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Study and design of a balance postural control system

Resum

L’habilitat de mantenir una postura correcta s’esta convertint en un important tema d’estudi ja que
és necessari comprendre el comportament del cos huma per tal d’aplicar aquests coneixements en

altres camps com la robotica o la mecanica

Al llarg d’aquest projecte s’ha realitzat el disseny i estudi d’un sistema de control per I'equilibri de la
postura tot seguint un enfocament frontal. Per tal de trobar parametres antropometrics realistes ha
estat necessari realitzar una amplia recerca sobre els diversos parametres biomecanics. En quant al
model, per tal de centrar I'atencid en les bases del moviment, s’ha escollit un model simplificat basat
en el doble pendul. Pel que reguarda el sistema de control, s’han utilitzat dos métodes diferents;
d’una banda el métode LQR (per les seves sigles en angles, “Linear Quadratic Regulator”) ja que deixa
al dissenyador la capacitat de triar quant pes es vol donar a I'efecte del controlador, i per l'altra
banda un controlador no linear. A més a més, s’ha dissenyat un segon model que inclou un element
elastic com a aproximacié del comportament del maluc. Es per aixd que s’ha realitzat una exhaustiva
recerca sobre les diverses aproximacions en el disseny de les articulacions. Finalment, la simulacié
dels diferents models i els diversos escenaris considerats ha permeés la comparacié de tots ells,
arribant a proporcionar quins parametres poden ser negligits i quins tenen una gran influencia en els

resultats.
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Study and design of a balance postural control system

Resumen

La capacidad de mantener una postura correcta se estd convirtiendo en un importante tema de
estudio ya que es necesario entender el comportamiento del cuerpo humano para poder aplicar esos

conocimientos a campos como la robdtica y la mecanica.

En este proyecto se ha realizado el disefio y estudio de un sistema de control de balance postural
siguiendo un enfoque frontal. Con tal de encontrar parametros antropométricos realistas ha sido
necesario realizar una exhausta investigacion sobre pardmetros biomecdnicos. En cuanto al modelo,
con la finalidad de centrar la atencién en las bases del movimiento, se ha elegido un modelo
simplificado basado en un doble péndulo. Por lo que reguarda el sistema de control, se han usado
dos métodos; por un lado, el método LQR (por sus siglas en inglés, “Linear quadratic regulator”) ya
que deja al disefiador la capacidad de elegir cuanto peso se quiere dar al efecto del control, mientras
por el otro un controlador no linear. Se ha disefiado también un segundo modelo que incluye un
elemento eldstico como aproximacion del comportamiento de la cadera. Con tal fin, se ha tenido que
realizar una amplia investigacion sobre las distintas aproximaciones en la modelacién de las
articulaciones. Finalmente, la simulacién de los distintos modelos y los diversos escenarios
considerados ha permitido la comparacidn de todos ellos, llegando a proporcional qué pardmetros

pueden ser descuidados y cuales tienen un gran peso en los resultados.
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Study and design of a balance postural control system

Abstract

The ability to maintain a proper posture is becoming a more interesting topic as it is necessary to
understand the behavior of the human body to be able to apply this knowledge to robotics and

mechanics.

In this project the design and study of a balance postural control system has been developed, by
following a frontal modeling approach. An extensive research on biomechanical parameters has been
necessary to find realistic anthropometric values to be implemented. A simplified model, based on
the double pendulum, has been chosen because it allowed focusing on the basis of the balance
movement. Regarding the control system, two different methods have been used. On the one hand,
the Linear-quadratic regulator (LQR) has been used as it allowed to decide how much weight the
controller could have, while on the other hand, a non linear controller has been studied. Moreover, a
second model that included an elastic element to simulate the hip joint has been designed;to do so, a
wide research on different approximations of the human body’s joints has been performed. Finally,
the simulation of the different models and the numerous scenarios considered has allowed an
extensive comparison determining which parameters could be neglected and which ones havea

strong influence on the system dynamics.
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Study and design of a balance postural control system

1. Preamble

1.1. Background of the project

Posture is a key element of the daily life. There are significant number of studies that show the
relationship between keeping a proper posture and numerous health benefits. On the one hand,
from a psychological perspective, it is well known how the posture can influence a person’s mood,
the way to face the day and even how other people perceive them and treat them accordingly. On
the other hand, from a medical perception, maintaining a good posture is the easiest way to prevent
present and future injuries and deformations. The ability of maintaining a posture is due to a huge
number of muscular contractions and efforts. It’s a continuous process, in which the body regulates

every single part of its components to face the effects of gravity and punctual external disturbances.

Biomechanics has a strong relationship with physiology and anatomy. The tension that acts at the
tendons is controlled by the patterns generated by the release of metabolic energy by the
neuromuscular system. That tension waveform depends on physiological characteristics of the body
like the muscles and if they are rested or fatigued. With the reduction of the mortality rate and the
constant increase of the lifespan, the degenerative ilinesses are becoming more and more important.
However, this is not the main source of the increasing rate of physical postural injuries. Due to the
lifestyle adopted by the majority of the occidental society, a lot of injuries occur. This lifestyle is
characterized by a constant bad posture in desk related jobs or the constant use of Smartphones that

lead to an unhealthy position of the neck.

Setting aside the biomedical background, the modeling of the body is a different problem to tackle.
There are different models depending on the precision needed and the case of study. In this project,
a frontal standing modeling approach is used. As the main objective is to study the basics of the
stabilization movement, a simple model is suitable to analyze the system dynamics. More specifically,

the so called Pendubot is considered as a reference.

The Pendubot [8] is a two link robot with an actuator at one of the ends of the open chain. Different
versions with the actuation in between the links have been also designed and studied, such as the
Acrobot from the University of lllinois. However, the analysis of Pendubot kinematics and dynamics is

more useful for this project (Fig. 1.1.).
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Outer link

Inner link

Fig. 1.1. Pendubot diagram [7].

As it can be seen in Fig. 1.1, the actuator acts directly the inner link, while the movement of the outer
link is due to the transmitted torque through the inner link, and therefore cannot be controlled
directly. The mechanical equations that describe the Pendubot can be easily obtained either with a
Newton-Euler strategy or using Lagrange’s equation. In literature, a common approach to control the
system is based on LQR or pole placement methods. To this aim, it is necessary to linearize the

Pendubot dynamical equations (e.g. by means of the Taylor series).

The Pendubot design itself allows a 3602 motion, and therefore, depending on the application, the

control system (Fig. 1.2) needs to include angle restrictions.

)
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Fig. 1.2. Scheme of the Pendubot’s interface with its controller. [8]
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Study and design of a balance postural control system

Following a similar approach, A.Tenerelli developed a model based on a frontal approach, thus
obtaining a system of dynamical equations similar to those representing a double pendulum
dynamics. As it can be seen in Fig. 1.3, an additional body corresponding to the arms was added to

the system model.

Fig. 1.3. Schematics of the model used by A.Tenerelli [22].

The original model in Tenerelli’s thesis was affected by errors on parameters and compensation
momentums in joints, and on simulation models implemented in Matlab/Simulink environment.

Finally, the original work did not consider reliable biomechanical parameters within the model.

However, it represented a suitable starting point to develop different modeling and control

strategies, and implementation approaches.
1.2. Motivation

Decrypting the mechanisms of the human body has always been an intriguing topic in various
disciplines. Such a natural mechanism like the posture balance takes hundreds of considerations and
regulating actions performed unconsciously every second of a person’s life. However, it is not only
interesting to analyze it from a physical and medical point of view, but also to try to replicate it
through the knowledge provided by different engineering fields. Moreover, the proper
understanding of such mechanisms and its replication is the first milestone for biomechanical and
automation studies aiming at developing support posture devices. Maintaining an upright position is
a natural human struggle in certain circumstances, for example among the elder population or in
some medical health conditions like sclerosis. The increase of the life expectancy of the population

has motivated a large number of studies among the medical field, as it has opened a completely new
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window of circumstances unreachable a few years ago. Both the medical and military research on
exoskeletons has increased in the past 50 years, requiring a better understanding of the human body
and regulating mechanisms. Therefore, this is an extremely interesting topic as it allows the

communion of fields such as biomechanics and control and regulation of systems.

1.3. Previous requirements

For the proper development and understanding of this project the knowledge on different fields of
engineering is required. As stated before, this project has been inspired by the thesis work of
A.Tenerelli [22]. Derivation of the system equations requires the knowledge of systems dynamics, to
adopt either the Newton-Euler approach or the Lagrange approach. Moreover, notions in
biomechanics will be needed to properly define the model parameters. Among other engineering
fields, control systems knowledge is needed to design the stabilizing controller. In this work, Maple16
and Matlab software environments have been used, the former to linearize the system and the latter
as a simulation tool. Matlab/Simulink environment allowed to directly compute the solution of model

differential equations for each simulation time instant.
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Study and design of a balance postural control system

2. Introduction

2.1. Objectives of the project

This project objective is to obtain a better understanding of the dynamics of the balance system of
the human body, by improving the work of A.Tenerelli [22] who derived a simplified model of the
system. More in details, the objective is to go further and obtain a non-linear system equivalent to
the frontal approach of the human body, which is able, even in presence of external disturbances, to

stabilize the unstable vertical position.

To this aim, different milestones have been set. First, the proper definition of model parameters and
equations. Then, the design of the controller for a linear version of the system. After the basic study is
achieved, the next milestone is to control a non-linear system. Finally, the last step is to design a non-

linear controller.

To follow through each step and achieving the different objectives, two software environments are
used. More specifically, Maplel6 is used as a symbolic math tool, to perform some of the
mathematical computations. Matlab/Simulink environments are used to develop the simulation

model and to integrate the dynamical system differential equations.
2.2. Scope of the project

The development of this project required a background in different engineering fields.

First of all, in the biomechanics field a state of the art research is performed to find the most accurate
parameters as possible including fraction lengths and masses of each body component. In addition to
the anatomic parameters, a range of options are considered for the moment of inertia. Each body is
approximated by different geometrical shapes to reach a wider knowledge in the influence of these

values in the stabilization.

In the mathematical approach, different options are considered evaluating the advantages and
disadvantages of a Newton-Euler approach versus a Lagrange’s approach to obtain the non-linear

model. The advantages of using different mathematical tools are discussed.

When considering the different control techniques, the linearization of the non-linear system is
required by the LQR control. The different parameters of this control are explained and reviewed in

order to choose the most appropriate ones. The necessity to linearize the system leads to a research
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among the different mathematical techniques and the use of software such as Maplel6 to perform
the most complicated operations avoiding unnecessary mistakes and allowing a faster result and
modification when implementing different models. Later on, a non-linear control law is developed to
substitute the LQR method.

Finally, different simulations are performed in order to compare the results for each possibility. The
knowledge in Matlab/ Simulink allows determining the importance of each parameter and the range

in which the stabilization is possible.
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3. Biomechanical data

3.1. Background

Biomechanics has been a widely studied subject in the last years, usually with medical applications
such as the design of prosthesis or external skeletons. To do so, there have been different methods
developed to determine the human body segment parameters. Some authors like W. Braune and O.
Fisher, and later W.T. Dempster, studied cadavers to determine coefficients that allowed estimating
the segment mass, center of mass and moment of inertia [13]. The formers have been widely used
while the latter raised some doubts because of the use of a small and segmented range of data. R.
Contini also used cadavers, but in this case a different strategy was followed [13]. In order to
determine the parameters of the lower limbs, a whole body density of each sample was determined
mathematically by using an accurate weight and an estimation of the volume. However, the range of
cases in which the final coefficients could be used was rather small as it depended on a short range of
height and weight. A third method was developed by E.P. Hanavan [13]. In this case, the limbs of the
body were modeled as geometric solids determining easily then the center of mass and moments of

inertia.

In 1985 S.H. Koozekanani and J. Duerk compared the accuracy of Dempster, Contini and Hanavan
methods in the article “Determination of Body Segment Parameters and Their Effect in The
Calculations of the Position of Center of Pressure During Postural Sway” [13]. To do so, the center of
pressure in the horizontal direction of a lateral approach was computed using dynamic model with
the data provided by the three different models. To compare the accuracy, the experimental values
were obtained using a Kistler model 9216 for plate. According to the results, even though the chosen
subject did not belong to the range of age taken into account by Dempster (Fig. 3.1), the results
followed the same tendency, even if they were far from being accurate. In the case of Contini, the
calculated results differed widely from the measured ones (Fig. 3.2). Finally, Hanavan model, using

general geometric solids, was the most accurate one (Fig. 3.3).
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A different side of the body modeling issue is the control system. In 1998 P.Gorce and F. El Hafi
studied the decision mechanism of humans while stepping over an object. Even though a better
understanding of the control scheme is not the scope of this project, for the simulation a model had
to be implemented, so biomechanical parameters had to be used. However the parameters where
not explained in the paper, so its relevance lies in a future project but not in a biomechanical focused

one.

In the article “Beyond Parameter Estimation: Extending Biomechanical Modeling by the Explicit
Exploration of Model Topology” from 2007 [2] the use of topology techniques to study and simulate
complex tendon networks is developed. Even though this article is too much detailed for the
simplified model studied in this project, it is important to understand also how the studies of

biomechanical modeling have evolved.

The authors used an approach based on the explicit distinction between topology and parameter
values. Thus, the topology refers to the structure of a model, defined by the organization of the
elementary building blocks such as tendons, muscles, ligaments. While the parameter values are
associated to the specifications of each building block like shape, size, material properties, etc. [2]. In
order to test the methodology, the modeling of hand tendons was considered. The authors’
simulation system (Fig. 3.4) differentiated topology and parameter values in two blocks. So when

discrepancies were found in the results, they could be corrected modifying one of the two blocks.
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Study and design of a balance postural control system

To model the structures, the research team developed a biomechanical model simulator, where they

defined each building block by proper parameters, and then described them by a strain-stress bond.

It is also interesting to pay attention to the article “Identification of isolated biomechanical
parameters with a wireless body sensor network” [19]. Even though it is focused on the knee joint
and therefore too specific for the purpose of this project, it points out useful information. The main
goal of the article is to develop a body sensor able to measure surface electromyogram and 9-
degrees of freedom inertial/magnetic data at high sample rates [19], in order to minimize the
instrumentation effort done by the subject nowadays. This article points out that typically in
biomechanics the behavior of a joint is described as a mechanical impedance, so time-varying and

non-linear and also a function of frequency. Taking all into account a dynamic system model of the
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test bench and the human knee has been developed (Fig. 3.5).

O

Fig. 3.5. Test-bench design (left) for a knee model validation with subject (right) [19].
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The test-bench model is represented by a simplified mechanical model taking into account the
following elements: two fixed moments of inertia J; and J, and two non linear viscous damping terms;
D, and D,. Being D; and D, a function of the time derivative of the rotation angle, (dg/dt = w).
Moreover, the sensor torque is given by the spring constant that denotes the stiffness and the

relative angle. Therefore the obtained system is the following (Fig. 3.6):

o=
|
1 = —= (ksens (2 — 1) — D (1))
" (3.1,
¢ =

|
i = — ([ —Kgeps( 02 — @ ) — Dol ) + Gmpl @mp) )

J=
AW B

7 = Ksens w2 [ -ELII.E'E
}1 .Ir.}"'

Fig. 3.6. Mechanical equivalent diagram of the test-bench [19].

Regarding the human knee kinematics model, the authors have based it on the dynamic model by
Riener and Fuhr [19]. All detailed information can be found in the paper [19]. But even though the
precision of it, it is interesting to analyze the followed approach, especially when trying to add some

elastic component to the hip joint in the projects model.

After analyzing the different studies made in the last years, a more basic literature is needed. In the
book “Biomechanics and Motor Control of Human Movement” by David A. Winter a wide variety of
information is found. The most interesting chapter for this project is the anthropometry one. It is
exclusively dedicated to the studies of physical measurements of the human body. And though
historically the purpose of the field had been evolutionary and historical, nowadays it has become

really important for human body modeling.

Regarding segment dimensions, both Dempster and Contini’'s teams collected estimated data.

However it was Drillis and Cotini [23] to express them as a fraction of body height (Fig. 3.7).
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Fig. 3.7. Body segment lengths expressed as a fraction of body height (H)

and developed by Drillis and Contini (1966) [23].

To build the model, together with the lengths elements, the segment mass have to be defined in
order to compute the inertial moments and the centers of mass. To do so, there are different data
available. The first option is the results of the measurements done by Drills and Contini regarding the
density (Fig. 3.8).

Ibs/ft3
7 68

Sls Glﬁ . Gr : 78
1.25 - :
|

= Density of J‘ —176
upper extremity segments,

1.20 ; —74
— —— Density of |
lower extremity }
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Body density (kg/l)

Fig. 3.8. Density of limb segments as a function of average

body density by Drillis and Contini (1966) [23].
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A more direct option is given by the data provided by Dempster. In this case, the anthropometric

data was expressed as a portion of the total mass (Table 3.1)

Segment Center of Mase/ Radius of Gyration/
Weight/Total _ Segment Length Segment Length
Segment Definition Body Weight Proximal  Distal  Cof G Proximal  Distal  Density
Hand Wrist axi knuckle II middle finger 0.006 M 0506 0494 P 0297 0587 0577TM  Ll6
Forcarm Elbow axisulnar sty loid 0016 M 0430 0S50OP 0303 0520 0647TM L13
Upper arm Glenchumeral axisfelbow axis 0.028 M 0436 0564P 0322 0542 06465M 107
Forearm and hand Elbow axis/ulnar sty loid 0022 M 0682 0318P 0468 0827 0565P 114
Total arm Glenchumeral joint/ulnar styloid 0060 M 0530 0470P 0368 0645 05% P 111
Foot Lateral malleolushead metatarsal 11 0.0145 M 050 050P 0475 0690 06%P 1.10
Leg Femoral cond yles/medial malleolus 065 M 0433 0S567P 0302 0528 0643M 1®
Thigh Greater trochanter/femoral condyles 0.100 M 0433 0567P 0323 0540 0653M 105
Foot and leg Femoml condyles/medial malleolus 0061 M 0606 03MP 0416 0735 os2p 1.09
Total leg Greater trochanter/medial malleolus 0161 M 0447 0553 P 0326 0560 0650P 1.06
Head and neck C7-T1 and Ist ritvear canal 0081 M 1000 — PC 0495 0116 —PC L1
Shoulder mass Stemoclavicular joint/glenohumeral axis — 0712 0288 — — — 1.4
Thorax C7-TUT12-L1 and diaphragm* 0.216 PC 082 018 - - - 0.92
Abdomen TI2-L1AA-LS* 0139 LC 0.4 056 — — -— —_
Pelvis LA-L¥greater trochanter® 0142 LC 0.105 0.895 —_ — — —
Thorax and abdomen C7-TI/LA-LS5* 0355 LC 063 037 — — - -
Abdomen and pelvis T12-L1/greater trochanter® 0.281 PC 027 0.73 = — e 1.01
Trunk Greater trochanter/glenohumeral joint® 0497 M 05 0% - — - 1.03
Trunk head nedk Greater trochanter/glenohumeral joint*® 0.578 MC 066 034P 0503 0.830 0607M —
Head, amns, and Greater trochanter/glenohumeral joint* 0678 MC 0626 0374 PC 049 098 0621 PC —
trunk (HAT)
HAT Greater trochanter/mid rib 0.678 1.142 — 0903 145% — —

"NOTE: These segments are presented relative o the length between the greater trochanter and the glemhumeral joint.

Source Codes M. Dampater via Miller and Nelson, Blomechanics of Sport, Lea and Febiger, Phitidelphia, 1973, P, Denpster Ma Plagenhoef, Patterns of
Human Moton, Prentice-Hall, Inc. Englewood Chffs, NJ, 1971, L, Dempster via Plagenhoef from bving subjects; Parems of Human Moton, Prentice-Hall,
Inc., Engkwoad CHIs NJ, 1971, C Calculated.

Table 3.1 Mass fraction of the different bodies by Dempster [23].

However, the most complete measure of center of mass until 2009 was the 21-marker, 14-segment
model, used to determine balance mechanisms during quiet standing by Winter et al. [23]. In the
following immage (Fig. 3.9) the location of the markers and the table give the definition of the 14

segments used, along with mass fraction of each segment.

R Ankle 12. L Shoulder
L Ankle 13. REar

R Knee 14. LEar

L Knoe 15. RASIS

R Hip 16. LASIS
LHip 17. R lliac Crest
R Wrist 18. L lliac Crest
REow  19. R Lower Rib
RShoulder 20. L Lower Rib

10.L Wrist 21. Xiphoid

Mass | Definition of Segment
Fraction | COM
0081 | (13+ 142
013 | ©+12+203
078 | ((18 +2002 + 2172
1 0.065 17 + 18 + 19 + 204

076 | (17+ 18+ 15 16)4
142 (15 + 162

0433 %3 +0567 x5 and
0433x4+0567x6
0606%1+0304 x3and
0.606x2+0.394 x4
0436 %8 +0.564 X9 and
0436 11+ 0564 x 12
0682x7+0318x6and
0682x 10+ 0318 x 11

100 (2)

0.060 (2)

0.028 (2)

00222

1.00

Fig. 3.9. Mass fraction of the different bodies by Winter et al. (1998) [23].
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Study and design of a balance postural control system

To compute the center of mass, when dealing with a multisegment system, the following equations
have been used:
_mx —+ maxz + m3xs

Ap = 7
Cmy + mayy + m3y3

e M (3.2.)

Being M =m; +m, +m;

m, for i=1..3, the mass of the corresponding segment (i).

Later on, considering the model as a set of rigid geometrical bodies, the moments of intertia have

been computed, using often the Parallel-Axis Theorem (Eq. 3.3.).

J=Jo+m-x?

(3.3)

Jo = moment of inertia about the center of mass
m = mass of the segment
x = distance between center of mass and center of rotation

Even though all the needed information has been found in the “Biomechanicsand Motor Control of
Human Movement” book by David A. [23]. Being it a recap of the different authors named and
studied before such as Dempster and Contini. It is worth to analyze the thesis of Hanavan as those
approximations gave the best results in the paper “Determination of Body Segment Parameters and

Their Effect in the Calculation of the Position of Center of Pressure During Postural Sway” [2].

“A Mathematical Model of the Human Body” by Hanavan describes a human body model dividing it
in different segments, to later on analyze the model with a computer program. According to this
thesis work, the personalized mathematical model is made of 15 simple geometric solids as shown in
Fig. 3.10.

RIGHT -= @ = LEFT
1. head
2. upper torso
o ‘j ﬂ . 3. lower torso
4. right hand
5. left hand
8 @ ‘j 9 6. right upper arm
7. left upper arm
4 O O s 8. right forearm
10 " 9. left forearm
10. right upper leg
11. left upper leg
12 @ I3 12. right lower leg
13. left lower leg
14, right foot
14001 15. left foot

Fig. 3.10. Body segments by Hanavan [18].
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Hanavan details each of the 15 bodies’ geometry and analyses the anthropologic parameters, the

center of gravity and the moment of inertia about the three different axes. With all the data acquired

by the model, a comparison is made with the experimental data. Reaching the results shown in Table

3.2 and Fig. 3.11.

MODEL
BODY SEGMENT HIGH| LOW|AVE | EXPERIMENT?
HEAD AND TORSO |73.2|6i.3 (645 604
UPPER ARM 496 446 [473 436
FOREARM 45.0|398 (428 43.0
UPPER LEG 45.3(42.0(437 43.3
LOWER LEG 476|398|416 433

2
FROM REF 5:194

IDISTANCE FROM UPPER END IN % OF SEGMENT LENGTH

MODEL
BODY SEGMENT |HIGH|LOW |AVE.|EXPERIMENT'
HEAD 1.47 | .90|LI6 Lt
UPPER TORSO .00 | .72 84 92
LOWER TORSO 1.10| .80| 92 1.01
HAND 1.72|1.02(1.29 L7
UPPER ARM 1.22 | .79] 97 1.07
FOREARM 1.56 |1.04]1.30 113
UPPER LEG 1.32 .BB!E.|3 1.05
LOWER LEG 144 | 83|19 1.09
FOOT lZ.f4 11262 1.09

'FRCM REF 5:195-196

Table 3.2. Location of center of gravity (left) and Specific gravity of body segments (right) [18].

POSITION

-35 !:
40

20

15+

16+

X F4
1234567

1234567

Iyx
1234567

Iyy

1234567

I3z

1234567

[ e T

MEDIAN

KE'.:
QUARTILE POINT

* QUARTILE POINT

! c.6. ERROR IN TENTHS OF INCHES, MOMENT OF INERTIA
ERROR IN % OF EXPERIMENTAL VALUE

Fig. 3.11. Error distribution in 7 different positions (66 subjects). Being X and Z the location of the center of gravity, and I, I,
and I, the moments of inertia about the named axes [18].

Even though the data obtained and analyzed in Hanavan’s thesis in 1964 was crucial for the

development of the field, it is not directly useful for this project, as data such as the lengths of the

bodies were measured on the studied subjects.

14
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Study and design of a balance postural control system

3.2. Chosen values

3.2.1. Partial mass and length

After analyzing all the data and bibliography stated above, the partial mass and lengths have been

computed according to the Table 3.1 and Fig. 3.9 respectively. The following data has been obtained.

Mass Height

Total 70 Kg Total 1,75m
Two legs 32,34 Kg Legs 0,9275m
Torso 24,99 Kg Torso 0,504 m
Head 5,67 Kg Head 0,225 m
Two arms 7Kg Arms 0,99575 m

Table 3.3.Computed Mass and Length

3.2.2. Moments of inertia

Regarding the moments of inertia, two different cases will be considered in order to compare the

results.

B e <

0

Fig. 3.12.Body Diagram for the computations

CASE1. All components as a Slender rod

Using the following information and the data stated before:
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1 2
J y = I, = E -m- L
where: ], and ], are the moments of intertia (3.4.)
with respect to the corrisponding axis
m is the mass
L is the length

Fig. 3.13. Slender rot diagram [6]

BODY 1: Legs

Using the equations above, the moment of inertia with respect to the center of gravity G1 has been
computed: Jg;= 2,4996 Kg*m”

Then, applying the parallel axis theorem, the moment of inertia of the first body (legs) with respect to

the point 0, has been obtained: J5;=9,4548 Kg*m2
BODY 2 and 3: Torso and Arms

Initially the same procedure is followed for the bodies 2 and 3. First computing the moment of inertia
with respect their own center of gravity (Js; and Js3), and then the one with respect to the point A has
been obtained for both bodies (J5; and J,3) using the parallel axis theorem. Finally, for the latter, the

sum has been performed (Ja,3 )as both bodies will be behaving as one.
Jo=1,28772 Kg-m* Jg3= 6,97025 Kg-m®

Jna=3,23475 Kgm® Jas=8,748362 Kg:m’ Jnos= It Jns=11,9831 Kg-m’

CASE2. Using different geometric shapes.

In order to try to approximate a more realistic case, the arms have been considered slender rods as

before, while both the torso and the legs are treated as rectangular prisms (Fig. 3.14).
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Study and design of a balance postural control system

Y 1
\<(/‘f\/\ ) Jo =15 m: (b* = c?)
b e E | Jy=qz-m:(cf—ah)
1
]Z = E m: (a2 - bz) (35)

where: ], J, and ], are the moments of intertia
with respect to the corrisponding axis

m is the mass

a, b, c are the dimentions of the body

Fig. 3.14. Rectangular prism diagram [6].

BODY 1: Legs

Using the equations above, the moment of inertia with respect to the center of gravity G1 has been

computed: Js;= 2,6195 Kg*m2

Then, applying the parallel axis theorem, the moment of inertia of the first body (legs) with respect to

the point 0, has been obtained: J5,=9,574656 Kg*m?®
BODY 2 and 3: Torso and Arms

In this case, the data regarding the arms has already been computed in Case 1, so only the moments

of inertia of the 2™ body are needed. However, they have been computed following the same

procedure.
Jer=1,173899 Kg-m* Jg3= 6,97025 Kg-m?
Jpo=3,1209 Kg:m® Jns=8,748362 Kg'm’ Jnos= It Jns=11,86929 Kg-m’

Comparison between both cases

Case 1l Case 2
Joa 9,4548 Kg-m”’ 9,574656 Kg-m’
Ja 3,23475 Kg-m” 3,1209 Kg:m®
Ias 8,748362 Kg:m® 8,748362 Kg:m’
Jars 11,9831 Kg-m* 11,86929 Kg-m®

Table 3.4. Comparison between the values of the computed moments of inertia.
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As it can be seen in Table 3.4, the difference between choosing different geometrical bodies to
represent the different parts of the body does not imply a huge variation in the values. In this project
a really schematized version of the human body is used; so variations in the decimals do not have a
significant impact in the results of the model. Therefore, it can be concluded that both options are

suitable, but if a more accurate project would be performed the different should not be neglected.
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Study and design of a balance postural control system

4. Model and methodology

4.1. Introduction

Once all the biomechanical data have been computed, the next step is to proceed to determine the

equations that will describe the chosen model.

Following the work of A. Tenerelli a frontal approach has been chosen. In her thesis “Study of a

balance postural control system” the following model was used (Fig. 4.1).

b B

Vx

Fig. 4.1. Schematics of the model used by A.Tenerelli [22].

The aim of the thesis work [22] was to design a control system that allowed the body to stabilize
when a small lateral perturbation was produced. However, after different attempts, the designed

controller worked only for a linearized system.

The behavior of the human body, when schematized with such simplicity gets really close to a well
known system called Pendubot (Fig. 4.2). It is a two-link open chain robot, with an actuator in one of
the links, and then, that same link connected to the second one. Therefore the action applied on the

first link will be passed on to the second one by a non-linear relation.
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Fig. 4.2. Pendubot connected to the motor (left), Pendubot fully extended (right) [7].

In order to focus on the basis of the movement a double pendulum system has been chosen.

Therefore, the following model (Fig. 4.3) has been used to develop the equations:

»
=)
~

0
Fig. 4.3. Diagram of the body balance scheme.

Regarding the methodology, in the thesis work developed by A. Tenerelli [22] the equations to
describe the system where found using Newton-Euler method. However, in this project a different
methodology has been followed. Even though it is a simple system, thus using either Newton-Euler or
Lagrange should not make a significant difference; in more complex systems the latter is highly
recommended. Therefore, in order to use the most extendable methodology, Lagrange has been

chosen.
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Study and design of a balance postural control system

4.2. Non-linear model

According to Lagrange’s theory:

L(qi,q) = Ex —E, fori=1l.n
d (aL) JL z N "
— |\ = on conservative v
dt aql 6ql
where: L is a real — valued function with continuous first partial derivatives
q; and ¢; are the function to be found and its derivative respectively
Ey is the kinetic energy

Ep is the potential energy

(4.1

In order to understand the following computations a few parameters have to be defined according to

Fig. 4.3.

J1, J2: moment of inertia of bodies 1 and 2 G1, Gy: center of gravity of bodies 1 and 2
mq, my: mass of bodies 1 and 2 lg1: distance from point 0 to G

11, 1;: length of bodies 1 and 2 157 distance from point Ato G,

Kinetic Energy
1 -
Ep=5-J1-01

1 1
Ek2=§']z'92 + = -my - Vg,

2

., , —,  d0G, .
Where v, states the velocity of G,, therefore: vs, = d—tz, with:

0G, = (L - sin(8y) + lgy - sin(8,)) - T + (I - cos(6;) + gy - cos(6,)) - |

After computing the proper calculations:
[Vz|* =15 -0 + 122 - 05 + 211 -1, - 61 - 6, - cos(6; — 6;)

Finally getting the total kinetic energy:
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(4.2)

(4.3.)

(4.4.)

(4.5.)
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Ey = Ex1 +Ep =

(4.6.)
— . .02 4.7, .02 1 (12 .02 2 .p2 s —
=3 J1- 61 +2 J2 63 +2 my - (I - 01 + 52 - 05 + 2111,0,0; cos(61 — 6,))
Potential Energy
Epl = m1 . g . lGl . COS(91) (47)
E,; =my - g - (L1 cos(6y) + lg, cos(6)) (4.8.)
Ep = Epl + EpZ =
(4.9.)
=my - g-lg-cos(6) +my-g- (lycos(6;) + lg; cos(6,))
Applying Lagrange
L(gl, 92,0.1, 92) = Ek - Ep (410)

The different derivatives need to be computed. For more commodity two of them will be renamed
like follows:

oL PR oL ..
E:A(Ql,GZ,Ql,ez) and E: B(91;92:91;92)
Then the partial derivatives are computed:
dA . dA . dA . dA .. dA .. (4.11)
—(04,65,01,0) =—-01+— -0 +—- 601 +—-6, =
at(l 2,01,67) 30, 1+662 2+601 1+602 2

= —mzlll(;z Sin(91 — 92)91 6'2 + mzlllcz Sin(91 - 02)022 + (]1 + mzl%) él +
+m211 le COS(Gl - 92) éz

0B . 0B . 0B .. 0B .. 4.12.
92+—'91+—'92= ( )

9B (61,00,01,0,) =25 .6, +
at ~ e TEE) g 1T 9, 90, a0,

= —mzlllcz Sin(91 - 92) 912 + mzlll(;z Sil’l(el - 02)91 92 + my ll lGZ COS(Ql - 92) él +

+(J; + mylEy) 6,
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Study and design of a balance postural control system

Finally the derivatives with respect to the angles are computed.

oL ] . ) (4.13))
90, —mylylgy sin(6y — 6,)61 0, + (mylg1 + myly) g sin(6;)
JdL .. 4.14.
ﬁ = mzllle Sin(91 - 92)91 92 + mzlazg Sin(ez) ( )
2
With the last four equations, it is possible to write Lagrange’s equations.
_ d (oL oL B d0A 0L (4.15))
~dt\gg,) 96, at a6,
_d dL oL B 0B 0L (4.16.)
'~ at\es,) 00, ot a8,

4.2.1. State space equations

In order to simplify the equations above a set of constants have been defined, leading to the

following equations:

0 = A,0; + A6, cos(8; — 0;) + A30% sin(8, — 6,) — A, sin(6;) (4.17.)
T = B0, cos(6; — 6,) + B,8, — B36% sin(6; — 0,) — B, sin(6,) (4.18.)
Where the constants have the values below:
Ay =1 +myl By = mylyle,
Ay = myliley By = J; + mylé,
Az = Ay = mplylg, By = mylylg,
Ay = (mylg + mply)g By = mylgag
Isolating 8; from equation 4.17,

(4.19.)

) 1 ) .
b1 =—- (4,0, cos(6; — 6;) + A36% sin(8; — 0;) — Ay sin(61))
a1
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Then substituting it in equation 4.18, the relation for ézis obtained.

— B;A3 63 sin(6; — 0,) cos(6; —
1

) —03)
92 =
j—lAz(:OS (91 — 92) — BZ

1

—B36% sin(6; — 0,) — By sin(0;) — 7
i—lAZCOSZ(Ql — 92) — BZ
1

The same procedure is followed to obtain the last relationship (91).

1

g, =
2 —A, cos(6; —

9 ) (Alél + A3022 Sin(91 - 92) —A4 Sin(91))
2

Finally,

. BZA3922 Sin(91 - 92) - B2A4 Sin(gl) + B3A2912 Sin(91 - 92) COS(91 - 92)

1= B1A2COSZ (01 - 92) - B2A1

+B4A2 sin(8,) cos(6; — 6;) + Ay cos(6; —6,) T
. B1A2COSZ(01 92) - B2A1

At this point the system is in a state-space form.
X = F(91,92, 91, 92) + G(T)

0 0 1 0
. 0o 0 0 1

f2(01, 6, 61, 6;)

G(o) = [gl (r)‘
g2(7)

(4.20.)

(4.21.)

(4.22.)

(4.23.)

(4.24.)

(4.25.)

The non-linear model is ready to be implemented; however, in order to solve the control system the

linearization is needed.

UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH
Escola d’Enginyeria de Barcelona Est

24



Study and design of a balance postural control system

4.3. Linear model

In order to continue with the project, a linear model is needed for the design of the LQR controller.
There are different linearization techniques, while A. Tenerelli decided to use equivalences such as
cos(@) =1 or sin(8) = 6 assuming small angles values, in this project Taylor’s expansion will be

used.
X=X+ A-AX+B-AU (4.26.)

With A and B defined as the Jacobian of matrixes F and G respectively as stated in equations 4.24 and

4.25.

(0 0 1 0 7
0 0 0 1

of Oh Oh Oh
A=130, 26, a6, ab, (4.27.)
06, 06, 06, 96,

[eleq :HZeq 'éleq :929q ]T

0
0

291

B = a7 (4.28.)

|6g2|
150

Teq

According to the chosen model the equilibrium state (Xeq) would be null both angles and velocities,
therefore the term with the equilibrium condition can be deleted leading to the final expression in

equation 4.27.
X=A -AX+B-AU (4.29.)

As the computations are complexes, all the partial derivatives have been performed with Maplel6,
including the evaluation in the equilibrium point. The full computations can be found in the Annex D

with all the results.
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4.4. Linear Quadratic Regulation

To design the controller, the Linear-quadratic regulator (LQR) i used. It is also known as the optimal
control as its algorithms reduce the amount of work performed by the control system. It is a feedback

controller and an important part of the solution to the Linear-quadratic-Gaussian problem.

The name itself states its use; linear because the main idea is to regulate a dynamic system described
by a set of linear differential equations and quadratic because the cost is described by a quadratic

function. This situation itself is called the LQ problem. The cost function is the following:

t

1t
> xTQx+u"Ru)dr
to

(4.30.)

Where: X is the state vector
u is the input vector
Q is a non-negative defined matrix
R is a positive defined matrix

To use the Matlab function LQR,the matrixes Q and R have to be defined. This definition has to be
performed depending on the kind of control that is wanted. However, their values will have major
consequences in the control. A large value of Q will translate into a quick stabilitzation, while if the
values of R are the ones accentuated then the effect of the controller will be smaller, and therefore it
will be a small realimentazion. Different parameters will lead to different results. Once, all the data is
defined, the Matlab function will retourn a vector (K), equivalent to the weights of the function that

will be implemented in the controller.

4.5. Force Analysis

In order to get a full analysis of the movement, the forces between the body 0-A and the floor are

computed (Fig. 4.4).
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FDlv

64

""'"}I'q';"""""'""'""'"’

» FDlx

Fig. 4.4. Diagram of the model (left), body 0-A force analysis (center) and body A-B force analysis (right).

Kinematics

First, the body 0-A is analyzed leading to the following position, velocity and acceleration vectors:

61 =Xg1 "L+t Ye1°J

[
jel
E Xg1 = lGl . Sin(Bl) (431)
Y61 = lg1 - cos(67)
Vg1 =Tg1 =Xg1 L+ Y1 ]
=
Z '
§ xGl = lGl : 91 COS(Bl) (432)
Y61 = —lg1 - 01 sin(6;)
5 ag1 =tg1 =Xg1 - T+ V1]
©
% jéGl = lGlél COS(Bl) - 161912 sin(Bl) (433)
(&)
<

Y1 = —lg101 sin(0;) — 1510 cos(6;)
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Then the second body A-B is analyzed like follows:

T62 = Xg2 L+ Y62 ]

XG2 = l1 . Sin(91) + lGZ . Sin(92) (434)

Position

Y62 =11 - cos(0y) + I - cos(61)

Vgp =Tg2 = Xg2 "L+ Y52 ]

Xg2 =y - 01 - cos(61) + lgz - 6; - cos(6,) (4.35.)

Velocity

Vg2 = —ly - 01 - sin(6;) — lg; - 0, - sin(6y)

Agy =162 = Xgp T+ V2]

jC.GZ = ll él COS(91) - 11912 sin(@l) + l(;zéz COS(92) - lGZéZZ Sin(ez) (436)

Acceleration

V6o = —110; sin(0;) — 1167 cos(6) — lg20, sin(8,) — 15,05 cos(;)

Once the position, velocity and acceleration vectors have been obtained for both bodies the

relationship between both of them can be obtained:

Link 1: my-agy = Fog1 + Fo1 + G

X-axis: my - Xg1 = Fo1x + Fo14 (4.37.)
y-axis: my - Y1 = Fory + F21y =My g

Link 2: my - agy = Fip + Gy

x-axis: my - Xgp = —Fip = My X5 = Fo1y (4.38.)
y-axis: my - Vg2 = —Fioy —Mpg = my Yo = F1, —Myg

As the variables 81, 0,, 01, 8, are already known and computed by the Matlab program (Annex A), it

is a linear system of equations. In order to add it to the program, it is solved for both Fo;, and Foyy
Forx = My - Xg1—Fo10 = My - Xg1 — My - X (4.39.)

Fory = my - Yg1—Fa1y + myg = my - g1 —my - Y2 —mpg + myg (4.40.)
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4.6. Updating the model

Once the controller is implemented with the chosen biomechanical parameters, a new step forward
is taken. A more realistic model is designed by incorporating an elastic or stiffness element equivalent
to the hip joint. To do so, a new background check has been done on all the joints, to try to find the

more appropriate value for the elasticity constant.
4.6.1. Background

In 1997 R. Riener and T. Edrich wrote their paper on “Passive elastic joint moments in the lower
extremity” [14] focusing on the passive elastic joint properties while taking into account the influence
of other joints. As joints’ behavior depends on the muscles and other tissues’ mechanical properties,
a non-linear elastic relationship was taken into account and approximated by an exponential function
of joint angles. [14] In this case, measurements were performed at the ankle, knee and hip joint with

the set up shown in Fig. 4.5.

adjustable ankle-
foot orthosis

Fig. 4.5. Experimental setup for knee measurements with defined ankle and hip joint positions. [18]

Different measurements were performed in health subjects. The total joint moment can be divided in
different components; the passive elastic joint moment (M,,s), the dissipative passive moment
(Myiss), the influence of active force (M,), the gravitational moment (Mg,,) and finally, the dynamic
moment (My,,) [14].

Mtot = Melast + Mdiss + Mact + Mgrav + Mdyn (4-41-)
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However, by following the proper methodology the effects of some of them were neglected. For
example, by moving the subject’s leg quasi-statically, both the dynamic and dissipative moments
were neglected. As the study focuses on the passive component, the subject was not allowed to take

an active role, and therefore the active moment could also be neglected, leading to equation 4.42.

Mtot = Melast + Mgrav - Melast = Mtot - Mgrav (4'42')

Following the example of previous research, exponential functions were used to approximate the
elastic moment. However, Riener and Edrich took into consideration the influence of other joints

leading to the following equation that considers the coupling effects.
Melast = exp(cl + Qo + C3§0prox + C4(pdist) - (4'43')

exp(CS + Ce® + C7§0prox + C8§0dist) + Cq
where: @ is the joint angle
@prox is the angle of the proximal joint
®gise 1S the angle of the distal joint

¢, — Cg are constants determined with an

iterative least square procedure

After analyzing the results, different observations could be made. The results leaded to the fact that
the knee joint is not significantly influenced by the ankle, while the hip angle has a strong effect on it.
Looking to the results of the hip joint, it could be seen that due to the existence of the hip flexors and

extensors, the knee joint angle had a huge influence on it.

All this information allows putting into perspective the project itself. In this project the knee joint is
blocked, as legs are considered as a single bloc, and due to the simplicity of the model, the

approximation is performed by the product of a constant and the relative angle of the joint.

In 1999, R. Aissaoui and J. Dausereau reviewed the existent literature regarding the analysis of sit-to-
stand task in their paper “Biomechanical analysis and modelling of sit to stand task: a literature
review”. The purpose was to do an overview of the state of the art at that point focusing in the sit-to-

stand transfer in elderly population.

Sitting and standing are two tasks that are often done without paying attention, but as the
population ages the mobility is usually reduced. There is a wide range of reasons that may cause
difficulties in this apparently simple task such as progressive conditions like arthritis. Along all the

literature the sit-to-strand process (also known as STS) has been defined and divided in different
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phases. The first studies identified it in two distinct phases, to move later on to three phases; the
initiation phase, the seat unloading phase and the lift. However, in 1997, Kralk, A., Jaeger, R.J. and
Munih, M. defined the movement in five different phases as explained in their paper “Analysis of

standing up and sitting down in humans: definitions and normative data presentation” (Fig. 4.6).

BEGINNING OF STANDING
STANDING-UP ON

PHASE] |NIT., SEAT -
UNLOjD.ASCENDING STABIL'F

' TUNING-DF
o \éERTICAL Urtier
ACTIVITY | MO CEL. DEC
Toe Sk Se >

CYCLE 0% 27% 34% 45% 73% 100%

Fig. 4.6. Sit to stand cycle phase diagram [1].

This kind of terminology allows defining each stage; the beginning (0%) states for the ground reaction
force, then the 27% is the starting of the standing face that leads to an acceleration and deceleration
periods (45% and 73% respectively). Finally the last stage (100%) is the stabilization in standing
position.

Different strategies of transferring from sit-to-stand are studied and reviewed, but the review done
by Aissaoui and Dansereau does not include constant values for the approximation of the joint
behavior. Therefore, even if it is important to understand how the movement works, the data reliable

for the project is not stated.

In 2003 a team formed by J. Van der Spek, P. Veltink, H. Hermens, B. Koopman and H.Boom
published their research on the influence of supplementary hip joint stiffness and a stabilizing model
for paraplegic subjects. On the one hand in the article “Static and Dynamic Evaluation of the Influence
of Supplementary Hip-joints Stiffness on Crutch-Supported Paraplegic Stance” [11] and on the other
hand, “A model-Based Approach to Stabilizing Crutch Supported Paraplegic Standing by Artificial Hip
Joint Stiffness” [10]. Both articles give a significant amount of information regarding the stiffness of

the hip-joint and its effects when testing its value following the procedure in Fig. 4.7.
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Fig. 4.7. Schematic representation of the experimental setup [11].

When testing different values for the stiffness coefficient, different springs were tested with the

following values:

Spring Stiffness [/aa]
Ko 0
K, 41
K, 68
K; 126
K4 208
Ks 313

Table 4.1. Values of the stiffness of each spring [11]

After testing five different subjects with each spring, the minimum level of stiffness necessary to

enable each subject to stand was found. In average, the level needed was 68 N.m/rad and therefore

the spring number 2 (K,).

In the second article the double inverted pendulum model was modified to add the crutches, as it is

the assistance tool needed by the paraplegic subjects (Fig. 4.8).
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9 ankle angle

0, hip angle

Opio hip joint angle

d.'p leg length

d]: upper body length

d2: crutch length

R3 . foot to crutch distance
y { distance ankle to ground
F: shoulder reaction force
F .  armforce

T?';m active ankle moment
T,: active hip moment

Fig. 4.8. Schematic representation of the model [11].

By using Lagrange’s method, the mathematical model was obtained and it allowed to compare the

hip stiffness to the ankle one.

Both articles give information regarding the hip stiffness importance and influence. However, a
sagittal plane approach was followed, while a frontal approach is being studied in this project.

Therefore, the values used by the research cannot be directly used.

In 2005 the team from the Institute for Rehabilitation of Slovenia formed by A. Olensek and Z.
Matjacic shared their study “Further Steps Toward More Human-like Passive Bipedal Walking Robots”
in the International Conference on Robotics and Automation. In the paper a two-legs mechanical
structure is described. The model incorporates the basic joints; ankle, knee and hip. The
implemented model is capable of having a stable walking performance with null or reduced energy

consumption.

Even though some researchers have always avoided lateral stability issues by designing a mechanism
where the outer legs function as crutches, in this case, a human-like mechanism was designed. Three

hinged joints are present (ankle, knee and hip) resulting in a three pieces leg-design.

First of all, the gait cycle is the sequence of movement corresponding to taking two steps. Therefore
it starts with one foot that was in contact to the ground lifts, until that same foot goes back to the

foot.
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In the following picture (Fig. 4.9), the drawing of the design is shown, and so it is a picture of the

model already built.

Fig. 4.9. Schematics and photograph of a biped physical model [20].

Regarding the elastic components, Olensek and Matjacic state that the gait cycle elastic strings have
to ensure gait stability. Therefore, they have to offer support during stance and leg advancement
during swing, but also they have to maintain stable lateral swaying. It is important to understand that
for a natural step movement elastic elements are critical. Therefore, in the appropriate extent they
should be included when designing a model equivalent to the human body. However, no specific

parameters are given during the article.

In 2008, the team conducted by S.Pejhan, F.Farahmand and M.Parnianpour wrote their paper in
“Design Optimization of an Above-Knee Prosthesis Based on the Kinematics of Gait”. A mathematical
modeling approach was used to analyze the dynamics of an above-knee prosthesis during the
complete gait cycle. Regarding the method, it included three rigid segments; thigh, shank and food,
equivalent to a two-dimensional model of an amputee leg with prosthesis. Each component was

connected with revolute joints at the knee and angle (Fig. 4.10).
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Fig. 4.10. Model of amputee leg system [17].

The mathematical model was developed, putting strong attention to the bond between foot and
floor. Therefore, a penetration contact model considering two contact points; heel and mid point,

was used. The main parameters can be found in Table 4.2

Parameter Value
Spring coefficient 2x e+6 (N/m)
Spring exponent 2.2
Damping coefficient 1500 (Ns/m)
Damping penetration 1 (mm)
Friction coefficient 0.4

Table 4.2. Foot-ground contact model parameters [17].

On the other hand, the knee elastic controller was designed as a spring in the proper configuration
(Fig. 4.11).

rl:

+

Fig. 4.11. Knee elastic controller [17.]
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The knee moment produced by the designed controller follows was given by the following set of

mathematical relations. [17]

R=[1} —[0-rsinE—0-a+o—n)]
x=-rn.cos(—O-a+o-n)R-1I,

lo =1+unstretched length

Being the different constants and parameters defined in Table 4.3:

Kl={nsin(-8-a+o¢-n)—[e—nsin(é—-08—a+o-n),
cos(E—8—a+¢—n)/ Rikx

Parameter Value Unit
A — -
ngle bt?tween Hip-knee and crank of spring 80 deg
mechanism : §
Length of the spring mechanism coupler: 7 18 mm
Length of the spring mechanism crank: , 40 mm
Offset of the spring mechanism: e 0.04
Distance from upper attachment point of the 31 i
controller of the knee joint '
Distance from lower attachment point of the
o 2.1 mm
controller of the knee joint
Angle between knee-ankle and knee- shank 0 deg
cg:y '
Angle between hip-knee and knee- upper
g ) P PP n/2 deg
attachment point: B
Distance from upper attachment point to cm
of controller: v, 10.2 mm
Mass of the controller 0.6 Kg
Moment of inertia about center of mass\ 0.0085 iy .

Table 4.3. Biomechanical parameters [17].

(4.44.)

Regarding the results, the optimum values for stiffness of the elastic controller weas found to be

1980 N/m, while the damping coefficient of the hydraulic controller of prosthetic knee obtained was

0.7 Kg/s. Moreover, for the ankle joint, the torsion stiffness and damping coefficient were 5,35 Kg/s

and 10,5 N-cm/rad, respectively [17].

Recent research conducted by the New Jersey Institute of Technology University Heights focused on

identifying values for the non-linear passive knee joint stiffness. In their article “Assessment of Passive

Knee Stiffness and Set Point” the Wartenberg Pendulum Knee Test was used. The passive stiffness

moment is defined by the product of the passive stiffness constant (K,) and the relative angle of the
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joint. After the experiment and modeling was performed the values differed significantly from
subject to subject (Table 4.4).

#| Age | Sex | Weight | Height | Ke Ke | 6
(Year) i(Kg) (cm) (N-mfrad | (Nemyrad | rad
Mid-range Extremes

BED M | 644 | 1753 | 5.2 131 | 031
2 26 F 44.5 157.5 1.9 35 019
3 21 M o8 168.9 2.1 4.9 .33
N T M 929 1715 | 67 1.2 | 031
50 27 M 83.7 1503 | 1.7 35 | 035

Table 4.4. Values of K, of the knee and physical characteristics of the subjects [3].

The authors explained the significant differences between the stiffness coefficients with the
physiological differences between the subjects of the study. However, they conclude that the

stiffness value does not follow a linear behavior.

In 2013 a team of researchers of the Purdue University in the USA performed a study in “Dynamic

stability of a human standing on a balance board”. In it a sagittal approach was followed.

. @ t
E«-—ui_ —  1(8)6+C(6,6.4)+K(8.4)=-M ~:;’;

Coupled Body and Balance Board Dynamics

K[ 8(1)+88 (1) ]+CE(1) |

W Muscle Stiffress and Damping
@ L] (Passive)

i I_ K,8(17)
8 I . +K,[8(t-7)+¢(1-7)]

.'. H Neuromuscular Feedback
3 (Active)

Ko (1) —

Balance Board Stiffness

Fig. 4.12. Diagram of posture on a !-DOF balance board with forces and correlating moments (left). Block diagram of the
postural control system (right). [12]

UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH
Escola d'Enginyeria de Barcelona Est

37



To design the model, different biomechanical parameters were used. Regarding the moment at the

ankle it was determined as a function of time, depending also on the angles and different coefficients

as shown below:

Mankle (t) = K[Q(t) + 303(0] + Cé(t)

where: Kis the linear muscle stiffness

(4.45.)

B is the ratio of passive cubic nonlinear muscle stiffness

to passive linear muscle stiffness

C is the linar muscle damping

As it has been seen this far with the review of all the different studies, there is a wide range of values,

a short example of some of them is given in the article as follows (Table 4.5).

Author K [N m] k (B C [RE
Asai et al.(2009) 588.60 470.88 4.00
Maurer and Peterka(2005) 648.64 584.43 171.89
Peterka (2002) 732.19 91.67 24.64
Vette et al. (2010) 713.81 521.00 5.00
This Paper 659.92 593.93 13198

Table 4.5. Commonly used postural parameters for similar models [12]

After analyzing the state of the art regarding the stiffness of the different joints, it can be said that

values differ from model to model and subject to subject, however all research follow a sagittal plane

approach. Therefore, the parameters found cannot be applied to the project directly, but they are

useful to approximate the chosen value.

The chosen value has been obtained with both an approximation taking into account the range of

motion of the hip-joint in a frontal approach and an empirical research when simulating the model

finding the maximum value for the elastic coefficient that allowed the system to work properly.

4.6.2. Computations

To obtain the new equations that describe the model, Lagrange’s method has been used again. In

this case a momentum has been also added to the hip joint (Fig. 4.13).
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»
=)
—

0
Fig. 4.13. Model analyzed with the momentum in the hip joint due to the elastic component (C,)

Lagrange’s equations are the following:

_d(aL\ oL 9A dL (4.46.)
47 dt\es,) 06, ot a6,

_d(oL\ oL 0B oL (4.47.)
'~ at\es,) 90, ot a6,

Being the derivatives, the same ones used for the initial model, C4 the torque in the hip and t the

external perturbation.

In order to simplify the equations above a new set of constants have been defined leading to
equations 4.48 and 4.49.

Cy = A10; + Ay0, cos(0; — 6,) + A362 sin(8; — 6,) — Ay sin(6;) (4.48.)
T = B;6; cos(6; — 6,) + B,6, — B36% sin(h; — 6,) — B, sin(6,) (4.49.)
Where the constants have the following values:
Ay =1 + myl} By = mylyls,

Ay = mylyls, B, = I + mylg,
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Az = A; = mylylg, Bz = mylilg;
Ay = (Ml + myly)g By =mylsgrg

Isolating 8, from equation 4.38.

.. 1 .. .
6, = T(,42(92 cos(6; — 0;) + A36% sin(8; — 0,) — Ay sin(6;) — C4) (450
-4
Then substituting it in equation 4.39, 6,is obtained.
- % 62 sin(6; — 0,) cos(8; — 6,) + %sin(@l) cos(6; — 65)
92 = 1 1 .
j—lAZCOSZ(Gl - 02) - B2
1
(4.51.)
—33912 sin(91 - 92) - B4_ Sin(91) - T— j—ch COS(01 - 02)
1
i =L A;c052(8, — 6,) — By
1
The same procedure is followed to obtain the last state equation (61 ).
. 1 s . . 4.52.
b, = S (416, + A36% sin(0; — 0,) — Ay sin(6;) — Cy) (4:52)
Finally,
9. _ BzA3 922 sin(91 - 92) - BzA4_ sin(61) + B3A2612 Sin(01 - 02) COS(Ql - 02) (453)
1= BlAzcos2 (91 - 92) - BZAl

+B4_A2 Sil’l(gz) COS(91 - 92) + AZ COS(Ql - 02) T— BZ CA
BlA2C052(91 - 92) - BZAl

Once the non-linear model is obtained, the linearization is performed using Taylor’s method in order

to design the new controller.
X=X+ A-AX+B-AU (4.54.)

0 0 1 07
o 0 0 1
o 0h Oh O
A=30, 96, a6, a6, (4.55.)
(00, 06, 06, a0,]

[912(1 J623q zéleq JQZEQ ]T
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0|
B=i—i (4.56.)
15 |

The derivatives have been computed with Maple16 and can be found in the Annex D.
4.7. Non-linear control

In order to reach a wider understanding on the control system a new approach is followed. A non-
linear control is developed based on an energy approach and the passivity properties of the system
[16]. By using a non-linear control law there is no need for the linearization as LQR method is

avoided.

Fantoni, I, Lozano, R. and Spong, M.W. studied a non-linear controller for a Pendubut system.
Instead of using partial feedback linearization techniques and the linear quadratic regulator, an
energy balance based controller was studied. Applying the methodology to our initial system, the

following controller is obtained.
4.7.1. Computations

Using the already existing original system, the following matrixes and constants are defined:

D(©)6+C(6,0)0+g(0) =7 (4.57.)
_ Q1 Q; - cos(6; — 6;)
D) = Q2 - cos(61 — 6,) Q4 ] (4.58)
€(6,0) = Q, - sin(6; — 65) [.0 92] (4.59.)
6, 0
_[-Q3- g -sin(6,)

9(0) = [—Qs g - sin(8,) (4.60.)

. [6; . [6y =0
i-[? =[] o st
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Q=4=h+my- [

Q=A,=A3=B1=B3=my-l; - lp;

Ay
Q3 = T =my-lgr+my- (4.62.)
Qu=By =], +my- 1§,
Q5 = 2 l
= —_— m .
5 g 2" LlG2
The total kinetic (Exr) and potential (Epr) energy is defined as follows:
1 o 1 o 1
Exr=5-J1-0{+5J2- 03 +5-my
(1%912'1'1(2;29224'2111629192COS(91—92))=
1., 5 1., ) .
=§'91 (1 +m2'11)+§'92 Uptmy-lg)+my -ty gy 016,
(4.63.)
-cos(B; — 6,) =
1 o 1 - .
= E'Q1'91 +§'Q4'92 + Q- 60, cos(6; — 6,)
Epr =my -l - g -cos(01) +my -l - g - cos(61) +my - gy - g - cos(8;)=
(4.64.)
=Q3 - g - cos(01) + Qs - g - cos(6,)
For the stabilization control law, the following conditions are assumed:
i. E(6,0)=Ey
Applying condition (i) and developing the condition (ii) the equation 4.65 is obtained.
E(G, 9) =Q3-g-cos(81) +Qs-g-cos(8,) =(Q3+Qs) - g = Eyp (4.65.)
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If a third condition is applied:
ii. 6, =90°
Then a homoclinic orbit is obtained.
1 5 1 -
5 Q161 + Qs ~g-cos(61)=0Q3-g9 — 5 Q6 =059 (1 — cos(61)) (4.66.)

Defining the following parameters:

The next Lyapunov function is chosen.

V(6,0) = £ E(0,0) + 203+ 5, (4.67.)
Performing the derivative,
V(0,0) =Kz -E(0,0)-E(0,0)+Kp-6,-0,+Kp-0,-6, (4.68.)
Knowing that:
E(0,0)=6" -t =10, 6)[)]=6,7 (4.69)

The derivative of the Lyapunov function becomes the following:
V(B,H) = KE E(G,G) . 92 'T+KD . 9.2 . éz +Kp . gz . 92 (470)

In order to continue with the computations, the value of 8, is needed. Therefore isolating 8 from the

motion equation 4.57. the next formula is obtained.

[gl] =D@) - [t—c(6,6) -6 —g®)] (4.71.)
2
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After performing all the computations (Annex D) the following value for 92 is reached:

1 _ .
= 010-00c0s2(0,-03) [Q1 - T+ QF - cos(6; — 6,) - sin(6; — 6,) - 65 — Q- Q3 -

gcosfd1—-62sinf1+g1-g2sind1-62-612+01-05 g sinb2=

6

(4.72.)
= ! [ +F(6,0)]
Q1 Q4 — Q3 - cos?(6; — 6,) G 7+ FE.6)
Now, putting &, into V’s equation:
V(6,6) = Ky - E(8,8) -6 -7+ Kp - 0 !
ST ' 2 tT i Q1 - Q4 — Q3 - cos?(6; — 6;)
{Q1T+F(9,9)]+Kp§292:
(4.73.)
. S Kp - Q1 )
=60, -|t-|Kg-E(0,0)+
’ [ < e B(0.9) Q1 Q4 — Q5 - cos?(6; — 6,)
Kp - F(6,6) ~]
+ +Kp- 0
Q1-Q4— Q3 -cos?(6;—6y) "
IfV(0,6) = —0% , then:
; Sl Kp - Q4 >
—0,=1-(Ky-E(0,0)+
? ( e E(0.0) Q1 Q4 — Q3 - cos2(6; — 6,)
Kp - F(6,0) B (4.74.)
+ > +Kp -6
Q1 Q4 — Q% - cos*(01 — 6;)
Finally, isolating T the control law is obtained.
—(Q1-Q4s— Q3 - cos?(8; — 6,)) - (6, + Kp-0,) — K, - F(6,0
- (Q1 Q4 — Q3 - cos“(6, 2)) (62 + Kp - 6,) — Kp - F(6,6) (4.75)

Kp - E(6,0) - (Q1- Qs — Q5 - cos?(6; — 62)) + Kp - Q4

More detailed computations are available on the Annex D
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5. Implementation and results

5.1. Initial model

The project has been performed in phases. The first is the design and implementation of original or
initial model, it is the most basic one designed. The second phase, consists on adding the stiffness

element. Finally, the third one is the design of a non-linear controller to regulate the original system.

The use of Matlab/Simulink allows to solve differential equation systems by simulation. Therefore,
the system does not need to be solved and allows studying different cases by using different

parameters. All Matlab scripts and Simulink schemes used can be found in Annex A, B and C.

In order to test if the system was able to stabilize, the initial conditions were changed from null to
different values, which means that either 8; or 8, were different from zero. The schemes for both

the linear and non-linear system can be seen in Fig. 5.1 and Fig. 5.2, respectively.

! X' =Ax+Bu .
Dist 4DQ—D y = Cx+Du Pistate_system|
State-Space1 To Workspace
Disturbance
L > ]
Control_torqud« . K Lr Scoped
To Workspace1 -K
Scope2

Fig. 5.1. Simulink diagram of the linear system.

]

Angle
u X »
Not Linear system D
Kx Velocity

Fig. 5.2. Simulink diagram for the simple non-linear system.
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5.1.1.

Different perturbations

The first case is the study of the system when the same perturbation is produced in either 6; or 8,

and if both of them have a non-null initial value.

As the values of the parameters do not change in either case, it is only the value of the initial

conditions, the control parameters are the same in all three cases. They can be found in Table 5.1.

4,0839
4= | 24656
= |-4,0839
—2,4656
0 —0,0196 0 —0,4454
c-| o 0,0785 0 0,8675
o= 1-0,0196 0 —0,4454 0
0,0785 0 0,8675 0
K =103 -[-4,7080 —0,0264 —1,3400 —0,1632]

Table 5.1. Control parameters for the initial model.

Regarding how the linear system reacts to each perturbation the results are the following (Fig. 5.3
and Fig. 5.4):
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5.3. Response of the linear system for a initial perturbation of 8,=0,1 rad.
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System State Dynamics
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Fig. 5.4. Response of the linear system for a initial perturbation of 6,=0,1 rad.

As it can be seen in the figures above, there is a huge difference in the linear system between having
the same initial perturbation in 8; or 8,. In the former case, the system stabilizes in 3,5 s with 8,
reaching a maximum value of 0,88 rad. The latter, stabilizes much faster, at 3 s. And the angle values

belong to a much shorter range.

Regarding the non linear values, the results are the following:
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Fig. 5.5. Response of the non-linear system for a initial perturbation of 6,=0,1 rad.

UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH
Escola d'Enginyeria de Barcelona Est

47



042 T T T T T T n

th1

th2
04~ 1

0.08 I~ =

0.06 — =

0.04 — -1

0.02 - i =

==

| | | | | | | | |

Fig. 5.6. Response of the non-linear system for a initial perturbation of 6,=0,1 rad.

The figures above (Fig. 5.5 and Fig. 5.6) show the response of the non-linear system with the LQR
control method. The tendency followed is the same than for the linear system. The stabilization time
for an initial perturbation in 8, is 3.5 s and therefore higher than for 8, that is 3 s. The main difference
between the linear and non-linear results are the angle range in the latter. In this case, for the first

perturbation (6= 0,1 rad) the angle 6, reaches the maximum value of 1,3 rad.

When there is an initial perturbation in both angles, the system does not hold a big range of angles.
For example, for an initial perturbation of 6;= 0,1 rad, the system does not stabilize for 8, = 0,1 rad.
Therefore the following simulations have been performed for an initial perturbation of: 8; = 0,1 rad
and 6,= 0,01 rad. The results for the linear system can be seen in Fig. 5.7 and the non-linear systen
corresponds to Fig. 5.8.

System State Dynamics

System state [rad] - [rad - sec™ !

0 1 2 3 4 5 6 7 8 9 10
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Fig. 5.7. Response of the linear system for a initial perturbation of 6,=0,1 rad and 6,=0,01 rad.
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Fig. 5.8. Response of the linear system for a initial perturbation of 8,=0,1 rad and 6,=0,01 rad.

As it can be seen, in the figures above, the results for a double perturbation are really similar to the
behavior for the single biggest perturbation. However the system is still more unstable, reaching a
higher value for 0,.

5.1.2. Different moments of inertia

As it was explained in the biomechanical chapter, two different sets of moments of inertia have been
computed. On the one hand, all the bodies were approximated as slender rods. While, on the other
hand, the arms were considered slender rods but both the torso and the legs were approximated as

rectangular prism.

The obtained values have been the following (Table 5.2):

Casel Case 2
Joa 9,4548 Kg-m”’ 9,574656 Kg-m”
In 3,23475 Kg-m”’ 3,1209 Kg:m’
In3 8,748362 Kg:m® 8,748362 Kg:m”
Jp23 11,9831 Kg:m’ 11,86929 Kg:m’

Table 5.2. Comparison between the values of the computed moments of inertia.

In this case, as the parameters values are different, the values for the control system are also

different. As slender rods, the obtained values are the following:
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4,0839
4 | 24656
~ | —4,0839
—2,4656
0 —0,0196 0  —04454
c-| o 0,0785 0 0,8675
o= 1-0,0196 0 —0,4454 0
0,0785 0 0,8675 0
K =103-[-4,7080 —0,0264 —1,3400 —0,1632]

Table 5.3. Control parameters for moment of inertia as slender rods.

While the values for the control system when the torso is approximated as a rectangular prism but

both the arms and the legs are slender rods, are the following:

—4,0863
4= |~24710
= | 4,0863
2,4710
0 —0,0197 0 —0,4488
c | 0 0,0791 0 0,8811
o= 1-0,0197 0 —0,4488 0
0,0791 0 0,8811 0
K =10%-[-4,6945 —0,0263 —1,3381 —0,1630]

Table 5.4. Control parameters for moment of inertia as slender rods and rectangular prisms.

Comparing the results for the linear system both conditions behave the same. As it can be seen in Fig.
5.9 and Fig. 5.10, in order to compare the effects of the different moments of inertia the system has

been simulated with the same perturbation. The chosen initial perturbation has been 6;=0,1 rad.
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System State Dynamics
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Fig. 5.9. Response of the linear system for moment of inertia as slender rod and initial perturbation 6;= 0,1 rad.

System State Dynamics

-1

b66 ocoococooooo

WO NWRUION® O
o
>
.—\
o
—

System state [rad] - [rad - sec

SOO0O
~No o~

S
oo

09t VY ]
-1 ' : : : : : : : :

Time [s]

Fig. 5.10. Response of the linear system for moment of inertia as slender rod and rectangular prism and initial perturbation
6:=0,1 rad.

The same situation is repeated for the non-linear systems (Fig. 5.11 and Fig. 5.12). The changes in the

parameters are so subtle that they do not report the effects in the behavior of the system.
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Fig. 5.11. Response of the linear system for moment of inertia as slender rod and initial perturbation 6,=0,1 rad.
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Fig. 5.12. Response of the non-linear system for moment of inertia as slender rod and rectangular prism and initial

perturbation 6,=0,1 rad.

Seeing the null effects of the small variations in the moments of inertia, even if it translates into

different control parameters, it can be concluded that it is not significant and therefore the

approximations hold.

5.1.3. Forces

In order to have the data to perform a more accurate analysis of the whole system, the forces

exchanged between the feet and the floor, have been computed using Matlab.
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For the horizontal force the Simulink scheme can be seen in Fig. 5.13.

1 P flu) W+
O - >
In1 m1*ddxG1 Out
Add
P f(u)
m2* ddxG2

Fig. 5.13. Simulink diagram to compute the lateral force exchanged between the feet and the floor (Fy;,).

While for the vertical one it is the following (Fig. 5.14):

@ » f(U) L

Int m1*ddyG1 i »( 1)

4 Out1
Add

P flu)

m2* ddyG2
> m2'g

m2*g
» mi*g

m1*g1

Fig. 5.14. Simulink diagram to compute the vertical force exchanged between the feet and the floor (Fy;,).

When simulating the behavior of the system for an initial perturbation of 6;=0.1 rad the following

results have been obtained:
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Fig. 5.15. Horizontal force in 0. Fy,,(Units: N) for an initial angle 6, =0.1 rad.
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Fig. 5.16. Vertical force in 0. Fyy, (Units: N) for an initial angle 6, =0.1 rad.

As it can be clearly seen in the vertical axis the forces asked for the system to stabilize are impossible
to reach as the reaction forces of the floor can not be controlled. Therefore having positive values
indicates that it is not a realistic situation. Given this situation, a new simulation has been made with

a smaller initial perturbation: 6,=0.1 rad.
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Fig. 5.18. Vertical force in 0. Fyy, (Units: N) for an initial angle 6, = 0,05 rad.

In this case not only the magnitude of the results is reduced but also the sign and therefore the

direction of the force required. Therefore, they are plausible.

Finally to check the limitations of the system, the force analysis has been performed for a

perturbation in the second angle: 8, = 0,1 rad.
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Fig. 5.19. Horizontal force in Point 0. Fyy, (Units: N) for an initial angle 6, =0.1 rad.
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Fig. 5.20. Vertical force in Point O. Fyy, (Units: N) for an initial angle 6, =0.1 rad.

The importance of analyzing the exchange of forces between the feet and the floor is because
mathematically the system can require a force impossible to perform or control in reality. Therefore a
proper study of the force exchange leads to a better understanding of the system and its limitations.

5.2. Updated model

Once the original model has been analyzed, a step forward is taken by including an elastic component

equivalent to the hip joint. Adding this parameter leads toward a more realistic system.
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Again, the use of Matlab allows to solve the differential equation systems that otherwise would be
extremely difficult. The modifications needed to update the model are in both the Matlab Script and
the Simulink file. On the one hand, the results of the linearization using Matlab have changed and
therefore the control system has changed too. While, on the other hand, some terms need to be

added to the non-linear system of equations. All details can be found in the Annexes.

In order to test if the system was able to stabilize, the same procedure has been followed, the initial
conditions are changed from null to different values, which means that either 8; or 6, become

different than zero.

Regarding the chosen elastic component, as it has been discussed in the background chapter, there
are no values in the literature for a frontal approach of the problem. Therefore, the value has been
chosen to be as coherent as possible to the relationship between the mobility range to the elastic or

stiffness coefficient form the studies performed in the different joints with a sagittal approach.
5.2.1. Different perturbations

The first case of study is again what happens to the system when the same perturbation is produced

onlyin 84, only in 8, or both at the same time.

As the values of the parameters do not change in either case, it is only the value of the initial

conditions, the control parameters are the same in all three cases:

—4,0977
4 = |~24623
= | 4,0977
2,4623
0 —0,0196 0 —0,4511
c-| 0 0,0785 0 0,8714
o= 1-0,0196 0 —0,4511 0
0,0785 0 0,8714 0
K =103 -[—4,6465 —0,0074 —1,3192 —0,1577]

Table 5.5. Control parameters for the system with an elastic element.

As it can be seen the obtained values are different from the ones without the elastic element in the

hip-joint.
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Regarding how the system reacts to each perturbation the results are the following:
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Fig. 5.21. Response of the linear system for a initial perturbation of 6,=0,1 rad.
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Fig. 5.22. Response of the linear system for a initial perturbation of 6,=0,1 rad.

As it can be seen in the figures above, there is a huge difference in the linear system between having
the same initial perturbation in 81 or 8. In the former case, the system stabilizes in 3,25 s with 8,
reaching a maximum value of 0,86 rad. The latter, stabilizes much faster, at 2,85 s. And the angle

values belong to a much shorter range.

Regarding the non linear values, the results are the following:
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Fig. 5.23. Response of the non-linear system for a initial perturbation of 6,=0,1 rad.
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Fig. 5.24. Response of the non-linear system for a initial perturbation of 8, =0,1 rad.

The figures above show the response of the non-linear system with the control designed with the
LQR method. The tendency followed is the same than for the linear system. However, there is an
extremly important difference. Now, in the non-linear system it is the second case (initial
perturbation in 6,) that takes longer to stabilize reaching the 5 s. While the former stabilizes around

3.5s. This case it is clearly related to the elastic element that now links both elements of the model.

When there is an initial perturbation in both angles, the system does not hold a big range of angles.
For example, for an initial perturbation of 8, = 0,1 rad, the system does not stabilize for 8, = 0,1 rad.
In the previos chapter, when no stiffness element was considered it was possible to simulate the
system for an initial perturbation of: 8, = 0,1 rad and 6, = 0,01 rad. However, now, taking into

account the elastic element it is impossible to stabilize the non-linear system for those values, even
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though the linear one does stabilize. Taking that fact into consideration the values have been
reduced to: 64 = 0,05 rad and 6, = 0,01 rad.

System State Dynamics
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Fig. 5.25. Response of the linear system for a initial perturbation of 6,=0,05 rad and 6,=0,01 rad.
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Fig. 5.26. Response of the linear system for a initial perturbation of 61= 0,05 rad and 6,=0,01 rad.

As it can be seen, in the figures above, the results for a double perturbation are really similar to the
behavior for the single biggest perturbation.

5.2.2. Different moments of inertia

As it has been done for the original system the different values for the moment of inertia will be
tested to see if now that there is a stiffness element their influence is stronger. The two cases for the
moments of inertia are the following:
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Casel Case 2
Jor 9,4548 Kg-m”’ 9,574656 Kg-m®
Jno 3,23475 Kg-m”’ 3,1209 Kg-m®
Jas 8,748362 Kg-m’ 8,748362 Kg-m®
Jpn3 11,9831 Kg:m? 11,86929 Kg-m?

Table 5.6. Comparison between the values of the computed moments of inertia
In the Case 1 all bodies have been considered as slender rods. While the Case 2 corresponds to

different geometrical shapes depending on the body part; the torso as a rectangular prism and the

legs and arms as slender rods.

As slender rods, the obtained values are the following:

—4,0977
4= |—24623
= | 4,0977
2,4623
0 —0,0196 0 —0,4511
P 0,0785 0 0,8714
o= [-0,0196 0 —0,4511 0
0,0785 0 0,8714 0
K =103 -[-4,6465 —0,0074 —1,3192 —0,1577]

Table 5.7. Control parameters for the system with an elastic element for inertia Case 1

While the values for the control system when the torso is approximated as a rectangular prism but

both the arms and the legs are slender rods, are the following:
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—4,1001
4= | 24677
= | 4,1001
2,4677
0 —0,0197 0 —0,4545
c-| o 0,0791 0 0,8850
o= [-0,0197 0 —0,4545 0
0,0791 0 0,8850 0
K =103-[—4,6329 —0,0075 —1,3172 —0,1575]

Table 5.8. Control parameters for the system with an elastic element for inertia Case 2.

As it can be seen both sets of values differ slightly. They are also different from the ones obtained for

the original model.

Comparing the results for the linear system both conditions behave exactly the same, like it had

happened for the original model.
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Fig. 5.27. Response of the linear system for moment of inertia as slender rod and initial perturbation 6,=0,1 rad.
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OO 000000000
NCOoOLNWROION® O
o
>
_\
=
-

0.8 ]

System state [rad)] - [rad - sec™"]

Time [s]

Fig. 5.28. Response of the linear system for moment of inertia as slender rod and rectangular prism and initial perturbation
6:=0,1rad.

The same situation is repeated for the non-linear system. The changes in the parameters are so
subtle that they do not report the effects in the behavior of the system.
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Fig. 5.29. Response of the linear system for moment of inertia as slender rod and initial perturbation 6,=0,1 rad.
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Fig. 5.30. Response of the non-linear system for moment of inertia as slender rod and rectangular prism and initial
perturbation 6,;=0,1 rad.

Seeing the null effects of the small variations in the moments of inertia, even if it translates into
different control parameters, it can be concluded that it is not significant and therefore the

approximations hold for both the original model and the updated one.
5.2.3. Forces

Using the same Simulink design than for the original model, the forces have been computed reaching

the following results:
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Fig. 5.31. Horizontal force in Point 0. Fy,, (Units: N) For an initial perturbation 61=0,1 rad.
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Fig. 5.32. Vertical force in Point O. Fyy, (Units: N) For an initial perturbation 6,=0,1 rad.

As it can be seen, compared to the original model the situation is the same even if the values are
bigger. It is still an impossible situation. Following the same procedure as before, in order to

understand better the results a new simulation has been performed with a smaller angle.
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Fig. 5.33. Horizontal force in Point 0. Fy,,. (Units: N) For an initial perturbation 61=0,05 rad.
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Fig. 5.34. Vertical force in 0. Fy;, (Units: N) For an initial perturbation 6,==0,05 rad.

In this case, the results are like expected, not only the magnitudes of the forces have been reduced

but also the sign leading to a viable situation.

Finally, a simulation with a non null initial value for the second angle has been performed.

Fig. 5.35. Horizontal force in Point 0. Fyy,, (Units: N) For an initial perturbation 6,=0,1 rad.
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Fig. 5.36. Vertical force in Point O. Foy, (Units: N) For an initial perturbation 6,=0,1 rad.

6.

Again, the results were the expected ones, following also the same tendency than for the initial

model.

5.3.

Non-linear controller system

The non-linear control law has been implemented in the Simulink file for the initial system. However,

when the simulation was performed the system did not stabilize. After checking all the computations

and the implementation no solution has been found. However, the following are the results.
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Fig. 5.37. Response of the non-linear system for a initial perturbation of 6,=0,05 rad.
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Fig. 5.38. Response of the non-linear system for a initial perturbation of 8,=0,05 rad.
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Fig. 5.39. Response of the non-linear system for a initial perturbation of 8,=0,05 rad and 6,=0,05 rad.
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6. Conclusions

In this thesis a study and design of a balance postural control system with a frontal approach has
been made. It has been a transversal study as it has involved numerous engineering fields which have
presented numerous difficulties along the way, but all of them have been properly solved by
performing an extensive research in the literature regarding each particular topic. Not only the initial
expectations have been met, but also an update on the model has been performed in order to design

a more realistic model by including an elastic element.

The first step has been a research on the existing literature on biomechanical data. While analyzing
the state of the art in such a topic, it has been clear that the recent research focuses in specific goals
and parameters instead of performing a statistical approach to determine the average values for
partial masses and lengths for the different body components. Therefore, in order to obtain the
necessary values for the model, older investigations have been analyzed leading to authors like
Hanavan (1964), Drillis and Contini (1966), Dempster (1973) or Winter et al. (1998). These focused in
a wider field by using different techniques to obtain the main anthropometric parameters of the

human body.

In order to perform a more accurate project, different moments of inertia have been computed by
approximating the different body parts with various geometrical shapes. By obtaining these values
and through the simulation of the system it has been confirmed that the difference in the results is so
subtle that can be completely neglected. Therefore, it can be confirmed that in such basic models the

shape in which the body components are approximated is not relevant.

Regarding the non-linear model, after considering the different techniques available, Lagrange’s
equations have been chosen as it is a more useful method when the system gets more complex. By
performing the basic modeling already using the techniques that would be used in a more extensive
future research, the bases are properly set and allow a direct comparison. Moreover, this method

can be easily transported to any computation software allowing faster and saver results.

When dealing with the necessity of a linear model different approaches have been considered.
However, Taylor’s technique offers the best results and provides a structured methodology to
linearize the equations. As this method implies the calculation of numerous partial derivatives
external software; Maplel6, had been used. The implementation in Maplel6 has implied a more
extensive knowledge on the software, but also a reliable source to ensure proper results. Moreover,

providing a tool easy to modify when any change or update had to be made.
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Another key element of the project has been the design and implementation of a control system. To
do so, the Linear Quadratic Regulation (LQR) method has been chosen as it allowed the regulation of
the system while letting some parameters up to the design so more or less weight could be given to
its parameters. Translating into a faster stabilization thanks to a high control action or a slower

regulation but with a lower control action.

Moreover, in order to make a full analysis of the system and the results, the exchanged forces
between the floor and the subject during the whole stabilization process have been computed and
implemented on Matlab. The obtained results lead to a wider understanding as showed the
limitations of the system when depending on the perturbation they required an implausible force
value and direction. However, values have been found where the required forces to stabilize the

system were performed in a plausible sense and direction.

Once the initial objective of designing and implementing a controller for a balance system with a
frontal approach had been accomplished new ways of improving the model have been discussed. The
natural step, though, was to implement an elastic parameter in order to simulate the hip joint. In
order to do so, an extended bibliographical research has been done. After analyzing numerous
studies that dealt with values for damping and stiffness coefficients regarding the different joints, it
can be concluded that there is a lack of research for a frontal approach. All studies focused on a
sagittal study of movement, and even in this case the values for elastic coefficients differed
significantly from subject to subject. However, all the research has been crucial to understand the
behavior of the joints and be able to approximate a value taking into account the mobility range of

the hip joint in the frontal plane.

Finally, the study of a non-linear control law allowed a different approach to the case of study itself.
Leading to a wider understanding of the field of control and regulation even though the results were

not the expected ones, but it set a start point for future projects.

Overall, the use of powerful software such as Matlab and its graphical programming environment;
Simulink, has allowed avoiding the necessity to solve the system of differential equations by
simulating the system itself. It has been a key element, as only by obtaining the simulations of the
different scenarios it has been possible to compare the results and reach all the conclusions stated

above.

Regarding where a future research could be focused on, it would be really interesting to approximate
the elastic component of the joints with an exponential function instead of a linear one. Moreover, in
order to get a more precise research, it would be better to follow a sagittal approach as there is more
literature about it and more precise values could be used. Also a more extent study on non-linear

controllers could be performed leading to more complex regulating systems.
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Annex A

In this Annex all the Matlab detailed files for the original model can be found.

Al. Matlab Script

Matlab Script of the initial model, both linear and non-linear

iL= clear all

2|= close all

3

4 %DATI

5 — ml=32.34;

6 — 11=0.9275;

1= 161=11/2;

8 — m2=30.66+7; %taking into acount the arms (m2+m3)

9 — 12=0.504;

10 — 162=(319/538)*12;

idi|= g=9.81;

12

13 $Moments of inertia -—> Body 1 and Body 23 as Slender rods
14 — J1=9.4548;

15 — J2=11.9831;

16

17 $Moments of inertia -—> Body 1 as rectangular prism,

18 %and Body 23 as a composition of a rectangular prism and a slender rod
19 % J1=9.574656;

20 % J2=11.86929;

21

23 %P.Equilibrio

24 — x0=[0.1 0 0 O]

25)

26 $5%%%

27 %$LINEARE

28

29 — £f11=-(J24m2*1G2"2) * (m1*1G1+m2*11) *g/ (m2"2*11"2*1G2"2- (J2+m2*1G2"2) * (J1+m2*11"2) ) ;
30— f12=m2~2*g*1G2~2*11/ (m2"2*11~2*1G2"2— (J24m2*1G2~2) * (J1+m2*11"2)) ;
31 — £13=0;

32— £14=0;

33

34 — f21=m2*11*1G2* (m1*1G1+m2*11) *g/ ( (J1+m2*11"2) * (m2~2*11"2*1G2~2/ (J1+m2*11"2) -J2-m2*1G2"2) ) ;
35 — f22=—m2*g*1G2/ (m2~2%¥11~2*1G2~2/ (J14m2*11~2) -J2-m2*1G2"2) ;
36 — £23=0;

37— £24=0;

38

39 — gll=m2*11*1G2/ (m2"2*11"2*1G2"2~ (J2+m2*1G2"2) * (J1l+m2*11~2)) ;
40 — g22=-1/(m2"~2*11~2*1G2"2/ (J1+m2*11"2) -J2-m2*1G2~2) ;

41

42 — A=[0 010 ;0001 ; £11 £12 £13 f14; f21 f22 f23 f24;]

43 — B=[0;0:gll;g22;]
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44
45
46 —
47 —
48 —
]
50
Fil
5 |=
52 |=
54

€6 —

73 —
74
75
Te —
77 —
78
79
80
81
82 —
83 —
84 —
85 —
86 —
87 —
88 —
89 —
90

78

%Non c'era nella versione originale del matlab, ma si nella tesis

lambda=eig(A)
Co=ctrb (A, B)
n=rank (Co)

29
C)

)

$disturbo di Coppia:
ampiezza dist=20;
t dist=(0.5):

[L0O0O0;0100:00
[0;0;0;0]:
= C'*C;

= lgr(a,B,Q,R)

SPLOT
sim('Poleplc8.slx")

fsa = 12; %
fs1 = 15; %
fsc = 11; %
font = '"Times';

close all

10000 171+

fontsize axis 14
fontsize labels 18
fontsize commenti

figure(l),plot (state system)
title('System State Dynamics')

xlabel ('Time 55[s]55",

'Latex')

'fontsize', fsl, 'FontName', font, 'Interpreter',

ylabel ('System state $5[rad]55 - 55[rad \cdot sec”{-1}]55", 'fontsize',

fsl, 'FontName', font,

'Interpreter', 'Latex')

set (gca, 'fontsize', fsa) % dimensioni del testo sugli assi

grid on

set (gca, 'xlim', [0 10], "ylim', [-.5 .5])
set(gca, '¥Tick', 0:1:10, '¥Tick', -.5:.05:.5)
legend('\theta 1', '\theta 2', 'd\theta 1/dt','d\theta 2/dt"')

legend('boxzon')

set (legend, 'FontName', font, 'FontSize', £sl)
print('-depsc','-tiff','-r300','S5tate’)
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91

92

93 ENON LINEARE 3u(l)=xl;u(2)=x2;u(3)=x3;u(4)=x4;u(5)=CM3
94 — Al=J14m2*11"2;

95 — A2=m2*11*1G2;

96 — A3=m2*11*1G2;

97 — Bd=(ml*1G14+m2*11) *g;

98 — Bl=m2*11*1G2;

99 — B2=024+m2*1G2"2;

100 — B3=m2*11*1G2;

101 — Bd=m2*g*1G2;

102

103 FEEE5ELE55E555555555%%

104 — sim('Nonlineare8.slx")

105

106 — fsa = 12; % fontsize axis 14
107 — fs1 15; % fontsize labels 18
108 — fsc = 11; % fontsize commenti
109 — font = '"Times"';

A2. Simulink Linear system

Simulink model of the linear system.

The file is called Poleplc, from pole placement.

Dist

Disturbance

Control_torqug«—s

To Workspace1

X' =Ax+Bu
b@ g y = Cx+Du

State-Space1

Pistate_system

To Workspace

-K

o]

Scopez
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A3. Simulink Non-Linear system

Simulink model of the non-linear system

Angle
u X L
Not Linear system
u
flu) [«
Kx Velocity

Inside the “Non linear system block”:

> u3) » 1
xdot1 s %1 (theta_1)
Feni Integrator1
x
> u) p 1
xdot2 s %2 (theta_2)
Fen2 Integrator2
u
P In1 L 1— L
S | x3 (theta_1_dot)
Fen3 Integrator3
Tao P In1 ! 1 |
s x4 (theta_2_dot)
Fend Integrator4

In order to make it easy to find typing mistakes the functions have been divided in different blocs
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Inside view of the bloc “Fcn3”

1) P In1 Out1

In1

Numeratore1

utyu2) ——»1)

function3

pfu)

Denominatore1

The “Denominatorel” having the following value:
Denominatorel: B1*A2*(cos(u(1)-u(2)))*2-B2*A1l

While the inside view of the “Numeratorel” bloc is the following:

In1

Out1

As it can be seen, the numerator has been divided in each different term for an easier control of

mistakes, leading to the following values:

nitl: B2*A3*u(4)*2*sin(u(1)-u(2))
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nlt2: B2*A4*sin(u(1))

nlt3:  B3*A2*u(3)"2*sin(u(1)-u(2))*cos(u(1)-u(2))

nit4: B4*A2*sin(u(2))*cos(u(1)-u(2))

n1t5: A2*cos(u(1)-u(2))*u(5)

nl: u(1)-u(2)+u(3)+u(4)+u(5)

Inside view of the block “Fnc4”

The same structure has been followed for the last equation

1) P In1 Out1

In1

Numeratore2

u(tyu@2) p———»( 1)

function4

> fu)

Denominatore2

The “Denominatore2” having the following value:
Denominatore2: ((B1*A2)/A1)*(cos(u(1)-u(2)))*2-B2

While the inside view of the “Numeratore2” bloc is the following:
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(1) B )
In1
n2t1
» flu)
n2t2
» ) My o ———»(1)
Out1
n2t3 n2
»{ B4*sin(u(2))
n2t4
» u(5)

n2t5

As it can be seen, the numerator has been divided in each different term for an easier control of

mistakes, leading to the following values:

n2tl:  (B1*A3/A1)*u(4)72*sin(u(1)-u(2))*cos(u(1)-u(2))
n2t2:  (B1*A4/Al)*sin(u(1))*cos(u(1)-u(2))

n2t3:  B3*u(3)"2*sin(u(1)-u(2))

n2td:  B4*sin(u(2))

n2ts:  u(s)

n2: -u(1)+u(2)-u(3)-u(4)-u(5)

A4. Simulink Non-Linear system with forces

To study how plausible the results were, the forces between the body and the floor have been
simulated, meaning the addition of some blocks to the Simulink system while keeping the “Non linear

system” the same.
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Theta 1 (th)
»

Theta 1 |:|

Theta 2 Theta 2 (th)

Angle »

: 17 []
dih pini  out >
Not Linear system Angular
velocity 1
g |:| fen: Folx Folx
K Angular " ]
velocity 2 r D
Velocity ’—I | int Outl >
dth2
= fen: Foly Foly

gl

acceleration 1

P

A .
n Acceleration

Angular !
acceleration 2 ddth2

Where the block “fcn:Folx” has the following structure and values

1 B flu) W+
O >- (1)
Ini m1*ddxG1 Outt
Add
——®  flu)
m2* ddxG2

m1*ddxG1l: m1*(IG1*u(5)*cos(u(1))-IG1*(u(3))*2*sin(u(1)))

m2*ddxG2: m2*(11*u(5)*cos(u(1))-11*(u(3))*2*sin(u(1))+IG2*u(6)*cos(u(2))-1G2*(u(4))*2*sin(u(2)))

And the block “fcn:Foly” has the following structure and values
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@ > f(u) >+
- -
In1 m1*ddyG1 ) »( 1)

— Out1

Add

——Pp f(u)

m2* ddyG2

> m2'g

m2"g

—— mi*g

mi*g1

ml1*ddyGl: m1*(-IG1*u(5)*sin(u(1))-1G1*(u(3))*2*cos(u(1)))

m2*ddyG2: m2*(-11*u(5)*sin(u(1))-12*(u(3))*2*cos(u(1))-1G2*u(6)*sin(u(2))-1G2*(u(4))*2*cos(u(2)))

m2g: m2*g

mlg: ml*g
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Annex B

In this Annex the modifications performed to the original Matlab files can be found in order to adapt

them to the updated model including an elastic element equivalent to the hip joint.

B1. Matlab script for the updated model

PR, SR, B S VR S R
|

[t e B Y o
= T B P N O = U= ]
Lol I [

[ O % T P T T 6 T N o T o T i [T T 6 T T
[ e o T T o O o T A O < O I O N = T Ve s s

W W
= W

O

clear all

close all

$DATI

ml=32.34;

11=0.9275;

1G1=11/2;

m2=30.66+7; %taking into acount the arms (m2+m3)
12=0.504;

1G2=(319/538)*12;

g=9.81;

%Elastic coefficient hip frontal plane
Kelas=2.7;

$Moments of inertia --> Body 1 and Body 23 as Slender rods
J1=9.4548;
J2=11.9831;

Moments of inertia -->» Body 1 as rectangular prism,

ol® o@ of o@

f11= (- (J24m2*1G272) * (m1*1G1+m2*11) *g— (J24m2*1G2~2) *Kelas) / (m2~2*11~2*1G2~2—
(J24m2*1G242) * (J14m2+11°2) ) ;

f12= (m2°2*g*1G2~2*11+ (J24m2*1G2~2) *Kelas) / (m2~2*11~2*1G2~2- (J24m2*1G2~2) *
(J14m2*11~2)) ;
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35)1=
36 —
37
38 —
3=
40
41

o=
=

A2 —

44
45 —
46 —
47
48 —
49 —
50
51

==
£

53(=
54 —
55
56
57
58 —
50
60
el —

o=
2

€3 —
64 —
€5 —
66 —
67 —
68 —
69 —
70

71

o=
£

73
74 —
75 —
Te —
77 —
78
o=
30
31

£13=0;
£14=0;

£21=(m2*11*1G2* (m1*1G14m2+11) *g/ (J14m2*11~2) +m2*11*1G2*Kelas/ (J14m2*11~2))/
(M2~2*%117°2%1G272/ (J14m2*11°2) ~J2-m2*1G2~2) ;
£22=(-m2*g*1G2-m2*11*1G2*Kelas/ (J1+m2*11~2)) / (m2~2*11~2*¥1G2~2/ (J1+m2*11~2)
~J2-m2*1G2°2) ;

£23=0;

F£2rA_N

gll=m2*11%1G2/ (m2"2*11~2%1G2~2- (J2+m2*1G2~2) * (J1+m2*11~2) ) ;
g22=-1/ (m272*1172%1G2~2/ (J14m2*1172) -J2-m2*1G2"2)

A=[0 01 0 ;0001 ,; £f11 £12 £13 f14; £21 £22 £23 £24;]
B=[0;0;gll;g22;]

%Non c'era nella versione originale del matlab, ma s5i nella tesis
lambda=eig (4) ;

Co=ctrb (A,B):

n=rank (Co) ;

al@

-
T

ol®

$disturbo di Coppia:
ampiezza dist=20;
t dist=(0.5):

cC=[10000100:0010;0001]:
D [0;0;0:0]:

Q = C'*C;

Q(1,1) = 500¢

Q(2,2) = 6500;

Q(3,3)=0;
Q(4,4)=0;
R =1;

K = 1qr(A,B,Q,R):

$PLOT

sim('PoleplclO.s1x")

fsa = 12; % fontsize axis 14
fsl = 15; % fontsize labels 18
fac = 11; % fontsize commenti
font = '"Times';

close all
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82 — figure (1) ,plot(state system)

83 — title('System State Dynamics')

84 xlabel ('Time $55[s]55", 'fontsize', fsl, "FontName', font, 'Interpreter',
85 'Latex')

86 ylabel ('System state 35[rad]$s - $S[rad ‘\cdot sec”{-1}]1355'", 'fontsize',
87 fsl, '"FontName', font, 'Interpreter', 'Latex')

88 — set (gca, 'fontsize', fsa) % dimensioni del testo sugli assi
89 — grid on

90 — set (gca, 'xlim', [0 10], 'v1lim', [-1 1])

91 — set (gca, "¥Tick', 0:1:10, 'YTick', -1:.1:1)

92 — legend('\theta 1', "\theta 2', 'd\theta 1/dt','d\theta 2/dt'")
93 — legend('boxon')

94 — set (legend, 'FontName', font, 'FontSize', fs1)

95 — print('-depsc','-tiff', '-r300", 'S5tate")

96

97 $NON LINEARE

98 %States var: u(l)=xl;u(2)=x2;u(3)= u(d)= 5)=CM3

ez SForce var: u(l)=thetal;u(2)=thet a#,u(3)= .vel.l;u(4)=ang.vel.2;
100 % u(b)=ang.accelerationl;u(6)=an acceleratloni

101 — Al=J14m2*11"2;

102 — AZ2=m2*11*1G2;

103 — A3=m2*11*1G2;

104 — AAd=(ml*1G1l4m2*11) *

105 — Bl=m2*11*1G2;

106 — B2=J24m2*1G2"2;

107 — B3=m2*11*1G2;

108 — BA=m2*g*1G2;

109

110

111 T 55555555

112 — sim('NonlinearelO.slx")

113

114 — fsa = 12; % fontsize axis 14

115 — fs1 = 15; % fontsize labels 18

116 — fsc = 11; % fontsize commenti

117 — font = '"Times';

118

B2. Simulink diagrams for the updated model

In order to adapt the original Simulink diagrams two blocs had to be added in the functions of the

non-linear system.

In this Annex the inside view of the modificated blocs can be found. The blocs that are not shown

means that remain the same.

The general scheme remains the same as it can be seen below:
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Tao

> u@3) 1
xdot1 s x1 (theta_1)
Fen1 Integrator1
 u) 1
xdot2 s %2 (theta_2)
Fen2 Integrator2
x
L In1 - 1— L
S | x3 (theta_1_dot)
Fen3 Integrator3
P In1 L 1— L
s x4 (theta_2_dot)
Fend Integrator4

Inside view of the bloc “Numeratore 1” inside the bloc “Fcn3”

D

In1

Out1

n1t6 elastic

As it can be seen, a 6™ bloc has been added corresponding to the elastic element.
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nitl: B2*A3*u(4)"2*sin(u(1)-u(2))

nit2: B2*Ad*sin(u(1))

nit3: B3*A2*u(3)72*sin(u(1)-u(2))*cos(u(1)-u(2))
nit4: B4*A2*sin(u(2))*cos(u(1)-u(2))

nits: A2*cos(u(1)-u(2))*u(5)

nln6 elastic B2*(-Kelas*(u(1)-u(2)))

nl: u(1)-u(2)+u(3)+u(4)+u(5)-u(6)

Inside view of the bloc “Numeratore 2” inside the bloc “Fcn4”

In1

» B4*sin(u(2))

n2t4

> u(5)

n2t5

> fu)

n2t6 elastic

Again, a 6™ bloc has been added corresponding to the elastic component.

n2tl: (B1*A3/A1)*u(4)*2*sin(u(1)-u(2))*cos(u(1)-u(2))
n2t2: (B1*A4/A1)*sin(u(1))*cos(u(1)-u(2))
n2t3: B3*u(3)"2*sin(u(1)-u(2))
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n2t4: B4*sin(u(2))

n2t5: u(5)

n2t6 elastic (B1/A1)*(-Kelas*(u(1)-u(2)))*cos(u(1)-u(2))
n2: -u(1)+u(2)-u(3)-u(4)-u(5)+u(6)
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Annex C

The implementation of the non-linear controller in Matlab can be found below.

C1. Matlab Script Non-linear control law

il|= |clear all

Z|= close all

3 $DATI

4 - ml=32.34;

5|= 11=0.9275;

6 — 1G1=11/2;

7= m2=30.66+7; Staking into acount the arms (m2+m3)

8 — 12=0.504;

9 — 1G2=(319/538)*12;

D= g=9.81;

11

12 $tMoments of inertia --> Body 1 and Body 23 as Slender rods
13|= J1=9.4548;

14 — J2=11.9831;

15

16 tMoments of inertia --> Body 1 as rectangular prism,
17 %and Body 23 as a composition of a rectangular prism and a slender rod
18 % J1=9.574656;

19 & J2=11.86929;

20

21

22 $P.Equilibrio

25— z0=[0.05 0 0 0]

24

25 %Costanti controllore

26 — ke=1.5;

27 |= kp=1;:

28 — kd=1;

29

30

31 $NON LINEARE

32 $States var: u(l)=xl;u(2)=x2;u(3)= u(d)= u(5)=CM3
33 S$Force var: u(l)=thetal;u(2)=thet a_,u(3)= n Vel l;u(d)=ang.vel.2;
34 % (5)=ang.accelerationl;u(6)=an accelera:loni
35[= Al=J14m2*11"2;

36 — B2=m2*11*1G2;

37 |= B3=m2*11*1G2;

38 — =(ml*1G14m2*11) *g;

20[= Bl=m2*11*1G2;

40 — B2=J24m2*1G2~2;

41 — B3=m2*11*1G2;

42 — Bd=m2*g*1G2;
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43
44
45
46 —
47 —

49 —
50 —
51
52
53
54
55 |=
56

S8 |=
2=

el

“ONTROLLORE

Q0 o

Ql=Al;
Q2=A2;
Q3=RA4/g;
Q4=B2;
Q5=B4/g;

fsa = 12; %
fsl = 15; %
fsc = 11; %
font = '"Times';

stanti per il controllc

re

axis 14
labels 18
fontsize commenti

fontsize
fontsize

C2. Matlab Simulink Non-linear control law

Not Linear system

Controllore non-lineare

94

Out1 In1 |————

Theta 1
>
»
Theta 2
Angle
Angular
velocity 1
P
»
Angular
velocity 2 Velocity
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Inside view of the bloc “Controllore non-lineare”

(1 )im

P in1 Out1

C.Numeratore

uti@y F—»( 1)

Qut1

num

P In1 Out1 »

C.Denominatore

Inside view of the bloc “C.Numeratore” inside the bloc “Controllore non-lineare”
1 )im
»  flu) »
n1
u(t)kdu(z) f——»( 1)
Out1
num
P In1 Outl >
F{(th,dth)

Being the block n1 equal to:

nl: -(Q1*Q4-Q272*(cos(u(1)-u(2)))*2)*(u(4)+kp*u(2))

And the block F(th,dth) following the next inner structure:
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(1} » fu) 3 +
Im1

ET1

> fiu) >+
ET2

Out1

- flu) >+
ET3

. flu) >+
F.T4

Add

Where:

F.T1:

F.T2:

F.T3:

F.T4:

Inside view of the bloc “C.Denominatore” inside the bloc “Controllore non-lineare”

D)

Q272*cos(u(1)-u(2))*sin(u(1)-u(2))*(u(4))r2
-Q2*Q3*g*cos(u(1)-u(2))-sin(u(1))
Q1*Q2*sin(u(1)-u(2))*u(3)"2

Q1*Q5*g*sin(u(2))

In1

» f(u) >
d1
num
P In1 QOut1 »
~E=E-Etop

u(t)yu@ykd'@l ———»( 1)

QOut1
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Being the block d1 equal to:
d1: ke*(Q1*Q4-Q2/2*(cos(u(1)-u(2)))*2)

And the block ~E=E-Etop following the next inner structure:

1) B fu) B+
In1
E.T1
> f(U) |+
ET2
(1)
Out1
Ll f(u) »+
E.T3
(Q3+Q5)*g p{-
Etop
Where:
E.T1: 0.5*Q1*u(3)*2
E.T2: Q3*g*cos(u(1))
E.T3: Q5*g*cos(u(2))
Etop: (Q3+Q5)*g

Regarding the subtraction of “E,,,”, be aware of the negative sign in the “Add” block itself.
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Annex D

Maplel6 has been used to compute the partial derivatives from the Taylor’s expansion and evaluate

them in the equilibrium point in order to linearize the non-linear systems.

In this Annex all the detailed Matlab files and results can be found for both the original and updated

model.

D1. Maplel6 Initial model

v

Al:=J1+m2*11"2:
A2:=m2*11*1G2:
A3:=m2*11*1G2:
Ad:=(ml*1Gl+m2*11) *g:
> Bl:=m2*11*1G2:
> B2:=J2+m2*1G2"2:
> B3:=m2*11*1G2:
B4:=m2*g*1G2:
fl:=(tl,t2,dtl,dt2,CM3)->(B2*A3*dt2*sin(tl-t2)-B2*A4d*sin(tl)+B3*A2*
(dt1)A2*sin(t1-t2) *cos (t1-t2) +B4*A2*sin (t2) *cos (t1-t2) +A2*cos (t1-t2) *
CM3) / (B1*A2* (cos (t1-t2)) ~2-B2*Al) ;

1
Bl A2cos(#] —12)* — B2 Al
— B2 A4 sin(tl) + B3 42 dri* sin(7f —¢2) cos(71 —12) + B4 A2 sin(12) cos(11 —12)

+ 42 cos(11 — 12) CM3)

v

vV Vv

JU= (1,12, dil, di2, CM3) — (B243 dr2sin(11 —12) 1)

> f2:=(tl,t2,dt1l,dt2,CM3)->((-B1*A3/Al) *(dt2)*2*sin(t1l-t2) *cos (tl-t2)+
(B1*A4 /A1) *sin(tl) *cos (t1-t2)-B3* (dtl)~2*sin(t1l-t2)-Bd*sin(t2)-CM3) /(
((B1*A2) /Al) * (cos (t1-t2) ) ~2-B2) ;

7= (11, 22, dil, di2, CM3) — L { @
Bl A2cos(t] —12)
— B2
Al
2 s 2 2 ' 2
_B143de sm(IJAI t2) cos(tl —12) " B]A45111(r1;1cos(t1 £2) B3 sin(1] — 12)

— B4sin(12) — CM’S]
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>

> £11:=diff(f1(t1l,t2,dtl,dt2,cM3),tl1);

S11= (2 +m21G2*) m2111G2 dr2 cos(11 — 12) — (J2 + m21G2*) (m1IGI +m211) gcos(tl)  (3)
+ m2* 117 1G2* dt1* cos (11 — 12)* — m2* 117 1G2* de P sin (1] — 12)*

—m2* g 1G2* 11 sin(#2) sin(¢#] —#2) —m2 11 1G2 sin(¢] — ¢2) le/[_?)/

(m2* 17 1G2* cos(r1 — 12)* — (2 + m21G2*) (1 +m211*)) + (2 ((J2

+m2 IGEZ) m2111G2 di2sin(tl —2) — (.D +m2 IGQZ) (mllGI+m2lI) gsin(1!)

+m2* 17 1G2* arl? sin(z] —12) cos(t{ —12) + m2* g 1G2* 11 sin(22) cos(zl —12)

+m2111G2 cos(t] —12) CM’S) m2* 117 1G2* cos(zl —12) sin(tl —12) )/

(:1122 1% 1G2* cos(t1 — f2)2 — (J? +m2 IG22) (JJ +m2 HZ) )2

>
> eval(f11, [t1=0,t2=0,dt1=0,dt2=0,CM3=0]) ;
) (2 +m21G2%) (m11GI+m21l) g
2 742 2 2 2
m2* 117 1G2* — (2 + m2 1G2*) (J1 + m2117)
> f12:=diff (£1(tl,t2,dtl,dt2,CM3),t2);
S12:= (- (72 + m21G2*) m2 11 1G2 dir2 cos(11 — 12) — m2* 117 1G2* dt1* cos(t] — 12)? 3)

+m2* 117 1G2* di I sin(t] — f2)2 +m2* g 1G24 11 cos(72) cos(tl —12)

+m2* gIG2* 11 sin(12) sin(¢] — £2) +m2 11 1G2 sin(¢] — 12) CMs)/

(m2* 17 1G2* cos(11 — 12)* = (2 + m21G2*) (J1 +m21*)) — (2 (2

+ m2 fG22) m2111G2di2sin(t] —12) — (J2 +m2 /G22) (m1IGI1 +m211) gsin(])
+ m2* 11 1G2* atI* sin(#] —¢2) cos(t] —£2) + m2* g 1G2* 11 sin(#2) cos(tl —£2)

)

+m2111G2 cos(t] — 12) CM3) m2* 11* 1G2* cos (11 — 12) sin(¢] — 12) ) /

(m22 1* 162* cos(t] — IQ)Z — (JE + m2 fG_?z) [JJ +m2 /]2) )2
> eval (f12, [t1=0,t2=0,dt1=0,dt2=0,CM3=01) ;
m2* g 1G2* 11
m2* 117 1G22 — (72 + m21G2*) (J1 + m211%)

(6)

> f13:=diff (f1(t1l,t2,dtl,dt2,CM3) ,dtl);
B 2m2* 117 1G2* dil sin(11 — 12) cos(1] — 12)
Ad = 3 2 2 2 ™
m2° 117 1G2" cos(t] —£2)" — (JQ +m2lG2 ) (JJ +m21I )

> eval (£13, [t1=0,t2=0,dt1=0,dt2=0,CM3=0]) ;
0 ®

> fl4:=diff(f1(t1,t2,dtl,dt2,CM3),dt2) ;
(J2 4+ m21G2*) m2 11 1G2 sin(¢tl — 12)
m2* 117 1G2* cos (el — 12)* — (J2 + m21G2*) (J1 + m2117)

> eval (f14, [t1=0,t2=0,dt1=0,dt2=0,CM3=0]) ;
0 (10)

f4:= ®
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> £21:=diff (£2(t1,t2,dtl,dt2,cM3),tl1);
o - 1 - m2 1P IG2* di2* cos(t] — 12)°
m2* 1% 1G2* cos(t] — r2)2 JI+ m2 11
JI+m2 11

— 22— m2IG2*

n m2* 11 1G2* dr?* sin(#] — 1‘2)2 n m2111G2 (mllG1 +m2il) gcos(tl) cos(tl —12)
JI+m2 11 JI+m2ir

m2111G2 (mliIGI +m211) gsin(¢1) sin(t] —12)
JI+m2 11

— m2 11 IG2 dit]* cos(1] — 12) J

+ [2 [_ m2* 112 1G2* a2 sin(¢/ —12) cos(#l —12) + m2111G2 (mllGI +m2il) gsin(tl) .
JI+m211 JI+m211°

-2
cos(il—12) _ m2 111G2 d1* sin(2] —2) —m2 g lG2 sin(12) — Cva] m2* 117 1G2* cos(t! —12)

JI+m21r

21,2 02 o2 2
sin(l]—t?)]/[[ m2” 11" 1G2” cos(1l — 12) —J2—13121G22] (JJ -1—1112112)]

> eval (£21, [t1=0,t2=0,dt1=0,dt2=0,CM3=0]) ;
m2111G2 (mllGI +m2ll) g

2117 1G2* a2
(J1+m211*) | =5 — 2 —m21G27*
JI+m2l
> £22:=diff(f2(t1,t2,dtl,dt2,CM3),t2);
B 1 m2* 117 1G2* di2? cos(1] — 12)°
72 2 117 1G2* 1 —12)* JI+ m2 11 @)
m2 27 cos(t] —12) 2 IG* + m2

JI+m2 11

_ m2* 117 1G2* di2? sin(t] — f2)2 n m2111G2 (mlIG1 +m2l1) gsin(¢]) sin(#] —12)
JI+ m21r* JI+m2 11

+ m2111G2 dtI* cos(t/ —12) —m2glG2 cos(t?)] — [2 [

- m2* 11 1G2* ar?* sin(7] —12) cos(t] —12)
JI+m2 1P
n m2111G2 (mllGl +m211) gsin(zl) cos(t] —12)
JI+m211*

— m2111G2 dil* sin(t1 — 12)

—m2glIG2sin(12) — C;‘irB] m2* 11 1G2* cos(t] —12) sin(t] —12) ]/

[ [ m2* 11 1G2* cos(t] — 2‘2)2

2
: —J2—m2 IG22] (J1 +m211%) ]
JI+m2l1l
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> eval(£22, [t1=0,+t2=0,dt1=0,dt2=0,CM3=0]) ;
2 2
) m2* 11 IGL:E £ 2 a9
“7"2 —J2—m2IG2
JI+m2l
=>
> £23:=diff(£2(t1,t2,dtl,dt2,cM3),dtl);
= < -2 —m2 G
JI+m2l
> eval(£23, [t1=0,+t2=0,dt1=0,6dt2=0,CM3=0]) ;
0 (16)
=>
> £24:=diff (f2(tl,t2,dt1l,dt2,CM3),dt2);
B 2 m2* 11% 1G2* dr2 sin(t1 — 12) cos(t] — 12)
J24:=- 2,2 a2 2 an
(g1 +m21p?) | PEHIGE S Z )7 51622
JI+m2l
> eval(£24, [t1=0,t2=0,dt1=0,dt2=0,CM3=0]) ;
0 (18)
>
> gll:=diff (f1(t1,t2,dtl,dt2,CM3),CM3);
gll = - : m2 11 IZG} cos(#] —12) : : (19)
m2* 117 1G2* cos(t1 — 12)* — (2 + m21G2*) (J1 + m2 11%)
> eval(gll, [t1=0,t2=0,dt1=0,dt2=0,CM3=0]) ;
— . m2111G2 . . 20)
m2* 117 1G2* — (J2 + m2 1G2*) (J1 + m2 11%)
=>
[> g22:=diff (£2 (t1,t2,dt1,dt2,CM3),CM3) ;
S m2* 117 1G2* cos(t] —lf'))z 2 @b
= = 5 —— —J2—m2IG2
JI+m211
> eval(g22, [t1=0,t2=0,dt1=0,dt2=0,CM3=0]) ;
IR IGR? 1 2 @2
‘742 -2 —m2lG2
JI+m2ll

D2. Maplel6 Updated model

Linearization of the model that includes the stiffness element for the hip joint.
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Al:=J14+m2*1142:
A2:=m2*11*1G2:

> A3:=m2*11*1G2:

> Ad:=(ml*1Gl+m2*11) *qg:
> Bl:=m2*11*1G2:

> B2:=J2+m2*1G2"2:

> B3:=m2*11*1G2:

> B4:=m2*g*1G2:

> Ca:=-Kelas* (t2-tl):

V'V

> fl:=(t1,t2,dtl,dt2,CM3)->(B2*A3*dt2*sin(tl1-t2)-B2*Ad*sin(tl)+B3*A2%*
(dtl) *2*sin(t1-t2) *cos (t1-t2)+B4*A2*sin(t2) *cos (t1l-t2)+A2*cos (t1-t2) *
CM3-B2*Ca) / (B1*A2* (cos (t1-t2) ) *2-B2*Al) ;

F1 = (11, 12, dil, 2, CM3) — L
BI42cos(tl — 1)} — B2 Al

— B2 A4sin(tl) + B3 A2 drl* sin(#] —12) cos(z] —12) + B4 A2 sm(r2) cos(rl —12)
+ A2 cos(t] — 12) CM3 — B2 Ca)

(B2A43 dr2sin(t] —12) (1)

> £2:=(t1l,t2,dtl,dt2,CM3)->((-B1*A3/A1) * (dt2) ~2*sin (t1-t2) *cos (t1-t2)+
(B1*A4/A1) *sin(tl) *cos (t1-t2) -B3* (dt1l) *2*sin (t1-t2)-B4*sin (t2) -CM3+
(B1/A1) *Ca*cos (dt1-dt2) )/ (( (B1*A2) /Al) * (cos (t1-t2)) ~2-B2) ;

2= (10, 12, dtl, di2, CM3) — L [ @)
Bl A2cos(tl —12)
— B2
Al
72 g — — i —
~ BI1A43dr2" sin(tl —12) cos(#] —12) n Bl A4sin(¢l) cos(tl —12) B3t sin(1] — 12)
Al Al
—de
— Bisin(12) — CM3 + L Cacos(dil — di2)
Al
>
>

> £11:=diff (£1(tl,t2,dtl,dt2,CM3),tl);

f11:= (2 4+ m21G2*) m2111G2 d2 cos(tl — 12) — (J2 + m21G2*) (m11G1 +m211) gcos(tl)  (3)
+ m2 117 1G2* dil* cos(t1 — 12)* — m2* 1% 1G2* de P sin (11 — 12)°
—m2* g 1G22 11 sin(#2) sin(#] —¢2) —m2111G2sm(t] —12) CM3 — [J2 +m2 IGQZ) Kelds)
/(mz2 117 1G2* cos(tl — 12)* — (2 +m21G62*) (U1 +m211%)) + (2 ((J2
+m2 !GQZ) m2111G2 dr2sin(t1 —12) — (J? +m2 /(?22) (mliG1+m2ll) gsin(t])
+ m2* 117 1G2* dr 1 sin(t] —¢2) cos(t —¢2) + m2* g 1G2* 11 sin(72) cos(t! —12)
+ m2111G2 cos(t] — 12) CM3 + (J2 + m21G2*) Kelas (~t1 + 12) ) m2* 117 1G2* cos(t1

—12) sin(rl —12) )/(1;122 1 iG2* cos(t] — 1‘2)2 — (J2 +m2 .’G22) (J] +m2 Hz] )2
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> eval (f11, [t1=0,t2=0,dt1=0,dt2=0,CcM3=0]) ;
- (J2 +m2 IGQZJ (ml1lGl+m21l) g — (J;? +m2 fG.?z) Kelas
m2* 117 1G2* — (J2 + m21G2*) (J1 + m2 11%)
> £12:=diff (F1(tl,t2,dtl,dt2,6CM3),t2);
S12:= (- (2 + m21G2*) m2111G2 di2 cos(i] — 12) — m2* 117 IG2* dt1* cos(t] — 12)* )
+m2% 11F 1G2* drl? sin(t] — 1‘2)2 +m2* g 1G2* 11 cos(22) cos(tl —12)
+m2* gIG2* 11 sin(12) sin(¢] — 12) + m2111G2 sin(¢] — 12) CM3 + (J2 + m21G2*) Kelas)
/(mz2 117 1G2* cos(t1 — 12)* — (2 + m21G2*) (J1 +m211*)) — (2 (22
+m2 fG22) m2111G2d2sin(t! —12) — (J2 +m2 /G22) (m1lGI+m2ll) gsin(t])
+ m2° 11* 1G2* drl? sin(# —¢2) cos(t] —£2) + m2* g 1G24 11 sin(72) cos(t —12)
+m2 11 1G2 cos(t1 — 12) CM3 + (J2 + m2 1G2*) Kelas (~t1 + 12) ) m2* 11* 1G2* cos (11

“

—12) sin(dl —12) )/(mz2 112162 cos(11 — 12)? — (2 + m2162*) (U1 + m212))’

> eval (£12, [t1=0,t2=0,dt1=0,dt2=0,CM3=0]) ;
m2* g 1G22 11 + (J2 + m2 1G2*) Kelas

2 7,2 2 2 2

m2 17 1G2* — (2 + m21G2*) (J1 + m2 11%)

()

> f13:=diff (f1(tl,t2,dtl,dt2,cM3),dtl);
B 2 m2* 117 1G2* drl sin(t] — 12) cos(t] — 12)
3= 2 112 12 2 2 2 ™
m2* 112 1G2* cos (11 — 12)* — (J2 + m2 1G2*) (J1 + m2 11%)
> eval (£13, [t1=0,t2=0,dt1=0,dt2=0,CM3=0]) ;
0 3

> f14:=diff (f1(t1,t2,dtl,dt2,cM3),dt2);
(J2 + m21G2*) m2111G2 sin(t] — 12)
m2* 117 1G2* cos(t1 — 2)* — (J2 + m21G2*) (J1 + m211°)
> eval (f14, [t1=0,t2=0,dt1=0,dt2=0,CM3=0]) ;
0 (10)

S14 = ©)
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> £21:=diff (£2(tl,t2,dtl,dt2,CM3),tl);
o - 1 - m2* 117 1G2” di2” cos(11 — 12)°
 m 1R 1G22 cos(t] — f2)2 JI+m21r
J+m21r

(11)
— 22— m21G2?*

m2* 117 1G2* dr? sin(t] — f2)2 N m2111G2 (ml1IGI +m2l11) gcos(t1) cos(t] —12)
JI+ m2 11 JI+ m2 11
- m211G2 (ml11G1 +m211) gsin(¢]) sin(#] —12)
JI+m211°
" m2 111G2 Kelas cos(dt] — dt2)
JI+m21r
~ m2* 1% 1G2* di2* sin(71 —12) cos(t1 —12)
JI+m211°
n m2111G2 (ml1GI +m211) gsin(t!) cos(¢] —12)
JI+m211°

+

— m2111G2 dt* cos(tl — 12)

+ 12

— m2111G2 dtl* sin(t] — 12)

m2111G2 Kelas (-t + 12) cos(dt] — dt2)
J1+ m2 I

2172 152 2
m2 117 1G2* cos(1] — 12) sin(1] — 12) mZ ITIGZ eoslt —12)° _
JI+m2l1

—m2glIlG2sin(12) — CM3 —

2
—m2 szz] (J1 + m211%) ]

> £22:=diff (£2(tl,t2,dtl,dt2,CM3),t2);

2= I

m2* 117 1G2* cos(t] — 3‘2)2
JI+m2 11

m2* 117 1G2? dr2* cos(t1 — 12)*
JI+ m21r

— J2 — m2 1G2*

m22 117 1G2* dr2* sin(7] — I?)2 n m2111G2 (mlIGI +m211) gsin(t!) sin(t] —12)
JI+m2 11 JI+m2 11

+m2111G2 dil* cos(t! —¢12) —m2glG2 cos(12) —

m?2 11 1G2 Kelas cos(dtl — di2)
JI+m2 1

PN m2* 117 1G2* dr2* sin(7/ — t2) cos(tl —12) v m2111G2 (mlIGI +m211) gsin(t])
JI+m21r* JI+m2 11

cos(tl —12) m2111G2 Kelas (-t1 + 12)

— m2111G2 di* sin(tl —12) —m2glG2sin(12) — CM3 — )
JI+m2l1
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2.2 a2 2 2
;ﬂ%ﬂ@fmqﬁ—ﬁnmm—ﬁﬂ// Hﬁﬂ”’wcmm_ﬁ)—p—mwwﬂ(ﬂ+myﬂ]

7 m 172

> eval (£22, [t1=0,t2=0,dt1=0,dt2=0,CM3=0]) ;
m2 11 1G2 Kelas

-m2glG2 — 5
JI+m211

(14)
m2* 1% 1G2*

——J2—m2 1G2*
JI+m211
> £23:=diff (£2(t1,t2,dtl,dt2,cM3),dtl) ;

2 2 Kelas (- 2) si —dr2
2 m2111G2 dil sin(1] — 12) + m2111G2 Kelas (-t +t 3 sin(dr] — dr2)
JI+m2l1

P3= (15)

22 772 1322 _ 92
m2- 11" 1G2 cos(ti t2) P — w2 1G>
JI+m2ll

> eval (£23, [t1=0,t2=0,dt1=0,dt2=0,CM3=0]) ;
0 (16)

> £24:=diff (£2(t1,t2,dtl,dt2,CM3),dt2);
4= (17
1
m2* 117 1G2* cos(t] — f?)2
JI+m2 11
_2m2° 1P IG2* di2 sin(11 — £2) cos(1] — 12)
JI+m2 11
 m2111G2 Kelas (-tl + 12) sin(dt] — di2)
JI+m2ir ]

> eval(£24,[t1=0,t2=0,dt1=0,dt2=0,6CM3=0]) ;
0 (18)

— 2 —m21G2* [

>
|> g11:=diff (f1(t1,t2,dtl,dt2,CM3),CM3);
m2111G2 cos(tl —2)

gll = (19)
m2* 117 1G2* cos(t1 — 12)* — (72 + m21G2*) (J1 +m211%)
> eval(gll, [t1=0,t2=0,dt1=0,dt2=0,6CM3=0]) ;
2 2
m2111G2 20)

m2* 117 1G2* — (72 + m21G2*) (J1 + m2 11%)
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> g22:=diff (£2(tl,t2,dtl,dt2,CM3) ,CM3) ;
1

m2* 117 1G2* cos(t] — {2)2
JI+m2ir*

> eval(g22, [t1=0,t2=0,dt1=0,dt2=0,CM3=0]) ;
1

g22:= -
— T2 —m21G2*

m2* 1% 1G2*

— —J2—m2 1G2*
JI+m2 17

D3. Maplel6 Non-linear Controller

;> with (LinearAlgebra) :

01 02 cos(thl — th2)
02 cos(thl — th2) 04

mD =

dthl,0]]);
0 O2sin(thl — th2) dth2
-02sin(thl — th2) dthl 0

mC =

-Q3 gsin(thl)
mG =
-Q5 gsin(th2)
=> mddth:=Matrix ([ [ddthl], [ddth2]]) ;
[ ddthl
mddth =
ddth?2
=> mdth:=Matrix ([ [dthl], [dth2]]);
dithl
mdth =
dth?2
=> mtao:=Matrix([[0], [taoc]l]) :
0
mtao =
rao

UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH
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> mD:=Matrix([[Q1l,Q2*cos (thl-th2)], [Q2*cos (thl-th2) ,Q4]1])

> mC:=Matrix([[0,Q2*sin(thl-th2) *dth2], [-Q2*sin(thl-th2) *

> mG:=Matrix([[-Q3*g*sin(thl)], [-Q5*g*sin(th2)]]);

(21)

(22)

0

@

“

®

(©6)
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_> mDi:=MatrixInverse (mD) ;

_ o4 02 cos(thl — th2)
~Q1 04+ Q2% cos(thl — th2)*  -Q1 04 + Q2* cos(thl — th2)*
mDi ;= @)
02 cos(thl — th2) ~ 01
~01 04 + 02* cos(thl — th2)* ~01 04 + 02* cos(thl — th2)*

>
> mCmdth:=Multiply (mC,mdth) ;

Q2 sin(thl — th2) dth2*
mCmdth = @)
~02sin(thl — th2) dihl*

=> mtaomCmdthmG: =mtaoc-mCmdth-mG;
~02 sin(thl — th2) dih2* + 03 g sin(hl)

mtaomCmdthmG = &)
tao + Q2 sin(thl — th2) dthl* + Q5 g sin(1h2)

=> ddthfinal:=Multiply (mDi,mtaomCmdthmG) ;
04 (-025sin(thl — th2) dth2* + Q3 g sin(hl) )

~01 04 + 02* cos(thl — th2)*
L Q2cos(thl —th?) (tao + Q2 sin(thl — th2) dihl* + OS5 g sin(th2) ) ]

~01 04 + 02* cos(thl — th2)* |
02 cos(thl — th2) (-Q2 sin(thl — th2) dih2* + Q3 g sin(thl))
~01 04 + 02* cos(thl — th2)*
01 (tao + Q2 sin(thl — th2) dihl* + Q5 g sin(th2) ) ”
~01 04 + 02* cos(thl — th2)*

ddthfinal == (10)

> ddth2:= Q2*cos (thl-th2) * (-Q2*sin (thl-th2) *dth242+Q3*g*sin
(thl))/ (-Q1*Q4+Q2~2*cos (thl-th2) ~2) -Q1* (tao+Q2*sin (thl-
th2) *dth1+2+Q5*g*sin(th2)) / (-Q1*Q4+Q2*2*cos (th1l-th2) *2) ;

02 cos(thl — th2) (-2 sin(thl — th2) dih2* + 03 g sin(thl))
~01 04 + 02* cos(thl — th2)*

01 (tao + Q2 sin(thl — th2) dihl* + Q5 g sin(th2) )

~01 04 + Q2* cos(thl — th2)*

'> fcomddth2: =-Q2*cos (thl-th2) * (-Q2*sin (thl-th2) *dth2”2+Q3*g*
sin(thl))+Ql* (tao+Q2*sin(thl-th2) *dthl142+Q5*g*sin(th2)) ;

ddth2 == (11)
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feomddth2 = -02 cos(thl — th2) (-Q2 sin(thl — th2) dth?* + Q3 g sin(thl)) (12)
+ 01 (tao + Q2 sin(thl — th2) dihl* + Q5 g sin(th2))

> mF:=Q2%2*cos (thl-th2) *sin(thl-th2) *dth242-Q2*Q3*g*cos (thl-
th2) *sin (thl) +Q1*Q2*sin (thl-th2) *dthl1*2+Q1*Q5*g*sin(th2) ;

mF = Q2" cos(thl — th2) sin(thl — th2) dth2* — Q2 03 g cos(thl — th2) sin(thl)  (13)
+ Q1 Q2sin(thl — th2) dihl* + Q1 Q5 g sin(h2)
_> mQltao:= Ql*tao;

mQ1Itao = Q1 tao 14)
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