Detail synthesis on terrain models using aerial images

Oscar Argudo
(oargudo@cs.upc.edu)
ViRVIG research group

VR for industrial assemblies

scientific visualization

crowd simulation

virtual heritage & scans

urban models

medical VR
My thesis

• Generation of highly detailed realistic terrain models from public data
My thesis

• Generation of highly detailed realistic terrain models from public data

elevation map aerial image
Thesis topics

• Aerial image segmentation

Thesis topics

- Aerial image segmentation
- New information layers based on examples

Thesis topics

• Aerial image segmentation

• New information layers based on examples

Thesis topics

• Aerial image segmentation

• New information layers based on examples

• Vegetation modeling and rendering

Thesis topics

• Aerial image segmentation

• New information layers based on examples

• Vegetation modeling and rendering

• DEM enhancement
Terrain super-resolution through aerial imagery

- DEM resolutions are usually 10-30 m/pixel
- Aerial imagery resolution 1 m/pixel or better (e.g. Catalunya: 10-25 cm/pixel)

Terrain super-resolution through aerial imagery

- DEM resolutions are usually 10-30 m/pixel
- Aerial imagery resolution 1 m/pixel or better (e.g. Catalunya: 10-25 cm/pixel)

Detail synthesis on terrain models using aerial images
Visual results
Visual results
Visual results

DEM 15m net output DEM 2m
Visual results

DEM 15m net output DEM 2m
Visual results

DEM 15m net output DEM 2m
Does the net generalize?

- 10 terrains from Catalan Pyrenees
- 12 terrains from South Tyrol

Terrains excluded from training and validation
Does the net generalize?

- We trained 3 networks: only with Pyrenees, only with Tyrol, and both
- Measured RMSE w.r.t. 2m DEM on two terrains from each set

<table>
<thead>
<tr>
<th></th>
<th>RMSE (m)</th>
<th>Bilinear up</th>
<th>Bicubic up</th>
<th>Net (Pyrenees)</th>
<th>Net (Tyrol)</th>
<th>Net (Both)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrenees Test 1</td>
<td>1.662</td>
<td>1.406</td>
<td></td>
<td>1.013</td>
<td>1.125</td>
<td>1.005</td>
</tr>
<tr>
<td>(Bassiero)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrenees Test 2</td>
<td>1.905</td>
<td>1.632</td>
<td></td>
<td>1.101</td>
<td>1.266</td>
<td>1.097</td>
</tr>
<tr>
<td>(Forcanada)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyrol Test 1</td>
<td>1.948</td>
<td>1.445</td>
<td></td>
<td>1.122</td>
<td>0.941</td>
<td>0.901</td>
</tr>
<tr>
<td>(Dürrenstein)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyrol Test 2</td>
<td>1.220</td>
<td>0.917</td>
<td></td>
<td>0.708</td>
<td>0.600</td>
<td>0.587</td>
</tr>
<tr>
<td>(Monte Magro)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Detail synthesis on terrain models using aerial images

Oscar Argudo
(oargudo@cs.upc.edu)