and SYN-ACK packets (which will have

ECE-bit on their TCP header) and all the ACK, either if they are echoing a congestion

experience with an ECE-bit or not.

In short we provide results for either TCP-ECN and DCTCP flows using AQMs config-

ured with ECN to protect the following packets from an early drop:

• Default behavior which protects only ECT-capable packets.

Chapter 6 High Throughput and Low Latency on Hadoop Clusters 64

• ECE-bit which protects ECT-capable packets and packets which have ECE-bit

set on their TCP header (SYN, SYN-ACK and a proportion of ACKs).

• ACK + SYN which protects ECT-capable, SYN, SYN-ACKs, and finally all

ACK packets, irrespective of whether or not they have the ECE-bit set in their

TCP header.

At last the three performance metrics considered are: the runtime which is the total time

needed to finish the Terasort workload, which is inversely proportional to the effective

throughput of the cluster; the average throughput per node and the average end-to-end

latency per packet. Therefore the improvements on TCP throughput measured here can

be translated to a production environment. The real gain on the MapReduce runtime

will depend on how much is the extent of each workload regarding the proportion of

computation and communication.

6.4 Results

This section presents the quantitative results in terms of the runtime, throughput and

latency for Hadoop using the methodology described in the previous section. Results are

shown for both RED and CoDel, in order to demonstrate that the approach advocated

in this chapter is independent of the precise AQM mechanism.

All results are normalized relative to an ordinary DropTail queue. In the case of runtime

and throughput, results are always normalized with respect to DropTail with shallow

buffers. For these results, the dashed line on the deep buffer plots indicates the (better)

runtime or throughput obtained using DropTail with deep buffers. In order to analyse

the bufferbloat problem separately for deep and shallow switches, network latency is

normalized to the latency of DropTail with the same buffer lengths. On the deep buffer

results, we indicate with a dashed line the (much lower) latency obtained using shallow

buffer switches.

6.4.1 Random Early Detection (RED)

We start by presenting the effect of configuring the target delay of RED and how its

different thresholds (see the previous section) affect Hadoop runtime for switches with

shallow buffers. Figure 6.3a shows the runtime for shallow buffers and that for shallow

buffers the best runtime is achieved either at a moderate target delay of 500 µs for both

ECE-bit and ACK+SYN with ECN, or also using more aggressive settings to achieve

Chapter 6 High Throughput and Low Latency on Hadoop Clusters 65

the same with DCTCP. Comparing with Figure 6.4a we see how ACK+SYN was in

terms of throughput, which increases by about 10% when target delay settings become

aggressive. It shows that senders are able to control congestion if it is signalled soon

enough. The best results and robustness of throughput is also translated to a network

latency never lower than 50% compared to the baseline, as confirmed on Figure 6.5a.

(a) Shallow Buffers (b) Deep Buffers

Figure 6.3: Hadoop Runtime - RED

(a) Shallow Buffers (b) Deep Buffers

Figure 6.4: Cluster Throughput - RED

(a) Shallow Buffers (b) Deep Buffers

Figure 6.5: Network Latency - RED

Chapter 6 High Throughput and Low Latency on Hadoop Clusters 66

For deep buffers, we start with Figure 6.4b. We can clearly see that as any congestion

control is performed using ECE-bit or ACK+SYN cluster throughput achieves its max-

imum values using loose settings. As seen in Figure 6.5b, although the network latency

was reduced by almost 60%, it is still about three times higher than the latency found

on the DropTail queue of shallow buffer switches. The values to be considered should

be the ones starting on 500 µs. Finally, Figure 6.3b shows Hadoop runtime reaching a

robust 10% speed-up, which is about the same performance reached by the DropTail

queue from deep buffer switches. Now we analyze the results using the modified CoDel.

6.4.2 Controlled Delay (CoDel)

Using a modified CoDel enabled us to verify that regarding how logic of the queue

to decide when marking and dropping packets also influence on the results obtained.

Although there is some variation in comparison to what was obtained using RED, we

also verified the robustness of both solutions using CoDel.

We start again by presenting the effect of delay control applied to CoDel as regarding

the aggressiveness of the settings described on previous section. Figure 6.6a shows that

ACK+SYN for ECN achieved he fastest Hadoop runtime, about 8% faster than the

DropTail baseline. Cluster throughput was also stable as verified in Figure 6.7a, even

used the most aggressive settings it remained above 5% improvements for both proposed

solutions and all the flows. Analysing Figure 6.8a shows CoDel reduced its latency by

half of what RED achieved, which translate on a network latency reduced by 40%.

(a) Shallow Buffers (b) Deep Buffers

Figure 6.6: Hadoop Runtime - CoDel

As seen in Figure 6.6b, CoDel also has impacts on Hadoop runtime when more aggressive

settings are used. The dashed line shows the best results which were from the larger

DropTail queue and the proposals had a slightly performance degradation. The small

drop on cluster throughput is also verified in Figure 6.7b. At last, the small reduction

in throughput was compensated for by a reduction in network latency of about 80%,

Chapter 6 High Throughput and Low Latency on Hadoop Clusters 67

(a) Shallow Buffers (b) Deep Buffers

Figure 6.7: Cluster Throughput - CoDel

(a) Shallow Buffers (b) Deep Buffers

Figure 6.8: Network Latency - CoDel

almost reaching the same network latency found on shallow buffer switches (pointed by

the dashed line) in Figure 6.8b. Specially for CoDel, ECN solutions had much lower

network latency than DCTCP solutions, which matches with results related by previous

work (see related work).

6.4.3 Summary of Results

From the results described here we could verify that RED is much more sensitive to

aggressive settings. It was translated to an increase in Hadoop runtime of about 35%,

which was much higher than CoDel’s worst performance loss of about 10%. Still, the

performance degradation was importantly reproduced so we could also verify that in-

dependently from the egress queue logic utilized, the problem resides on the dispropor-

tional number of ACK packets which are early dropped. For CoDel, ECE-bit proposal is

enough to achieve near the best results on terms of Hadoop runtime, cluster throughput

and network latency. For RED, the implementation of a true marking scheme, which

Chapter 6 High Throughput and Low Latency on Hadoop Clusters 68

on our simulations was reproduced by protecting the packets that caused the perfor-

mance loss (described on previous section), allow the network administrator to choose

between the former mentioned ECE-bit, which is a really low latency solution that still

early drops some ACK packet that do not have ECE-bit on their header; or the true

marking scheme which offers a more conservative reduction on network latency, with

no early drops. For commodity clusters particularly employing shallow buffer switches,

it translates by expressive gains on cluster throughput and Hadoop runtime. Finally,

for clusters employing deep buffer switches which already present improved through-

put as their baseline performance, the task of configuring switches egress queues as an

attempt to reduce network latency becomes much easier with no throughput degrada-

tion on miss-configured AQMs. Next section presents discussions and recommendations

regarding our results.

6.5 Discussion and Recommendations

The results presented in this chapter show that Hadoop can tremendously benefit from a

true simple marking scheme. These results are not exclusive to Hadoop, but are expected

to be reproduced on other types of workload that present the following characteristics:

• Use of ECN: ECN configured on TCP flows (either TCP-ECN or DCTCP) and

switch queues configured to mark ECT-capable packets.

• East–west traffic pattern, which implies that data and ACK packets are often

present in the same egress queue.

• Long-lived TCP flows with bursty communication.

Previous work pointed that classical TCP and DCTCP flows should never coexist on

the same infrastructure. We identified a worse problem when a controlled infrastructure

having only ECN configured flows (either TCP-ECN or DCTCP) will collapse, due to a

disproportional drop of ACKs. Redesigning the topology and organization of the cluster

on a way that egress queues would never be shared between data and ACK packets can

make the problem disappear. The cluster topology and workload organization plays an

important part on reproducing the problem described here. Hence why previous work

failed on reproducing or identifying it. On the other hand, MapReduce workloads were

designed on a way where a big portion of the cluster, it not the whole of it, will be

engaged on a fully distributed computation. To do so, a many-to-many communication

between servers is required and the network will be consistently congested on such phase.

Chapter 6 High Throughput and Low Latency on Hadoop Clusters 69

DCTCP has a strong premises which is to maintain latency low while delivering really

high throughput, even higher than classical TCP itself. It was demonstrated on previous

evaluation and these results still hold for the circumstances on how it was evaluated.

A workload composed by short TCP flows will benefit from a more gentle cut on the

congestion window. TCP takes one round trip to double its congestion window. When

a more aggressive congestion window cut happens on a short-lived flow, it might not

have another round trip to return to a satisfactory congestion window to achieve full

throughput. Therefore, DCTCP is necessary on workloads that follow the OLTP model

(OnLine Transactions per Second), where it is basically composed by short-lived TCP

flows such as queries messages (flows typically shorter than 1 MB). Since TCP-ECN cuts

the congestion window by half, it can degrade throughput on such type of workloads.

For long lived flows, as more than 1 MB, on DCTCP evaluation itself, there was no

virtual difference on performance when it was compared against TCP-ECN. We verified

that for Hadoop, where the network will be constantly congested, TCP-ECN will benefit

from a more aggressive cut on the congestion window, offering a lower latency comparing

to DCTCP.

A true simple marking schema simplifies the difficult task of configuring and tuning

AQMs to work on MapReduce workloads. Yet, we identify different approaches that

fit better for shallow or deep buffer switches. For shallow buffers switches, the more

aggressive settings are useful to signalize congestion as soon as possible. As the buffer

density per port is limited, signal the congestion before drops happen will be translated

on TCP throughput gains. For deep buffers switches, using settings with moderated

aggressiveness allow more data to be persistent on egress queues while they can still

proactively signalize congestion to the senders, which finally translates to an improved

TCP throughput. We now distill our most important recommendations.

Recommendations for equipment vendors: The limited configurability of ex-

isting switches egress queues which do not allow the network administrator to disable

drops mean that if AQMs are combined with ECN flows, the best results on terms of

throughput and network latency for the shuffle phase of a Hadoop infrastructure cannot

be fully achieved. An operational mode where egress queues only mark ECT-capable

packets using a simple marking threshold while avoid drops from the non-ECT-capable

traffic will improve the performance of workloads as Hadoop and it could be achieved

with a firmware update. It should be offered to commodity switches as well, even if the

switch offers a buffer density per port lower than 1 MB, as our results demonstrate how

it can tune performance of legacy switches with a buffer density per port no higher than

Chapter 6 High Throughput and Low Latency on Hadoop Clusters 70

300 KB. For Hadoop, ECN flows (TCP-ECN or DCTCP) will benefit from this opera-

tional mode where no packets are dropped until the egress queue limit and congestion

control is fully performed by TCP endpoints.

Recommendations for network administrators: Until a true simple marking

scheme is implemented on network switches, we recommend the following two solutions:

Some high-end switches offer the option to forward non-ECT-capable traffic on the

egress queue instead of dropping them as we discuss in the next section (related work).

Unfortunately, this option is only available on top-of-the-line switches which offer very

high buffer density per port. Although this solution will perform equally great on terms

of throughput and network latency as the results obtained on this work, it is unlikely to

lead to a low cost solution.

As a solution for switches which do not offer the option to forward non-ECT-capable

traffic, the network latency can be reduced to optimum level at the cost of performance

loss on throughput. The performance of the standalone queue was out from the scope of

this work as it was already covered by previous work, related on the following section.

Therefore, for commodity or legacy switches which offer AQM and ECN features, as an

immediate low latency solution, we recommend the utilization of the standalone AQM

queue, completely disabling ECN from TCP flows and from the queue configuration.

The next section covers the related work, which enrich our recommendations presented

here.

6.6 Related Work

The original DCTCP paper [40] suggested that a simple marking scheme could be mim-

icked using switches that already support RED and ECN. More recent studies, such

as a comprehensive study of tuning of ECN for data center networks [55] also recom-

mended that switches would be easier to configure if they had one threshold instead of

the two found on RED. They also recommended to use the instantaneous rather than

averaged queue length. They also pointed out the problem with SYN packets not being

ECT-capable, but the problem with disproportional dropping of ACKs was not men-

tioned. Another recent study, which extensively discussed common deployment issues

for DCTCP [88] pointed to the same problem that happens on a saturated egress queue

when trying to open new connections.

A recent and promising method to perform congestion control on TCP endpoints ob-

tained better results than DCTCP for data center networks, by implementing a new

Chapter 6 High Throughput and Low Latency on Hadoop Clusters 71

congestion control technique based on the logistic growth function [89]. To perform

their evaluation, the authors used a simple marking scheme that starts to mark packets

using a tight threshold, which was set to only one packet. The authors, following the

same approach as in previous work, claim that RED could mimic it, which is why they

considered that the method would not require any changes in hardware.

None of these previous studies considered the use of a class of workload, such as Hadoop,

that involves multiple long-lived TCP flows in multiple directions. Such workloads cause

the same egress queue to contain large numbers of both data and ACK packets. As

previously explained, on Hadoop, data is transferred across the whole cluster during its

shuffle phase and that was why they were not able to identify the problem described on

this work.

The performance of TCP-ECN and DCTCP on Hadoop clusters was recently investi-

gated. Grosvenor et al. [21] evaluated the ability of TCP-ECN and DCTCP to reduce

Hadoop’s latency while running latency-sensitive services in the background. The goal

of their work was to present a new method to classify the network traffic, for which the

queue utilization was important, so some packets could jump the queues. In that work,

TCP-ECN was considered to have a performance degradation of more than 2× the base-

line. DCTCP achieved better results, but they still showed a performance degradation

of 20% with respect to the baseline. We believe that the reason for such a difference

between TCP-ECN and DCTCP was the fact that for TCP-ECN they set a much lower

marking threshold using RED, equal to 40 packets, while for DCTCP they maintained it

on 65 packets as recommended in DCTCP’s original paper [40]. We believe the basis for

comparison between TCP-ECN and DCTCP should be the same marking threshold, as

DCTCP already reduces its congestion window more gently. A more recent study [29],

which compared TCP-ECN and DCTCP using identical thresholds of 70 packets, also

showed a performance degradation of about 20%, with respect to the baseline, which

used deep buffer switches. In that study TCP-ECN was considered to achieve a lower

latency than DCTCP, showing that in a congested environment with long-lived TCP

flows, both TCP-ECN and DCTCP can achieve similar throughputs, but the more ag-

gressive cut in the congestion window in the case of TCP-ECN leads to a lower-latency

solution.

A new feature is being offered on modern high-end switches which offer the possibility

to forward non-ECT-capable traffic while having AQM configured to use ECN. This

feature allows the non-ECT-capable traffic to bypass the AQM thresholds and grow

until the egress queue limit [90]. Yet, this feature is only available on new high-end

switches, which for example, have a buffer density per port near 10 MB. From the

results presented in this work, we showed the benefits from a true simple marking scheme

Chapter 6 High Throughput and Low Latency on Hadoop Clusters 72

using the instantaneous queue length being implemented on switches with much lower

buffer density per port. Once current network equipment receive such update it could

translate to improvements in both throughput/performance and network latency, with

an affordable solution achieved through a simple firmware update.

6.7 Conclusions

In this chapter, we presented a novel analysis on how to reduce network latency on

MapReduce clusters without degrading TCP throughput performance. We character-

ized the problem which previous work failed to identify. We demonstrated why it is

inadvisable to use Active Queue Management to mark ECT-capable packets on MapRe-

duce workloads. We presented comparable results with recent works that tried to reduce

the network latency found on MapReduce clusters, and which failed to identify the real

problem when DCTCP or TCP-ECN flows rely on AQMs to mark ECT-capable packets.

We also demonstrate that a true simple marking scheme not only simplifies the configu-

ration of marking ECT-capable packets, but it also translates to a more robust solution.

Doing so, we were able to avoid the 20% loss in throughput reported by previous work,

and we even achieved a boost in TCP performance of 10%, in comparison to a DropTail

queue. Yet, our gains in throughput were accompanied with a reduction in latency of

about 85%. The results presented in this chapter are not exclusive but can also expected

to be reproduced on other type of workloads that present the characteristics described

in our problem characterization.

Finally, we showed that a true simple marking scheme should not only be supported in

deep buffer switches. Commodity switches, as typically employed in MapReduce clus-

ters, could also achieve promising results in terms of throughput and network latency.

The results in this chapter can help reduce Hadoop runtime and allow low-latency ser-

vices to run concurrently on the same infrastructure.

Chapter 7

Energy Savings and Lower

Latency Networks

This chapter analyses the impact of Packet Coalescing in the context of network latency.

Then, combining Packet Coalescing with Active Queue Management, we investigate how

to design and configure interconnects to provide the maximum energy savings without

degrading cluster throughput performance or network latency.

7.1 Summary

An important challenge of modern data centres is to minimise energy consumption, a

significant proportion of which is due to the network. Network energy savings are pos-

sible using Energy Efficient Ethernet (EEE) IEEE 802.3az, which is already supported

by a large number of NICs and switches.

In the Chapter 4 we presented the first study from the impact of Energy Efficient Ether-

net on MapReduce workloads [27]. Overall, we found that although substantial energy

savings are available, the packet coalescing settings must be carefully configured to avoid

a substantial loss in performance [27].

Meanwhile, network switches are steadily increasing their per-port buffer capacities.

New SDRAM-based products are being launched with per-port buffer densities of up to

ten times larger [25]. Large buffers increase throughput, but they can exacerbate the

Bufferbloat problem [26], with network latencies reaching tens of milliseconds for certain

classes of workloads.

73

Chapter 7 Energy Savings and Lower Latency Networks 74

We presented in Chapter 5 the first quantitatively evaluation from the control of network

latency in Hadoop clusters, which was done using Active Queue Management (AQM)

with Explicit Congestion Notification (ECN), and had minimal impact on Hadoop batch

performance [29].

This chapter connects these two distinct efforts, by introducing a cluster design approach

for reducing the interconnect energy consumption while also reducing network latency.

As previously demonstrated, the Packet Coalescing settings must be carefully configured

in order to avoid a substantial loss in performance [27]. Even so, the impact of the extra

network latency incurred by packet coalescing, which increased the Bandwidth–Delay

Product, had to be compensated with more buffering and TCP packets in-flight. The

increase in latency was tolerable because of Hadoop’s original batch-oriented design.

In contrast, it is surprisingly difficult to effectively combine packet coalescing on the

10 GbE links with controlled latency, as implemented using ECN with AQM.

Our guidelines are especially targeted for workloads with long east–west flows inside

the data centre, such as Apache Hadoop. Our findings are simple to implement and

straightforward to understand. By considering our settings and configurations, vendors

and cluster administrators can reduce interconnect energy consumption without ad-

versely affecting network latency. We also wish to open discussion and promote research

towards new solutions. We present experimental results in terms of interconnect energy

consumption, cluster throughput and network latency. Finally, we show the impact on

Hadoop job execution time.

In short, our main contributions are:

1. We analyse the impact of different buffer densities and Packet Coalescing settings

on Hadoop network latency.

2. We align the Packet Coalescing technique with Active Queue Management to re-

duce network latency and identify how to extract the best from the combined

techniques.

3. We evaluate the proposed solution in terms of interconnect energy consumption,

cluster throughput and network latency, as well as its expected impact on Hadoop

job execution time.

4. We provide a set of recommendations to network equipment manufacturers and

cluster administrators in order to benefit from this work.

The rest of this chapter is organized as follows. Section II describes the motivation.

Section III describes the infrastructure and methodology and Section IV presents the

Chapter 7 Energy Savings and Lower Latency Networks 75

evaluation and results. Based on these results, Section V distills the most important

recommendations. Finally, Section VI concludes the chapter.

7.2 Motivation

This section summarizes the motivation for linking recent work towards better Hadoop

interconnect energy consumption with attempts to reduce Hadoop cluster network la-

tency.

7.2.1 Packet Coalescing

In Chapter 4 we showed that the MapReduce programming model is not sensitive to

the overheads of Energy Efficient Ethernet, even when combining the Packet Coalescing

technique, contradicting the general guidelines from vendors to disable EEE. The extra

latency introduced by Packet Coalescing can be compensated with more buffering and

TCP packets in-flight. On the perspective that Hadoop was designed to be thoughput-

sensitive as a batch-oriented workload, such solution provides near ideal interconnect

energy savings and virtually no loss on throughput and performance.

That chapter also demonstrated that for 1GbE links, EEE already does a great job

by providing close to ideal energy proportionality, i.e. the sleep and wake operations

introduce negligible energy and performance overheads. On the other hand, 10GbE

links, which are responsible for nearly half of the interconnect energy consumption,

provide good energy savings only if the operator enables Packet Coalescing. Moder-

ate Packet Coalescing settings provide low energy savings, whereas aggressive Packet

Coalescing settings, which deliver greater energy savings, increase the Bandwidth-Delay

Product (BDP), so maximizing throughput requires a greater number of packets in flight

and therefore more buffering.

7.2.2 Buffer density and Hadoop Network Latency

The steady increase in network switch per-port buffer capacities is related to the wish

to minimize packet drops, which typically arise in two distinct situations. Firstly, in

upper-layer devices, at the aggregation and core layers, when bursty traffic on multiple

incoming links is redirected to the same outgoing port, the switch will have to queue the

packets before transmitting them. Secondly, in the access layer; i.e. in the Top-of-Rack

(ToR) switches, incoming traffic intended for server nodes may arrive on a link that has

Chapter 7 Energy Savings and Lower Latency Networks 76

higher bandwidth than the link to the server; e.g. packets arrive on an incoming 10GbE

link, but they must be retransmitted on an outgoing 1GbE link.

Employing high density buffer per port on network equipments can lead to excessive

network latency. Figure 7.1 illustrates how network latency is impacted by the buffer

density per port. These results were generated using the methodology described on the

next section. In particular, the shallow-buffer switches have 0.1 MB of buffering per

port, whereas the deep-buffer switches have 1 MB per port.

Figure 7.1: Buffer density impact on network latency on Hadoop

This problem is known as Bufferbloat [26], which is caused by TCP connections greedily

using the available buffering on their network path. To reduce buffer utilization, Active

Queue Management (AQM), which is already implemented in network switches, relies

on two mechanisms to signal congestion: drop and mark. Network transport proto-

cols, such as TCP, traditionally signal congestion to the sender by dropping packets.

This mechanism is simple, but it reduces throughput due to potential timeouts and the

need to re-transmit packets. Recent extensions, such as Explicit Congestion Notifica-

tion (ECN) avoid these overheads by indicating imminent congestion by “marking” the

packets (using specific bits in the IP header). Such congestion control based on proactive

signaling was conceived with the premise that it was better to identify congestion before

it is necessary to drop packets and wait for the sender to react [40].

Batch-oriented workloads, which have high throughput requirements can also benefit

from a more proactive use of ECN combined with already available AQMs. As demon-

strated in Chapter 5, network latency can be significantly reduced with minimum impact

on cluster throughput. The proactive reaction to congestion translates to much lower

buffering requirements needed to maximize throughput. With less buffering require-

ments, ECN with AQM can also reduce the number of packets needed in-flight. Com-

bined with Packet Coalescing, however, as discussed in this chapter, both techniques

must be carefully adjusted in order to realise the potential gains from both of them.

Chapter 7 Energy Savings and Lower Latency Networks 77

7.3 Methodology

7.3.1 Simulation Environment and Workload Characterization

Table 7.1: Simulated Environment

Category Parameter Value

Simulated hardware
System Number nodes 80

Number racks 2

Node CPU Intel Xeon 2.5 GHz L5420
Number cores 2
Number processors 2

Network Each node 1GbE: 1 —
Each leaf switch 1GbE: 40 10GbE: 1
Each spine switch — 10GbE: 1

Buffers Shallow buffer per-port 200 packets - max. 300 KB per port
Deep buffer per-port 2000 packets - max. 3 MB per port

Link power 10GbE 2.5 W

RED settings Min. and Max. Thresholds 125 - 375
TCP buffer Max. packet per connection Unlimited

Table 7.1 shows the configuration, simulated enviroment and also the simulated work-

load. Each leaf switch is connected to the spine switch using a single 10GbE link. The

over-subscription ratio on the access layer is equal to 4:1. One node was reserved for

Hadoop housekeeping, to serve as namenode and jobtracker, with the remaining nodes

used as worker nodes for processing map and reduce tasks. A single Terasort job is con-

figured to sort 4.9 GB (random elements) with 79 mappers. Terasort is a popular batch

benchmark commonly used to measure MapReduce performance on a Hadoop cluster.

In order to be representative we simulated a batch workload where approximately 50%

of time is due network communication, transferring data (shuffle phase) and the other

50% is spent on computation (map and reduce phases). It is consistent with a study

of traces obtained at Facebook, which shows that most of the jobs were small and the

shuffle phase represented in average 33% of the jobs execution time, which can even be

more than 70% of the total runtime in the worst cases [84].

We assume the sleep and wake timings given in Table 7.2. The ideal case uses Energy

Efficient Ethernet, but the sleep and wake transitions were considered to be both in-

stantaneous and zero energy, providing an “ideal” point of comparison. In this case, the

link is optimally controlled by simply entering low power mode as soon as it becomes

inactive, providing perfect energy proportionality without affecting runtime. This result

gives a lower bound on energy consumption. Finally, we also considered different values

for packet coalescing. The right configuration is critical for maximum energy savings

Chapter 7 Energy Savings and Lower Latency Networks 78

and low performance overhead [34]. Christensen et al. [14] suggest using either a timer

of 12 µs and a trigger of 10 packets or 120 µs and 100 packets. Another publication uses

substantially different values [33], of 1 ms and 10 ms as timers, in both cases with 1,000

packets as trigger. As seen in Chapter 4, a timer of 10 ms can dramatically degrade the

performance of MapReduce jobs. In that context where latency was not considered, 1 ms

delivered close to ideal energy savings for 10GbE NICs. Additionally, we also consider

an intermediate timer of 500 µs with a trigger of 500 packets, as seen in Table 7.3.

Table 7.2: EEE wake and sleep operations

Speed
Min. Tw (µs) Min. Ts (µs)

1000Base-T 16.5 182
10GBase-T 4.48 2.88
Ideal 0 0

Table 7.3: Ethernet Specs

Label
Packet Coalescing settings
Holding time Trigger

legacy eth No Energy Efficient Ethernet
ideal No overhead from sleep and wake operations
eee Energy Efficient Ethernet - no Packet Coalescing
12us10 12 µs 10 packets
120us100 120 µs 100 packets
500us500 500 µs 500 packets
1ms1000 1 ms 1000 packets

We considered RED as the selected AQM to mark packets with ECN feature configured

on TCP senders. Implementations of Random Early Detection are found on Linux, So-

laris, and FreeBSD [44]. It is also implemented by network equipment vendors including

Cisco [45] and Juniper Networks [46]. RED uses configurable thresholds to decide when

to mark packets if combined with ECN, and drops packets based on a probability that

grows with the queue occupancy. First threshold is when the queue starts to mark or

early dropping packets, both based on probability. Second threshold defines when a

packet will be either always marked or always dropped, with probability reaching 100%.

Finally, the four performance metrics considered are: the interconnect energy consump-

tion which is the energy consumed by 10GbE links, the runtime which is the total time

needed to finish the Terasort workload, which is inversely proportional to the effective

Chapter 7 Energy Savings and Lower Latency Networks 79

throughput of the cluster; the average throughput per node and the average end-to-end

latency per packet.

7.4 Results

This section applies the methodology described in the previous section, and presents the

quantitative results in terms of interconnect energy consumption, the Hadoop runtime,

cluster throughput and network latency.

7.4.1 Buffer density and Packet Coalescing on Hadoop

We start the analysis of our results by discussing Figure 7.2. The dashed area shows the

extra latency introduced by Packet Coalescing, which for shallow buffers translates into

an additional latency of 12% while for deep buffers the extra latency is about 6%. The

baseline for the latency is the same presented in Figure 7.1 and discussed in Section 7.2.

Since the latency found on deep buffers is much higher, the extra latency incurred by

Packet Coalescing accounts for a lower (relative) impact on the normalized numbers.

Figure 7.2: Packet coalescing impact on network latency considering different buffer
sizes

Figure 7.3 presents the execution time and throughput results normalized to the shallow

buffer baseline. We verify that more buffer density translates to higher throughput

which translates to a faster runtime. We also verify that Packet Coalescing increases

variability, but overall, the extra latency can be compensated by more buffering and

packets in flight. Therefore, the gains obtained from deep buffers where maintained,

even with the more aggressive setting for Packet Coalescing.

Chapter 7 Energy Savings and Lower Latency Networks 80

Figure 7.3: Packet coalescing impact on runtime and throughput considering different
buffer sizes

Finally, we analyse Figure 7.4. The values are normalized to the ideal energy consump-

tion, which means zero energy for sleep and wake operations. On our benchmark we

verify that the 10GbE links consumed more than five times the energy consumption

per NIC. We zoomed-in the bars to obtain a clearer comparison for the other settings.

Energy Efficient Ethernet is able to significantly reduce the energy consumption but it

is still almost 80% from ideal. It was therefore possible to obtain considerable gains

with Packet Coalescing. The best gains were obtained using 1ms1000 with deep buffers,

reaching near only 5% more energy than the ideal model, while 120us100 was near 10%

from that and 500us500 in between these two settings.

Figure 7.4: Packet Coalescing impact on energy consumption of 10GbE considering
different buffer sizes

We move on with the next set of experiments, which consist of: enabling ECN on the

TCP end-points, enabling ECN’s marking feature on each RED egress buffer, and us-

ing the configuration described in Section 7.3. We expect to not only reduce network

Chapter 7 Energy Savings and Lower Latency Networks 81

latency but also maintain cluster throughput and specially maximize the energy savings

for the 10GbE links, obtained with Packet Coalescing. Figure 7.5 shows the impact of

congestion control on network latency for deep buffers, which will be the baseline for

the results in the next set of results.

Figure 7.5: Congestion control impact on network latency on deep buffers

7.4.2 Combining Packet Coalescing with ECN/AQM/RED

Figure 7.6: Runtime, Latency, Throughput and Energy values for Packet Coalescing
combined with RED and ECN

Figure 7.6 brings the detailed results considering our four metrics described on Sec-

tion 7.3. Starting by Hadoop performance, we can see that the two more agressive

settings decreased cluster throughput, which also impacted on a larger execution time.

While 500us500 impacted on approximately 25% performance degradation, the more

aggressive Packet Coalescing 1ms1000 inflicted a loss on performance that was higher

than 50%. Proactive congestion control limits the buffering required to keep throughput

performance compared to the baseline. The larger latency inflicted by larger coalesc-

ing times increases the Bandwidth-Delay Product (BDP), so maximizing throughput

Chapter 7 Energy Savings and Lower Latency Networks 82

requires a greater number of packets in flight and therefore more buffering, which is

restrained by the employed proactive congestion control.

Analyzing the energy consumption, we also see that the two more aggressive Packet

Coalescing settings no longer provide the best energy savings. The increase on execution

time was responsible for losing all the greatness on energy savings we verified when

Packet Coalescing is used stand-alone.

Finally, we verified an overall reduction on network latency as expected. Considering

the Packet Coalescing settings, the network latency suffered an increment of almost 50%

for shallow buffers when using the more aggressive Packet Coalescing settings. For deep

buffers the extra latency was responsible for a smaller increment of 10%. Still, when

combining our metrics together, we can no longer verify any benefit of utilizing 1ms1000

or even 500us500.

7.4.3 Summary of Results

Figure 7.7: Runtime, Latency, Throughput and Energy values for Packet Coalescing
combined with RED and ECN

Figure 7.7 brings the big picture with all the four metrics combined. We included a

star to highlight the best combination which includes latency compared to the baseline,

energy near 10% the ideal model and finally no verified loss on performance and cluster

throughput. Considering 120us100 packets, we demonstrate it is possible to achieve

a much lower network latency while still maintaining the interconnect energy savings

obtained by utilizing Packet Coalescing.

Chapter 7 Energy Savings and Lower Latency Networks 83

7.5 Discussion and Recommendations

The results presented in this chapter show that Hadoop clusters can significantly benefit

from packet coalescing combined with proactive congestion control mechanisms. The

results presented here are not exclusive to Hadoop, but are expected to be reproduced

on other types of workload that present the following three characteristics:

• East–west traffic patterns and long-lived TCP flows with bursty communication.

• TCP flows configured to use ECN, either as TCP–ECN or DCTCP, and switches

configured to mark packets.

• NICs and switches that implement Energy Efficient Ethernet with the option to

coalesce packets.

We now distill our most important recommendations.

Recommendations for equipment vendors: Due to the potential energy savings,

equipment vendors should consider implementing Packet Coalescing in their NICs and

switches. It is important, however, to offer some reconfigurability, since depending on

the workload, more aggressive settings may be desired while for other classes of work-

loads, less aggressive settings may already provide good energy savings. As a pratical

example, some vendors implement coalescing on the receiver side, which is typically

named Interrupt Coalescing. Interrupt Coalescing is a related feature that is typically

implemented with the possibility for configuration by the network administrator. Our

simulations with packet coalescing for EEE explicitly implements it on both sender and

receiver sides, which can be useful at the servers layer (NIC’s can aggregate more pack-

ets from different flows before transmitting it), and also on switches layer where many

flows from different ingress ports are being redirected to the same egress (output) port.

Another difference to Interrupt Coalescing is that it is typically recommended to use

lower values as extra latency could decrease the performance of latency-sensitive work-

loads [83]. Currently available Energy Efficient Ethernet NICs still don’t have option

to configure the packet coalescing settings. We believe that as the Interrupt Coalesc-

ing, Packet Coalescing will also be implemented as a configurable feature by network

manufactures in the near future.

Recommendations for network administrators: Energy Efficient Ethernet NICs

do not currently offer the possibility to adjust the configuration of the Packet Coalescing

settings. We argue that EEE NICs should in future offer such flexibility. If this does

Chapter 7 Energy Savings and Lower Latency Networks 84

finally happen, we recommend this work as a guideline to obtain maximum energy

savings without degrading Hadoop performance or network latency. For batch workloads

where latency is not a concern, we recommend the more aggressive settings which have

its extra latency compensated with more buffering and packets in-flight. If reducing

network latency is the major concern, we recommend the utilization of some congestion

control mechanism as ECN or DCTCP without discarding the utilization of Packet

Coalescing. We demonstrated it is feasible and possible to combine both techniques

with no loss on the four metrics considered on this work.

7.6 Conclusions

This chapter has presented a novel analysis of the impact of Energy Efficient Ether-

net (EEE) and Packet Coalescing on network latency for Hadoop Clusters. Combining

Packet Coalescing with ECN plus AQM, which is already found on network switches,

delivers network latencies comparable to that found for ideal on/off links, without EEE’s

sleep and wake overheads. We were also able to reduce the energy consumption from

10GbE links by 70%, compared to default EEE, which does not use Packet Coalescing.

In summary, we suggest that equipment vendors implement Packet Coalescing and also

provide the ability for operators to modify the Packet Coalescing configuration settings.

In turn, we suggest that network administrators use the recommendations in this chapter

together with knowledge of their application’s network latency requirements. Doing so

will provide the best possible energy savings without compromising performance or

latency requirements.

Chapter 8

Conclusion and Future Work

Big Data workloads have emerged in the recent past and have undergone a constant

evolution to fit application requirements which aim to satisfy users needs from a uni-

verse of currently available online services. As we previously showed a major portion,

corresponding to more than 3/4 of total global traffic, resides inside the Data Center.

This traffic has all the sources and destinations being the servers themselves, within the

Data Center infrastructure and the Big Data workloads are considered responsible for

such generated traffic.

The Hadoop ecosystem, which has been adopted by the biggest Internet companies these

days is one of the most famous Big Data frameworks, responsible for processing huge

data sets on distributed clusters. Such development has been supported by the same

companies that require its utilization and with such enormous support the platform

has evolved from a batch-oriented processing workload to a more responsive platform

providing real time and online processing services.

As the platform evolves, investments and improvements in infrastructure are made nec-

essary. First, it is desired to keep up with the generated traffic while also reducing its

energy footprint; and second to improve responsiveness from the infrastructure itself,

allowing designers and users to benefit from new classes of applications.

The network is commonly described as the bottleneck present of Hadoop infrastructure.

Reasons relate to the fact that Data Centers face a distinct class of problems regard-

ing the Local Area Network traffic. For example, most Data Center applications are

written using TCP as the transport protocol. TCP was originally designed for Wide

Area Networks. Therefore some problems that would never happen on a WAN arise

on LANs, mainly related to the difference of latency and to the distributed nature of

Data Center networks. While WANs will have their traffic latency measured in hundreds

85

Chapter 8 Conclusion and Future Work 86

of milliseconds, LANs will operate on a much lower magnitude, typically hundreds of

microseconds.

Before applying Energy Efficient Ethernet to reduce interconnect energy consumption,

we took into consideration the phenomenona described in Chapter 2. We did the same

when we applied AQM and congestion control (ECN) to improve performance and reduce

network latency. Yet, the task of dealing with each of these major challenges was

rewarded with other several minor problems that we had to solve, which after being

tackled will help to improve current generation of interconnects for clusters running Big

Data frameworks. At this point, we believe the problems solved in this thesis can help to

improve not only Hadoop clusters but also any Big Data workload that fits the problem

and characterization we described throughout the development of this thesis.

Specifically mentioning the energy problem, we concluded that for Hadoop clusters,

state-of-the-art Energy Efficient Ethernet can be drastically improved if it starts to

support Packet Coalescing. Although EEE can already be used and contrary to what

we expected it can provide virtually no loss in performance, the Packet Coalescing

technique should also be implemented, offering some option for reconfigurability to the

network administrators, as depending on the workload and cluster configuration, it can

incur on extra latency. Yet, for aggregation links, it could translate into an energy

consumption reduced by almost 80%.

Considering the performance problem, we achieved the understanding as to why AQMs

are not easy to configure on such type of workloads and even in some cases it can decrease

throughput performance by unacceptable 20%. We proposed two solutions to modify

how switch egress queues handle ECN marked packets. The greatest benefit would be

for shallow buffer switches which can offer great benefit to cluster throughput with its

performance increased by 10% while also reducing latency by 40%. On deep buffer

switches, our proposed solution can reduce network latency by 85% while maintaining

virtually the same performance for cluster throughput. At last, we verified that our

solution offer robustness configuration, while the state-of-the-art requires a big effort to

achieve similar, yet inferior performance.

We conclude this chapter presenting what in our vision can be carried out on future

work to derive from our thesis.

8.1 Future work

Regarding cluster design and topology, during the development of our thesis we

followed the guidelines provided by the two major companies that offer custom solutions

Chapter 8 Conclusion and Future Work 87

and deployments of Hadoop clusters. Cloudera and Hortonworks are today the two

biggest players in number of deployments so we believe our virtual clusters were carefully

designed taking in account their considerations so we could obtain more realistic figures

for the results presented in this thesis. Mid-sized Haddop clusters are recommended to

be organized on a Leaf-Spine topology for its focus on east-west traffic among servers

of the same cluster. Yet, the Leaf-Spine topology is indeed organized in a two-tier clos

architecture. It can ”scale out” to a fairly large numbers of servers by adding more

switches although it also brings a concern to the amount of cables and the cost of the

network equipment required, once each leaf switch must be connected to each spine

switch [69]. We believe the results seen on this work to remain similar when deployed on

a cluster organized on a traditional hierarchical fat-tree with three layer network, which

is more suitable for north-south traffic but similarly to the Leaf-Spine topology, is also

categorized as a clos architecture.

Regarding hardware specifications and configurations, Hadoop is still targeting

commodity hardware and Hortonworks recommends to not spend more than 20% of the

available budget on network equipment including NICs from the servers [75]. Therefore,

the starting point for any Hadoop cluster is the configuration of 1GbE on servers and

Top of Rack switches, and 10GbE on the aggregation level. This was a solid configura-

tion in 2014 when we started this work and it is still a starting point for small clusters

today [91] [75]. Yet, the industry is starting to push faster NICs to the servers and ag-

gregation switches. As a higher performance solution, 10GbE NICs are being considered

for servers while 40GbE NICs are being considered for the aggregation level.

We believe that, as a future work to be carried out from this thesis, one could follow

the industry trend of pushing for higher performance network equipments. Considering

that, it would be of a great value to reproduce our experiments using these faster NICs.

Applying 10/40GbE NICs instead of 1/10GbE would require new analysis on Energy

Efficient Ethernet as the energy profile might change. Also, since there is a big im-

provement on the network capabilities which leads to expected transmitting packets on

a faster pace, it could lead to different buffer utilization profiles and therefore, some new

findings might be obtained from Packet Coalescing and AQMs. Finally, we believe that

if the industry follows our suggestions to implement Packet Coalescing in EEE NICs

and also implements a true marking scheme on network switches, an evaluation on real

hardware should be performed to confirm our findings from this work.

Regarding performance improvements, Luiz Andre Barroso, distinguished Google

fellow researcher recently shared his view from two of the three most important problems

in the Data Center to achieve big amount of data processed in little amount of time (”big

data, little time”): Energy Proportionality and Tail latency [92]. Our work can be used

Chapter 8 Conclusion and Future Work 88

to achieve energy proportionality for Hadoop cluster networks and we consider to have

given the first step towards the direction of reducing the tail latency as we successfully

reduced the average network latency found on these clusters from a few milliseconds to

hundreds of microseconds. The techniques analysed on this work focused on reducing

the average network latency [86], therefore we believe that reducing tail latency will

require a different methodology to implement techniques not covered throughout the

development of this thesis.

Regarding other frameworks, workloads and benchmarks, we believe the results

from this work can be successfully reproduced in workloads that follow similar char-

acterization as we presented as discussions on the previous chapters. As a framework

that could benefit from this work, Apache Spark executes in-memory computations to

eliminate disk spills found on MapReduce framework which therefore, reduces the data

processing time and makes this framework more suitable for real time data analyt-

ics [93]. As a matter of fact, for non batch-oriented benchmarks, Spark can be from

ten to a hundred times faster than MapReduce. Deploying Energy Efficient Ethernet

on these clusters could likely help with achieving better energy proportionality on net-

work link although packet coalescing may not be suitable to be deployed on a Spark

infrastructure, as it could increase the network latency of real time applications. On

the other hand, with the purpose of reducing network latency, the proactive congestion

control techniques presented on this thesis could nicely fit this real time latency-sensitive

framework.

Another benchmark to be studied on future work, Graph500 is a benchmark that is

typically run in HPC clusters to rank these computing systems and their capacity to run

Big Data applications [94]. HPC applications are typically written using Message Passing

Interface (MPI) library, which under the hood can be implemented using either Stream

Control Transmission Protocol (SCTP) or TCP as the transport protocol [95]. Both

SCTP and TCP support ECN [96], so proactive congestion control could also improve

latency on these clusters when running Big Data applications. On the other hand, these

clusters also run heterogenous class of applications with low latency restringments and

Energy Efficient Ethernet was found to impact application performance, even without

packet coalescing due to collective dependent aggregation messages from MPI parallel

programming paradigm [17]. These suggestions conclude our thoughts for future work.

We conclude this thesis with the publication list related to the contributions obtained

from this work.

Chapter 8 Conclusion and Future Work 89

8.2 List of Publications

• [LCN15] Renan Fischer e Silva and Paul M. Carpenter, Exploring Interconnect

Energy Savings Under East-West Traffic Pattern of MapReduce Clusters. on the

40th IEEE Conference on Local Computer Networks 2015 [27].

3Nominated for The Best Paper Award (top 3 best papers).

• [LCN16] Renan Fischer e Silva and Paul M. Carpenter, Controlling Network

Latency in Mixed Hadoop Clusters: Do We Need Active Queue Management? on

the 41st IEEE Conference on Local Computer Networks 2016 [29].

• [CLUSTER17] Renan Fischer e Silva and Paul M. Carpenter, High Throughput

and Low Latency on Hadoop Clusters using Explicit Congestion Notification: The

Untold Truth on the 19th IEEE International Conference on Cluster Computing

2017 [30].

• [LCN17] Renan Fischer e Silva and Paul M. Carpenter, Interconnect Energy

Savings and Lower Latency Networks in Hadoop Clusters: The Missing Link on the

42nd IEEE Conference on Local Computer Networks 2017 [31].

• [Transactions on Networking] Renan Fischer e Silva and Paul M. Carpenter,

Energy Efficient Ethernet on MapReduce Clusters: Packet Coalescing To Improve

10GbE Links on the IEEE/ACM Transactions on Networking, October 2017 [28].

• [- 2018] Renan Fischer e Silva and Paul M. Carpenter, TCP Proactive Congestion

Control Revamped: the Marking Threshold, under review.

Bibliography

[1] “5 Web Technology Predictions for 2017.” https://www.sencha.com/blog/

5-web-technology-predictions-for-2017/. Accessed: 2018-02-27.

[2] Cisco Systems, Inc, “Cisco Global Cloud Index: Forecast and Methodology, 2013–

2018,” tech. rep., 2014.

[3] Cisco Systems, Inc, “Cisco global cloud index: Forecast and methodology,

2015–2020,” tech. rep., 2016.

[4] S. Vaillancourt, “Scalable data center designs for canadian small & medium size

business,” tech. rep., 2014.

[5] “The history of hadoop - by marko bonaci.” https://medium.com/@markobonaci/

the-history-of-hadoop-68984a11704/. Accessed: 2018-02-27.

[6] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,” in Proceedings

of the Nineteenth ACM Symposium on Operating Systems Principles, SOSP ’03,

(New York, NY, USA), pp. 29–43, ACM, 2003.

[7] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large clus-

ters,” in Proceedings of the 6th Conference on Symposium on Opearting Systems

Design & Implementation, OSDI’04, (Berkeley, CA, USA), pp. 10–10, USENIX

Association, 2004.

[8] W. Si, J. Taheri, and A. Zomaya, “A distributed energy saving approach for ethernet

switches in data centers,” in Proceedings of the 2012 37th Conference on Local

Computer Networks (LCN 2012), LCN ’12, (Washington, DC, USA), pp. 505–512,

IEEE Computer Society, 2012.

[9] R. Brown et al., “Report to congress on server and data center energy efficiency:

Public law 109-431,” Lawrence Berkeley National Laboratory, 2008.

[10] C. L. Belady, “In the data center, power and cooling costs more than the it equip-

ment it supports.” https://www.electronics-cooling.com/, 2007. Accessed:

2018-02-27.

90

https://www.sencha.com/blog/5-web-technology-predictions-for-2017/
https://www.sencha.com/blog/5-web-technology-predictions-for-2017/
https://medium.com/@markobonaci/the-history-of-hadoop-68984a11704/
https://medium.com/@markobonaci/the-history-of-hadoop-68984a11704/
https://www.electronics-cooling.com/

Bibliography 91

[11] D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu, “Energy proportional

datacenter networks,” in Proceedings of the 37th Annual International Symposium

on Computer Architecture, ISCA ’10, (New York, NY, USA), pp. 338–347, ACM,

2010.

[12] D. Kliazovich, P. Bouvry, and S. U. Khan, “Greencloud: a packet-level simulator

of energy-aware cloud computing data centers,” The Journal of Supercomputing,

vol. 62, no. 3, pp. 1263–1283, 2012.

[13] P. Mahadevan, P. Sharma, S. Banerjee, and P. Ranganathan, “Energy aware net-

work operations,” in INFOCOM Workshops 2009, pp. 1–6, IEEE, April 2009.

[14] K. Christensen, P. Reviriego, B. Nordman, M. Bennett, M. Mostowfi, and J. Mae-

stro, “IEEE 802.3az: the road to energy efficient ethernet,” Communications Mag-

azine, IEEE, vol. 48, pp. 50–56, November 2010.

[15] “Broadcom at interop: Energy efficient ethernet is

good for the planet.” https://www.broadcom.com/blog/

broadcom-at-interop-energy-efficient-ethernet-is-good-for-the-p.

Accessed: 2018-02-27.

[16] A. De La Oliva, T. R. V. Hernández, J. C. Guerri, J. A. Hernández, and P. Reviriego,

“Performance analysis of energy efficient ethernet on video streaming servers,” Com-

puter Networks, vol. 57, no. 3, pp. 599–608, 2013.

[17] K. Saravanan, P. Carpenter, and A. Ramirez, “Power/performance evaluation of

energy efficient ethernet (eee) for high performance computing,” in 2013 Interna-

tional Symposium on Performance Analysis of Systems and Software (ISPASS),

pp. 205–214, IEEE, April 2013.

[18] I. Cisco Systems, “IEEE 802.3az energy efficient ethernet: Build greener networks,”

tech. rep., 2011.

[19] Yamaha, “Disabling energy efficient ethernet (eee).” http://www.

yamahaproaudio.com/global/en/training_support/selftraining/dante_

guide/chapter2/02_eee/. Accessed: 2018-02-27.

[20] Dell, “Resolving issues with energy efficient ethernet (eee) or green ethernet.” http:

//www.dell.com/support/Article/us/en/19/421774/EN. Accessed: 2018-02-27.

[21] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. M. Watson, A. W. Moore, S. Hand,

and J. Crowcroft, “Queues don’t matter when you can jump them!,” in 12th

USENIX Symposium on Networked Systems Design and Implementation (NSDI

15), (Oakland, CA), pp. 1–14, USENIX Association, 2015.

https://www.broadcom.com/blog/broadcom-at-interop-energy-efficient-ethernet-is-good-for-the-p
https://www.broadcom.com/blog/broadcom-at-interop-energy-efficient-ethernet-is-good-for-the-p
http://www.yamahaproaudio.com/global/en/training_support/selftraining/dante_guide/chapter2/02_eee/
http://www.yamahaproaudio.com/global/en/training_support/selftraining/dante_guide/chapter2/02_eee/
http://www.yamahaproaudio.com/global/en/training_support/selftraining/dante_guide/chapter2/02_eee/
http://www.dell.com/support/Article/us/en/19/421774/EN
http://www.dell.com/support/Article/us/en/19/421774/EN

Bibliography 92

[22] G. Mone, “Beyond hadoop,” Commun. ACM, vol. 56, pp. 22–24, Jan. 2013.

[23] “MapR Takes Road Less Traveled to Big Data.” https://davidmenninger.

ventanaresearch.com/mapr-takes-road-less-traveled-to-big-data-1. Ac-

cessed: 2018-02-27.

[24] A. Bechtolsheim, L. Dale, H. Holbrook, and A. Li, “Why Big Data Needs Big Buffer

Switches. Arista White Paper,” tech. rep., 2011.

[25] Cisco, “Network switch impact on big data hadoop-cluster data processing: Com-

paring the hadoop-cluster performance with switches of differing characteristics,”

tech. rep., 2016.

[26] J. Gettys and K. Nichols, “Bufferbloat: Dark Buffers in the Internet,” Queue, vol. 9,

pp. 40:40–40:54, Nov. 2011.

[27] R. F. e Silva and P. M. Carpenter, “Exploring interconnect energy savings under

east-west traffic pattern of mapreduce clusters,” in 2015 IEEE 40th Conference on

Local Computer Networks (LCN), pp. 10–18, Oct 2015.

[28] R. F. e Silva and P. M. Carpenter, “Energy efficient ethernet on mapreduce clusters:

Packet coalescing to improve 10gbe links,” IEEE/ACM Transactions on Network-

ing, vol. 25, pp. 2731–2742, Oct 2017.

[29] R. F. E. Silva and P. M. Carpenter, “Controlling network latency in mixed hadoop

clusters: Do we need active queue management?,” in 2016 IEEE 41st Conference

on Local Computer Networks (LCN), pp. 415–423, Nov 2016.

[30] R. F. e. Silva and P. M. Carpenter, “High throughput and low latency on hadoop

clusters using explicit congestion notification: The untold truth,” in 2017 IEEE

International Conference on Cluster Computing (CLUSTER), pp. 349–353, Sept

2017.

[31] R. F. E. Silva and P. M. Carpenter, “Interconnect energy savings and lower latency

networks in hadoop clusters: The missing link,” in 2017 IEEE 42nd Conference on

Local Computer Networks (LCN), pp. 514–517, Oct 2017.

[32] T. I. of Electrical and I. Electronics Engineers, “IEEE standard for information

technology– local and metropolitan area networks– specific requirements– part 3:

Csma/cd access method and physical layer specifications amendment 5: Media

access control parameters, physical layers, and management parameters for energy-

efficient ethernet,” IEEE Std 802.3az-2010 (Amendment to IEEE Std 802.3-2008),

pp. 1–302, Oct 2010.

https://davidmenninger.ventanaresearch.com/mapr-takes-road-less-traveled-to-big-data-1
https://davidmenninger.ventanaresearch.com/mapr-takes-road-less-traveled-to-big-data-1

Bibliography 93

[33] P. Reviriego, J. Maestro, D. Larrabeiti, and D. Larrabeiti, “Burst transmission for

energy-efficient ethernet,” Internet Computing, IEEE, vol. 14, pp. 50–57, July 2010.

[34] S. Herrerıá-Alonso, M. Rodŕıguez-Pérez, M. Fernández-Veiga, and C. López-Garcıá,

“Optimal configuration of energy-efficient ethernet,” Computer Networks, vol. 56,

no. 10, pp. 2456 – 2467, 2012. Green communication networks.

[35] The Apache Software Foundation, “Apache Hadoop Project.” http://hadoop.

apache.org. Accessed: 2018-02-27.

[36] U. o. S. C. Information Sciences Institute, “Transmission control protocol,” 1981.

[37] M. Ghobadi and Y. Ganjali, TCP Adaptation Framework in Data Centers. Univer-

sity of Toronto, 2014.

[38] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph, “Understanding TCP

incast throughput collapse in datacenter networks,” in Proceedings of the 1st Work-

shop on Research on Enterprise Networking, WREN ’09, (New York, NY, USA),

pp. 73–82, ACM, 2009.

[39] P. Rygielski, S. Kounev, and S. Zschaler, “Model-based throughput prediction in

data center networks,” in 2013 International Workshop on Measurements and Net-

working Proceedings (M&N), pp. 167–172, IEEE, Oct 2013.

[40] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sen-

gupta, and M. Sridharan, “Data center TCP (DCTCP),” in Proceedings of the SIG-

COMM 2010 Conference, SIGCOMM ’10, (New York, NY, USA), pp. 63–74, ACM,

2010.

[41] P. Prakash, A. Dixit, Y. C. Hu, and R. Kompella, “The TCP outcast problem:

Exposing unfairness in data center networks,” in Proceedings of the 9th Conference

on Networked Systems Design and Implementation, NSDI’12, (Berkeley, CA, USA),

pp. 30–30, USENIX Association, 2012.

[42] S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoid-

ance,” IEEE/ACM Transactions on Networking, vol. 1, pp. 397–413, Aug 1993.

[43] K. Nichols and V. Jacobson, “Controlling queue delay,” Queue, vol. 10, pp. 20:20–

20:34, May 2012.

[44] “References on RED (Random Early Detection) Queue Management.” http://

www.icir.org/floyd/red.html. Accessed: 2018-02-27.

[45] “Configuring weighted random early detection.” https://www.cisco.com/c/en/

us/td/docs/ios/12_2/qos/configuration/guide/fqos_c/qcfwred.pdf. Ac-

cessed: 2018-02-27.

http://hadoop.apache.org
http://hadoop.apache.org
http://www.icir.org/floyd/red.html
http://www.icir.org/floyd/red.html
https://www.cisco.com/c/en/us/td/docs/ios/12_2/qos/configuration/guide/fqos_c/qcfwred.pdf
https://www.cisco.com/c/en/us/td/docs/ios/12_2/qos/configuration/guide/fqos_c/qcfwred.pdf

Bibliography 94

[46] “RED Congestion Control.” https://www.juniper.

net/techpubs/en_US/junos12.2/topics/concept/

random-early-detection-congestion-control-overview.html. Accessed:

2018-02-27.

[47] “Technical introduction to bufferbloat.” https://www.bufferbloat.net/

projects/bloat/wiki/. Accessed: 2018-02-27.

[48] K. P. Saravanan, P. M. Carpenter, and A. Ramirez, “A performance perspective on

energy efficient hpc links,” in Proceedings of the 28th International Conference on

Supercomputing, ICS ’14, (New York, NY, USA), pp. 313–322, ACM, 2014.

[49] B. Dickov, M. Pericas, P. Carpenter, N. Navarro, and E. Ayguade, “Analyzing per-

formance improvements and energy savings in infiniband architecture using network

compression,” in 2014 26th International Symposium on Computer Architecture and

High Performance Computing (SBAC-PAD), pp. 73–80, IEEE, Oct 2014.

[50] B. Dickov, M. Pericas, P. Carpenter, N. Navarro, and E. Ayguade, “Software-

managed power reduction in infiniband links,” in 2014 43rd International Confer-

ence on Parallel Processing (ICPP), pp. 311–320, IEEE, Sept 2014.

[51] B. Dickov, P. Carpenter, M. Pericas, and E. Ayguade, “Self-tuned software-managed

energy reduction in infiniband links,” in ICPADS 2015, December 2015.

[52] “Apache Myriad: Deploy Apache YARN Applications Using Apache Mesos.” http:

//myriad.incubator.apache.org/. Accessed: 2018-02-27.

[53] Cisco Systems, Inc, “Big Data in the Enterprise - Network Design Considerations

White Paper,” tech. rep., 2011.

[54] K. Nichols and V. Jacobson, “Controlled delay active queue management,” 2016.

[55] H. Wu, J. Ju, G. Lu, C. Guo, Y. Xiong, and Y. Zhang, “Tuning ECN for Data

Center Networks,” in Proceedings of the 8th International Conference on Emerging

Networking Experiments and Technologies, CoNEXT ’12, (New York, NY, USA),

pp. 25–36, ACM, 2012.

[56] N. Kuhn, E. Lochin, and O. Mehani, “Revisiting Old Friends: Is CoDel Really

Achieving What RED Cannot?,” in Proceedings of the 2014 ACM SIGCOMM

Workshop on Capacity Sharing Workshop, CSWS ’14, (New York, NY, USA), pp. 3–

8, ACM, 2014.

[57] Y. Chen, R. Griffit, D. Zats, and R. H. Katz, “Understanding TCP Incast and Its

Implications for Big Data Workloads,” No. UCB/EECS-2012-40, Apr 2012.

https://www.juniper.net/techpubs/en_US/junos12.2/topics/concept/random-early-detection-congestion-control-overview.html
https://www.juniper.net/techpubs/en_US/junos12.2/topics/concept/random-early-detection-congestion-control-overview.html
https://www.juniper.net/techpubs/en_US/junos12.2/topics/concept/random-early-detection-congestion-control-overview.html
https://www.bufferbloat.net/projects/bloat/wiki/
https://www.bufferbloat.net/projects/bloat/wiki/
http://myriad.incubator.apache.org/
http://myriad.incubator.apache.org/

Bibliography 95

[58] “Network Simulator NS-2.” http://www.isi.edu/nsnam/ns. Accessed: 2018-02-

27.

[59] P. Reviriego, K. Christensen, A. Sánchez-Macián, and J. Maestro, “Using co-

ordinated transmission with energy efficient ethernet,” in NETWORKING 2011

(J. Domingo-Pascual, P. Manzoni, S. Palazzo, A. Pont, and C. Scoglio, eds.),

vol. 6640 of Lecture Notes in Computer Science, pp. 160–171, Springer Berlin Hei-

delberg, 2011.

[60] S. Herreŕıa-Alonso, M. Rodriguez-Perez, M. Fernández-Veiga, and C. Lopez-Garcia,

“How efficient is energy-efficient ethernet?,” in 2011 3rd International Congress on

Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT),

pp. 1–7, IEEE, 2011.

[61] G. Wang, A. R. Butt, P. Pandey, and K. Gupta, “Using realistic simulation for

performance analysis of Mapreduce setups,” in Proceedings of the 1st Workshop

on Large-Scale System and Application Performance, LSAP ’09, (New York, NY,

USA), pp. 19–26, ACM, 2009.

[62] Y. Liu, M. Li, N. K. Alham, and S. Hammoud, “Hsim: a MapReduce simulator in

enabling cloud computing,” Future Generation Computer Systems, vol. 29, no. 1,

pp. 300–308, 2013.

[63] “Controlled Delay (CoDel) Active Queue Management NS-2 code.” http://

pollere.net/Codel.html. Accessed: 2018-02-27.

[64] “Data Center TCP NS-2 code.” http://simula.stanford.edu/~alizade/Site/

DCTCP.html. Accessed: 2018-02-27.

[65] P. Reviriego, K. Christensen, J. Rabanillo, and J. Maestro, “An initial evaluation

of energy efficient ethernet,” Communications Letters, IEEE, vol. 15, pp. 578–580,

May 2011.

[66] D. Dove, “A scalable base-t approach.” http://www.ieee802.org/3/NGBASET/

public/sep12/dove_01b_0912.pdf. Accessed: 2018-02-27.

[67] Cisco, “Cisco data center spine-and-leaf architecture: Design overview,” tech. rep.,

2016.

[68] Cisco, “Cisco’s massively scalable data center: Network fabric for warehouse scale

computer,” tech. rep.

[69] W. Nelson, “Introduction to spine-leaf networking designs,” tech. rep., 2017.

http://www.isi.edu/nsnam/ns
http://pollere.net/Codel.html
http://pollere.net/Codel.html
http://simula.stanford.edu/~alizade/Site/DCTCP.html
http://simula.stanford.edu/~alizade/Site/DCTCP.html
http://www.ieee802.org/3/NGBASET/public/sep12/dove_01b_0912.pdf
http://www.ieee802.org/3/NGBASET/public/sep12/dove_01b_0912.pdf

Bibliography 96

[70] A. Vahdat, M. Al-Fares, and A. Loukissas, “Scalable commodity data center net-

work architecture,” July 9 2013. US Patent 8,483,096.

[71] F. Testa and L. Pavesi, Optical Switching in Next Generation Data Centers.

Springer, 2018.

[72] “Fat-tree design — clusterdesign.org.” http://clusterdesign.org/fat-trees/.

Accessed: 2018-02-27.

[73] E. Networks, “Extreme networks: Big data a solutions guide,” tech. rep., 2014.

[74] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Handley, “Im-

proving datacenter performance and robustness with multipath tcp,” in Proceedings

of the ACM SIGCOMM 2011 Conference, SIGCOMM ’11, (New York, NY, USA),

pp. 266–277, ACM, 2011.

[75] Hortonworks, “Cluster planning guide.” http://docs.hortonworks.

com/HDPDocuments/HDP2/HDP-2.6.4/bk_cluster-planning/content/

hardware-for-slave.1.html. Accessed: 2018-02-27.

[76] “Uscs: Packet buffers.” http://people.ucsc.edu/~warner/buffer.html. Ac-

cessed: 2018-02-27.

[77] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, “The case for evaluating MapRe-

duce performance using workload suites,” in 2011 19th International Symposium

on Modeling, Analysis Simulation of Computer and Telecommunication Systems

(MASCOTS), pp. 390–399, IEEE, July 2011.

[78] Y. Chen, S. Alspaugh, and R. Katz, “Interactive analytical processing in big data

systems: A cross-industry study of MapReduce workloads,” Proc. VLDB Endow.,

vol. 5, pp. 1802–1813, Aug. 2012.

[79] P. S. Center, “Pittsburgh supercomputing center: Enabling high performance

data transfers.” http://www.psc.edu/index.php/networking/641-tcp-tune#

options. Accessed: 2018-02-27.

[80] N. Tiwari, S. Sarkar, U. Bellur, and M. Indrawan, “Classification framework of

mapreduce scheduling algorithms,” ACM Comput. Surv., vol. 47, pp. 49:1–49:38,

Apr. 2015.

[81] G. Wang, A. Butt, H. Monti, and K. Gupta, “Towards synthesizing realistic work-

load traces for studying the hadoop ecosystem,” in Modeling, Analysis Simulation

of Computer and Telecommunication Systems, 2011 IEEE 19th International Sym-

posium on, pp. 400–408, July 2011.

http://clusterdesign.org/fat-trees/
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.4/bk_cluster-planning/content/hardware-for-slave.1.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.4/bk_cluster-planning/content/hardware-for-slave.1.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.4/bk_cluster-planning/content/hardware-for-slave.1.html
http://people.ucsc.edu/~warner/buffer.html
http://www.psc.edu/index.php/networking/641-tcp-tune#options
http://www.psc.edu/index.php/networking/641-tcp-tune#options

Bibliography 97

[82] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Goldberg,

“Quincy: fair scheduling for distributed computing clusters,” in Proceedings of

the ACM SIGOPS 22nd symposium on Operating systems principles, pp. 261–276,

ACM, 2009.

[83] “Ibm knowledge center: Interrupt coalescing.” http://www.ibm.com/support/

knowledgecenter/ssw_aix_61/com.ibm.aix.performance/interrupt_coal.

htm. Accessed: 2018-02-27.

[84] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica, “Managing data

transfers in computer clusters with orchestra,” in Proceedings of the ACM SIG-

COMM 2011 Conference, SIGCOMM ’11, (New York, NY, USA), pp. 98–109,

ACM, 2011.

[85] T. White, Hadoop: The definitive guide. ” O’Reilly Media, Inc.”, 2012.

[86] S. Liu, H. Xu, and Z. Cai, “Low latency datacenter networking: A short survey,”

CoRR, vol. abs/1312.3455, 2013.

[87] S. N. Ismail, H. A. Pirzada, and I. A. Qazi, “On the effectiveness of codel in data

centers,” tech. rep.

[88] G. Judd, “Attaining the promise and avoiding the pitfalls of tcp in the datacenter,”

in 12th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 15), (Oakland, CA), pp. 145–157, USENIX Association, 2015.

[89] P. Teymoori, D. Hayes, M. Welzl, and S. Gjessing, “Even lower latency, even better

fairness: Logistic growth congestion control in datacenters,” in 2016 IEEE 41st

Conference on Local Computer Networks (LCN), pp. 10–18, Nov 2016.

[90] Cisco, “Cisco Nexus 9000 Series NX-OS Quality of Service Configuration Guide,

Release 6.x.”

[91] “How-to: Select the right hardware for your new

hadoop cluster.” https://blog.cloudera.com/blog/2013/08/

how-to-select-the-right-hardware-for-your-new-hadoop-cluster/. Ac-

cessed: 2018-02-27.

[92] L. A. Barroso, “Landheld computing,” in International Solid-State Circuits Con-

ference 2014, ISCCC ’14, 2014.

[93] “Apache spark - lightning-fast cluster computing.” https://spark.apache.org/.

Accessed: 2018-02-27.

http://www.ibm.com/support/knowledgecenter/ssw_aix_61/com.ibm.aix.performance/interrupt_coal.htm
http://www.ibm.com/support/knowledgecenter/ssw_aix_61/com.ibm.aix.performance/interrupt_coal.htm
http://www.ibm.com/support/knowledgecenter/ssw_aix_61/com.ibm.aix.performance/interrupt_coal.htm
https://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
https://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
https://spark.apache.org/

Bibliography 98

[94] P. Fuentes, J. L. Bosque, R. Beivide, M. Valero, and C. Minkenberg, “Characterizing

the communication demands of the graph500 benchmark on a commodity cluster,”

in 2014 IEEE/ACM International Symposium on Big Data Computing, pp. 83–89,

Dec 2014.

[95] “Mpi-sctp.” http://www.cs.ubc.ca/labs/dsg/mpi-sctp/. Accessed: 2018-02-27.

[96] “Why is sctp needed given tcp and udp are widely available?.” http://www.isoc.

org/briefings/017/index.shtml. Accessed: 2018-02-27.

http://www.cs.ubc.ca/labs/dsg/mpi-sctp/
http://www.isoc.org/briefings/017/index.shtml
http://www.isoc.org/briefings/017/index.shtml

	Abstract/abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Cloud Computing Traffic
	1.1.1 A Brief Story About the Hadoop Ecosystem

	1.2 The Energy Consumption Problem
	1.3 Opportunity for Performance Optimization
	1.4 Thesis Contributions
	1.5 Thesis Organization

	2 Background and Related Work
	2.1 Energy Efficient Ethernet
	2.2 MapReduce and Hadoop
	2.3 TCP in Modern Data Centers
	2.4 Controlling latency and buffer occupancy
	2.4.1 Active Queue Management
	2.4.2 Explicit Congestion Notifications
	2.4.3 Data Center TCP

	2.5 Related Work
	2.5.1 EEE Under Specific Network Traffic Patterns
	2.5.2 Controlling latency and Buffer Occupancy on Data Center networks

	3 Methodology
	3.1 Simulation Environment and Workloads
	3.2 Hardware configuration
	3.3 Topology

	4 Energy Efficient Ethernet on MapReduce Clusters
	4.1 Summary
	4.2 Methodology
	4.2.1 Hardware configuration
	4.2.2 Workloads
	4.2.3 EEE settings
	4.2.4 Summary of configurations
	4.2.5 Total runtime vs. Average runtime

	4.3 Results
	4.3.1 Fixed link latency
	4.3.2 Standard EEE and stall timer
	4.3.3 Optimum Energy Savings on MapReduce Cluster
	4.3.3.1 Uniform EEE settings
	4.3.3.2 Non-uniform EEE settings
	4.3.3.3 Analysis by link type
	4.3.3.4 Load impact on coalescing settings

	4.4 Discussion and Recommendations
	Recommendations for system administrators:
	Recommendations for equipment vendors:
	How buffering and burstiness really affect Hadoop:

	4.5 Conclusions

	5 Controlling Delay Mechanisms on MapReduce Clusters
	5.1 Summary
	5.2 Methodology
	5.2.1 Simulation Environment and Workload Characterization

	5.3 Results
	5.3.1 Random Early Detection (RED)
	5.3.2 Controlled Delay (CoDel)
	5.3.3 CoDel x RED

	5.4 Discussion and Recommendations
	5.5 Conclusions

	6 High Throughput and Low Latency on Hadoop Clusters
	6.1 Summary
	6.2 The Problem and Motivation
	6.2.1 A deeper look at TCP packet marking
	6.2.2 Proposed and evaluated solutions

	6.3 Simulation Environment and Workload Characterization
	6.4 Results
	6.4.1 Random Early Detection (RED)
	6.4.2 Controlled Delay (CoDel)
	6.4.3 Summary of Results

	6.5 Discussion and Recommendations
	Recommendations for equipment vendors:
	Recommendations for network administrators:

	6.6 Related Work
	6.7 Conclusions

	7 Energy Savings and Lower Latency Networks
	7.1 Summary
	7.2 Motivation
	7.2.1 Packet Coalescing
	7.2.2 Buffer density and Hadoop Network Latency

	7.3 Methodology
	7.3.1 Simulation Environment and Workload Characterization

	7.4 Results
	7.4.1 Buffer density and Packet Coalescing on Hadoop
	7.4.2 Combining Packet Coalescing with ECN/AQM/RED
	7.4.3 Summary of Results

	7.5 Discussion and Recommendations
	Recommendations for equipment vendors:
	Recommendations for network administrators:

	7.6 Conclusions

	8 Conclusion and Future Work
	8.1 Future work
	8.2 List of Publications

	Bibliography

