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Abstract: In simplified seismic structural analyses, not all the deterioration modes are adequately considered. 
This work discusses the relation among the hidden failure modes of columns of non-ductile RC building frames 
and their global collapse mechanism. With this aim, a numerically efficient model is developed and implemented 
in OpenSEES. Two benchmark problems are analyzed with this model: the well-known Van Nuys Hotel and a 
prototype building designed for gravity loads only; in this last case, the results are compared with experiments 
on a one-third scale model. The obtained results confirm that simplified models grossly overestimate the 
building capacity.  
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Introduction 
The nonlinear dynamic analysis of reinforced concrete (RC) structures under strong seismic excitation is not a 
routine task, requiring an in-depth knowledge of the structural behavior for each performance level, principally 
near collapse. Moreover, reinforced concrete is a mixed material with highly complex nonlinear behavior; i.e. 
each structural element has several coupled deterioration modes, namely flexure, shear, and axial. Their 
interaction influences the entire structure and determines its global collapse mechanism. This issue is especially 
important in RC building frames designed without any seismic provision, since these buildings are highly 
vulnerable to severe earthquakes and exhibit important brittle deterioration and failure modes, i.e. shear and 
axial. This type of structures is commonly known as “non-ductile RC frame”; the influence of columns brittle 
deterioration modes is high, because the customary ductility requirements (“strong column-weak beam”, and 
“critical regions confinement”, among others) are not fulfilled. 

Unfortunately, non-ductile RC frames are extremely widespread, even in seismic regions. This profusion is due 
to, among other reasons, underestimation of the actual seismicity, loose requirements of the past design codes, 
lack of fulfillment of the current codes, and poor construction practices. On the other hand, seismic design and 
analysis of actual buildings requires dealing with complex models, thus having many degrees of freedom. 
Moreover, costly nonlinear dynamic analyses are being more routinely used by designers; even Incremental 
Dynamic Analysis (IDA) has started being used. IDA [Vamvatsikos, Cornell 2002] consists in determining the 
dynamic structural response to one or several seismic inputs (accelerograms) scaled with increasing factors, thus 
requiring a huge number of operations. All these circumstances show that, in earthquake engineering, complex 
continuum mechanics-based formulations are not practical; as a result, simplified models are routinely 
considered. Often, such models are excessively abridged, e.g. accounting only for flexure deterioration modes; 
therefore, can lead to misleading results. Consequently, there is a strong need for models that combine numerical 
efficiency and accuracy, mainly with the consideration of the most relevant deterioration modes and their 
interaction. 

This paper presents a numerical study on the interaction of the non-simulated deterioration modes of the columns 
of non-ductile RC frames to determine their final capacity. The structural behavior of the analyzed frames is 
described with a model implemented in OpenSEES code [McKenna et al. 2000] accounting for flexure, shear 
and axial deterioration modes. The developed model is numerically efficient, thus being suitable for everyday 
use. 
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In this work, two benchmark buildings are analyzed with the developed model: 

 Van Nuys Hotel. This RC building was designed without any seismic provision and is commonly 
considered as a test-bed case, thus having been studied by several researchers. In this work, pushover 
analyses and IDA are carried out with the developed model and with more simplified ones, representing 
those that are commonly employed in earthquake engineering. The objective of these analyses is to study the 
relevance of the hidden deterioration modes. Results from the pushover analyses show that the hidden modes 
that are not detected by the abridged models play a relevant role in the global seismic behavior, affecting the 
building seismic capacity significantly. 

 Prototype building. A prototype building designed only for gravity loads [Bracci et al. 1995] is also 
analyzed. Pushover analyses and IDA are performed; the obtained results corroborate the observations from 
the Van Nuys building. As well, the developed model is validated with experimental results on a one-third 
scale laboratory model of the prototype building.  

The results for both buildings confirm that the simplified models grossly overestimate the building capacity; 
conversely, the developed model detects the hidden deterioration modes whereas having a moderate 
computational cost. 

Developed model 

Background 
[FEMA P695 2009] identifies, based on experiments and observations from past earthquakes, the main element 
deterioration (failure) modes (local) and global collapse mechanisms of RC frames. This document classifies the 
deterioration modes of beam-column elements into three categories: flexure hinging, compressive failure, and 
shear failure; as well, the collapse mechanisms are classified in vertical and sidesway. Collapse mechanisms and 
failure modes are closely related: flexure hinging usually leads to sidesway collapse, whereas column shear 
deterioration subsequently can lead to a loss in vertical carrying capacity and thus vertical collapse. [ASCE 41 
2013] distinguishes the same deterioration modes, and highlights the differences between flexure-shear and pure 
shear failures in columns: pure shear failure occurs when the demanding shear force exceeds the resistance, 
while flexure-shear deterioration arises when the column undergoes also flexure hinging, thus reducing its shear 
strength. Modeling flexure-shear deterioration is a complex task due to the interaction of moment, shear, and 
axial forces; several displacement-based models have been proposed: [Pujol et al. 1999; Kato, Ohnishi 2001; 
Elwood 2004]. [Elwood 2004] uses zero-length shear and axial springs that are connected in series with the 
column. Elwood model succeeds in capturing the aforementioned failure modes and has been verified and 
recommended by several studies and standards [Yavari et al. 2008; FEMA P695 2009; ATC 78-1 2015].  
 
Several researchers have studied the consequences of disregarding the deterioration modes other than flexure 
hinging. In these studies, failure modes other than flexure are detected at the post-processing stage. Conversely, 
in this paper, that detection is made during the analysis. The interaction between these modes is captured, and 
different collapse mechanisms are identified. In [Haselton and Deierlein 2007], probabilistic formulations are 
used to describe the capacity of the structure. [Aslani, Miranda 2005] developed fragility functions based on 92 
cyclic tests of RC columns; these functions detect column shear and axial failure by post-processing the results 
from ordinary dynamic analyses. In [Aslani, Miranda 2005], columns yielded first in flexure prior failing in 
shear, this being the so-called “flexure-shear” deterioration mode. Aslani and Miranda defined four damage 
states: (1) light cracking, (2) severe cracking, (3) shear deterioration and (4) loss of load-carrying capacity; the 
proposed fragility functions predict the probability of each damage state in terms of drift ratio, axial load ratio 
and transverse reinforcement amount. The research by Aslani and Miranda shows that the proposed fragility 
functions provide improved probability estimates. This formulation is recommended in [Haselton, Deierlein 
2007; Liel 2008; Haselton et al. 2009]. [Liel 2008] carried out IDAs of an 8-story RC frame using the fragility 
functions developed by Aslani and Miranda. Results in [Liel 2008] showed that, for some records, the shear and 
axial deterioration modes govern the collapse; noticeably, for some non-ductile structures, the collapse 
probability increases by 30% after taking into consideration those same modes.  

2 



General description 
The developed model stems from the researches described in the previous subsection. It accounts for flexure 
hinging in beams and for 4 deterioration modes in columns: (i) flexure hinging, (ii) flexure-shear, (iii) flexure-
shear-axial, and (iv) compressive. After flexure hinging, flexure-shear consists in a shear failure of concrete, and 
yielding or fracture in the transverse reinforcement, while there is still some axial carrying capacity; flexure-
shear-axial failure represents the total loss of axial capacity. Finally, compressive failure is characterized by 
concrete crushing, longitudinal reinforcement buckling, and transverse reinforcement yielding or rupture. In the 
developed model, flexure hinging and compressive failure are described with distributed plasticity (fiber 
models); flexure-shear and flexure-shear-axial are simulated with shear and axial springs, respectively. Pure 
shear failure (shear strength) is not explicitly incorporated in the analysis because, when such failure occurs, the 
structure is severely damaged and is at serious risk of collapse. In this case, the continuation of the analysis is of 
little interest, as this state can be considered itself as collapse; hence, this verification is carried out during post-
processing. Other hidden deterioration modes in the beam-column joints (flexure, shear and lap splice failure 
[Aycardi et al. 1994; Jeon et al. 2015; De Risis et al. 2017]) are not considered in this model. 

The frame elements are discretized with Navier-Bernouilli beam-column elements, as depicted in Fig. 1.  

 
 

(a) Frame discretization (b) Detail of the discretization of a beam-column 
joint  

Fig. 1. Developed model 

Fig. 1.a and Fig. 1.b display examples of the discretization of a frame and a beam-column joint, respectively. 
The beams nonlinear behavior is described with concentrated plasticity while columns are analyzed with 
distributed plasticity fiber models; therefore, the main segments of beams exhibit linear behavior, and those of 
columns behave nonlinearly. Fig. 1.a shows that additional nodes are used to account for the higher stiffness of 
the beam-column joints; namely, mass nodes are located at the intersection points, and spring nodes are situated 
at the joints ends. Also, additional spring nodes are set at intermediate sections inside the beams. Fig. 1.b shows 
that, in beams, flexure hinging is modelled with zero-length rotational springs (concentrated plasticity); 
conversely, in columns, similar springs are used to describe the longitudinal reinforcement slip. As discussed 
previously, the shear and axial springs in columns represent the flexure-shear and flexure-shear-axial failures, 
respectively. 

This model is implemented in OpenSEES code [McKenna et al. 2000]; the drift capacity model developed in 
[Elwood 2004] is used to describe the flexure-shear and flexure-shear-axial deterioration of columns. The second 
order effects are accounted for by P-delta analysis. The consideration of beams and columns nonlinear behavior 
is described next. 

Beams. The rotational springs behavior is described with the modified hysteretic model developed by [Ibarra et 
al. 2005]. The particular parameters of the [Ibarra et al. 2005] model are obtained from the sectional analysis of 
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the beams; other parameters, such as the plastic rotations and the energy dissipation, are selected after the 
formulations proposed by [Haselton et al. 2008]. 

Columns. The fiber models are implemented using the force-based formulation. The integration along the 
column length is carried out by the Gauss–Lobatto quadrature rule with five integration points. The concrete 
uniaxial behavior is represented by the “Concrete01” model with zero tensile strength; in compression, there is a 
parabolic segment followed by a linear descending branch. The concrete confinement is taken into consideration 
according to [Scott et al. 1982]. The reinforcement behavior is simulated with the “Steel 02” model. 

Bond-slip effects in columns 
The longitudinal reinforcement slip at the column ends is represented by an increase in the corresponding 
rotation angles. As discussed previously, this effect is simulated by zero-length rotational springs, see Fig. 1.b. 
The spring stiffness is selected as recommended by [Elwood, Eberhard 2009]: 

𝐶𝐶slip =
8 𝑓𝑓b
𝑑𝑑b 𝑓𝑓s 

 𝐸𝐸𝐼𝐼flex (1) 

In equation (1), Cslip is the rotational stiffness of the slip spring, db is the bar nominal diameter, EIflex is the 
column effective flexure rigidity at the first yield, fs can be taken equal to the yield stress fy [Berry et al. 2004], 
and fb is the bond stress given by 0.8 �𝑓𝑓′c (MPa) [Yavari et al. 2008]. Equation (1) corresponds to linear 
behavior; after reinforcement yielding, the behavior can be significantly nonlinear and may lead to rapid strength 
reduction. The authors have developed a more complex model [Alfarah et al. 2017] that is able to reproduce the 
aforementioned nonlinear behavior. For the sake of computational efficiency, this approach is not incorporated 
into this work. Regarding the bond-slip in beams, it is considered implicitly as [Haselton et al. 2008]. 

Effective lateral stiffness of columns  
The yield drift displacement ∆y can be estimated as the sum of the displacements due to flexure, bond-slip, and 
shear: 

∆y = ∆flex + ∆slip + ∆shear (2) 
The displacements in the right-hand side of equation (2) can be estimated [Elwood, Eberhard 2009] as: 

∆flex =
𝐿𝐿2

6
 φy =

𝐿𝐿2

6
 
𝑀𝑀SP

𝐸𝐸𝐼𝐼flex
 ∆slip =

𝐿𝐿 𝑑𝑑b 𝑓𝑓s φ𝑦𝑦
8 𝑓𝑓b

 ∆shear =
2 𝑀𝑀SP

𝐺𝐺𝐺𝐺eff
 (3) 

In equation (3), L is the column length, ϕy is the yield curvature, MSP is the moment at concrete spalling, and 
EIflex and GAeff are the effective flexure and shear stiffness, respectively. The flexure displacement ∆flex is 
obtained assuming that the column is clamped at both ends, and that the curvature varies linearly along its 
height, being zero at the mid-section. MSP corresponds to concrete strain equal to 0.004; it includes the effects of 
axial gravity loads. EIflex can be determined from the moment and the curvature at the first yield. Finally, EIeff   is 
expressed as: 

𝐸𝐸𝐼𝐼eff =
𝐿𝐿2

6
 
𝑀𝑀SP

∆y
 (4) 

This stiffness is used in the idealized bilinear model for the shear displacement law described in next subsection. 
Since this model assumes that the flexure failure will precede the shear one, equation (2) can be considered as a 
good approximated statement to add the influence of the different components of displacement at the flexural 
yielding state. 

Flexure-shear and flexure-shear-axial deterioration models of columns 
Several studies [Priestley et al. 1994; Sezen 2002] have shown that, when the inelastic deformation increases, the 
shear strength decays; hence, the flexure-shear deterioration model should be based on both force and 
deformation. Also, after the flexure-shear degradation, the columns tend to lose their vertical carrying capacity 
[Nakamura and Yoshimura 2002]. In this work, flexure-shear and flexure-shear-axial deterioration are described 
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with shear and axial limit curves respectively [Elwood 2004], respectively; such curves refer to the 
corresponding shear and axial springs that are series connected with the column fiber elements, see Fig. 1.b. 

The aforementioned shear spring predicts deterioration according to an empirical drift function [Elwood, Moehle 
2006] that is based on experimental results; later, axial deterioration arises from sliding along an inclined shear 
crack. The following equations provide the drift limit angle at flexure-shear (Δs / L) and flexure-shear-axial (Δa / 
L) deteriorations, respectively: 

∆s
𝐿𝐿

=
3

100
+ 4 ρ′′ −

1
40

 
ν

�𝑓𝑓′c
−

1
40

𝑃𝑃
𝐺𝐺𝑔𝑔𝑓𝑓′c

≥
1

100
 

∆a
𝐿𝐿

=
4

100
 

1 + tan2 θ

tanθ + 𝑃𝑃 𝑆𝑆
𝐺𝐺st 𝑓𝑓yt 𝑑𝑑c tan θ

        (5) 

In equation (5), ρ´´ is the transverse reinforcement ratio, ν is the demanding shear stress (V / Ag), P / Ag fc' is the 
demanding axial load ratio, dc is the column core depth (between centre lines of stirrups), S is the transverse 
reinforcement spacing, Ast and fyt are the area and the yield point of the transverse reinforcement, and θ is the 
critical crack angle (θ = 65º, [Elwood, Moehle 2006]). Units are in MPa. 

When the response reaches the shear limit curve (Δs / L in equation (5)), the backbone curve of the shear spring 
is shifted to a descending branch [Elwood 2004]. Then, the total lateral stiffness is obtained by combining the 
negative slope of this descending branch with the positive one given by equation (4). The slope of the post-
failure backbone of the shear spring is Kdeg = [1 / Kdeg

t – 1 / Kunload]-1 [Elwood 2004]. In this expression, Kdeg
t is 

the softening slope of the total response and Kunload is the column unloading stiffness; Kunload = 12 EIeff / L3 where 
EIeff is obtained from equation (4). The initial stiffness of the shear spring is equal to the uncracked column shear 
stiffness. The stiffness of the axial spring is equal to 100 times the column axial stiffness; this choice aims to 
ensure that no relevant additional axial flexibility is added. The hysteretic rules of the shear spring are selected 
according to the recommendation of OpenSEES platform [McKenna et al. 2000] for limit state material model 
with pinching and damage; during unloading, the punching parameters have been taken equal to 0.5, 0.4, 0 and 0 
for deformation, force, damage of ductility, and energy, respectively. 

Numerical integration 
The numerical integration is based on the Newmark average acceleration method (γ = 0.5 and β =0.25). The time 
step ranges between 2 × 10-5 and 10-4 s; in the iterations, the tolerance ranges between 10-8 and 10-4. 

Final considerations 
It should be emphasized that this paper is not actually proposing a new model, instead it presents a new 
combination of approaches that had been previously developed by other researchers. The interest of this 
combination lies in putting together sufficient accuracy and computational efficiency. Although other 
combinations have been previously proposed, some of them either consider older formulations to describe beams 
hinges [Elwood, Moehle 2003], or are less computationally efficient [Baradaran Shoraka et al. 2013a, 2013b], or 
do not account for all the columns failure modes [Jeon et al. 2015]. 

Models considered in the analyses 
To highlight the importance of the hidden failure modes of columns (flexure-shear deterioration followed by loss 
of bearing capacity), the results provided by four models are compared in this paper. These models are 
implemented in OpenSEES following the approach described in the previous subsections; differ in their 
complexity and the number of deterioration modes that are taken into consideration: 

 Model 1. Corresponds to the simple algorithms that are commonly used in earthquake engineering. The 
material degradation in beams and columns is simulated through concentrated and distributed plasticity, 
respectively. The second-order effects are described by P-delta analysis, as discussed previously. The bond 
slip in columns is analyzed with the simplified formulation in equation (1). This model is able to detect only 
the sidesway collapse. 

 Model 2. Akin to Model 1, although without second-order analysis. 
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 Model 3. This model is analogous to the first one, but considers also the flexure-shear deterioration by 
attaching a shear spring in series with a bond slip element at each column top (Fig. 1.b). 

 Model 4. This model is generated, following Model 3, by incorporating also axial springs (Fig. 1.b). For the 
sake of better numerical stability, these springs are incorporated only to columns that have experienced 
flexure-shear deterioration. In contrast to the previous models, this one is able to predict both sidesway and 
vertical collapses. 

Van Nuys Hotel Building  
The Van Nuys Hotel is considered by the Pacific Earthquake Engineering Research Center (PEER) as a test-bed 
structure. As a result, this construction has been studied by several researchers [Krawinkler 2005] and had been 
instrumented prior to the 1994 Northridge earthquake. This building has a non-ductile 7-story RC framed 
structure without basements, and its plan configuration is rectangular (19.20 m × 45.72 m), being uniform along 
the building height [Vamvatsikos et al. 2003]. The Van Nuys building is located in San Fernando Valley, 
California, having been built in 1966 and having experienced several significant earthquakes; suffered minor 
structural damage and extensive non-structural damage during the 1971 San Fernando earthquake, and extensive 
structural damage during the 1994 Northridge earthquake. In this work, the seismic performance of the building 
is analyzed in the short direction; the structure is represented by a 2D façade frame. In the beams, only flexural 
hinging is expected; in the columns, also flexural-shear possibly followed by flexural-shear-axial failure are 
anticipated. 

Pushover Analysis of the Van Nuys Hotel Building 
Nonlinear static analyses (pushover) are carried out using both the simplified models (Model 1, Model 2 and 
Model 3) and the least simplified one (Model 4). In these analyses, the variation of the pushing forces along the 
building height is shaped as the first mode. Fig. 2 and Fig. 3 display, for each model, the capacity curves, and the 
final states, respectively. 

  
Fig. 2. Capacity curve of the Van Nuys frame for the four models 

Fig. 2 shows that, before reaching the maximum force capacity, the four models predict almost the same 
behavior; the slight difference for Model 2 can be explained by the influence of the second-order effects. After 
this peak, all the models describe flexure hinging degradation, followed by a near horizontal branch, with highly 
similar results for Models 1, 3 and 4. When flexure-shear deterioration is detected by Models 1 and 4, a brittle 
vertically descending branch is generated. When this branch reaches the residual strength, axial deterioration is 
identified by Model 4 and a linear descending branch begins, leading finally to zero-force state. As expected, 
Fig. 2 shows that, the more deterioration modes are accounted for, the less residual (post-peak) capacity is 
predicted; in other words, using over-simplified models is significantly non-conservative. 
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(a) Model 1 (b) Model 2 (c) Model 3 (d) Model 4 

Fig. 3. Collapse deformation of the Van Nuys frame in the pushover analyses 

Fig. 3.a through Fig. 3.d represent the collapse mechanisms detected by Models 1 through 4, respectively. 
Models 1 and 2 predict sidesway mechanisms. Model 1 indicates that the plastic hinges are concentrated on the 
first-floor; conversely, Model 2 states that hinging is distributed among the columns of first through fifth stories. 
Fig. 3.c shows that flexure-shear deterioration arises in the first-floor columns tops; this is mainly due to their 
low capacity caused by their large height, thus generating brittle collapse mechanisms. Fig. 3.d represents the 
onset of the vertical capacity loss in the right column (C36) due to relevant flexure-shear-axial deterioration; 
subsequent larger deformation states cannot be captured due to non-convergence. However, this state can be 
considered as vertical collapse, since Fig. 2 shows that no further lateral deformation can be resisted. Reference 
[Alfarah 2017] provides deeper information. 

Fig. 4 displays plots of shear force vs. interstory drift ratio for the first-floor columns; these plots have been 
generated with Model 3 and Model 4. Fig. 4.a, Fig. 4.b, Fig. 4.c and Fig. 4.d correspond to columns C9, C18, 
C27, and C36, respectively (from left to right in Fig. 3). Fig. 4 shows that, after reaching the shear limit curve 

(Δs / L in equation (5)), the response degrades until reaching a certain residual strength.  

  
(a) Column C9 (left column in Fig. 3) (b) Column C18 (second  column in Fig. 3) 

  

(c) Column C27 (third  column in Fig. 3) (d) Column C36 (right  column in Fig. 3) 

Fig. 4. Shear force vs. story drift for  the first-floor columns of the Van Nuys frame in  the pushover analysis 
with Models 3 and 4 
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Fig. 4 shows that the flexural-shear failure is detected while columns exhibit softening in their force-
displacement response. This circumstance requires particular discussion, since it is recommended that the 
response maintains a positive slope to ensure a unique solution in the Elwood model [Elwood 2004]. If that slope 
is negative, there are three solutions satisfying equilibrium and ensuring a total drift increase. Among them, the 
correct one corresponds to damage localized in the shear spring, and unloading shear-drift response [Elwood 
2004]. To fulfill these requirements, the shear force shall decrease faster than before reaching the shear limit 
curve. The proof that the solution is correct is that the shear response from Model 3 decreases linearly until 
reaching the shear spring residual strength; this guarantees that the damage is localized in the shear spring. After 
this limit, the column capacity remains constant; that residual strength is taken equal to 10% of the maximum 
shear capacity. However, for cyclic loading, such verification can be made by checking the response of the shear 
spring; if it does not show shear degradation upon reaching the shear limit curve, it is recommended to modify 
the time increment and the convergence parameters until this condition is satisfied. 

Fig. 5 displays plots of the axial force vs. the interstory drift ratio for the most loaded column (right, C36). Fig. 5 
shows that, as highlighted by Fig. 3.d, the limit axial curve is reached after the flexure-shear deterioration. 

 

 
Fig. 5. Axial force vs. drift for the first-floor column C36 of the Van Nuys frame in the pushover analysis 

using Model 4 

Incremental Dynamic Analysis of the Van Nuys Hotel Building 
An Incremental Dynamic Analysis (IDA) is carried out for the 1979 Imperial Valley ground motion, Plaster City 
station record. The first mode period is taken as 1.3 s; the 5% damping spectral ordinate for the unscaled record 
is Sa(1.3) = 0.244 g. Models 1 and 4 are considered. In Model 1, Rayleigh damping being proportional to mass 
and initial stiffness is used; the damping ratio is 5% at the first and second modes. In Model 4, mass-proportional 
damping (5%) is considered; noticeably, stiffness-proportional damping cannot be used due to the unrealistically 
large damping forces resulted from the sudden shear and axial deterioration of the zero-length springs [Elwood, 
Moehle 2003]. In the most critical analyses, the time step is 0.00002 s. 

Fig. 6 displays IDA curves in terms of the top floor displacement (Fig. 6.a) and the maximum interstory drift 
ratio (Fig. 6.b) vs. the spectral acceleration at the building fundamental period (Sa(T1)). Fig. 6.a shows that 
Model 1 predicts higher capacity than the more sophisticated Model 4. Regarding Model 3, the large peak 
displacement that corresponds approximately to spectral acceleration 0.5 g can be read as collapse; therefore, the 
segment for higher accelerations can be considered as a structural resurrection, being only of academic interest. 
Fig. 6.b provides basically the same conclusions than Fig. 6.a, although the maximum drift yields information on 
the behavior along the building height. In short, the oversimplified models grossly overestimate the seismic 
capacity and generate irregular plots; conversely, the most complex models provide more reliable and smoother 
IDA curves. Comparison with the IDA curves in [Vamvatsikos et al. 2003] shows similarity with the results for 
Model 1. 
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(a) Top story (b) Maximum drift angle 

Fig. 6. IDA curves of the Van Nuys frame with the Imperial Valley ground motion 

Fig. 6 shows that Model 4 predicts collapse at Sa(T1) = 0.49 g; that collapse arises by a loss of the axial carrying 
capacity (flexure-shear-axial deterioration) of the first-floor columns C9, C18, and C27. Fig. 7 presents four 
consecutive states of this brittle progressive collapse. State 1 (Fig. 7.a) corresponds to flexure-shear deterioration 
of the left column (C9). States 2 and 3 (Fig. 7.b and Fig. 7.c) also include flexure-shear deterioration of the other 
columns (C18, C27, and C36). In state 4 (Fig. 7.d), columns C9, C18, and C27 also have lost their bearing 
capacity; similarly to Fig. 3.d, subsequent states corresponding to larger deformation cannot be captured. 
However, this state can be considered as vertical collapse, since the IDA curves from Fig. 6 show no further 
capacity [Alfarah 2017]. 

  
 

 
(a) State 1 (b) State 2 (c) State 3 (d) State 4 

Fig. 7.  Van Nuys frame. Deterioration states. Imperial Valley ground motion. Model 4 

Among the nonlinear dynamic analyses performed in this IDA, Fig. 8 displays top floor time-histories 
corresponding to a number of given input intensities. Fig. 8.a and Fig. 8.b contain plots obtained using Models 1 
and 4, respectively.  

  
(a) Model 1 (b) Model 4 

Fig. 8. Top floor time histories of the Van Nuys frame with scaled (Sa(T1)) Imperial Valley ground motions 

Plots from Fig. 8.a show that the response for Sa(T1) = 0.68 g is markedly nonlinear, since after 9 s, the average 
displacement is clearly nonzero; this observation fits Fig. 6.a. Analogously, Fig. 8.b shows that, for Model 4, the 
response for Sa(T1) = 0.49 g reaches the collapse; this circumstance also suits Fig. 6.a. This collapse corresponds 
to flexural-shear-axial failure, as shown in Fig. 7.d. 
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Fig. 9 displays, similarly to Fig. 5, plots of axial force vs. story drift for the first-floor columns; the shown plots 
correspond to the final time-history analysis using Model 4 (that is, Sa(T1) = 0.49 g). Fig. 9 confirms that 
columns C9, C18 and C27 reach their axial limit curves; the bigger losses are experienced by columns C9 
(mainly) and C18. Noticeably, comparison of the plots in Fig. 9 shows that when a column reaches its axial limit 
curve, the subsequent axial force reduction is immediately followed by an increase in the other columns axial 

forces. 

Since the [Elwood 2004] model assumes that flexure-shear and flexure-shear-axial deterioration precedes the 
shear strength failure, it is necessary to verify that the demanding shear force does not exceed the corresponding 
capacity. Such capacity is selected according to [ASCE 41 2013], since it allows consideration of the changes of 
moment shear, and axial forces at each time increment. The inherent conservatism of any design code is 
mitigated by taking φ = 1. Fig. 10 displays, for the same case than Fig. 9, the time histories of the first-floor 
columns shear force, together with the shear strength Vn. Plots from Fig. 10 show that the demanding shear 
forces do not exceed that strength. Noticeably, the highest variability of Vn in columns 9 and 36 (Fig. 10.a and 
Fig. 10.d) is due to the bigger oscillation of the demanding axial force, since such columns are located in 
external positions; as well, the observed spikes correspond to limitations of the moment/shear ratio [ASCE 41 

2013]. 

  
(a) Column C9 (left column in Fig. 7) (b) Column C18 (second column in Fig. 7) 

  

(c) Column C27 (third column in Fig. 7) (d) Column C36 (right column in Fig. 7) 

Fig. 9.  Van Nuys frame. Axial response of first-floor columns vs. drift. Imperial Valley input. Model 4 

  
(a) Column C9 (left column in Fig. 7) (b) Column C18 (second column in  Fig. 7) 
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After Fig. 10, Fig. 11 displays a zoom view of the time histories of columns C9 and C36 in the latest time 
interval. Plots from Fig. 11 show that, prior to the flexure-shear deterioration of column C9, both histories are 
similar; then, that failure generates a relevant reduction in the shear force of column C9 and an equivalent 
increase in column C36. Later, the flexure-shear-axial deterioration of column C9 arises (t = 14.10 s) after 
having reached its residual shear strength. 
 

 
Fig. 11. Van Nuys frame. Shear force time histories of columns C9 and C36. Imperial Valley scaled to  Sa(T1) 

= 0.49 g. Model 4 

Prototype Building  
This section describes a 3-story RC framed prototype building that had been intentionally designed only for 
gravity loads [Bracci et al. 1995]. Other researchers [Jeon et al. 2012] have also studied this building. The floor 
plan is rectangular (12.19 m × 23.16 m, with 3 and 4 bays in the short and long directions, respectively) and the 
story height is 3.66 m. The structure consists of 30.5 cm × 30.5 cm columns, 23 cm × 46 cm beams and 15.24 
cm deep two-way solid slabs. The concrete strength is fc’ = 24 MPa and the steel yield point is 275 MPa. A 
deeper description of the structure can be found in [Bracci et al. 1995]. Noticeably, the column section and the 
transverse reinforcement amount are small. A one-third scale laboratory model of a part of the prototype 
building has been tested on a shaking table [Bracci et al. 1995]. The same failure modes as the Van Nuys 
Building are to be expected. 

To investigate the importance of the hidden failure modes, IDA studies on the prototype building are conducted 
with the developed model. Moreover, to verify the reliability of the derived conclusions, the model is validated 
next with the aforementioned experimental results.  

Numerical simulation of tests on a one-third scale model of the Prototype 
Building 
This section describes the numerical simulation, using Model 4, of the aforementioned experiments on a 
reduced-scale laboratory model of the prototype building [Bracci et al. 1995]. These proofs consist in uniaxial 
shaking table testing of a one-third scale model representing a 3D frame of an internal bay in the short direction 

 
 

(c) Column C27 (third column in  Fig. 7) (d) Column C36 (right column in  Fig. 7) 

Fig. 10.  Van Nuys frame. Shear force history of  first-floor columns.  Imp. Valley scaled to  Sa(T1) = 0.49 g. 
Model 4 
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of the prototype building. The input is a scaled version of the N21E component of the Taft input; after scaling, 
its PGA is 0.2 g. For the sake of constant acceleration similitude [Bracci et al. 1995], the time of the input signal 
is reduced with a scale factor 1 / (3)½. In the numerical simulation, a mass-proportional 2% Rayleigh model 
represents the damping; the time step is 0.01 s. 
 
Neither flexure-shear nor flexure-shear-axial failure are detected in the analysis; this result matches the observed 
damage [Bracci et al. 1995]. Fig. 12 displays a comparison between the numerical and experimental time 
histories of the top floor relative displacement.  
 

 
Fig. 12. Prototype building top floor displacement histories. Modified Taft ground motion. Model 4 

 
Plots from Fig. 12 show a satisfactory agreement between the experimental and simulated results; noticeably, the 
higher discrepancies correspond to the last time interval (25-30 s), where more error is expected, given that 
important damage in the frame has been cumulated along the analysis. This fit confirms the correct estimation of 
the tested structure parameters, and the ability of the developed model to reproduce flexural failure. Regarding 
flexural-shear and flexural-shear-axial failure modes, the coincidence with the observations of [Bracci et al. 
1995] can be read as a confirmation of the model reliability. After this verification, next section presents an 
Incremental Dynamic Analysis of the Prototype Building. 

Incremental Dynamic Analysis of the Prototype Building 
A 2D inner frame in the short direction of the building is analyzed. Due to cracking, the effective flexure 
stiffness is estimated as 0.4 EIg for beams. The obtained fundamental period in the analyzed direction is 1.148 s. 
The Incremental Dynamic Analysis (IDA) is carried out for the same input considered in [Bracci et al. 1995]. In 
the numerical simulation, damping is represented as in the Van Nuys building; the damping ratio is also 5%. In 
the most critical analyses, the time step is 0.00002 s. 

Fig. 13 displays two IDA curves in terms of maximum interstory drift ratio vs. spectral acceleration for the 
building fundamental period (Sa(T1)); these curves correspond to Models 1 and 4. Until the maximum intensity is 
achieved, both responses are very similar; later, they become flat for approximately Sa(T1) = 0.49 and 0.42 g, 
respectively. The difference between these two flat branches corresponds to the margin between the flexural-
shear and flexural-shear-axial failure modes. 
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Fig. 13. IDA curves of the prototype building. Taft ground motion. Models 1 and 4 

 

Fig. 14 depicts the collapse modes for Models 1 and 4. Model 1 (Fig. 14.a) predicts sidesway collapse due to 
flexure hinging of the first-floor columns at Sa(T1) = 0.5 g (Fig. 13), while Model 4 (Fig. 14.b) detects an earlier 
flexure-shear deterioration of the first-floor columns followed by flexure-shear-axial failure (loss of axial 
carrying capacity) of the inner first-floor columns at Sa(T1) = 0.425 g (Fig. 13). Similarly to Fig. 3.d and Fig. 7.d, 
subsequent larger deformation states cannot be captured. However, Fig. 13 shows that this state can be 
considered as vertical collapse [Alfarah 2017]. Noticeably, since the transverse reinforcement ratio is low and 
the columns sections are small, the margin between the flexure-shear and flexure-shear-axial deterioration is 
smaller than in the the Van Nuys building. 

Fig. 15 displays, similarly to Fig. 5 and Fig. 9, plots of axial force vs. story drift for the first-floor columns; the 
displayed plots correspond to the final time-history analysis using Model 4 (Sa(T1) = 0.425 g, Fig. 13). Fig. 15 

confirms that columns C2 and C3 reach their axial limit curves. 

  
(a) Model 1 (b) Model 4  

Fig. 14.  Collapse modes of the prototype building. Taft ground motion. Models 1 and 4 

  
(a) Column C1 (left column in Fig. 14) (b) Column C2 (second  column in Fig. 14) 

13 



As in the analysis of the Van Nuys building (Fig. 10), the shear force of the first-floor columns is compared with 
their shear capacity [Alfarah 2017]; it is concluded that the shear forces do not exceed the corresponding 
strength.  

Conclusions 
This paper proposes simulating the nonlinear dynamic behavior of 2-D RC building frames under severe seismic 
excitation with a combination of existing models. These combined models are selected to capture the most 
relevant issues while maintaining their computational efficiency. The nonlinear beams behavior is described with 
concentrated plasticity. Conversely, the columns are more accurately represented by using distributed plasticity 
and taking into consideration the flexure hinging, flexure-shear, flexure-shear-axial, and compressive 
deterioration modes, and the reinforcement bond-slip. The developed model is particularly suitable for non-
ductile RC frames, given that the condition “strong column-weak beam” is not fulfilled and, hence, the columns 
receive most of the damage. The capacity of the developed model is verified in an existing non-ductile building 
and in a prototype building that had been intentionally designed without any seismic consideration. As well, the 
developed model is validated with tests of a reduced-scale laboratory model of that prototype building. 

The obtained results show that the developed model, despite its moderate computational cost, detects and 
reproduces accurately the deterioration modes that are unseen by the simplified models (that are commonly 
employed in earthquake engineering) are blind to. Comparison with the results from those simplified models 
highlights the importance of such hidden failure modes in the behavior of each element and in the overall 
collapse mechanisms. As well, the developed model has proven able to simulate accurately an experiment on a 
reduced scale model of the aforementioned prototype building. Further analyses using a representative set of 
seismic inputs are necessary to quantify the errors produced by the oversimplified models. 

Finally, it is worth emphasizing that this research corroborates that the oversimplified models can lead to 
significant non-conservative over-estimation of the structural capacity.  
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