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Abstract

Mixed graphs can be seen as digraphs that have both arcs and edges (or digons,
that is, two opposite arcs). In this paper, we consider the case where such graphs
are bipartite. As main results, we show that in this context the Moore-like bound is
attained in the case of diameter k = 3, and that bipartite mixed graphs of diameter
k ≥ 4 do not exist.
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1 Introduction

It is well known that the choice of the interconnection network for a multicomputer or
any complex system is one of the crucial problems the designer has to face. Indeed, the
network topology largely affects the performance of the system and it has an important
contribution to its overall cost. As such topologies are modeled by either graphs, digraphs,
or mixed graphs, this has lead to the following optimization problems:
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1. Find graphs, digraphs or mixed graphs, of given diameter and maximum out-degree
that have a large number of vertices.

2. Find graphs, digraphs or mixed graphs, of given number of vertices and maximum
out-degree that have small diameter.

For a more detailed description of these problems, their possible applications, the usual
notation, and the theoretical background see the comprehensive survey of Miller and Širáň
[13]. For more specific results concerning mixed graphs, which are the topic of this paper,
see, for example, Nguyen and Miller [14], and Nguyen, Miller, and Gimbert [15].

A mixed graph can be seen as a type of digraph containing some edges (two opposite
arcs). Thus, a mixed graph G with vertex set V may contain (undirected) edges as well
as directed edges (also known as arcs). From this point of view, a graph (respectively,
directed graph or digraph) has all its edges undirected (respectively, directed). In fact,
we can identify the mixed graph G with its associated digraph G∗ obtained by replacing
all the edges by digons (two opposite arcs or a directed 2-cycle). The undirected degree

of a vertex v, denoted by d(v), is the number of edges incident to v. The out-degree

(respectively, in-degree) of vertex v, denoted by d+(v) (respectively, d−(v)), is the number
of arcs emanating from (respectively, to) v. If d+(v) = d−(v) = z and d(v) = r, for all
v ∈ V , then G is said to be totally regular of degree (r, z), with r + z = d (or simply
(r, z)-regular). For mixed graphs, the degree/diameter (optimization) problem is:

Problem 1.1. Given three natural numbers r, z and k, find the largest possible number of

vertices N(r, z, k) in a mixed graph with maximum undirected degree r, maximum directed

out-degree z and diameter k.

This can be viewed as a generalization of the corresponding problem for undirected and
directed graphs. For these cases, the problem has been widely studied, see again Miller
and Širáň [13]. In our general case, Buset, El Amiri, Erskine, Miller, and Pérez-Rosés
[3] proved that the maximum number of vertices for a mixed graph of diameter k with
maximum undirected degree r and maximum out-degree z is:

M(r, z, k) = A
uk+1
1 − 1

u1 − 1
+B

uk+1
2 − 1

u2 − 1
, (1)

where, with d = r + z and v = (d− 1)2 + 4z,

u1 =
d− 1−√

v

2
, u2 =

d− 1 +
√
v

2
, (2)

A =

√
v − (d+ 1)

2
√
v

, B =

√
v + (d+ 1)

2
√
v

. (3)

This bound applies when G is totally regular with degrees (r, z). Moreover, if we bound
the total degree d = r + z, the largest number is always obtained when r = 0 and z = d.
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That is, when the graph is a digraph with no digons (or ‘edges’). In general, Nguyen,
Miller, and Gimbert [15] showed that mixed graphs with r, z ≥ 0 (or mixed Moore graphs)
only exist for diameter k = 2.

In some of our constructions we use the Moore bipartite graphs (r = d = ∆ and z = 0),
which are known to exists only for diameters k = D ∈ {2, 3, 4, 6}, with number of vertices

Mb(∆,D) = 1 + ∆+∆(∆− 1) + · · · +∆(∆− 1)D−2 + (∆− 1)D−1

= 2
(∆ − 1)D − 1

∆− 2
. (4)

(Notice that second expression assumes that ∆ > 2, the case ∆ = 2 corresponds to a cycle
with Mb(∆,D) = 2D vertices.)

2 Moore bound for bipartite mixed graphs

An alternative approach for computing the bound (1) has been given recently by Dalfó,
Fiol, and López [6]. In order to study the bipartite case, we now use this last approach.

Proposition 2.1. The Moore-like upper bound for bipartite mixed graphs with maximum

undirected degree r, maximum directed out-degree z, and diameter k, is

(a) For r > 0,

MB(r, z, k) = 2

(

A
uk+1
1 − u1

u21 − 1
+B

uk+1
2 − u2

u22 − 1

)

, (5)

where u1, u2, A, and B are given by (2) and (3).

(b) For r = 0 (and z = d > 1),

Mb(d, k) =















2
dk+1 − 1

d2 − 1
, for k odd,

2
dk+1 − d

d2 − 1
, for k even.

(6)

Proof. Let G be a (r, z)-regular bipartite mixed graph with d = r + z. Given a vertex
v, let Ni = Ri + Zi be the maximum number of vertices at distance i(= 0, 1, . . .) from
v. Here, Ri is the number of vertices that, in the corresponding tree rooted at v, have
an edge with their parents, and Zi is the number of vertices that have an arc from their
parents. Then,

Ni = Ri + Zi = Ri−1((r − 1) + z) + Zi−1(r + z). (7)

That is,

Ri = Ri−1(r − 1) + Zi−1r, (8)

Zi = Ri−1z + Zi−1z. (9)
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In matrix form,
(

Ri

Zi

)

=

(

r − 1 r

z z

)(

Ri−1

Zi−1

)

= · · · = M
i

(

R0

Z0

)

= M
i

(

0
1

)

,

where M =

(

r − 1 r

z z

)

, and by convenience R0 = 0 and Z0 = 1. Therefore,

Ni = Ri + Zi =
(

1 1
)

M
i

(

0
1

)

. (10)

Alternatively, note that Ni satisfies an easy linear recurrence formula (see again Buset,
El Amiri, Erskine, Miller, and Pérez-Rosés [3]). Indeed, from the definition of a mixed
Moore graph, we have that Zi = zNi−1. Hence,

Ni = (r + z)Ni−1 −Ri−1 = (r + z)Ni−1 − (Ni−1 − Zi−1)

= (d− 1)Ni−1 + zNi−2, i = 2, 3, . . . (11)

with initial values N0 = 1 and N1 = d. Solving the recurrence we get

Ni = Aui1 +Bui2 i = 0, 1, 2, . . . (12)

where A, B, u1, and u2 are given by (2) and (3). Now, note that, since G is bipartite, it
has diameter k if and only if k is the smallest number such that, for any given vertex u,
all the vertices of one of the partite sets of G are at distance at most k − 1 from u. As a
consequence, using (10), we get the following two cases:

(i) If k ≥ 2 is even, say k = 2ℓ, then the Moore bound for a bipartite mixed graph is

MB(r, z, k) = 2

ℓ
∑

i=1

N2i−1 = 2
(

1 1
)

ℓ
∑

i=0

M
2i−1

(

0
1

)

. (13)

(ii) If k ≥ 3 is odd, say k = 2ℓ+1, then the Moore bound for a bipartite mixed graph is

MB(r, z, k) = 2

ℓ
∑

i=0

N2i = 2
(

1 1
)

ℓ
∑

i=0

M
2i

(

0
1

)

. (14)

Now, we distinguish two more cases:

(a) If r ≥ 1, that is G is a ‘proper’ mixed graph, we can use (12) to show that both
cases (i) and (ii), lead to the same expression in (5). In fact, in this case, we
reach to the same conclusion if we ‘hang’ the graph from an edge {v, v′} and for
i = 0, 1, . . . , k − 1, let Ni = Ri +Zi be the maximum number of vertices at distance
i from v (respectively, v′), such that the respective shortest paths do not contain
v′ (respectively, v), as shown in Figure 1. Then, solving the recurrence (11), but
now with initial values N0 = 1 and N1 = d − 1, we get Ni = A′ui1 + B′ui2, for

i = 0, 1, 2, . . ., with u1 and u2 given by (2), A′ =
√
v−(d−1)
2
√
v

, and B′ =
√
v+(d−1)
2
√
v

.

Thus, MB(r, z, k) = 2
∑k−1

i=1 Ni yields again (5).
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Figure 1: A Moore (r, z)-regular mixed graph hung from an edge.

(b) Otherwise, if r = 0, G is a digraph (with no digons), z = d, and (2), (3) give A = 0,
B = 1, and u2 = d. Hence, (12) turns out to be Ni = di, and the formulas in
(i) and (ii) become the Moore bounds (6) for bipartite digraphs given by Fiol and
Yebra in [10] for d > 1. (The case d = 1 corresponds to a directed cycle with order
Mb(1, k) = k + 1.)

This completes the proof.

The remaining particular case when G is an (undirected) graph, that is, z = 0 and
r = d, is already included in the statement of the proposition. Indeed, in such a case, (2)
and (3) give u1 = 0, u2 = d− 1, B = d

d−1 , and (5) with d = ∆ and k = D becomes (4).

It is also worth noting that the eigenvalues of the matrix M in (7) are precisely u1
and u2 given in (2). Then, we have M

i = V D
i
V

−1, where D = diag(u1, u2), and

V =

(

1−r+z+
√
v

2z
1−r+z−

√
v

2z
−1 −1

)

,

with z 6= 0. The bounds of Proposition 2.1 apply when G is totally regular with degrees
(r, z). For instance, the Moore bounds for diameters k = 2, 3, 4 and total degree d = r+ z

turn out to be

MB(r, z, 2) = 2d, (15)

MB(r, z, 3) = 2(d2 − r + 1), (16)

MB(r, z, 4) = 2(d3 − d2 + (z − r + 1)d+ r). (17)

Moreover, if we bound the total degree d = r + z, the largest number always is obtained
when r = 0 and z = d. That is, when the mixed graph is, in fact, a digraph with no edges.
In the following table we show the values of (13) and (14) when r = d− z, with 0 ≤ z ≤ d,
for different values of d and diameter k. In particular, when z = 0, the bound corresponds
to the Moore bound for bipartite graphs (numbers in boldface).
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Figure 2: The only two mixed bipartite Moore graphs of parameters r = z = 1 and k = 3.

k�d 1 2 3 4 5

2 2 4 6 8 10

3 2z + 2 2z + 6 2z + 14 2z + 26 2z + 42

4 2z + 2 6z + 8 10z + 30 14z + 80 18z + 170

5 2z2 + 2z + 2 2z2 + 12z + 10 2z2 + 34z + 62 2z2 + 68z + 242 2z2 + 114z + 682

6 2z2 + 2z + 2 8z2 + 20z + 12 14z2 + 98z + 126 20z2 + 284z + 728 26z2 + 626z + 2730

3 Mixed bipartite Moore graphs

Mixed bipartite graphs attaining bound (5) will be referred as mixed bipartite Moore

graphs. These extremal graphs have been widely studied for the undirected case, where
they may only exist for diameters k ∈ {2, 3, 4, 6} (Feit and Higman [7]). For d = 2, even
cycles C2k are bipartite Moore graphs. For any d ≥ 3, complete bipartite graphs Kd,d

are the unique bipartite Moore graphs of diameter k = 2 and degree d. Nevertheless, the
problem is not closed for k ∈ {3, 4, 6}, where bipartite Moore graphs have been constructed
only when d − 1 is a prime power pl (k = 3, 4) and 32l+1 (k = 6). For the directed case,
the problem of the existence of bipartite Moore digraphs was settled by Fiol and Yebra
[10]. These digraphs may only exist for k ∈ {2, 3, 4}. As for the undirected case, complete
bipartite digraphs are the unique bipartite Moore digraphs of diameter k = 2, meanwhile
for k ∈ {3, 4} some families of bipartite Moore digraphs have been constructed, although
the problem of their enumeration is not closed (see again [10], and Fiol, Gimbert, Gómez
and Wu [9]).

Heading into the mixed case, from here on, we suppose that our mixed graphs contains
at least one edge (r ≥ 1), one arc (z ≥ 1) and the diameter k is at least three. It is easy to
see that there are exactly two non-isomorphic mixed bipartite Moore graphs for r = z = 1
and k = 3 (see Figure 2). Note that the mixed graph depicted in Figure 2(a) is the line
digraph of the cycle C4 (seen as a digraph, so that each edge corresponds to a digon). It is
also the Cayley graph of the dihedral groupD4 = 〈a, b | a4=b2=(ab)2=1〉, with generators
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Figure 3: The structure of a mixed bipartite Moore graph of odd diameter k ≥ 5. Here it
is depicted for r = 2 and z = 1.

a and b. The spectrum of this mixed graph is the same as the cycle C4 plus four more 0’s,
that is, spG =

{

2, 06, −2
}

. (This is because G is the line digraph of C4, see Balbuena,
Ferrero, Marcote, and Pelayo [1].) In fact, the mixed graph of Figure 2(b) is cospectral
with G, and it can be obtained by applying a recent method to obtain cospectral digraphs
(see Dalfó and Fiol [5]). Both mixed graphs are partial orientations of the hypercube
graph of dimension 3 that preserve the diameter of the underlying graph. In contrast with
that, we next prove that mixed bipartite Moore graphs do not exist for larger diameters.

Proposition 3.1. Mixed (r, z)-regular bipartite Moore graphs do not exist for any r ≥ 1,
z ≥ 1 and k ≥ 4.

Proof. First of all, we recall that there is a unique shortest path between any ordered pair
of vertices at distance less than k in a mixed bipartite Moore graph. Let G be a mixed
bipartite Moore graph and let us ‘hang’ G from any edge {v, v′}. We define the set Γj(v),
for j < k, as the set of vertices at distance j from v such that the unique mixed path
from v does not pass through v′, that is, Γj(v) represents those vertices in the tree ‘hung
down’ by v at distance j from v. Let {v1, . . . , vr−1} be the set (possibly empty if r = 1) of
vertices adjacent from v by an edge (others than v′). Let {u1, . . . , uz} be the set of vertices
adjacent from v by an arc. Let u11 be any vertex at distance k−3 from u1 such that u11 is
connected by an edge through its antecessor in the unique u1-u11 mixed path joining them
(see Figure 3). Since G is (r, z)-regular, there must exist z vertices {y1, . . . , yz} such that
yi → u11 is an arc for all i = 1, . . . , z. Notice that either yi ∈ Γk−1(v) or yi ∈ Γk−1(v

′).
Nevertheless, u11 belongs to the same vertex partition as the vertices in Γk−1(v

′) and
as a consequence yi ∈ Γk−1(v) for all i. Notice that

⋃r−1
j=1 Γk−2(vj) and

⋃z
j=1 Γk−2(uj)

are a partition of the vertex set Γk−1(v). Now, if one yi belongs to
⋃r−1

j=1 Γk−2(vj) (say
y1 ∈ Γk−2(v1)), then we have two different paths from v1 to u11 of length < k: One path
passing through v and the other one passing through y1, which is impossible. So, we
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Figure 4: Two cospectral mixed bipartite almost Moore (1, 1)-regular graphs.

can assume that yi ∈
⋃z

j=1 Γk−2(uj) for all i = 1, . . . , z. Now, since all the vertex sets
Γk−2(uj) are disjoint, there is exactly one yi in each set Γk−2(uj) or there is a set Γk−2(uj)
containing at least two yi’s. In the first situation, we have that there is one yi (say y2) into
Γk−2(u1), but then we have two different paths from u1 to u11 of length < k (one shortest
path of length k− 3 and the other of length k− 1 through y2). In the second situation, we
have at least two y′s belonging to the same set (say Γk−2(uj)) and, then, we have again
two different paths from uj to u11 of length k − 1, which is a contradiction.

Because of this last result, it would be interesting to studymixed bipartite almost Moore

graphs, that is, mixed bipartite graphs with order M(r, z, k) − 2. Note that, in contrast
with general mixed almost Moore graphs (see López and Miret [12]), in the bipartite case
the mixed almost Moore graphs have two vertices less than the Moore bound. In Figure 4,
we show two examples of mixed bipartite almost Moore (1, 1)-regular graphs with diameter
k = 4 and order M(1, 1, 4) − 2 = 12.

3.1 The case of diameter three

Since mixed bipartite Moore graphs do not exist for diameter k ≥ 4, we now investigate
the case of diameter k = 3. We first show that, in contrast with the case of mixed Moore
graphs of diameter k = 2, where the possible spectrum imposes conditions on r and z (see
Bosák [2]), a mixed bipartite Moore graph always has a simple spectrum.

Proposition 3.2. Let G be a mixed bipartite Moore graph with degrees r, z, with d = r+z,

and number of vertices N = 2(d2 − r + 1). Then, G has spectrum

spG = {d1, (
√
r − 1)d

2−r, (−
√
r − 1)d

2−r,−d1}, (18)

where the superscripts stand for the multiplicities.

Proof. Let A be the adjacency matrix of G. Given any two vertices u, v, there exists
a unique shortest path from u to v if dist(u, v) ≤ 2, and exactly d shortest paths if

8



dist(u, v) = 3. Then, A satisfies the matrix equation

I + (A2 − rI) +
1

d

(

A
2 − (r − 1)I

)

A = J ,

where J is the all-1 matrix. Then, since such a matrix has eigenvalues N with multiplicity
1, and 0 with multiplicity N − 1, the eigenvalues of A are the solutions of the equations
H(x) = N and H(x) = 0, where H is the Hoffman-like polynomial

H =
1

d
(x3 − (r − 1)x) + x2 + 1− r. (19)

The first equation has the solution x = d, as expected, since N = H(d) = 2(d2 − r + 1),
whereas the second one holds for x = ±

√
r − 1 and x = −d. Finally, the multiplicities

come from the fact that G is bipartite and they must add up to N .

Notice the particular case r = 1, where according to (18), the mixed graphs have only
three distinct eigenvalues: d and −d, both with multiplicity 1, and 0 with multiplicity
2(d2 − 1). This is precisely the case of the following family.

Proposition 3.3. Moore bipartite mixed graphs with diameter k = 3 and r = 1 exist for

any value of z ≥ 1.

Proof. For any given integer d ≥ 2, let us consider the line digraph of the complete bipartite
graph (seen as a symmetric digraph) G = L(Kd,d) (for example, Figure 2(a) shows the
case d = 2). Then, as G has d2 digons and diameter 2, its line digraph G is a bipartite
mixed graph with diameter 3 (according to Fiol, Yebra, and Alegre [11]), r = 1 (digons
correspond to edges), z = d−1, and number of vertices 2d2, so attaining the Moore bound
(16).

Moreover, the minimum polynomial of G is m(x) = x4 − d2x2. Then, G is a weakly
distance-regular digraph (according to Comellas, Fiol, Gimbert and Mitjana [4]) with
distance polynomials

p0 = 1, p1 = x, p2 = x2 − 1, p3 =
1

d
x3 − x,

and Hoffman polynomial H =
∑3

i=0 pi =
1
d
(x3 − x) + x2 + x, as shown in (19).

For some other values of the diameter, we also have some families of mixed graphs that
are asymptotically dense.

Proposition 3.4. There exist families of bipartite mixed graphs with diameter k = 4, 5, 7,
and r = 1, that asymptotically attain the Moore bound for large values of z being a power

of a prime minus one.
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Proof. Just consider, as in the previous proof, the line digraph of the corresponding Moore
bipartite graphs that exists for diameters D = 3, 4, 6. For example, a Moore bipartite

graph with diameter D = 3 that exists for degree ∆ = pl+1 has order 2 (∆−1)3−1
∆−2 (see (4)).

Its corresponding line digraph is a mixed bipartite graph with parameters k = 4, r = 1

and z = ∆ − 1 with order 2d (d−1)3−1
d−2 . This mixed bipartite graph, for d = r + z large

enough, attains the corresponding Moore bound given by (17), that is, MB(1, d − 1, 4) =
2(d3 − d2 + (d− 1)d + 1). The cases for diameters k = 5, 7 are similar.
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