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Abstract

Structural Health Monitoring (SHM) has benefited recently from
computer vision, more specifically Deep Learning approaches. In this
work we test Fully Convolutional Networks in a dataset of deck areas
of bridges in the wild in Japan for delamination and rebar exposure
damage segmentation. The dataset has been collected from inspec-
tion records and a set of 734 images with 3 labels per image has been
obtained, becoming the largest dataset of images in the wild of bridge
deck damage. This scenario allows us to estimate the performance
of our method based on regions of agreement, emulating the uncer-
tainty in on-field inspections. In this work we prove the capabilities
of Fully Convolutional Networks to perform an automated semantic
segmentation for detection of surface damages.

El monitoreo de la integridad de estructuras se ha beneficiado re-
cientemente de técnicas de visión por computador, más espećıficamente
de técnicas de Deep Learning. En este trabajo ponemos a prueba las
redes Fully Convolutionall en un dataset generado a partir de reg-
istros de inspecciones, el cual está compuesto por 734 imagenes con 3
etiquetas por imagen, convirtiéndose en el dataset de mayor tamaño
en entornos no controlados para imagenes de la zona de la cubierta
de puentes. Este escenario nos permite estimar el comportamiento
de nuestro método basado en el nivel de acuerdo en el etiquetado,
emulando la incertidumbre existente en inspecciones. En este trabajo
probamos las capacidades de redes Fully Convolutional para la tarea
de segmentación automatica para la deteccion de daños en superficie.

El monitoratge de la integritat d’estructures s’ha beneficiat re-
centment de tècniques de visió per computador, mes espećıficament
de tècniques de Deep Lerning. En aquest treball posem a prova les
xarxes Fully Convolutional en un dataset generat a partir de registres
de inspeccions, el qual està format per 734 imatges amb 3 etiquetes
per imatge, convertint-se en el dataset de major tamany en entorns
no controlats per a imatges de la zona de la coberta de ponts. Aquest
escenari ens permet estimar el comportament del nostre mètode basat
en el nivell d’acord en l’etiquetat, emulant la incertidumbre existent
en inspeccions. En aquest traball provem les capacitats de xarxes
Fully Convolutional per a la tasca de segmentació automàtica per a
la detecció de danys en superf́ıcie.
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1 Introduction

The structural integrity of critical infrastructures need to be evaluated reg-
ularly to guarantee their operation safety and to initiate maintenance if re-
quired in a timely manner. Historically the process of standard inspection
required trained inspectors on-site to assess the health of such infrastruc-
ture. The next natural step in structural health monitoring (SHM) was the
deployment of various sensors for monitoring physical features for aiding and
instructing routine inspection [35] [25]. For some type of monitoring such
as internal structure integrity, sensor-based approaches are the only feasible
and practical methodology. On the other hand, certain types of damage,
specifically those related to the surface of the structure, can be tracked and
monitored using image-based approaches. With the advance in optic devices
and computer vision, image and video-based approaches to SHM has gained
attention from the civil engineering community [34].

Japan transportation infrastructure was mainly built after the World War
II and due to its topology present a high number of bridges, rated at 650.000
bridges by the Ministry of Land in 2015 [23]. The severe and extreme climate
conditions and frequent natural disasters such as earthquakes and typhoons,
SHM has attracted interest of both industry and research [10] for monitoring
an aging infrastructure.

In our work, we work with Nagai Lab at Tokyo University [24] to develop
a proof of concept for damage detection in the surface of concrete bridges in
Japan. Currently, this particular standard inspection is done only via on-site
assessment from authorized civil engineers. These inspections have been doc-
umented and stored for years and each prefecture has a record of the bridges
corresponding to its jurisdiction with manual human evaluation of the image.
At present, this evaluation by law has to be performed by an authorized civil
engineer and the official guidelines of [23] are defined loosely, yielding a very
subjective evaluation with significant variability among different inspectors.
This project aims to provide an automated segmentation framework for find-
ing types of surface damage in concrete bridges which potentially can help
reevaluate the criteria of damage definition. Another application that was
discussed was the use of this methodology in developing countries in which
the lack of skilled labor with qualification for infrastructure inspection can
benefit from an automated remote evaluation framework.

In order to evaluate the segmentation method, a dataset of 734 images
has been collected with multiple labels per sample in order to quantify the
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agreement among different inspectors. For this proof of concept, the dataset
is limited to a certain region of a standard concrete bridge and dealing with
the main damages of this part of the structure.

2 Related Works

Traditional approaches for SHM mainly in internal structure evaluation rely
on sensor data for measuring physical data in order to quantify and evaluate
the health of a particular infrastructure. These methods are based on in-
tegrating sensors for analyzing vibration signals [26] [30] [15], measurement
of displacement of the structure [13] [9], and in many scenarios, due to leg-
islation or technology limitation the assessment is done on-site via visual
inspection.

Computer vision based techniques have been widely used in recent years in
applications for surface damage detection. Classic computer vision methods
such as thresholding and the use of filters for crack detection in concrete or
steel [27] [20] [36] [38]. Ellenberg et al. [8] combined image and infrared
imagery from unmanned aerial vehicles (UAVs) to detect delamination on
bridges. One of the main drawbacks of these classic approaches is the amount
of feature engineering and manual fine tuning for a very specific task with
the consequent difficulty of generalizing for other types of damage. Recently,
computer vision algorithms have been combined with machine learning such
as SVM, or self organizing maps for crack detection [31] [18] [4], and for
classifying multiple types of damage in concrete and steel surfaces [19] [28] .

Recently, due to the success of Deep Learning in computer vision tasks,
Convolutional Neural Networks (CNN) have been applied to damage detec-
tion. Cha et al. [3] applied AlexNet [14] network for cracks on concrete
surfaces in a patch-wise analysis of images taken in a controlled scenario. In
[3] Faster-RCNN was used for bounding box detection of multiple types of
damage of corrosion, delamination and cracks. Zhang et al. [39] developed
CrackNet to detect cracks in 3D images of asphalt surfaces.

Thanks to the advances on Deep Learning and in particular by Fully
Convolutional Networks (FCNs) for image segmentation, in this work we
aim to apply FCN for segmentation on a dataset of texture-based damages
on images in the wild, in comparison to related work done on controlled
imagery.

4



3 Dataset

One of the main contributions of this project is the design of a dataset of
structural damages suitable for benchmarking texture-based segmentation
methods. A detailed review and description of the dataset can be found in
the following sections.

3.1 Dataset Description

The dataset consists of images taken from standard infrastructure inspection
records of 30 municipalities from the Niigata prefecture in Japan. The images
are obtained from the deck area (figure 1) of 9344 bridges yielding an initial
set of 2000 images containing damage. After automatic filtering based on
resolution and manual inspection from the Nagai Laboratory [24] from Tokyo
University based on data quality, an initial set of 734 images have been
labeled. This number of images will increase and potentially be available
online for research purposes.

The origin of the dataset was purely targeted to documenting visual in-
spections in standard procedures, which yields to a very rich dataset in terms
of real world representation in comparison to datasets created in a controlled
scenario. The images, taken by different inspectors present a wide variety of
angles, distances and lighting conditions.

Figure 1: Structure of standard bridge. The dataset is based on the region
marked as deck.

In the region of interest there are two main types of damage. Delamina-
tion is present when the concrete surface gets detached from the structure,
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Figure 2: Sample images containing the ROI (red), delamination damage
(blue), rebar exposure (purple) and non-damage regions.

mainly due to poor quality of material, building process or due to age of
the structure. When delamination takes place, the aggregate of the concrete
becomes visible. Heavy delaminated regions yields to the second type of
damage, rebar (reinforced steel bar) exposure. Rebar exposure is present
when the steel bar is visible and gets corroded due to salt and humidity.
Sample images can be seen in figure 2

The images have been categorized into four different levels of severity
by authorized inspectors following the guidelines of the Ministry of Land,
Infrastructure, Transport and Tourism from Japan [23] regarding the deck
area. As of the definition of these types of damage, the official description is
as follows:

• Type A: No presence of damage.

• Type C: Only delamination is observed, including partial damage.

• Type D: Rebar is exposed to the air but the corrosion is not severe,
including partial damage.

• Type E: Rebar is exposed to the air and the corrosion is considerable,
including partial damage.

Even though there is an official definition of the levels of damage, the
judgement is very subjective to each inspector and the classification in the
records database are vague and many images could be interchangeable among
different types of damage.
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3.2 Dataset Analysis

The dataset has been annotated using the web-based tool LabelMe [32] by 3
civil engineers researchers from the Nagai Lab [24] and 3 external labelers for
a subset of data that was outsourced. The external labelers have been trained
and instructed by Nagai Lab in order to follow the criteria established. A
total of 6 labelers annotated 3 labels per image in order to attempt to model
the uncertainty in the process of evaluating the damages in a given inspection
image.

The 734 images labeled yield a total of 2202 labels. The split based on
the levels of damage described in section 3 is shown in table 1 .

Severity # of images
Type A 4
Type C 185
Type D 510
Type E 35

Table 1: Distribution of images based on damage severity

Even though the dataset seems unbalanced an analysis with Nagai Lab
was performed and it was concluded that many images of type D could
be interchangeable with Type C and E and for segmentation purposes the
textures remain consistent. Practically most of the severity was judged by
the inspectors based on size and depth of the damage and type D remains in
between very severe and mildly severe, making most of the decisions fall into
this category. On the other hand, type A images are very low in number but
in terms of effective pixels of non-damage area they represent the majority
of the images all across the severity types.

As we can see in figure 3, delamination represents the majority of blobs
and blob sizes. The histogram is slightly more spread which represents that
sizes and shapes are very diverse, being in general much bigger than rebar
exposure blobs. Regarding rebar exposure blobs, in general the labeled re-
gions are much smaller in size and usually present a more constant structure,
presenting an elongated thin shape due to being steel bars exposed. The
texture representing rebar exposure tends to be more consistent compared
to delamination areas since the corrosion on metal is a texture with less vari-
ation than the different levels of concrete delamination. Finally, the class
non-damage is generally represented as one only blob since it is defined as
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Figure 3: Histogram of blob pixel sizes. Left corresponds with rebar exposure
and right corresponds to delamination blobs. Bottom shows a histogram of
resolutions
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the area inside the ROI which is not labeled as any of the two other damages.
The average size of this class represents the 86% of the entire deck area. The
images are in general around 1Mpx and most of them present a standard
resolution while others are crops of larger images.

In order to evaluate the level of agreement among the labelers, in table 2
we have the per class IoU. This agreement has been computed by averaging
the IoU of the 3 unique combinations of the labels per image across the entire
dataset.

Delamination Rebar exposure Non-damage
IoU 0.435 0.466 0.887

Table 2: Average IoU of the 3 labels per image reported per class.

We can observe how the agreement on non-damaged areas is very high,
being generally easy to identify and in those parts in which there is no agree-
ment tend to be small in relation to the entire area of non damage. On the
other hand, delamination even though having an easy to identify texture,
the lack of agreement is present when it comes to consider an area as delam-
inated, since depending on the degree of aggregation some inspectors could
argue if it is or not a damage. This damage generally has a shared core
among different labelers and the disagreement tends to be on the border of
the damage. Finally, rebar exposure has a slightly higher agreement due to
its very well defined elongated shapes but still lacks a high agreement due to
the difficulty in defining a rebar exposure in some cases since depending on
lighting and even dirt or concrete cracks, it can be misinterpreted as rebar
exposure. In this case, the agreement tends to be more refined but the hit
rate is lower than in the delamination blobs.

3.3 Multilabel Approach

Considering the nature of the dataset and its variability in interpretation of
the damages, every image has a set of 3 labels obtained independently from
different experts. This allows us to obtain a more accurate estimate of human
level accuracy as well as a metric to consider areas of uncertainty. On the
other hand, having multiple labels per image allows training the model with
different approaches based on the degree of agreement among the different
labels, from a strict way of only using total agreement regions to using the
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multiple labels as a data augmentation strategy yielding a dataset 3 times
bigger by training every image sample with different labels.

In oder to take advantage of having multiple labels per data sample, the
labels have been extended to form another ground truth (GT ) in which the
certain, uncertain and penalization regions for each class (C) are considered.
This allows us to take into consideration the labeling agreement among the
different labelers.

(a) Sample of data with 3 independent labels

(b) Extended label for de-
lamination

(c) Extended label for rebar
exposure

(d) Extended label for non
damage

Figure 4: Multilabel example and corresponding extended label per class.
Blue region corresponds to GTCcore , yellow region corresponds to GTCerror

and purple to GTCuncertain

GTCcore = ∩LC
i=1GTC (1)

GTCuncertain
= ∪LC

i=1GTC \GTCcore (2)

GTCerror = x 6 ε ∪LC
i=1 GTC (3)

GTCcore is the main target of the prediction since it represents the total
agreement. On the other hand, GTCuncertain

represents the area in which at
least one label contains pixels of a particular class C but does not belong to
the total agreement. Finally, GTCerror is the region in which there is total
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agreement of no presence of class C, and therefore, the region that will be
penalized in the metrics for the predictions. An example of the resulting
ground truth per class given a set of 3 different original labels can be seen in
figure 4.

4 Deep Semantic Segmentation

Semantic segmentation is the task to assign semantic labels to regions of
pixels in an image from a set of defined classes. This problem is an extensive
topic in computer vision and has applications in a broad set of fields such as
autonomous driving, medical imaging or robotics, among others.

In classic computer vision, most approaches rely on building features such
as SIFT [22] or based on filter banks [17] to characterize pixels or regions
and trained afterwards using machine learning supervised methods such as
SVM or Random Forest.

In recent years, Convolutional Neural Networks (CNN) have been proven
to outperform classic computer vision techniques in terms of accuracy and,
in many cases, efficiency, for both classification and semantic segmentation
tasks. Deep semantic segmentation is based on deep neural network architec-
tures, mainly CNNs, and represent most of the state-of-the-art approaches
for segmentation [11].

This section aims to describe the general concepts in a Convolutional
Neural Network and review some architectures for semantic segmentation.

4.1 Convolutional Neural Networks

4.1.1 Introduction

Convolutional Neural Networks (CNNs) are a kind of artificial neural network
targeted to grid-like topology structured data. This range from 1-D signals
such as audio, 2-D signals such as images or 3-D signals encoding video or
volumetric data. Even though it can be used in any kind of structured data,
CNNs are mainly used in computer vision and gained a lot of attention in
recent years, especially after the breakthrough of AlexNet [14] in the 2012
ILSVRC (ImageNet Large-Scale Visual Recognition Challenge).

Before describing deep semantic segmentation approaches we will describe
in the following sections the main building blocks of a regular CNN.
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4.1.2 Convolution

The convolution is the main building block in a CNN. A formal definition of
a discrete convolution for a 2-D case can be found in equation 4. This can
be easily generalized to N-D dimensions.

O(i, j) = (IK)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n) (4)

The output O or feature map is obtained via convolving an input I with
a kernel K. The operation can be seen as sliding the kernel over the input
volume and at each position, the output is the sum of product of the over-
lapping elements. The size of the output feature map is conditioned by the
kernel size k, the stride s, the input size i and the padding p added to the
input volume. We will consider for simplicity that the size of both axis are
the same for the input feature map si = sj and the kernel ki = kj. The
output is given by F filter or kernels of size o:

o =

⌊
i+ 2p− k

s

⌋
+ 1 (5)

An extensive description of different visual examples of different scenarios
that influence the output size and the arithmetic behind, can be found in [7].

Convolutions hold three features that are inherent to the operation and
can help improve a machine learning system: sparse interactions, parameter
sharing and equivariant representations.

Unlike fully connected layers, in a convolution layer there is no total con-
nectivity between output and input units. The values of an output feature
map are given by only those inputs that interact with the filter in the convo-
lution. This yields fewer parameters which decreases the amount of memory
required as well as the number of operations. This feature is given by the
fact of using filters of smaller size than the inputs.

Parameter sharing is a feature that also improves the memory require-
ments. The kernel is convolved with the input feature map and the same
kernel values are used irregardless of the location. This behaviour is different
than a fully connected network in which every output is connected to every
input with an independent weight for every connection. Parameter sharing,
thus causes the layer to have the property of equivariance to translation since
the learnt filter is independent to the location.
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Out of the main building blocks of a CNN and not considering the fully
connected net appended for classification tasks, the convolution operations
correspond to the learnable part of a convolution layer. The weights of the
filters can be learnt through backpropagation.

4.1.3 Pooling

A regular convolution layer typically is a concatenation of operations: one
or several convolutions, an activation function to introduce nonlinearities in
the network and a pooling layer. The nonlinearity can be any kind used in
fully connected networks, being a common choice in current architectures the
rectified linear unit (ReLu).

The pooling layer maps the the feature map output from a convolution
with a summary statistic of subregions defined by a given window size. The
most used function is max pooling which summarizes each subregion with
the maximum value. Other common options are average pooling or weighted
pooling, among others.

This operation makes the network more robust in terms of small trans-
lation of the input. Another important use of pooling is the reduction in
size of the feature maps, improving the memory usage and statistical effi-
ciency. Pooling with downsampling is done by pooling regions with a stride
s different than 1 pixel.

4.1.4 VGG Network

In the previous sections we described the main CNN building blocks, the
convolution and pooling operations. In classification CNNs a set of convolu-
tion layers are concatenated in order to hyerarchically extract feature maps
from the successive convolutions of the input, and finally a fully connected
network is appended to perform classification on such features.

Figure 5: VGG-16 architecutre

13



VGG [33] is a network architecture developed by the Visual Geometry
Group at Oxford University in 2014. One of the main characteristics of
this particular architecture that popularized it is its simplicity. The use of
smaller filter size of 3x3 compared to larger filters such as the 7x7 or 11x11
reduces the number of parameters and allowed to have an effective bigger
size by stacking multiple convolution operations before max pooling. By
stacking multiple convolution operations of size 3x3, without downsampling
in between, the effective filter size is 5x5 for 2 stacked convolutions and 7x7 for
3 stacked convolutions, but with the advantage of fewer parameters. Another
advantage of decomposing a convolution operation into multiple smaller-sized
stacked convolutions is the ability to perform a non linearity after each of
the convolutions, making the decision function more discriminative. The
downsampling of the feature maps is performed via 2x2 maxpooling with a
stride of 2 yielding a downsampling by factor of 2 at every maxpooling. In
order to compensate the loss of spatial size of the feature maps after each
downsample, the number of filters is increased by a factor of 2 after each
downsample. Finally, all the activation functions used in all hidden layers
are rectified linear units.

VGG-16 is one of the different architectures tested in [33] consisting of 16
weighted layers (13 convolutional + 3 fuly connected) and is one of the most
pre-trained networks used due to its results and simplicity. The strategy used
to reduce the parameters such as using stacked convolutions with small filter
receptive fields allowed to stack multiple layers and reinforced the notion and
importance of depth in terms of hyerarchical representations in deep learning.

4.1.5 Transfer Learning

Most of the deep semantic segmentation architectures are built partially mak-
ing use of pre-existing architectures used in classification tasks. Thus, it is
important to define the concept of transfer learning.

Training deep neural networks from scratch in many cases is an unfeasible
task due to limitations in data samples. On the other hand, using pre-
trained weights can speed up the convergence in comparison to training from
randomly initialized weights [29]. Transfer learning has been proved [37] to
work better as initialization even for dissimilar tasks.

Most networks used for transfer learning are trained on large datasets
such as ImageNet [6]. Some examples of common networks used are AlexNet
[14], VGG [33] or ResNet [12]. In closely related tasks, a common approach
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is to fine-tune partially the network, generally last layers, allowing to keep
more generic features encoded in shallower ones.

4.2 Deep Semantic Segmentation review

4.2.1 Fully Convolutional architecture

One of the most popular methods for deep semantic segmentation are those
architectures based on the concept of Fully Convolutional Network (FCN).
An FCN is a neural network in which fully connected layers are convolution-
alized in order to output dense predictions, which generally are upsampled
via different techniques.

A more in depth description of the original work for Fully Convolutional
Networks [21] based on a VGG-16 network is described in section 5.1.

4.2.2 Encoder-Decoder architecture

Figure 6: Representation of the ResNet architecture. Left part of the conver-
gence point corresponds to the encoder based on VGG network. Right part
corresponds to the decoder based on learnable convolutions and unpooling
layers defined by its symmetrical pooling operation

Most networks for semantic segmentation make use of networks trained
for classification tasks such as VGG or ResNet by discarding the fully con-
nected layers and using the output feature maps from the convolutional lay-
ers. Thus, this part of the network is used to capture a subsampled repre-
sentation of the input and is known as the encoder. The challenge then is to
design a reliable mapping from the lower resolution encodings to a pixel-wise
prediction.
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SegNet [2] defines the encoding part of the network by using the convolu-
tion layers of VGG-16. By completely discarding the fully connected layers
the number of trainable parameters in the encoder network is reduced by a
factor of 10. Each of the convolution blocks are initialized with the weights
of VGG-16 and define an encoder block, each of which is batch normalized
and applied a ReLu non-linearity. Finally, the encoder block contains a max-
pooling layer with a 2x2 window and stride of 2, yielding a subsampling by
a factor of 2. While successive max-pooling operations improves the transla-
tion invariance, it comes at the cost of losing spatial resolution in the feature
maps.

Figure 7

The decoder network is analogous to the encoder with unpooling or up-
sampling layers. This upsampling is performed by creating a sparse matrix
making use of the corresponding decoder max-pooling indices. An example
of this operation can be seen in figure 7. The indices of the max-pooled
elements are kept from the max-pooling performed after the encoder and
shared for the unpooling layer. This strategy allows a very efficient way to
perform upsampling due to the low memory requirements for storing indices
of max-pooled elements. After each unpooling layer, the sparse feature map
is convolved with a trainable decoder and batch normalized. Finally, the last
upsampled feature map is fed to a trainable soft-max, allowing a standard
end-to-end training and pixel-wise prediction at inference.

4.2.3 Descriptors from feature maps
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One way to make use of the encoding capabilities of a CNN is to pool
feature maps from a pre-trained network in order to build descriptors. Gen-
erally, descriptor-based approaches are used in classification tasks but can be
applied to segmentation via using a region proposal algorithm.

Deep Filter Banks [5] uses a VGG Network excluding the fully connected
layers to pool the feature maps from the last convolutional layer. Then,
these low level features are used to fit a Gaussian Mixture Model (GMM)
from which a final Fisher Vector descriptor is built for each data sample
by means of derivatives with respect to the GMM parameters. Finally, this
highly dimensional descriptor is reduced with PCA and used to train a one-
vs-all SVM.

This method is applied to texture recognition using the descriptors as
well as for semantic segmentation by using region proposals from [1]. Object
proposals from Multiscale Combinatorial Grouping (MCG) are assigned the
label corresponding to the highest score from the SVM and they are pasted
one by one in a ranked-fashion prioritizing high confidence regions and bigger
areas.

Figure 8: Example of region proposals from MCG [1]

One of the main drawbacks of this kind of approaches is computation
time and the lack of end-to-end training and evaluation compared to other
deep semantic segmentation methods.

5 Methodology

In this section we provide a deeper review of Fully Convolutional Networks,
specifically the original work proposed in [21]. After a method description
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we proceed to explain our particular experiment setup on our dataset.

5.1 Fully Convolutional Network

Fully Convolutional Networks (FCNs) are one of the main approaches used
in deep semantic segmentation. The main of this architecture is to use only
convolutional layers to perform end-to-end training and inference of semantic
segmentation 9

Figure 9: FCNs [21] provide an end-to-end framework for semantic segmen-
tation

A regular neural network computes a nonlinear mapping function while a
fully convolutional network can be seen as computing a nonlinear filter [21].
Due to its lack of fully connected layers and the nature of the convolution
operation, an FCN works on any input size (only constraint to the number
of downsampling operations).

There are three main concepts linked to FCNs: convolutionalization of
dense networks, upsampling feature maps and adding shallower feature maps
information via skip connections. These main concepts are explained in detail
in the following subsections

5.1.1 Convolutionalization of Dense Networks

CNNs for classification lack spatial information in the outputs. The fully
connected layer step loses track of spatial coordinates from the input and
limits the input size of the network, forcing previous approaches to work on
a patch-wise approach.
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Fully connected layers can be viewed as convolutions with kernels that
cover the entire input region, yielding one value per filter convolved. Adjust-
ing the number of filters as units in the fully connected layer and following
this 1x1 convolution covering the entire region of the input feature spaced, a
fully connected layer can be convolutionalized.

Casting into convolutional layer a fully connected one results in output
feature maps that are equivalent to the evaluation of the fully connected
version on particular input patches. An example of such convolutionalization
can be seen in figure 10

Quoting Yan LeCun on the matter of convolutionalization in [16]: “In
Convolutional Nets, there is no such thing as ”fully-connected layers”. There
are only convolution layers with 1x1 convolution kernels and a full connection
table.”

Figure 10: FCNs [21] provide an end-to-end framework for semantic segmen-
tation

These heat map output makes this convolutionalization approach a nat-
ural move for semantic segmentation. Generally, in networks with pooling
operations, the output feature maps represent a coarse version of segmenta-
tion due to the loss of resolution and are equivalent to evaluating the original
net on particular input patches, while taking advantage of the optimization
of convolution operations.

5.1.2 Upsampling Layer

The need of an upsampling layer comes from the loss of resolution in the
successively downsampled feature maps in a fully convolutional network. As
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we explained in the previous section, by having convolution layers instead
of fully connected layers the network outputs a coarse patch-equivalent seg-
mentation.

Transposed convolution or, also called fractionally strided convolutions,
work by swapping the forward and backward pass operation. Swapping this
operation is the most common way to implement a transposed convolution
for upscaling a feature map. As an example, a convolution of a filter of
3x3 with a 4x4 input volume with no padding and unitary stride results in
a 2x2. The transposed of such convolution would yield a 4x4 from a 2x2
input. This approach for upscaling allows to upsample in-network allowing
end-to-end training through backpropagation.

The transposed convolutions can be initialized with interpolation methods
such as bilinear interpolation, and can be kept fixed or learned as any other
weight in the network.

5.1.3 Skip Connections

The coarse output heatmap from a convolutionalized regular CNN are gen-
erally upsampled to match the resolution of the input image. One issue
with upsampling coarse feature maps is the loss of resolution in the final
feature map due to consecutive downsamples, which yields in poorly detailed
upsampled feature map.

Feature fusing allows to keep information from different depths of the
network. Adding skip connections at different points of the network allow
to combine feature maps before making the final upsample to restore the
original image resolution. In figure 11 the configuration of FCN32, FCN16
and FCN8 is presented. In FCN32, after the convolutionalization of the fully
connected layers, an upsampling layer providing x32 upsample to compen-
sate the downsample of the pooling layers is applied. When adding a skip
connection for FCN16 from pool4, the features are convolved with a predic-
tion layer of 1x1 convolutions with output filters as the number of classes.
This output is combined by means of summation with the x2 upscale of the
feature maps of the convolutionalized last fully connected layer and finally
the combination is upsampled by a factor of x16 resulting in the same input
resolution. In a similar manner, FCN8 is built by fusing the feature maps of
pool3

The models are trained sequentially, which means that an initial FCN32
is trained and used as weight initialization for training FCN16 with one skip
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connection and so on.

Figure 11: Skip connections on a VGG-16 network. Top row represents
FCN32 (no skip connections). Middle row represents FCN16 (one skip con-
nection from pool4 ) and bottom row FCN8 with skip connection from shal-
lower pool3

5.2 Metrics and Evaluation

Jaccard distance or Intersection over Union (IoU) is a standard metric for
assessing the performance of object segmentation models, both for bounding
box and pixel-wise problems. This metric evaluates the level of agreement
between the prediction and the ground truth by taking the ration between the
intersection and the union of each mask. A formal definition for a particular
class C is as follows:

IoUC =
TPC

TPC + FNC + FPC

This metric is computed by the ration of the number of overlapping pixels
and the count of the union of the masks. This evaluation index yields a value
between of 0 and 1 being the case where there is no overlap and exact overlap
between the masks.

As explained in section 3 the use of multiple labels per image allows us to
expand the labels to consider uncertainty in the ground truth. The evaluation
metric used in the experiments consists in evaluating the IoU on the test set
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considering the regions described in 3 and, based on the original definition
of IoU, the metric is defined in equation 6.

IoUC =
|GTCCore|

|GTCCore
|+ |GTCError

|
(6)

By using this metric we still have an analogous to IoU metric but not
penalizing the region that is labeled as uncertain.

The results presented in 6 includes IoU per class C as well as the mean,
both for the IoU taking into account the uncertainty regions as well as stan-
dard IoU for a fixed set of labels in order to compare performance.

5.3 Training Strategy

Two different training strategies have been tested regarding the multiple
labels. A first and more strict approach is to train each image sample with
the intersection among the labels, considering only the total agreement as
the ground truth for an image. For the sample presented in figure 4 the
corresponding label would be the label shown in 12

Figure 12: Label of sample of data based on the intersection of each original
label. Green represents the intersection area of delamination, yellow the rebar
exposure intersection, blue non damage intersection and purple represents the
don’t care area.

The second approach tested consists on using each of the multiple labels
per image as a data sample. This can be seen as a way of data augmentation
since each data sample in the training set is used with 3 different labels. In
this case, during training, the label is randomly sampled from the pool of
different labels.
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5.4 Experiments

The dataset has been split in a 70/30 train and test ratio with 700 images in
total (34 have been left out for future test set), randomly selecting instances of
data while keeping the ratio of images from different levels of severity. For the
purposes of this report this split has been performed due to time constraints.
For the work-in-progress publication these results and potentially others will
be crossvalidated. The results are preliminar results since more exploration
in terms of experimentation is needed to conclude on best model.

The images are masked using the region of interest (ROI) of the deck area
described in the dataset section. In order to keep consistency and to ignore
small areas of no agreement on defining the region, the images and labels are
masked taking the intersection of ROIs.

The model used is a Fully Convolutional Network based on VGG-16
for weight initialization.Trained with Stochastic Gradient Descent (SGD) on
256x256 random crops with weight decay and momentum. The learning rate
is doubled for biases and for every skip connection added the learning rate
is decreased by a factor of 100. The training hyperparameters are defined as
follows 3:

Parameters Value
Batch size 8
Optimizer SGD + weight decay

Learning rate 1e− 10
weight decay 1e− 3
Momentum 0.99

Table 3: Training parameters

Dataset augmentation is used by applying horizontal and vertical flips,
change in illumination and slight affine transformations.

A total of 12 experiments have been tested by trying the training strate-
gies stated in section 5.3, data augmentation and learnable or fixed upsam-
pling transposed convolutions. These cases have been tested with up to 1 and
2 skip connections. Empirically we found that in all cases data augmentation
helped significantly the model so for one and two skip connections (FCN16
and FCN8) only experiments with data augmentation have been trained.
Following Long, Shelhamer, and Darrell the learnable upsamples are used in
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all the transposed convolutions except the last one which is a fixed bilinear
upsampling. A summary of the experiments can be found in table 3

Experiment Model Data Aug. Learnable Random Intersec.

1 FCN32 !

2 FCN32 !

3 FCN32 ! !

4 FCN32 ! !

5 FCN16 ! !

6 FCN16 ! !

7 FCN16 ! ! !

8 FCN16 ! ! !

9 FCN8 ! !

10 FCN8 ! !

11 FCN8 ! ! !

12 FCN8 ! ! !
‘’

Table 4: Summary of the models trained with the combinations of data
augmentation, learnable upsample layers, and the two training strategies,
random label or intersection of labels

The experiments have been run in a sequential manner, i.e. running mod-
els without skip connection first and using the weights as initialization to the
next model with skip connection, and same procedure when adding an extra
skip connection. The experiments with skip connections (FCN16 and FCN8)
with a particular set of training parameters such as data augmentation or the
training strategy have been initialized with the weights of its corresponding
model trained on the same set of parameters.

The values reported correspond to the IoU considering uncertainty regions
and the IoU over one out of three fixed set of labels.

6 Results

The first set of experiments correspond to the VGG-16-initialized Fully Con-
volutional Network in which the use of data augmentation and the two train-
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ing strategies based on multiple labels are tested and no skip connections.

Figure 13: FCN32 models trained. The IoU explained in 5.2 is used for
reporting the mean value of the 3 classes: non-damage, delamination and
rebar exposure

From the initial set of experiments we can observe how data augmentation
is effective in both training scenarios tested. The particular configuration
that yielded better results for the case of no skip connections (FCN32) was
obtained by training with data augmentation and randomly sampling from
the pool of labels. As a reference, the validation standard mean IoU is
computed on one of the sets in order to assess the difference in accuracy
comparing to the extended IoU explained in section 3. We observe clearly
how basing the evaluation on one label yields much lower results due to the
difference in evaluation criteria from the civil engineer perspective.

Taking a closer look at per class values as we can see on table 5 we observe
a marginal improvement on non damage class due to the high agreement
among labelers. On the other hand, the highest increase is delamination
over rebar exposure. By not having skip connections, the upsampling yields
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Figure 14: Experiment 4 from table 4. Comparison of mean IoU on a fixed
set and mean IoU taking into account the certain and uncertain areas.

a coarse segmentation, and on delamination the tendency is to segment areas
of bigger size than the ground truth. On the other hand, taking into account
the uncertainty regions, this over-sized segmentation has a less negative effect
due to the uncertainty region.

Clssses IoU set 1 Multilabel IoU Delta IoU
Non damage 0.89 0.97 0.08
Delamination 0.381 0.770 0.389

Rebar exposure 0.269 0.591 0.322

Table 5: Comparison of per class standard IoU on set 1 and IoU with multiple
labels

Adding a skip connection, due to fusing lower level features in the output,
initializing the network with the trained FCN with no skip connections and
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decreasing the learning rate has the effect of refining the segmentation. Due
to data augmentation adding a positive effect on all previous experiments,
data augmentation is applied to all FCN16 variants.

Figure 15: FCN16 models trained from the corresponding initialization from
FCN32 models

Adding one skip connection makes all the models oscillate at 0.8 IoU. A
common pattern is the marginal increase in IoU for learnable upscales even
though in this case is almost a negligible improvement. On the other hand,
for refinement with skip connection, training with the intersection of labels
seems to be more effective, yielding slightly better results and less oscillation
in the reuslts.

Similarly, we obtain the same behavior when adding a second skip con-
nection (FCN8) with less overall improvement. The refinement of fusing
multiple shallower feature maps tend to work on the refinement of the coarse
segmentation and due to its slower learning rate, only marginal improvement
can be obtained.
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Figure 16: FCN16 with label intersection, data augmentation and learnable
upsample. Mean IoU with uncertainty as well as standard mean IoU on fixed
set 1 of labels is reported. Introduction of skip connection marked as vertical
line in blue

In figure 18 the IoU of the different classes can be found. Non-damaged
area presents no trouble in terms of segmentation and both the reference
evaluation on one set and the uncertainty evaluation yields good results.
Delamination can be detected from an early stage due to its larger on-average
size compared to rebar exposure. On the other hand, rebar exposure due to
its smaller size and tendency to get mistaken by areas with surface rust, takes
more iterations to detect and benefits substantially from the addition of skip
connections due to its well defined shape.
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Figure 17: FCN8 with label intersection, data augmentation and learnable
upsample. Mean IoU with uncertainty as well as standard mean IoU on fixed
set 1 of labels is reported. Introduction of skip connection marked as vertical
line in blue

7 Sample segmentation results

In this section we provide a few output inferred images from the 30% vali-
dation split used in the experiment section. The main idea is to illustrate
the segmentation capabilities of such network on the images from bridge in-
spections, and to showcase some problem found empirically by inspecting the
output results.

For the case of rebar exposure with delaminated area around the FCN
shows very good performance. This kind of damage is the most severe case
which mmkes it suitable for. aiding in the process of detection. An example
of such case can be found in figure 19

The case of rebar with heavy delaminated area present a particular and
less prone to uncertainty region. Thus, FCN is able to be very discriminative
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Figure 18: FCN8 results broken into classes. Both uncertainty based IoU
and standard IoU over set 1 is presented

(a) Sample of data with 3 independent labels

Figure 19: Left original image. Right imge segmented with the FCN8 model
stated in the experiments section
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to this kind of pattern.
Regarding rebar exposure, it is the class more consistent with shape and

texture. Generally it is a strong pattern easy to detect. On the other hand,
one of the main problems for this particular class is the presence of false
positives. From the texture perspective, any rust or certain types of dirt in
the structure can easily be misclassified as rebar exposure. Further work to
solve this problem has to be applied, being a simple postprocessing effective
by removing small blobs of detected rebar exposure without surrounding
delamination. A case of this particulr problem can be seen in figure 20

(a) Sample of data with 3 independent labels

Figure 20: Left original image. Right Image contining rebar false positives
blobs segmented with the FCN8 model stated in the experiments section
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8 Conclusions

Tackling a task in which the ground truth presents high variation requires
from a way to quantify its uncertainty and perform a more accurate perfor-
mance evaluation. In this work we contributed to the design of such metric
based on regions of agreement from multiple labelers. Such dataset is a very
valuable asset due to its multiple labels per image as well as for containing
pixel-wise labeled images of bridges in the wild.

In particular, in relation to the structural damage segmentation we study
the use of a VGG-based Fully Convolutional Network. This preliminary work
shows promising results for semantic segmentation in the field of damage
recognition and serves as a baseline for benchmarking other approaches once
the dataset becomes public.

From the civil engineering perspective, at this stage, the model can be
used as an aid for standard bridge deck inspection. Particularly in Japan, by
law, the severity of damage in a bridge has to be assigned by a human which
makes these kind of tools an aid to such task instead of an end-to-end tool.
The work at this point serves as a proof of concept due to the limitation on
classes (3 classes for this work) and it is being studied by [24] as a possibility
to redefine the criteria to define the types of damage and the expansion of
the dataset to include more types of damages as well as different parts of a
bridge is being considered.

Thus, we conclude that FCNs and particularly VGG-based network pre-
trained on ImageNet it is suited for texture recognition in the scope of civil
infrastructure surface damage semantic segmentation. While more effort has
to be put into the data quantity and quality, as well as a deeper study of
FCNs for this particular task, this work serves as a first step towards that
goal.
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