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Resum 

L’habilitat de mantenir una postura correcta s’està convertint en un important tema d’estudi ja que 

és necessari comprendre el comportament del cos humà per tal d’aplicar aquests coneixements en 

altres camps com la robòtica o la mecànica 

Al llarg d’aquest projecte s’ha realitzat el disseny i estudi d’un sistema de control per l’equilibri de la 

postura tot seguint un enfocament frontal. Per tal de trobar paràmetres antropomètrics realistes ha 

estat necessari realitzar una àmplia recerca sobre els diversos paràmetres biomecànics. En quant al 

model, per tal de centrar l’atenció en les bases del moviment, s’ha escollit un model simplificat basat 

en el doble pèndul. Pel que reguarda el sistema de control, s’han utilitzat dos mètodes diferents; 

d’una banda el mètode LQR (per les seves sigles en anglès, “Linear Quadratic Regulator”) ja que deixa 

al dissenyador la capacitat de triar quant pes es vol donar a l’efecte del controlador, i per l’altra 

banda un controlador no linear. A més a més, s’ha dissenyat un segon model que inclou un element 

elàstic com a aproximació del comportament del maluc. És per això que s’ha realitzat una exhaustiva 

recerca sobre les diverses aproximacions en el disseny de les articulacions. Finalment, la simulació 

dels diferents models i els diversos escenaris considerats ha permès la comparació de tots ells, 

arribant a proporcionar quins paràmetres poden ser negligits i quins tenen una gran influència en els 

resultats. 
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Resumen 

La capacidad de mantener una postura correcta se está convirtiendo en un importante tema de 

estudio ya que es necesario entender el comportamiento del cuerpo humano para poder aplicar esos 

conocimientos a campos como la robótica y la mecánica. 

En este proyecto se ha realizado el diseño y estudio de un sistema de control de balance postural 

siguiendo un enfoque frontal. Con tal de encontrar parámetros antropométricos realistas ha sido 

necesario realizar una exhausta investigación sobre parámetros biomecánicos. En cuanto al modelo, 

con la finalidad de centrar la atención en las bases del movimiento, se ha elegido un modelo 

simplificado basado en un doble péndulo. Por lo que reguarda el sistema de control, se han usado 

dos métodos; por un lado, el método LQR (por sus siglas en inglés, “Linear quadratic regulator”) ya 

que deja al diseñador la capacidad de elegir cuanto peso se quiere dar al efecto del control, mientras 

por el otro un controlador no linear. Se ha diseñado también un segundo modelo que incluye un 

elemento elástico como aproximación del comportamiento de la cadera. Con tal fin, se ha tenido que 

realizar una amplia investigación sobre las distintas aproximaciones en la modelación de las 

articulaciones. Finalmente, la simulación de los distintos modelos y los diversos escenarios 

considerados ha permitido la comparación de todos ellos, llegando a proporcional qué parámetros 

pueden ser descuidados y cuales tienen un gran peso en los resultados. 
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Abstract 

The ability to maintain a proper posture is becoming a more interesting topic as it is necessary to 

understand the behavior of the human body to be able to apply this knowledge to robotics and 

mechanics. 

In this project the design and study of a balance postural control system has been developed, by 

following a frontal modeling approach. An extensive research on biomechanical parameters has been 

necessary to find realistic anthropometric values to be implemented. A simplified model, based on 

the double pendulum, has been chosen because it allowed focusing on the basis of the balance 

movement. Regarding the control system, two different methods have been used. On the one hand, 

the Linear-quadratic regulator (LQR) has been used as it allowed to decide how much weight the 

controller could have, while on the other hand, a non linear controller has been studied. Moreover, a 

second model that included an elastic element to simulate the hip joint has been designed;to do so, a 

wide research on different approximations of the human body’s joints has been performed. Finally, 

the simulation of the different models and the numerous scenarios considered has allowed an 

extensive comparison determining which parameters could be neglected and which ones havea 

strong influence on the system dynamics.  
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1. Preamble 

1.1. Background of the project 

Posture is a key element of the daily life. There are significant number of studies that show the 

relationship between keeping a proper posture and numerous health benefits. On the one hand, 

from a psychological perspective, it is well known how the posture can influence a person’s mood, 

the way to face the day and even how other people perceive them and treat them accordingly. On 

the other hand, from a medical perception, maintaining a good posture is the easiest way to prevent 

present and future injuries and deformations. The ability of maintaining a posture is due to a huge 

number of muscular contractions and efforts. It’s a continuous process, in which the body regulates 

every single part of its components to face the effects of gravity and punctual external disturbances. 

Biomechanics has a strong relationship with physiology and anatomy. The tension that acts at the 

tendons is controlled by the patterns generated by the release of metabolic energy by the 

neuromuscular system. That tension waveform depends on physiological characteristics of the body 

like the muscles and if they are rested or fatigued. With the reduction of the mortality rate and the 

constant increase of the lifespan, the degenerative illnesses are becoming more and more important. 

However, this is not the main source of the increasing rate of physical postural injuries. Due to the 

lifestyle adopted by the majority of the occidental society, a lot of injuries occur. This lifestyle is 

characterized by a constant bad posture in desk related jobs or the constant use of Smartphones that 

lead to an unhealthy position of the neck. 

Setting aside the biomedical background, the modeling of the body is a different problem to tackle. 

There are different models depending on the precision needed and the case of study. In this project, 

a frontal standing modeling approach is used. As the main objective is to study the basics of the 

stabilization movement, a simple model is suitable to analyze the system dynamics. More specifically, 

the so called Pendubot is considered as a reference. 

The Pendubot [8] is a two link robot with an actuator at one of the ends of the open chain. Different 

versions with the actuation in between the links have been also designed and studied, such as the 

Acrobot from the University of Illinois. However, the analysis of Pendubot kinematics and dynamics is 

more useful for this project (Fig. 1.1.). 
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Fig. 1.1. Pendubot diagram [7]. 

As it can be seen in Fig. 1.1, the actuator acts directly the inner link, while the movement of the outer 

link is due to the transmitted torque through the inner link, and therefore cannot be controlled 

directly. The mechanical equations that describe the Pendubot can be easily obtained either with a 

Newton-Euler strategy or using Lagrange’s equation. In literature, a common approach to control the 

system is based on LQR or pole placement methods. To this aim, it is necessary to linearize the 

Pendubot dynamical equations (e.g. by means of the Taylor series). 

The Pendubot design itself allows a 360º motion, and therefore, depending on the application, the 

control system (Fig. 1.2) needs to include angle restrictions.  

 
Fig. 1.2. Scheme of the Pendubot’s interface with its controller. [8] 
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Following a similar approach, A.Tenerelli developed a model based on a frontal approach, thus 

obtaining a system of dynamical equations similar to those representing a double pendulum 

dynamics. As it can be seen in Fig. 1.3, an additional body corresponding to the arms was added to 

the system model.  

 
Fig. 1.3. Schematics of the model used by A.Tenerelli [22]. 

The original model in Tenerelli’s thesis was affected by errors on parameters and compensation 

momentums in joints, and on simulation models implemented in Matlab/Simulink environment. 

Finally, the original work did not consider reliable biomechanical parameters within the model. 

However, it represented a suitable starting point to develop different modeling and control 

strategies, and implementation approaches. 

1.2. Motivation 

Decrypting the mechanisms of the human body has always been an intriguing topic in various 

disciplines. Such a natural mechanism like the posture balance takes hundreds of considerations and 

regulating actions performed unconsciously every second of a person’s life. However, it is not only 

interesting to analyze it from a physical and medical point of view, but also to try to replicate it 

through the knowledge provided by different engineering fields. Moreover, the proper 

understanding of such mechanisms and its replication is the first milestone for biomechanical and 

automation studies aiming at developing support posture devices. Maintaining an upright position is 

a natural human struggle in certain circumstances, for example among the elder population or in 

some medical health conditions like sclerosis. The increase of the life expectancy of the population 

has motivated a large number of studies among the medical field, as it has opened a completely new 
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window of circumstances unreachable a few years ago. Both the medical and military research on 

exoskeletons has increased in the past 50 years, requiring a better understanding of the human body 

and regulating mechanisms. Therefore, this is an extremely interesting topic as it allows the 

communion of fields such as biomechanics and control and regulation of systems. 

1.3. Previous requirements 

For the proper development and understanding of this project the knowledge on different fields of 

engineering is required. As stated before, this project has been inspired by the thesis work of 

A.Tenerelli [22]. Derivation of the system equations requires the knowledge of systems dynamics, to 

adopt either the Newton-Euler approach or the Lagrange approach. Moreover, notions in 

biomechanics will be needed to properly define the model parameters. Among other engineering 

fields, control systems knowledge is needed to design the stabilizing controller. In this work, Maple16 

and Matlab software environments have been used, the former to linearize the system and the latter 

as a simulation tool. Matlab/Simulink environment allowed to directly compute the solution of model 

differential equations for each simulation time instant. 
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2. Introduction 

2.1. Objectives of the project 

This project objective is to obtain a better understanding of the dynamics of the balance system of 

the human body, by improving the work of A.Tenerelli [22] who derived a simplified model of the 

system. More in details, the objective is to go further and obtain a non-linear system equivalent to 

the frontal approach of the human body, which is able, even in presence of external disturbances, to 

stabilize the unstable vertical position.  

To this aim, different milestones have been set. First, the proper definition of model parameters and 

equations. Then, the design of the controller for a linear version of the system. After the basic study is 

achieved, the next milestone is to control a non-linear system. Finally, the last step is to design a non-

linear controller. 

To follow through each step and achieving the different objectives, two software environments are 

used. More specifically, Maple16 is used as a symbolic math tool, to perform some of the 

mathematical computations. Matlab/Simulink environments are used to develop the simulation 

model and to integrate the dynamical system differential equations. 

2.2. Scope of the project 

The development of this project required a background in different engineering fields. 

First of all, in the biomechanics field a state of the art research is performed to find the most accurate 

parameters as possible including fraction lengths and masses of each body component. In addition to 

the anatomic parameters, a range of options are considered for the moment of inertia. Each body is 

approximated by different geometrical shapes to reach a wider knowledge in the influence of these 

values in the stabilization. 

In the mathematical approach, different options are considered evaluating the advantages and 

disadvantages of a Newton-Euler approach versus a Lagrange’s approach to obtain the non-linear 

model. The advantages of using different mathematical tools are discussed.  

When considering the different control techniques, the linearization of the non-linear system is 

required by the LQR control. The different parameters of this control are explained and reviewed in 

order to choose the most appropriate ones. The necessity to linearize the system leads to a research 
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among the different mathematical techniques and the use of software such as Maple16 to perform 

the most complicated operations avoiding unnecessary mistakes and allowing a faster result and 

modification when implementing different models. Later on, a non-linear control law is developed to 

substitute the LQR method. 

Finally, different simulations are performed in order to compare the results for each possibility. The 

knowledge in Matlab/ Simulink allows determining the importance of each parameter and the range 

in which the stabilization is possible. 
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3. Biomechanical data 

 

3.1. Background 

Biomechanics has been a widely studied subject in the last years, usually with medical applications 

such as the design of prosthesis or external skeletons. To do so, there have been different methods 

developed to determine the human body segment parameters. Some authors like W. Braune and O. 

Fisher, and later W.T. Dempster, studied cadavers to determine coefficients that allowed estimating 

the segment mass, center of mass and moment of inertia [13]. The formers have been widely used 

while the latter raised some doubts because of the use of a small and segmented range of data. R. 

Contini also used cadavers, but in this case a different strategy was followed [13]. In order to 

determine the parameters of the lower limbs, a whole body density of each sample was determined 

mathematically by using an accurate weight and an estimation of the volume. However, the range of 

cases in which the final coefficients could be used was rather small as it depended on a short range of 

height and weight. A third method was developed by E.P. Hanavan [13]. In this case, the limbs of the 

body were modeled as geometric solids determining easily then the center of mass and moments of 

inertia. 

In 1985 S.H. Koozekanani and J. Duerk compared the accuracy of Dempster, Contini and Hanavan 

methods in the article “Determination of Body Segment Parameters and Their Effect in The 

Calculations of the Position of Center of Pressure During Postural Sway” [13]. To do so, the center of 

pressure in the horizontal direction of a lateral approach was computed using dynamic model with 

the data provided by the three different models. To compare the accuracy, the experimental values 

were obtained using a Kistler model 9216 for plate. According to the results, even though the chosen 

subject did not belong to the range of age taken into account by Dempster (Fig. 3.1), the results 

followed the same tendency, even if they were far from being accurate. In the case of Contini, the 

calculated results differed widely from the measured ones (Fig. 3.2). Finally, Hanavan model, using 

general geometric solids, was the most accurate one (Fig. 3.3). 
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Fig. 3.1.Dempster method (starting 
below) compared to experimental 
method (starting above) [13]. 

 
Fig. 3.2. Contini method (starting 
below) compared to experimental 
method (starting above) [13]. 

 
Fig. 3.3.Hanavan method (starting 
below) compared to experimental 
method (starging above) [13]. 

A different side of the body modeling issue is the control system. In 1998 P.Gorce and F. El Hafi 

studied the decision mechanism of humans while stepping over an object. Even though a better 

understanding of the control scheme is not the scope of this project, for the simulation a model had 

to be implemented, so biomechanical parameters had to be used. However the parameters where 

not explained in the paper, so its relevance lies in a future project but not in a biomechanical focused 

one. 

In the article “Beyond Parameter Estimation: Extending Biomechanical Modeling by the Explicit 

Exploration of Model Topology” from 2007 [2] the use of topology techniques to study and simulate 

complex tendon networks is developed. Even though this article is too much detailed for the 

simplified model studied in this project, it is important to understand also how the studies of 

biomechanical modeling have evolved. 

The authors used an approach based on the explicit distinction between topology and parameter 

values. Thus, the topology refers to the structure of a model, defined by the organization of the 

elementary building blocks such as tendons, muscles, ligaments. While the parameter values are 

associated to the specifications of each building block like shape, size, material properties, etc. [2]. In 

order to test the methodology, the modeling of hand tendons was considered. The authors’ 

simulation system (Fig. 3.4) differentiated topology and parameter values in two blocks. So when 

discrepancies were found in the results, they could be corrected modifying one of the two blocks. 
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Fig. 3.4. Bloc diagram of the model where both topology and  

paramters can be adjusted to fit the data [2]. 

 

To model the structures, the research team developed a biomechanical model simulator, where they 

defined each building block by proper parameters, and then described them by a strain-stress bond.  

It is also interesting to pay attention to the article “Identification of isolated biomechanical 

parameters with a wireless body sensor network” [19]. Even though it is focused on the knee joint 

and therefore too specific for the purpose of this project, it points out useful information. The main 

goal of the article is to develop a body sensor able to measure surface electromyogram and 9-

degrees of freedom inertial/magnetic data at high sample rates [19], in order to minimize the 

instrumentation effort done by the subject nowadays. This article points out that typically in 

biomechanics the behavior of a joint is described as a mechanical impedance, so time-varying and 

non-linear and also a function of frequency. Taking all into account a dynamic system model of the 

test bench and the human knee has been developed (Fig. 3.5). 

 

Fig. 3.5. Test-bench design (left) for a knee model validation with subject (right) [19]. 
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The test-bench model is represented by a simplified mechanical model taking into account the 

following elements: two fixed moments of inertia J1 and J2 and two non linear viscous damping terms; 

D1 and D2. Being D1 and D2 a function of the time derivative of the rotation angle, (dϕ/dt = ω). 

Moreover, the sensor torque is given by the spring constant that denotes the stiffness and the 

relative angle. Therefore the obtained system is the following (Fig. 3.6):  

 

(3.1.) 

 
Fig. 3.6. Mechanical equivalent diagram of the test-bench [19]. 

Regarding the human knee kinematics model, the authors have based it on the dynamic model by 

Riener and Fuhr [19]. All detailed information can be found in the paper [19]. But even though the 

precision of it, it is interesting to analyze the followed approach, especially when trying to add some 

elastic component to the hip joint in the projects model. 

After analyzing the different studies made in the last years, a more basic literature is needed. In the 

book “Biomechanics and Motor Control of Human Movement” by David A. Winter a wide variety of 

information is found. The most interesting chapter for this project is the anthropometry one. It is 

exclusively dedicated to the studies of physical measurements of the human body. And though 

historically the purpose of the field had been evolutionary and historical, nowadays it has become 

really important for human body modeling. 

Regarding segment dimensions, both Dempster and Contini’s teams collected estimated data. 

However it was Drillis and Cotini [23] to express them as a fraction of body height (Fig. 3.7). 
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Fig. 3.7. Body segment lengths expressed as a fraction of body height (H)  

and developed by Drillis and Contini (1966) [23]. 

To build the model, together with the lengths elements, the segment mass have to be defined in 

order to compute the inertial moments and the centers of mass. To do so, there are different data 

available. The first option is the results of the measurements done by Drills and Contini regarding the 

density (Fig. 3.8). 

 
Fig. 3.8. Density of limb segments as a function of average 

body density by Drillis and Contini (1966) [23]. 
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A more direct option is given by the data provided by Dempster. In this case, the anthropometric 

data was expressed as a portion of the total mass (Table 3.1) 

 
Table 3.1 Mass fraction of the different bodies by Dempster [23]. 

However, the most complete measure of center of mass until 2009 was the 21-marker, 14-segment 

model, used to determine balance mechanisms during quiet standing by Winter et al. [23]. In the 

following immage (Fig. 3.9) the location of the markers and the table give the definition of the 14 

segments used, along with mass fraction of each segment. 

 
Fig. 3.9. Mass fraction of the different bodies by Winter et al. (1998) [23]. 
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To compute the center of mass, when dealing with a multisegment system, the following equations 

have been used: 

 
Being M = m1 + m2 + m3  

mi, for i=1..3, the mass of the corresponding segment (i). 

(3.2.) 

Later on, considering the model as a set of rigid geometrical bodies, the moments of intertia have 

been computed, using often the Parallel-Axis Theorem (Eq. 3.3.). 

𝐽 = 𝐽0 + 𝑚 · 𝑥2 

(3.3.) 
 𝐽0 = 𝑚𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑎𝑏𝑜𝑢𝑡 𝑡𝑕𝑒 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑚𝑎𝑠𝑠 

𝑚 = 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑡𝑕𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 

𝑥 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑚𝑎𝑠𝑠 𝑎𝑛𝑑 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 

Even though all the needed information has been found in the “Biomechanicsand Motor Control of 

Human Movement” book by David A. [23]. Being it a recap of the different authors named and 

studied before such as Dempster and Contini. It is worth to analyze the thesis of Hanavan as those 

approximations gave the best results in the paper “Determination of Body Segment Parameters and 

Their Effect in the Calculation of the Position of Center of Pressure During Postural Sway” [2]. 

“A Mathematical Model of the Human Body” by Hanavan describes a human body model dividing it 

in different segments, to later on analyze the model with a computer program. According to this 

thesis work, the personalized mathematical model is made of 15 simple geometric solids as shown in 

Fig. 3.10. 

  
Fig. 3.10. Body segments by Hanavan [18]. 
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Hanavan details each of the 15 bodies’ geometry and analyses the anthropologic parameters, the 

center of gravity and the moment of inertia about the three different axes. With all the data acquired 

by the model, a comparison is made with the experimental data. Reaching the results shown in Table 

3.2 and Fig. 3.11.  

 
 

 

Table 3.2. Location of center of gravity (left) and Specific gravity of body segments (right) [18]. 

 
Fig. 3.11. Error distribution in 7 different positions (66 subjects). Being X and Z the location of the center of gravity, and Ixx, Iyy 

and Izz the moments of inertia about the named axes [18]. 

Even though the data obtained and analyzed in Hanavan’s thesis in 1964 was crucial for the 

development of the field, it is not directly useful for this project, as data such as the lengths of the 

bodies were measured on the studied subjects. 
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3.2. Chosen values 

3.2.1. Partial mass and length 

After analyzing all the data and bibliography stated above, the partial mass and lengths have been 

computed according to the Table 3.1 and Fig. 3.9 respectively. The following data has been obtained. 

Mass Height 

Total  70 Kg Total 1,75 m 

Two legs 32,34 Kg Legs 0,9275 m 

Torso 24,99 Kg Torso 0,504 m 

Head 5,67 Kg Head 0,225 m 

Two arms 7 Kg Arms 0,99575 m 

Table 3.3.Computed Mass and Length 

3.2.2. Moments of inertia 

Regarding the moments of inertia, two different cases will be considered in order to compare the 

results. 

 
Fig. 3.12.Body Diagram for the computations 

CASE1. All components as a Slender rod 

Using the following information and the data stated before: 
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Fig. 3.13. Slender rot diagram [6] 

𝐽𝑦 = 𝐽𝑧 =
1

12
· 𝑚 · 𝐿2 

𝑤𝑕𝑒𝑟𝑒: 𝐽𝑦  𝑎𝑛𝑑 𝐽𝑧  𝑎𝑟𝑒 𝑡𝑕𝑒 𝑚𝑜𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑡𝑖𝑎  

              𝑤𝑖𝑡𝑕 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑡𝑕𝑒 𝑐𝑜𝑟𝑟𝑖𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑎𝑥𝑖𝑠  

              𝑚 𝑖𝑠 𝑡𝑕𝑒 𝑚𝑎𝑠𝑠  

              𝐿 𝑖𝑠 𝑡𝑕𝑒 𝑙𝑒𝑛𝑔𝑡𝑕 

(3.4.) 

BODY 1: Legs 

Using the equations above, the moment of inertia with respect to the center of gravity G1 has been 

computed: JG1= 2,4996 Kg*m2 

Then, applying the parallel axis theorem, the moment of inertia of the first body (legs) with respect to 

the point 0, has been obtained: J01=9,4548 Kg*m2 

BODY 2 and 3: Torso and Arms 

Initially the same procedure is followed for the bodies 2 and 3. First computing the moment of inertia 

with respect their own center of gravity (JG2 and JG3), and then the one with respect to the point A has 

been obtained for both bodies (JA2 and JA3) using the parallel axis theorem. Finally, for the latter, the 

sum has been performed (JA23 )as both bodies will be behaving as one. 

JG2= 1,28772 Kg·m2 JG3= 6,97025 Kg·m2 

JA23= JA2+ JA3=11,9831 Kg·m2 JA2= 3,23475 Kg·m2 JA3= 8,748362 Kg·m2 

 

CASE2. Using different geometric shapes. 

In order to try to approximate a more realistic case, the arms have been considered slender rods as 

before, while both the torso and the legs are treated as rectangular prisms (Fig. 3.14). 
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Fig. 3.14. Rectangular prism diagram [6]. 

𝐽𝑥 =
1

12
· 𝑚 ·  𝑏2 − 𝑐2  

𝐽𝑦 =
1

12
· 𝑚 ·  𝑐2 − 𝑎2  

𝐽𝑧 =
1

12
· 𝑚 ·  𝑎2 − 𝑏2  

𝑤𝑕𝑒𝑟𝑒:  𝐽𝑥   𝐽𝑦  𝑎𝑛𝑑 𝐽𝑧  𝑎𝑟𝑒 𝑡𝑕𝑒 𝑚𝑜𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑡𝑖𝑎  

              𝑤𝑖𝑡𝑕 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑡𝑕𝑒 𝑐𝑜𝑟𝑟𝑖𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑎𝑥𝑖𝑠  

              𝑚 𝑖𝑠 𝑡𝑕𝑒 𝑚𝑎𝑠𝑠  

             𝑎, 𝑏, 𝑐 𝑎𝑟𝑒 𝑡𝑕𝑒 𝑑𝑖𝑚𝑒𝑛𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑡𝑕𝑒 𝑏𝑜𝑑𝑦 

(3.5.) 

BODY 1: Legs 

Using the equations above, the moment of inertia with respect to the center of gravity G1 has been 

computed: JG1= 2,6195 Kg*m2 

Then, applying the parallel axis theorem, the moment of inertia of the first body (legs) with respect to 

the point 0, has been obtained: J01=9,574656 Kg*m2 

BODY 2 and 3: Torso and Arms 

In this case, the data regarding the arms has already been computed in Case 1, so only the moments 

of inertia of the 2nd body are needed. However, they have been computed following the same 

procedure. 

JG2= 1,173899 Kg·m2 JG3= 6,97025 Kg·m2 

JA23= JA2+ JA3=11,86929 Kg·m2 JA2= 3,1209 Kg·m2 JA3= 8,748362 Kg·m2 

Comparison between both cases 

 Case 1 Case 2 

J01 9,4548 Kg·m2 9,574656 Kg·m2 

JA2 3,23475 Kg·m2 3,1209 Kg·m2 

JA3 8,748362 Kg·m2 8,748362 Kg·m2 

JA23 11,9831 Kg·m2 11,86929 Kg·m2 

Table 3.4. Comparison between the values of the computed moments of inertia. 
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As it can be seen in Table 3.4, the difference between choosing different geometrical bodies to 

represent the different parts of the body does not imply a huge variation in the values. In this project 

a really schematized version of the human body is used; so variations in the decimals do not have a 

significant impact in the results of the model. Therefore, it can be concluded that both options are 

suitable, but if a more accurate project would be performed the different should not be neglected. 
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4. Model and methodology 

4.1. Introduction 

Once all the biomechanical data have been computed, the next step is to proceed to determine the 

equations that will describe the chosen model. 

Following the work of A. Tenerelli a frontal approach has been chosen. In her thesis “Study of a 

balance postural control system” the following model was used (Fig. 4.1). 

 
Fig. 4.1. Schematics of the model used by A.Tenerelli [22]. 

The aim of the thesis work [22] was to design a control system that allowed the body to stabilize 

when a small lateral perturbation was produced. However, after different attempts, the designed 

controller worked only for a linearized system. 

The behavior of the human body, when schematized with such simplicity gets really close to a well 

known system called Pendubot (Fig. 4.2). It is a two-link open chain robot, with an actuator in one of 

the links, and then, that same link connected to the second one. Therefore the action applied on the 

first link will be passed on to the second one by a non-linear relation. 
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Fig. 4.2. Pendubot connected to the motor (left), Pendubot fully extended (right) [7]. 

In order to focus on the basis of the movement a double pendulum system has been chosen. 

Therefore, the following model (Fig. 4.3) has been used to develop the equations: 

 
Fig. 4.3. Diagram of the body balance scheme. 

Regarding the methodology, in the thesis work developed by A. Tenerelli [22] the equations to 

describe the system where found using Newton-Euler method. However, in this project a different 

methodology has been followed. Even though it is a simple system, thus using either Newton-Euler or 

Lagrange should not make a significant difference; in more complex systems the latter is highly 

recommended. Therefore, in order to use the most extendable methodology, Lagrange has been 

chosen. 
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4.2. Non-linear model 

According to Lagrange’s theory: 

𝐿 𝑞𝑖 , 𝑞 𝑖 = 𝐸𝑘 − 𝐸𝑝    𝑓𝑜𝑟 𝑖 = 1. . 𝑛  

𝑑

𝑑𝑡
 
𝜕𝐿

𝜕𝑞 𝑖
 −

𝜕𝐿

𝜕𝑞𝑖
=  𝑁𝑜𝑛 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒 𝜏 

(4.1.) 

where: 𝐿 is a real − valued function with continuous first partial derivatives  

𝑞𝑖  and  𝑞 𝑖  are the function to be found and its derivative respectively 

𝐸𝐾  is the kinetic energy 

𝐸𝑃  is the potential energy  

 

In order to understand the following computations a few parameters have to be defined according to 

Fig. 4.3. 

𝐽1, 𝐽2: moment of inertia of bodies 1 and 2 

𝑚1 , 𝑚2: mass of bodies 1 and 2 

𝑙1 , 𝑙2: length of bodies 1 and 2 

𝐺1 , 𝐺2: center of gravity of bodies 1 and 2 

𝑙𝐺1:  distance from point 0 to G1 

𝑙𝐺2: distance from point A to G2 

 

Kinetic Energy 

𝐸𝑘1 =
1

2
· 𝐽1 · 𝜃 1

2 (4.2.) 

𝐸𝑘2 =
1

2
· 𝐽2 · 𝜃 2

2 +
1

2
· 𝑚2 ·  𝑣𝐺2        2 (4.3.) 

Where  𝑣𝐺2        states the velocity of G2, therefore:  𝑣𝐺2       =
𝑑𝑂𝐺2         

𝑑𝑡
, with: 

𝑂𝐺2
         = (𝑙1 · sin 𝜃1 + 𝑙𝐺2 · sin 𝜃2 ) · 𝑖 + (𝑙1 · cos 𝜃1 + 𝑙𝐺2 · cos 𝜃2 ) · 𝑗  (4.4.) 

After computing the proper calculations: 

 𝑣𝐺2        2 = 𝑙1
2 · 𝜃 1

2 + 𝑙𝐺2
2 · 𝜃 2

2 + 2 · 𝑙1 · 𝑙2 · 𝜃 1 · 𝜃 2 · cos(𝜃1 − 𝜃2) (4.5.) 

Finally getting the total kinetic energy: 
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𝐸𝑘 = 𝐸𝑘1 + 𝐸𝑘2 = 

=
1

2
· 𝐽1 · 𝜃 1

2 +
1

2
· 𝐽2 · 𝜃 2

2 +
1

2
· 𝑚2 · (𝑙1

2 · 𝜃 1
2 + 𝑙𝐺2

2 · 𝜃 2
2 + 2𝑙1𝑙2𝜃 1𝜃 2 cos(𝜃1 − 𝜃2)) 

(4.6.) 

Potential Energy 

𝐸𝑝1 = 𝑚1 · 𝑔 · 𝑙𝐺1 · cos(𝜃1) (4.7.) 

𝐸𝑝2 = 𝑚2 · 𝑔 · (𝑙1 cos 𝜃1 + 𝑙𝐺2 cos 𝜃2 ) (4.8.) 

𝐸𝑝 = 𝐸𝑝1 + 𝐸𝑝2 = 

= 𝑚1 · 𝑔 · 𝑙𝐺1 · cos(𝜃1) + 𝑚2 · 𝑔 · (𝑙1 cos 𝜃1 + 𝑙𝐺2 cos 𝜃2 ) 

(4.9.) 

Applying Lagrange 

𝐿 𝜃1, 𝜃2 , 𝜃 1 , 𝜃 2 = 𝐸𝑘 − 𝐸𝑝  (4.10.) 

The different derivatives need to be computed. For more commodity two of them will be renamed 

like follows: 

𝜕𝐿

𝜕𝜃 1
= 𝐴 𝜃1 , 𝜃2 , 𝜃 1, 𝜃 2  and      

𝜕𝐿

𝜕𝜃 2
= 𝐵 𝜃1, 𝜃2 , 𝜃 1 , 𝜃 2  

Then the partial derivatives are computed: 

𝜕𝐴

𝜕𝑡
 𝜃1 , 𝜃2, 𝜃 1 , 𝜃 2 =

𝜕𝐴

𝜕𝜃1
· 𝜃 1 +

𝜕𝐴

𝜕𝜃2
· 𝜃 2 +

𝜕𝐴

𝜕𝜃 1
· 𝜃 1 +

𝜕𝐴

𝜕𝜃 2
· 𝜃 2 = 

 

= −𝑚2𝑙1𝑙𝐺2 sin(𝜃1 − 𝜃2)𝜃 1 𝜃 2 + 𝑚2𝑙1𝑙𝐺2 sin(𝜃1 − 𝜃2)𝜃 2
2 + (𝐽1 + 𝑚2𝑙1

2) 𝜃 1 + 

+𝑚2𝑙1𝑙𝐺2 cos(𝜃1 − 𝜃2) 𝜃 2 

(4.11.) 

𝜕𝐵

𝜕𝑡
 𝜃1, 𝜃2, 𝜃 1 , 𝜃 2 =

𝜕𝐵

𝜕𝜃1
· 𝜃 1 +

𝜕𝐵

𝜕𝜃2
· 𝜃 2 +

𝜕𝐵

𝜕𝜃 1
· 𝜃 1 +

𝜕𝐵

𝜕𝜃 2
· 𝜃 2 = 

= −𝑚2𝑙1𝑙𝐺2 sin(𝜃1 − 𝜃2) 𝜃 1
2 + 𝑚2𝑙1𝑙𝐺2 sin(𝜃1 − 𝜃2)𝜃 1 𝜃 2 + 𝑚2𝑙1𝑙𝐺2 cos 𝜃1 − 𝜃2 𝜃 1 + 

+(𝐽2 + 𝑚2𝑙𝐺2
2 ) 𝜃 2 

(4.12.) 
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Finally the derivatives with respect to the angles are computed. 

𝜕𝐿

𝜕𝜃1
= −𝑚2𝑙1𝑙𝐺2 sin(𝜃1 − 𝜃2)𝜃 1 𝜃 2 +  𝑚1𝑙𝐺1 + 𝑚2𝑙1 𝑔 sin(𝜃1) 

(4.13.) 

𝜕𝐿

𝜕𝜃2
= 𝑚2𝑙1𝑙𝐺2 sin(𝜃1 − 𝜃2)𝜃 1 𝜃 2 + 𝑚2𝑙𝐺2𝑔 sin(𝜃2) 

(4.14.) 

 

With the last four equations, it is possible to write Lagrange’s equations. 

0 =
𝑑

𝑑𝑡
 

𝜕𝐿

𝜕𝜃 1
 −

𝜕𝐿

𝜕𝜃1
=

𝜕𝐴

𝜕𝑡
−

𝜕𝐿

𝜕𝜃1
 

(4.15.) 

𝜏 =
𝑑

𝑑𝑡
 

𝜕𝐿

𝜕𝜃 2
 −

𝜕𝐿

𝜕𝜃2
=

𝜕𝐵

𝜕𝑡
−

𝜕𝐿

𝜕𝜃2
 

(4.16.) 

4.2.1. State space equations 

In order to simplify the equations above a set of constants have been defined, leading to the 

following equations: 

0 = 𝐴1𝜃 1 + 𝐴2𝜃 2 cos 𝜃1 − 𝜃2 + 𝐴3𝜃 2
2 sin 𝜃1 − 𝜃2 − 𝐴4 sin(𝜃1) (4.17.) 

𝜏 = 𝐵1𝜃 1 cos 𝜃1 − 𝜃2 + 𝐵2𝜃 2 − 𝐵3𝜃 1
2 sin 𝜃1 − 𝜃2 − 𝐵4 sin(𝜃2) (4.18.) 

Where the constants have the values below: 

𝐴1 = 𝐽1 + 𝑚2𝑙1
2 

𝐴2 = 𝑚2𝑙1𝑙𝐺2 

𝐴3 = 𝐴2 = 𝑚2𝑙1𝑙𝐺2 

𝐴4 = (𝑚1𝑙𝐺1 + 𝑚2𝑙1)𝑔 

𝐵1 = 𝑚2𝑙1𝑙𝐺2 

𝐵2 = 𝐽2 + 𝑚2𝑙𝐺2
2  

𝐵3 = 𝑚2𝑙1𝑙𝐺2 

𝐵4 = 𝑚2𝑙𝐺2𝑔 

Isolating 𝜃 1 from equation 4.17,  

𝜃 1 =
1

−𝐴1
 𝐴2𝜃 2 cos 𝜃1 − 𝜃2 + 𝐴3𝜃 2

2 sin 𝜃1 − 𝜃2 −𝐴4 sin 𝜃1   
(4.19.) 
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Then substituting it in equation 4.18, the relation for 𝜃 2is obtained. 

𝜃 2 =
−

𝐵1𝐴3

𝐴1
𝜃 2

2 sin 𝜃1 − 𝜃2 cos 𝜃1 − 𝜃2 +
𝐵1𝐴4

𝐴1
sin 𝜃1 cos 𝜃1 − 𝜃2 

𝐵1

𝐴1
𝐴2cos2 𝜃1 − 𝜃2 − 𝐵2

… 

…
−𝐵3𝜃 1

2 sin 𝜃1 − 𝜃2 − 𝐵4 sin 𝜃1 − 𝜏
𝐵1

𝐴1
𝐴2cos2 𝜃1 − 𝜃2 − 𝐵2

 

(4.20.) 

The same procedure is followed to obtain the last relationship (𝜃 1). 

𝜃 2 =
1

−𝐴2 cos 𝜃1 − 𝜃2 
 𝐴1𝜃 1 + 𝐴3𝜃 2

2 sin 𝜃1 − 𝜃2 −𝐴4 sin 𝜃1   
(4.21.) 

Finally, 

𝜃 1 =
𝐵2𝐴3𝜃 2

2 sin 𝜃1 − 𝜃2 − 𝐵2𝐴4 sin 𝜃1 + 𝐵3𝐴2𝜃 1
2 sin 𝜃1 − 𝜃2 cos 𝜃1 − 𝜃2 

𝐵1𝐴2cos2 𝜃1 − 𝜃2 − 𝐵2𝐴1
… 

…
+𝐵4𝐴2 sin 𝜃2 cos 𝜃1 − 𝜃2 + 𝐴2 cos 𝜃1 − 𝜃2 𝜏

𝐵1𝐴2cos2 𝜃1 − 𝜃2 − 𝐵2𝐴1
 

(4.22.) 

 

At this point the system is in a state-space form.  

𝑋 = 𝐹 𝜃1 , 𝜃2, 𝜃 1, 𝜃 2 + 𝐺(𝜏) (4.23.) 

𝐹 𝜃1, 𝜃2 , 𝜃 1 , 𝜃 2 =  

0 0   1 0
0

𝑓1(𝜃1 ,
0 0
𝜃2 , 𝜃 1 ,

1
𝜃 2)

𝑓2(𝜃1 , 𝜃2 , 𝜃 1 , 𝜃 2)

  (4.24.) 

𝐺 𝜏 =  

0
0

𝑔1(𝜏)
𝑔2(𝜏)

  (4.25.) 

The non-linear model is ready to be implemented; however, in order to solve the control system the 

linearization is needed. 
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4.3. Linear model 

In order to continue with the project, a linear model is needed for the design of the LQR controller. 

There are different linearization techniques, while A. Tenerelli decided to use equivalences such as 

cos 𝜃 = 1  or  sin 𝜃 = 𝜃 assuming small angles values, in this project Taylor’s expansion will be 

used. 

𝑋 = 𝑋 𝑒𝑞 +  𝐴 · ∆𝑋 + 𝐵 · ∆𝑈 (4.26.) 

With A and B defined as the Jacobian of matrixes F and G respectively as stated in equations 4.24 and 

4.25. 

𝐴 =

 
 
 
 
 
 
 

0 0     1 0
0

𝜕𝑓1

𝜕𝜃1

0 0
𝜕𝑓1

𝜕𝜃2

𝜕𝑓1

𝜕𝜃 1

1
𝜕𝑓1

𝜕𝜃 2
𝜕𝑓2

𝜕𝜃1

𝜕𝑓2

𝜕𝜃1

𝜕𝑓2

𝜕𝜃 1

𝜕𝑓2

𝜕𝜃 2 
 
 
 
 
 
 

[𝜃1𝑒𝑞 ,𝜃2𝑒𝑞 ,𝜃 1𝑒𝑞 ,𝜃 2𝑒𝑞 ]𝑇

 (4.27.) 

𝐵 =

 
 
 
 
 
 

0
0

𝜕𝑔1

𝜕𝜏
𝜕𝑔2

𝜕𝜏  
 
 
 
 
 

𝜏𝑒𝑞

 (4.28.) 

 

According to the chosen model the equilibrium state (𝑋 𝑒𝑞 ) would be null both angles and velocities, 

therefore the term with the equilibrium condition can be deleted leading to the final expression in 

equation 4.27. 

𝑋 = 𝐴 · ∆𝑋 + 𝐵 · ∆𝑈 (4.29.) 

As the computations are complexes, all the partial derivatives have been performed with Maple16, 

including the evaluation in the equilibrium point. The full computations can be found in the Annex D 

with all the results.  
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4.4. Linear Quadratic Regulation 

To design the controller, the Linear-quadratic regulator (LQR) i used. It is also known as the optimal 

control as its algorithms reduce the amount of work performed by the control system. It is a feedback 

controller and an important part of the solution to the Linear-quadratic-Gaussian problem.  

The name itself states its use; linear because the main idea is to regulate a dynamic system described 

by a set of linear differential equations and quadratic because the cost is described by a quadratic 

function. This situation itself is called the LQ problem. The cost function is the following: 

 

 

1

2
  𝑥𝑇𝑄 𝑥 + 𝑢𝑇𝑅 𝑢  𝑑𝜏

𝑡𝑓

𝑡0

 
(4.30.) 

Where: x is the state vector 
u is the input vector 
Q is a non-negative defined matrix 
R is a positive defined matrix 

 

To use the Matlab function LQR,the matrixes Q and R have to be defined. This definition has to be 

performed depending on the kind of control that is wanted. However, their values will have major 

consequences in the control. A large value of Q will translate into a quick stabilitzation, while if the 

values of R are the ones accentuated then the effect of the controller will be smaller, and therefore it 

will be a small realimentazion. Different parameters will lead to different results. Once, all the data is 

defined, the Matlab function will retourn a vector (K), equivalent to the weights of the function that 

will be implemented in the controller. 

4.5. Force Analysis 

In order to get a full analysis of the movement, the forces between the body 0-A  and the floor are 

computed (Fig. 4.4). 
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Fig. 4.4. Diagram of the model (left), body 0-A force analysis (center) and body A-B force analysis (right). 

 

Kinematics 

First, the body 0-A is analyzed leading to the following position, velocity and acceleration vectors: 

Po
si

ti
o

n
 𝑟𝐺1 = 𝑥𝐺1 · 𝑖 + 𝑦𝐺1 · 𝑗  

(4.31.) 𝑥𝐺1 = 𝑙𝐺1 · sin(𝜃1) 

𝑦𝐺1 = 𝑙𝐺1 · cos(𝜃1) 

V
el

o
ci

ty
 𝑣𝐺1 = 𝑟 𝐺1 = 𝑥 𝐺1 · 𝑖 + 𝑦 𝐺1 · 𝑗  

(4.32.) 𝑥 𝐺1 = 𝑙𝐺1 · 𝜃 1 cos(𝜃1) 

𝑦 𝐺1 = −𝑙𝐺1 · 𝜃 1 sin(𝜃1) 

A
cc

el
er

at
io

n
 𝑎𝐺1 = 𝑟 𝐺1 = 𝑥 𝐺1 · 𝑖 + 𝑦 𝐺1 · 𝑗  

(4.33.) 𝑥 𝐺1 = 𝑙𝐺1𝜃 1 cos 𝜃1 − 𝑙𝐺1𝜃 1
2 sin(𝜃1) 

𝑦 𝐺1 = −𝑙𝐺1𝜃 1 sin(𝜃1) − 𝑙𝐺1𝜃 1
2 cos(𝜃1) 
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Then the second body A-B is analyzed like follows: 

P
o

si
ti

o
n 

𝑟𝐺2 = 𝑥𝐺2 · 𝑖 + 𝑦𝐺2 · 𝑗  

(4.34.) 𝑥𝐺2 = 𝑙1 · sin(𝜃1) + 𝑙𝐺2 · sin(𝜃2) 

𝑦𝐺2 = 𝑙1 · cos(𝜃1) + 𝑙𝐺2 · cos(𝜃1) 

V
el

o
ci

ty
 𝑣𝐺2 = 𝑟 𝐺2 = 𝑥 𝐺2 · 𝑖 + 𝑦 𝐺2 · 𝑗  

(4.35.) 𝑥 𝐺2 = 𝑙1 · 𝜃 1 · cos(𝜃1) + 𝑙𝐺2 · 𝜃 2 · cos(𝜃1) 

𝑦 𝐺2 = −𝑙1 · 𝜃 1 · sin(𝜃1) − 𝑙𝐺2 · 𝜃 2 · sin(𝜃2) 

A
cc

el
er

at
io

n 𝑎𝐺2 = 𝑟 𝐺2 = 𝑥 𝐺2 · 𝑖 + 𝑦 𝐺2 · 𝑗  

(4.36.) 𝑥 𝐺2 = 𝑙1𝜃 1 cos 𝜃1 − 𝑙1𝜃 1
2 sin 𝜃1 + 𝑙𝐺2𝜃 2 cos 𝜃2 − 𝑙𝐺2𝜃 2

2 sin 𝜃2  

𝑦 𝐺2 = −𝑙1𝜃 1 sin(𝜃1) − 𝑙1𝜃 1
2 cos(𝜃1) − 𝑙𝐺2𝜃 2 sin(𝜃2) − 𝑙𝐺2𝜃 2

2 cos(𝜃2) 

Once the position, velocity and acceleration vectors have been obtained for both bodies the 

relationship between both of them can be obtained: 

 

Link 1: 𝑚1 · 𝑎𝐺1 = 𝐹01 + 𝐹21 + 𝐺1 

(4.37.) x-axis: 𝑚1 · 𝑥 𝐺1 = 𝐹01𝑥 + 𝐹21𝑥  

y-axis: 𝑚1 · 𝑦 𝐺1 = 𝐹01𝑦 + 𝐹21𝑦 − 𝑚1𝑔 

Link 2: 𝑚2 · 𝑎𝐺2 = 𝐹12 + 𝐺2 

(4.38.) x-axis: 𝑚2 · 𝑥 𝐺2 = −𝐹12𝑥  →  𝑚2 · 𝑥 𝐺2 = 𝐹21𝑥  

y-axis: 𝑚2 · 𝑦 𝐺2 = −𝐹12𝑦 − 𝑚2𝑔  →   𝑚2 · 𝑦 𝐺2 = 𝐹21𝑦 − 𝑚2𝑔 

As the variables 𝜃1 , 𝜃2 , 𝜃 1, 𝜃 2 are already known and computed by the Matlab program (Annex A), it 

is a linear system of equations. In order to add it to the program, it is solved for both F01x and F01y 

𝐹01𝑥 =  𝑚1 · 𝑥 𝐺1−𝐹21𝑥 = 𝑚1 · 𝑥 𝐺1 − 𝑚2 · 𝑥 𝐺2 (4.39.) 

𝐹01𝑦 =  𝑚1 · 𝑦 𝐺1−𝐹21𝑦 + 𝑚1𝑔 = 𝑚1 · 𝑦 𝐺1 − 𝑚2 · 𝑦 𝐺2 − 𝑚2𝑔 + 𝑚1𝑔 (4.40.) 
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4.6. Updating the model 

Once the controller is implemented with the chosen biomechanical parameters, a new step forward 

is taken. A more realistic model is designed by incorporating an elastic or stiffness element equivalent 

to the hip joint. To do so, a new background check has been done on all the joints, to try to find the 

more appropriate value for the elasticity constant. 

4.6.1. Background 

In 1997 R. Riener and T. Edrich wrote their paper on “Passive elastic joint moments in the lower 

extremity” [14] focusing on the passive elastic joint properties while taking into account the influence 

of other joints. As joints’ behavior depends on the muscles and other tissues’ mechanical properties, 

a non-linear elastic relationship was taken into account and approximated by an exponential function 

of joint angles. [14] In this case, measurements were performed at the ankle, knee and hip joint with 

the set up shown in Fig. 4.5. 

 
Fig. 4.5. Experimental setup for knee measurements with defined ankle and hip joint positions. [18] 

 

Different measurements were performed in health subjects. The total joint moment can be divided in 

different components; the passive elastic joint moment (Melast), the dissipative passive moment 

(Mdiss), the influence of active force (Mact), the gravitational moment (Mgrav) and finally, the dynamic 

moment (Mdyn) [14]. 

𝑀𝑡𝑜𝑡 = 𝑀𝑒𝑙𝑎𝑠𝑡 + 𝑀𝑑𝑖𝑠𝑠 + 𝑀𝑎𝑐𝑡 + 𝑀𝑔𝑟𝑎𝑣 + 𝑀𝑑𝑦𝑛  (4.41.) 

 



   

30   

However, by following the proper methodology the effects of some of them were neglected. For 

example, by moving the subject’s leg quasi-statically, both the dynamic and dissipative moments 

were neglected. As the study focuses on the passive component, the subject was not allowed to take 

an active role, and therefore the active moment could also be neglected, leading to equation 4.42. 

𝑀𝑡𝑜𝑡 = 𝑀𝑒𝑙𝑎𝑠𝑡 + 𝑀𝑔𝑟𝑎𝑣 →  𝑀𝑒𝑙𝑎𝑠𝑡 = 𝑀𝑡𝑜𝑡 − 𝑀𝑔𝑟𝑎𝑣  (4.42.) 

 

Following the example of previous research, exponential functions were used to approximate the 

elastic moment. However, Riener and Edrich took into consideration the influence of other joints 

leading to the following equation that considers the coupling effects. 

 𝑀𝑒𝑙𝑎𝑠𝑡 = exp 𝑐1 + 𝑐2𝜑 + 𝑐3𝜑𝑝𝑟𝑜𝑥 + 𝑐4𝜑𝑑𝑖𝑠𝑡  − 

exp 𝑐5 + 𝑐6𝜑 + 𝑐7𝜑𝑝𝑟𝑜𝑥 + 𝑐8𝜑𝑑𝑖𝑠𝑡  + 𝑐9 

(4.43.) 

where:  φ is the joint angle 

φprox is the angle of the proximal joint 

φdist  is the angle of the distal joint 

c1 − c9 are constants determined with an 

              iterative least square procedure 

After analyzing the results, different observations could be made. The results leaded to the fact that 

the knee joint is not significantly influenced by the ankle, while the hip angle has a strong effect on it. 

Looking to the results of the hip joint, it could be seen that due to the existence of the hip flexors and 

extensors, the knee joint angle had a huge influence on it. 

All this information allows putting into perspective the project itself. In this project the knee joint is 

blocked, as legs are considered as a single bloc, and due to the simplicity of the model, the 

approximation is performed by the product of a constant and the relative angle of the joint.  

In 1999, R. Aissaoui and J. Dausereau reviewed the existent literature regarding the analysis of sit-to-

stand task in their paper “Biomechanical analysis and modelling of sit to stand task: a literature 

review”. The purpose was to do an overview of the state of the art at that point focusing in the sit-to-

stand transfer in elderly population. 

Sitting and standing are two tasks that are often done without paying attention, but as the 

population ages the mobility is usually reduced. There is a wide range of reasons that may cause 

difficulties in this apparently simple task such as progressive conditions like arthritis. Along all the 

literature the sit-to-strand process (also known as STS) has been defined and divided in different 
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phases. The first studies identified it in two distinct phases, to move later on to three phases; the 

initiation phase, the seat unloading phase and the lift. However, in 1997, Kralk, A., Jaeger, R.J. and 

Munih, M. defined the movement in five different phases as explained in their paper “Analysis of 

standing up and sitting down in humans: definitions and normative data presentation” (Fig. 4.6). 

 
Fig. 4.6. Sit to stand cycle phase diagram [1]. 

This kind of terminology allows defining each stage; the beginning (0%) states for the ground reaction 

force, then the 27% is the starting of the standing face that leads to an acceleration and deceleration 

periods (45% and 73% respectively). Finally the last stage (100%) is the stabilization in standing 

position. 

Different strategies of transferring from sit-to-stand are studied and reviewed, but the review done 

by Aissaoui and Dansereau does not include constant values for the approximation of the joint 

behavior. Therefore, even if it is important to understand how the movement works, the data reliable 

for the project is not stated. 

In 2003 a team formed by J. Van der Spek, P. Veltink, H. Hermens, B. Koopman and H.Boom 

published their research on the influence of supplementary hip joint stiffness and a stabilizing model 

for paraplegic subjects. On the one hand in the article “Static and Dynamic Evaluation of the Influence 

of Supplementary Hip-joints Stiffness on Crutch-Supported Paraplegic Stance” [11] and on the other 

hand, “A model-Based Approach to Stabilizing Crutch Supported Paraplegic Standing by Artificial Hip 

Joint Stiffness” [10]. Both articles give a significant amount of information regarding the stiffness of 

the hip-joint and its effects when testing its value following the procedure in Fig. 4.7. 
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Fig. 4.7. Schematic representation of the experimental setup [11]. 

When testing different values for the stiffness coefficient, different springs were tested with the 

following values:  

 
Table 4.1. Values of the stiffness of each spring [11] 

 

After testing five different subjects with each spring, the minimum level of stiffness necessary to 

enable each subject to stand was found. In average, the level needed was 68 N.m/rad and therefore 

the spring number 2 (K2). 

In the second article the double inverted pendulum model was modified to add the crutches, as it is 

the assistance tool needed by the paraplegic subjects (Fig. 4.8). 
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Fig. 4.8. Schematic representation of the model [11]. 

By using Lagrange’s method, the mathematical model was obtained and it allowed to compare the 

hip stiffness to the ankle one. 

Both articles give information regarding the hip stiffness importance and influence. However, a 

sagittal plane approach was followed, while a frontal approach is being studied in this project. 

Therefore, the values used by the research cannot be directly used. 

In 2005 the team from the Institute for Rehabilitation of Slovenia formed by A. Olensek and Z. 

Matjacic shared their study “Further Steps Toward More Human-like Passive Bipedal Walking Robots” 

in the International Conference on Robotics and Automation. In the paper a two-legs mechanical 

structure is described. The model incorporates the basic joints; ankle, knee and hip. The 

implemented model is capable of having a stable walking performance with null or reduced energy 

consumption. 

Even though some researchers have always avoided lateral stability issues by designing a mechanism 

where the outer legs function as crutches, in this case, a human-like mechanism was designed. Three 

hinged joints are present (ankle, knee and hip) resulting in a three pieces leg-design. 

First of all, the gait cycle is the sequence of movement corresponding to taking two steps. Therefore 

it starts with one foot that was in contact to the ground lifts, until that same foot goes back to the 

foot. 
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In the following picture (Fig. 4.9), the drawing of the design is shown, and so it is a picture of the 

model already built. 

 
Fig. 4.9. Schematics and photograph of a biped physical model [20]. 

Regarding the elastic components, Olensek and Matjacic state that the gait cycle elastic strings have 

to ensure gait stability. Therefore, they have to offer support during stance and leg advancement 

during swing, but also they have to maintain stable lateral swaying. It is important to understand that 

for a natural step movement elastic elements are critical. Therefore, in the appropriate extent they 

should be included when designing a model equivalent to the human body. However, no specific 

parameters are given during the article. 

In 2008, the team conducted by S.Pejhan, F.Farahmand and M.Parnianpour wrote their paper in 

“Design Optimization of an Above-Knee Prosthesis Based on the Kinematics of Gait”. A mathematical 

modeling approach was used to analyze the dynamics of an above-knee prosthesis during the 

complete gait cycle. Regarding the method, it included three rigid segments; thigh, shank and food, 

equivalent to a two-dimensional model of an amputee leg with prosthesis. Each component was 

connected with revolute joints at the knee and angle (Fig. 4.10). 
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Fig. 4.10. Model of amputee leg system [17]. 

The mathematical model was developed, putting strong attention to the bond between foot and 

floor. Therefore, a penetration contact model considering two contact points; heel and mid point, 

was used. The main parameters can be found in Table 4.2 

 
Table 4.2.  Foot-ground contact model parameters [17]. 

On the other hand, the knee elastic controller was designed as a spring in the proper configuration 

(Fig. 4.11). 

 
Fig. 4.11. Knee elastic controller [17.] 
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The knee moment produced by the designed controller follows was given by the following set of 

mathematical relations. [17] 

 

(4.44.) 

 

Being the different constants and parameters defined in Table 4.3: 

 
Table 4.3. Biomechanical parameters [17]. 

Regarding the results, the optimum values for stiffness of the elastic controller weas found to be 

1980 N/m, while the damping coefficient of the hydraulic controller of prosthetic knee obtained was 

0.7 Kg/s. Moreover, for the ankle joint, the torsion stiffness and damping coefficient were 5,35 Kg/s 

and 10,5 N·cm/rad, respectively [17]. 

Recent research conducted by the New Jersey Institute of Technology University Heights focused on 

identifying values for the non-linear passive knee joint stiffness. In their article “Assessment of Passive 

Knee Stiffness and Set Point” the Wartenberg Pendulum Knee Test was used. The passive stiffness 

moment is defined by the product of the passive stiffness constant (Kp) and the relative angle of the 
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joint. After the experiment and modeling was performed the values differed significantly from 

subject to subject (Table 4.4). 

 

 
Table 4.4. Values of Kp of the knee and physical characteristics of the subjects [3]. 

The authors explained the significant differences between the stiffness coefficients with the 

physiological differences between the subjects of the study. However, they conclude that the 

stiffness value does not follow a linear behavior. 

In 2013 a team of researchers of the Purdue University in the USA performed a study in “Dynamic 

stability of a human standing on a balance board”. In it a sagittal approach was followed. 

 
Fig. 4.12. Diagram of posture on a !-DOF balance board with forces and correlating moments (left). Block diagram of the 

postural control system (right). [12] 
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To design the model, different biomechanical parameters were used. Regarding the moment at the 

ankle it was determined as a function of time, depending also on the angles and different coefficients 

as shown below: 

 𝑀𝑎𝑛𝑘𝑙𝑒  𝑡 = 𝐾 𝜃 𝑡 + 𝛽𝜃3 𝑡  + 𝐶𝜃 (𝑡) (4.45.) 

where:  K is the linear muscle stiffness 

β is the ratio of passive cubic nonlinear muscle stiffness 

   to passive linear muscle stiffness 

C is the linar muscle damping 

 

As it has been seen this far with the review of all the different studies, there is a wide range of values, 

a short example of some of them is given in the article as follows (Table 4.5). 

 
Table 4.5. Commonly used postural parameters for similar models [12] 

 

After analyzing the state of the art regarding the stiffness of the different joints, it can be said that 

values differ from model to model and subject to subject, however all research follow a sagittal plane 

approach. Therefore, the parameters found cannot be applied to the project directly, but they are 

useful to approximate the chosen value. 

The chosen value has been obtained with both an approximation taking into account the range of 

motion of the hip-joint in a frontal approach and an empirical research when simulating the model 

finding the maximum value for the elastic coefficient that allowed the system to work properly. 

4.6.2. Computations 

To obtain the new equations that describe the model, Lagrange’s method has been used again. In 

this case a momentum has been also added to the hip joint (Fig. 4.13). 



Study and design of a balance postural control system   

  39 

 
Fig. 4.13. Model analyzed with the momentum in the hip joint due to the elastic component (CA) 

Lagrange’s equations are the following: 

𝐶𝐴 =
𝑑

𝑑𝑡
 

𝜕𝐿

𝜕𝜃 1
 −

𝜕𝐿

𝜕𝜃1
=

𝜕𝐴

𝜕𝑡
−

𝜕𝐿

𝜕𝜃1
 

(4.46.) 

𝜏 =
𝑑

𝑑𝑡
 

𝜕𝐿

𝜕𝜃 2
 −

𝜕𝐿

𝜕𝜃2
=

𝜕𝐵

𝜕𝑡
−

𝜕𝐿

𝜕𝜃2
 

(4.47.) 

 

Being the derivatives, the same ones used for the initial model, 𝐶𝐴 the torque in the hip and 𝜏 the 

external perturbation. 

In order to simplify the equations above a new set of constants have been defined leading to 

equations 4.48 and 4.49. 

𝐶𝐴 = 𝐴1𝜃 1 + 𝐴2𝜃 2 cos 𝜃1 − 𝜃2 + 𝐴3𝜃 2
2 sin 𝜃1 − 𝜃2 − 𝐴4 sin(𝜃1) (4.48.) 

𝜏 = 𝐵1𝜃 1 cos 𝜃1 − 𝜃2 + 𝐵2𝜃 2 − 𝐵3𝜃 1
2 sin 𝜃1 − 𝜃2 − 𝐵4 sin(𝜃2) (4.49.) 

Where the constants have the following values: 

𝐴1 = 𝐼1 + 𝑚2𝑙1
2 

𝐴2 = 𝑚2𝑙1𝑙𝐺2 

𝐵1 = 𝑚2𝑙1𝑙𝐺2 

𝐵2 = 𝐼2 + 𝑚2𝑙𝐺2
2  
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𝐴3 = 𝐴2 = 𝑚2𝑙1𝑙𝐺2 

𝐴4 = (𝑚1𝑙𝐺2 + 𝑚2𝑙1)𝑔 

𝐵3 = 𝑚2𝑙1𝑙𝐺2 

𝐵4 = 𝑚2𝑙𝐺2𝑔 

Isolating 𝜃 1 from equation 4.38. 

𝜃 1 =
1

−𝐴1
 𝐴2𝜃 2 cos 𝜃1 − 𝜃2 + 𝐴3𝜃 2

2 sin 𝜃1 − 𝜃2 −𝐴4 sin 𝜃1 − 𝐶𝐴  
(4.50.) 

Then substituting it in equation 4.39, 𝜃 2is obtained. 

𝜃 2 =
−

𝐵1𝐴3

𝐴1
𝜃 2

2 sin 𝜃1 − 𝜃2 cos 𝜃1 − 𝜃2 +
𝐵1𝐴4

𝐴1
sin 𝜃1 cos 𝜃1 − 𝜃2 

𝐵1

𝐴1
𝐴2cos2 𝜃1 − 𝜃2 − 𝐵2

… 

…
−𝐵3𝜃 1

2 sin 𝜃1 − 𝜃2 − 𝐵4 sin 𝜃1 − 𝜏 −
𝐵1

𝐴1
𝐶𝐴 cos(𝜃1 − 𝜃2)

𝐵1

𝐴1
𝐴2cos2 𝜃1 − 𝜃2 − 𝐵2

 

(4.51.) 

The same procedure is followed to obtain the last state equation (𝜃 1). 

𝜃 2 =
1

−𝐴2 cos 𝜃1 − 𝜃2 
 𝐴1𝜃 1 + 𝐴3𝜃 2

2 sin 𝜃1 − 𝜃2 −𝐴4 sin 𝜃1 − 𝐶𝐴  
(4.52.) 

Finally, 

𝜃 1 =
𝐵2𝐴3𝜃 2

2 sin 𝜃1 − 𝜃2 − 𝐵2𝐴4 sin 𝜃1 + 𝐵3𝐴2𝜃 1
2 sin 𝜃1 − 𝜃2 cos 𝜃1 − 𝜃2 

𝐵1𝐴2cos2 𝜃1 − 𝜃2 − 𝐵2𝐴1
… 

…
+𝐵4𝐴2 sin 𝜃2 cos 𝜃1 − 𝜃2 + 𝐴2 cos 𝜃1 − 𝜃2 𝜏 − 𝐵2𝐶𝐴

𝐵1𝐴2cos2 𝜃1 − 𝜃2 − 𝐵2𝐴1
 

(4.53.) 

Once the non-linear model is obtained, the linearization is performed using Taylor’s method in order 

to design the new controller. 

𝑋 = 𝑋 𝑒𝑞 +  𝐴 · ∆𝑋 + 𝐵 · ∆𝑈 (4.54.) 

𝐴 =

 
 
 
 
 
 
 

0 0     1 0
0

𝜕𝑓1

𝜕𝜃1

0 0
𝜕𝑓1

𝜕𝜃2

𝜕𝑓1

𝜕𝜃 1

1
𝜕𝑓1

𝜕𝜃 2
𝜕𝑓2

𝜕𝜃1

𝜕𝑓2

𝜕𝜃1

𝜕𝑓2

𝜕𝜃 1

𝜕𝑓2

𝜕𝜃 2 
 
 
 
 
 
 

[𝜃1𝑒𝑞 ,𝜃2𝑒𝑞 ,𝜃 1𝑒𝑞 ,𝜃 2𝑒𝑞 ]𝑇

 (4.55.) 
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𝐵 =

 
 
 
 
 
 

0
0

𝜕𝑔1

𝜕𝜏
𝜕𝑔2

𝜕𝜏  
 
 
 
 
 

𝜏𝑒𝑞

 (4.56.) 

The derivatives have been computed with Maple16 and can be found in the Annex D. 

4.7. Non-linear control 

In order to reach a wider understanding on the control system a new approach is followed. A non-

linear control is developed based on an energy approach and the passivity properties of the system 

[16]. By using a non-linear control law there is no need for the linearization as LQR method is 

avoided. 

Fantoni, I., Lozano, R. and Spong, M.W. studied a non-linear controller for a Pendubut system. 

Instead of using partial feedback linearization techniques and the linear quadratic regulator, an 

energy balance based controller was studied. Applying the methodology to our initial system, the 

following controller is obtained. 

4.7.1. Computations 

Using the already existing original system, the following matrixes and constants are defined: 

𝐷 𝜃 𝜃 + 𝐶 𝜃, 𝜃  𝜃 + 𝑔 𝜃 = 𝜏 (4.57.) 

𝐷 𝜃 =  
𝑄1 𝑄2 · cos 𝜃1 − 𝜃2 

𝑄2 · cos 𝜃1 − 𝜃2 𝑄4
  (4.58.) 

𝐶 𝜃, 𝜃  = 𝑄2 · sin 𝜃1 − 𝜃2  
0 𝜃 2
𝜃 2 0

  (4.59.) 

𝑔 𝜃 =  
−𝑄3 · 𝑔 · sin 𝜃1 

−𝑄5 · 𝑔 · sin 𝜃2 
  (4.60.) 

𝜃 =  
𝜃 1
𝜃 2

  𝜃 =  
𝜃 1
𝜃 2

  𝜏 =  
0
𝜏
  (4.61.) 
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𝑄1 = 𝐴1 = 𝐽1 + 𝑚2 · 𝑙1
2 

𝑄2 = 𝐴2 = 𝐴3 = 𝐵1 = 𝐵3 = 𝑚2 · 𝑙1 · 𝑙𝐺2 

𝑄3 =
𝐴4

𝑔
= 𝑚1 · 𝑙𝐺1 + 𝑚2 · 𝑙1 

𝑄4 = 𝐵2 = 𝐽2 + 𝑚2 · 𝑙𝐺2
2  

𝑄5 =
𝐵4

𝑔
= 𝑚2 · 𝑙𝐺2 

(4.62.) 

The total kinetic (𝐸𝐾𝑇) and potential (𝐸𝑃𝑇 ) energy is defined as follows: 

𝐸𝐾𝑇 =
1

2
· 𝐽1 · 𝜃 1

2 +
1

2
· 𝐽2 · 𝜃 2

2 +
1

2
· 𝑚2

·  𝑙1
2 · 𝜃 1

2 + 𝑙𝐺2
2 · 𝜃 2

2 + 2 · 𝑙1 · 𝑙𝐺2 · 𝜃 1 · 𝜃 2 · cos 𝜃1 − 𝜃2  = 

=
1

2
· 𝜃 1

2 ·  𝐽1 + 𝑚2 · 𝑙1
2 +

1

2
· 𝜃 2

2 ·  𝐽2 + 𝑚2 · 𝑙𝐺2
2  + 𝑚2 · 𝑙1 · 𝑙𝐺2 · 𝜃 1 · 𝜃 2

· cos 𝜃1 − 𝜃2 = 

=  
1

2
· 𝑄1 · 𝜃 1

2 +
1

2
· 𝑄4 · 𝜃 2

2 + 𝑄2 · 𝜃 1 · 𝜃 2 · cos 𝜃1 − 𝜃2  

 

(4.63.) 

𝐸𝑃𝑇 = 𝑚1 · 𝑙𝐺1 · 𝑔 · cos 𝜃1 + 𝑚2 · 𝑙1 · 𝑔 · cos 𝜃1 + 𝑚2 · 𝑙𝐺2 · 𝑔 · cos 𝜃2 = 

=𝑄3 · 𝑔 · cos 𝜃1 + 𝑄5 · 𝑔 · cos 𝜃2  

(4.64.) 

For the stabilization control law, the following conditions are assumed: 

i. 𝜃 2 = 0 

ii. 𝐸 𝜃, 𝜃  = 𝐸𝑡𝑜𝑝  

Applying condition (i) and developing the condition (ii) the equation 4.65 is obtained. 

𝐸 𝜃, 𝜃  = 𝑄3 · 𝑔 · cos 𝜃1 + 𝑄5 · 𝑔 · cos 𝜃2 =  𝑄3 + 𝑄5 · 𝑔 = 𝐸𝑡𝑜𝑝  (4.65.) 
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If a third condition is applied: 

iii. 𝜃2 = 90º 

Then a homoclinic orbit is obtained. 

1

2
· 𝑄1 · 𝜃 1

2 + 𝑄3 · 𝑔 · cos 𝜃1 = 𝑄3 · 𝑔 →  
1

2
· 𝑄1 · 𝜃 1

2 =  𝑄3 · 𝑔 ·  1 − cos 𝜃1   (4.66.) 

Defining the following parameters: 

𝐸 = 𝐸 − 𝐸𝑡𝑜𝑝  

𝜃 2 = 𝜃2 − 𝜃2𝑒𝑞 = 𝜃2 

The next Lyapunov function is chosen. 

𝑉 𝜃, 𝜃  =
𝐾𝐸

2
· 𝐸  𝜃, 𝜃  

2
+

𝐾𝐷

2
· 𝜃 2

2 +
𝐾𝑃

2
· 𝜃 2 (4.67.) 

Performing the derivative, 

𝑉  𝜃, 𝜃  = 𝐾𝐸 · 𝐸  𝜃, 𝜃  · 𝐸  𝜃, 𝜃  + 𝐾𝐷 · 𝜃 2 · 𝜃 2 + 𝐾𝑃 · 𝜃 2 · 𝜃 2 (4.68.) 

Knowing that: 

𝐸  𝜃, 𝜃  = 𝜃 𝑇 · 𝜏 =  𝜃 1 𝜃 2 ·  
0
𝜏
 = 𝜃 2 · 𝜏 (4.69.) 

The derivative of the Lyapunov function becomes the following: 

𝑉  𝜃, 𝜃  = 𝐾𝐸 · 𝐸  𝜃, 𝜃  · 𝜃 2 · 𝜏 + 𝐾𝐷 · 𝜃 2 · 𝜃 2 + 𝐾𝑃 · 𝜃 2 · 𝜃 2 (4.70.) 

In order to continue with the computations, the value of 𝜃 2 is needed. Therefore isolating 𝜃  from the 

motion equation 4.57. the next formula is obtained. 

 
𝜃 1
𝜃 2

 = 𝐷 𝜃 −1 ·  𝜏 − 𝐶 𝜃, 𝜃  · 𝜃 − 𝑔 𝜃   (4.71.) 
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After performing all the computations (Annex D) the following value for 𝜃 2 is reached: 

𝜃 2 =
1

𝑄1·𝑄4−𝑄2
2·cos 2 𝜃1−𝜃2 

·  𝑄1 · 𝜏 + 𝑄2
2 · cos 𝜃1 − 𝜃2 · sin 𝜃1 − 𝜃2 · 𝜃 2

2 − 𝑄2 · 𝑄3 ·

𝑔·cos𝜃1−𝜃2·sin𝜃1+𝑄1·𝑄2·sin𝜃1−𝜃2·𝜃12+𝑄1·𝑄5·𝑔·sin𝜃2= 

=
1

𝑄1 · 𝑄4 − 𝑄2
2 · cos2 𝜃1 − 𝜃2 

·  𝑄1 · 𝜏 + 𝐹(𝜃, 𝜃 )  

(4.72.) 

Now, putting 𝜃 2 into 𝑉 ’s equation: 

𝑉  𝜃, 𝜃  = 𝐾𝐸 · 𝐸  𝜃, 𝜃  · 𝜃 2 · 𝜏 + 𝐾𝐷 · 𝜃 2 ·
1

𝑄1 · 𝑄4 − 𝑄2
2 · cos2 𝜃1 − 𝜃2 

·  𝑄1 · 𝜏 + 𝐹(𝜃, 𝜃 ) + 𝐾𝑃 · 𝜃 2 · 𝜃 2 = 

= 𝜃 2 ·  𝜏 ·  𝐾𝐸 · 𝐸  𝜃, 𝜃  +
𝐾𝐷 · 𝑄1

𝑄1 · 𝑄4 − 𝑄2
2 · cos2 𝜃1 − 𝜃2 

 

+
𝐾𝐷 · 𝐹(𝜃, 𝜃 )

𝑄1 · 𝑄4 − 𝑄2
2 · cos2 𝜃1 − 𝜃2 

+ 𝐾𝑃 · 𝜃 2  

(4.73.) 

If 𝑉  𝜃, 𝜃  = −𝜃 2
2 , then: 

−𝜃 2 = 𝜏 ·  𝐾𝐸 · 𝐸  𝜃, 𝜃  +
𝐾𝐷 · 𝑄1

𝑄1 · 𝑄4 − 𝑄2
2 · cos2 𝜃1 − 𝜃2 

 

+
𝐾𝐷 · 𝐹(𝜃, 𝜃 )

𝑄1 · 𝑄4 − 𝑄2
2 · cos2 𝜃1 − 𝜃2 

+ 𝐾𝑃 · 𝜃 2 
(4.74.) 

Finally, isolating 𝜏 the control law is obtained. 

𝜏 =
− 𝑄1 · 𝑄4 − 𝑄2

2 · cos2 𝜃1 − 𝜃2  ·  𝜃 2 + 𝐾𝑃 · 𝜃 2 − 𝐾𝐷 · 𝐹(𝜃, 𝜃 )

𝐾𝐸 · 𝐸  𝜃, 𝜃  ·  𝑄1 · 𝑄4 − 𝑄2
2 · cos2 𝜃1 − 𝜃2  + 𝐾𝐷 · 𝑄1

 (4.75.) 

More detailed computations are available on the Annex D 

 



Study and design of a balance postural control system   

  45 

5. Implementation and results 

5.1. Initial model 

The project has been performed in phases. The first is the design and implementation of original or 

initial model, it is the most basic one designed. The second phase, consists on adding the stiffness 

element. Finally, the third one is the design of a non-linear controller to regulate the original system. 

The use of Matlab/Simulink allows to solve differential equation systems by simulation. Therefore, 

the system does not need to be solved and allows studying different cases by using different 

parameters. All Matlab scripts and Simulink schemes used can be found in Annex A, B and C. 

In order to test if the system was able to stabilize, the initial conditions were changed from null to 

different values, which means that either 𝜃1 or 𝜃2 were different from zero. The schemes for both 

the linear and non-linear system can be seen in Fig. 5.1 and Fig. 5.2, respectively. 

 
Fig. 5.1. Simulink diagram of the linear system. 

 
Fig. 5.2. Simulink diagram for the simple non-linear system. 



   

46   

5.1.1. Different perturbations 

The first case is the study of the system when the same perturbation is produced in either 𝜃1 or 𝜃2 

and if both of them have a non-null initial value. 

As the values of the parameters do not change in either case, it is only the value of the initial 

conditions, the control parameters are the same in all three cases. They can be found in Table 5.1. 

𝜆 =  

4,0839
2,4656
−4,0839
−2,4656

  

𝐶𝑜 =  

0 −0,0196 0
0 0,0785 0

−0,0196
0,0785

0
0

−0,4454
0,8675

    

−0,4454
0,8675

0
0

  

𝐾 = 103 ·  −4,7080 −0,0264    −1,3400 −0,1632  

Table 5.1. Control parameters for the initial model. 

 

Regarding how the linear system reacts to each perturbation the results are the following (Fig. 5.3 

and Fig. 5.4): 

 
Fig. 5.3. Response of the linear system for a initial perturbation of 𝜃1=0,1 rad. 
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Fig. 5.4. Response of the linear system for a initial perturbation of 𝜃2=0,1 rad. 

As it can be seen in the figures above, there is a huge difference in the linear system between having 

the same initial perturbation in 𝜃1 or 𝜃2. In the former case, the system stabilizes in 3,5 s with 𝜃2 

reaching a maximum value of 0,88 rad. The latter, stabilizes much faster, at 3 s. And the angle values 

belong to a much shorter range. 

 

Regarding the non linear values, the results are the following: 

 
Fig. 5.5. Response of the non-linear system for a initial perturbation of 𝜃1=0,1 rad. 
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Fig. 5.6. Response of the non-linear system for a initial perturbation of 𝜃2=0,1 rad. 

The figures above (Fig. 5.5 and Fig. 5.6) show the response of the non-linear system with the LQR 

control method. The tendency followed is the same than for the linear system. The stabilization time 

for an initial perturbation in θ1 is 3.5 s and therefore higher than for θ2 that is 3 s. The main difference 

between the linear and non-linear results are the angle range in the latter. In this case, for the first 

perturbation (𝜃1= 0,1 rad) the angle 𝜃2 reaches the maximum value of 1,3 rad. 

When there is an initial perturbation in both angles, the system does not hold a big range of angles. 

For example, for an initial perturbation of 𝜃1= 0,1 rad, the system does not stabilize for 𝜃2 = 0,1 rad. 

Therefore the following simulations have been performed for an initial perturbation of: 𝜃1 = 0,1 rad 

and 𝜃2= 0,01 rad. The results for the linear system can be seen in Fig. 5.7 and the non-linear systen 

corresponds to Fig. 5.8. 

 
Fig. 5.7. Response of the linear system for a initial perturbation of 𝜃1=0,1 rad and 𝜃2=0,01 rad. 
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Fig. 5.8. Response of the linear system for a initial perturbation of 𝜃1=0,1 rad and 𝜃2=0,01 rad. 

As it can be seen, in the figures above, the results for a double perturbation are really similar to the 
behavior for the single biggest perturbation. However the system is still more unstable, reaching a 
higher value for 𝛉𝟐. 

5.1.2. Different moments of inertia 

As it was explained in the biomechanical chapter, two different sets of moments of inertia have been 

computed. On the one hand, all the bodies were approximated as slender rods. While, on the other 

hand, the arms were considered slender rods but both the torso and the legs were approximated as 

rectangular prism. 

The obtained values have been the following (Table 5.2): 

 Case 1 Case 2 

J01 9,4548 Kg·m2 9,574656 Kg·m2 

J A2 3,23475 Kg·m2 3,1209 Kg·m2 

J A3 8,748362 Kg·m2 8,748362 Kg·m2 

J A23 11,9831 Kg·m2 11,86929 Kg·m2 

Table 5.2. Comparison between the values of the computed moments of inertia. 

In this case, as the parameters values are different, the values for the control system are also 

different. As slender rods, the obtained values are the following: 
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𝜆 =  

4,0839
2,4656
−4,0839
−2,4656

  

𝐶𝑜 =  

0 −0,0196 0
0 0,0785 0

−0,0196
0,0785

0
0

−0,4454
0,8675

    

−0,4454
0,8675

0
0

  

𝐾 = 103 ·  −4,7080 −0,0264    −1,3400 −0,1632  

Table 5.3. Control parameters for moment of inertia as slender rods. 

While the values for the control system when the torso is approximated as a rectangular prism but 

both the arms and the legs are slender rods, are the following: 

 

𝜆 =  

−4,0863
−2,4710
4,0863
2,4710

  

𝐶𝑜 =  

0 −0,0197 0
0 0,0791 0

−0,0197
0,0791

0
0

−0,4488
0,8811

    

−0,4488
0,8811

0
0

  

𝐾 = 103 ·  −4,6945 −0,0263    −1,3381 −0,1630  

Table 5.4. Control parameters for moment of inertia as slender rods and rectangular prisms. 

Comparing the results for the linear system both conditions behave the same. As it can be seen in Fig. 

5.9 and Fig. 5.10, in order to compare the effects of the different moments of inertia the system has 

been simulated with the same perturbation. The chosen initial perturbation has been  𝜃1=0,1 rad. 
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Fig. 5.9. Response of the linear system for moment of inertia as slender rod and initial perturbation 𝜃1= 0,1 rad. 

 
Fig. 5.10. Response of the linear system for moment of inertia as slender rod and rectangular prism and initial perturbation 

𝜃1= 0,1 rad. 

The same situation is repeated for the non-linear systems (Fig. 5.11 and Fig. 5.12). The changes in the 

parameters are so subtle that they do not report the effects in the behavior of the system. 
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Fig. 5.11. Response of the linear system for moment of inertia as slender rod and initial perturbation 𝜃1= 0,1 rad. 

 
Fig. 5.12. Response of the non-linear system for moment of inertia as slender rod and rectangular prism and initial 

perturbation 𝜃1=0,1 rad. 

Seeing the null effects of the small variations in the moments of inertia, even if it translates into 

different control parameters, it can be concluded that it is not significant and therefore the 

approximations hold. 

 

5.1.3. Forces 

In order to have the data to perform a more accurate analysis of the whole system, the forces 

exchanged between the feet and the floor, have been computed using Matlab. 
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For the horizontal force the Simulink scheme can be seen in Fig. 5.13. 

 
Fig. 5.13. Simulink diagram to compute the lateral force exchanged between the feet and the floor (F01x). 

 

While for the vertical one it is the following (Fig. 5.14): 

 

 
Fig. 5.14. Simulink diagram to compute the vertical force exchanged between the feet and the floor (F01x). 

When simulating the behavior of the system for an initial perturbation of  𝜃1=0.1 rad the following 

results have been obtained: 
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Fig. 5.15. Horizontal force in 0. F01x(Units: N) for an initial angle  𝜃1 =0.1 rad. 

 

 
Fig. 5.16. Vertical force in 0. F01y (Units: N) for an initial angle  𝜃1 =0.1 rad. 

 

As it can be clearly seen in the vertical axis the forces asked for the system to stabilize are impossible 

to reach as the reaction forces of the floor can not be controlled. Therefore having positive values 

indicates that it is not a realistic situation. Given this situation, a new simulation has been made with 

a smaller initial perturbation: 𝜃1=0.1 rad. 
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Fig. 5.17. Horizontal force in 0. F01x (Units: N) for an initial angle  𝜃1 = 0,05 rad. 

 
Fig. 5.18. Vertical force in 0. F01y (Units: N) for an initial angle  𝜃1 = 0,05 rad. 

 

In this case not only the magnitude of the results is reduced but also the sign and therefore the 

direction of the force required. Therefore, they are plausible. 

Finally to check the limitations of the system, the force analysis has been performed for a 

perturbation in the second angle: 𝜃2 = 0,1 rad. 
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Fig. 5.19. Horizontal force in Point 0. F01x (Units: N) for an initial angle  𝜃2 =0.1 rad. 

 
Fig. 5.20. Vertical force in Point 0. F01y (Units: N) for an initial angle  𝜃2 =0.1 rad. 

 

The importance of analyzing the exchange of forces between the feet and the floor is because 

mathematically the system can require a force impossible to perform or control in reality. Therefore a 

proper study of the force exchange leads to a better understanding of the system and its limitations. 

5.2. Updated model 

Once the original model has been analyzed, a step forward is taken by including an elastic component 

equivalent to the hip joint. Adding this parameter leads toward a more realistic system.  
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Again, the use of Matlab allows to solve the differential equation systems that otherwise would be 

extremely difficult. The modifications needed to update the model are in both the Matlab Script and 

the Simulink file. On the one hand, the results of the linearization using Matlab have changed and 

therefore the control system has changed too. While, on the other hand, some terms need to be 

added to the non-linear system of equations. All details can be found in the Annexes. 

In order to test if the system was able to stabilize, the same procedure has been followed, the initial 

conditions are changed from null to different values, which means that either  𝜃1 or  𝜃2 become 

different than zero. 

Regarding the chosen elastic component, as it has been discussed in the background chapter, there 

are no values in the literature for a frontal approach of the problem. Therefore, the value has been 

chosen to be as coherent as possible to the relationship between the mobility range to the elastic or 

stiffness coefficient form the studies performed in the different joints with a sagittal approach. 

5.2.1. Different perturbations 

The first case of study is again what happens to the system when the same perturbation is produced 

only in 𝜃1, only in  𝜃2 or both at the same time. 

As the values of the parameters do not change in either case, it is only the value of the initial 

conditions, the control parameters are the same in all three cases: 

 

𝜆 =  

−4,0977
−2,4623
4,0977
2,4623

  

𝐶𝑜 =  

0 −0,0196 0
0 0,0785 0

−0,0196
0,0785

0
0

−0,4511
0,8714

    

−0,4511
0,8714

0
0

  

𝐾 = 103 ·  −4,6465 −0,0074    −1,3192 −0,1577  

Table 5.5. Control parameters for the system with an elastic element. 

 

As it can be seen the obtained values are different from the ones without the elastic element in the 

hip-joint. 
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Regarding how the system reacts to each perturbation the results are the following: 

 
Fig. 5.21. Response of the linear system for a initial perturbation of 𝜃1=0,1 rad. 

 
Fig. 5.22. Response of the linear system for a initial perturbation of 𝜃2=0,1 rad. 

As it can be seen in the figures above, there is a huge difference in the linear system between having 

the same initial perturbation in 𝜃1 or 𝜃2 . In the former case, the system stabilizes in 3,25 s with 𝜃2 

reaching a maximum value of 0,86 rad. The latter, stabilizes much faster, at 2,85 s. And the angle 

values belong to a much shorter range. 

 

Regarding the non linear values, the results are the following: 
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Fig. 5.23. Response of the non-linear system for a initial perturbation of 𝜃1=0,1 rad. 

 

 
Fig. 5.24. Response of the non-linear system for a initial perturbation of 𝜃2.=0,1 rad. 

The figures above show the response of the non-linear system with the control designed with the 

LQR method. The tendency followed is the same than for the linear system. However, there is an 

extremly important difference. Now, in the non-linear system it is the second case (initial 

perturbation in 𝜃2) that takes longer to stabilize reaching the 5 s. While the former stabilizes around 

3.5 s. This case it is clearly related to the elastic element that now links both elements of the model. 

When there is an initial perturbation in both angles, the system does not hold a big range of angles. 

For example, for an initial perturbation of θ1 = 0,1 rad, the system does not stabilize for θ2 = 0,1 rad. 

In the previos chapter, when no stiffness element was considered it was possible to simulate the 

system for an initial perturbation of: θ1 = 0,1 rad and θ2 = 0,01 rad. However, now, taking into 

account the elastic element it is impossible to stabilize the non-linear system for those values, even 
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though the linear one does stabilize. Taking that fact into consideration the values have been 

reduced to: 𝜃1 = 0,05 rad and 𝜃2 = 0,01 rad. 

 
Fig. 5.25. Response of the linear system for a initial perturbation of 𝜃1=0,05 rad and 𝜃2=0,01 rad. 

 
Fig. 5.26. Response of the linear system for a initial perturbation of 𝜃1= 0,05 rad and 𝜃2=0,01 rad. 

As it can be seen, in the figures above, the results for a double perturbation are really similar to the 
behavior for the single biggest perturbation.  

5.2.2. Different moments of inertia 

As it has been done for the original system the different values for the moment of inertia will be 

tested to see if now that there is a stiffness element their influence is stronger. The two cases for the 

moments of inertia are the following: 
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 Case 1 Case 2 

J01 9,4548 Kg·m2 9,574656 Kg·m2 

J A2 3,23475 Kg·m2 3,1209 Kg·m2 

J A3 8,748362 Kg·m2 8,748362 Kg·m2 

J A23 11,9831 Kg·m2 11,86929 Kg·m2 

Table 5.6. Comparison between the values of the computed moments of inertia 

In the Case 1 all bodies have been considered as slender rods. While the Case 2 corresponds to 

different geometrical shapes depending on the body part; the torso as a rectangular prism and the 

legs and arms as slender rods. 

 

As slender rods, the obtained values are the following: 

 

𝜆 =  

−4,0977
−2,4623
4,0977
2,4623

  

𝐶𝑜 =  

0 −0,0196 0
0 0,0785 0

−0,0196
0,0785

0
0

−0,4511
0,8714

    

−0,4511
0,8714

0
0

  

𝐾 = 103 ·  −4,6465 −0,0074    −1,3192 −0,1577  

Table 5.7. Control parameters for the system with an elastic element for inertia Case 1 

 

While the values for the control system when the torso is approximated as a rectangular prism but 

both the arms and the legs are slender rods, are the following: 
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𝜆 =  

−4,1001
−2,4677
4,1001
2,4677

  

𝐶𝑜 =  

0 −0,0197 0
0 0,0791 0

−0,0197
0,0791

0
0

−0,4545
0,8850

    

−0,4545
0,8850

0
0

  

𝐾 = 103 ·  −4,6329 −0,0075    −1,3172 −0,1575  

Table 5.8. Control parameters for the system with an elastic element for inertia Case 2. 

As it can be seen both sets of values differ slightly. They are also different from the ones obtained for 

the original model. 

Comparing the results for the linear system both conditions behave exactly the same, like it had 

happened for the original model. 

 
Fig. 5.27. Response of the linear system for moment of inertia as slender rod and initial perturbation 𝜃1=0,1 rad. 
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Fig. 5.28. Response of the linear system for moment of inertia as slender rod and rectangular prism and initial perturbation 

𝜃1=0,1 rad. 

 

The same situation is repeated for the non-linear system. The changes in the parameters are so 

subtle that they do not report the effects in the behavior of the system. 

 
Fig. 5.29. Response of the linear system for moment of inertia as slender rod and initial perturbation 𝜃1=0,1 rad. 
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Fig. 5.30. Response of the non-linear system for moment of inertia as slender rod and rectangular prism and initial 

perturbation 𝜃1= 0,1 rad. 

Seeing the null effects of the small variations in the moments of inertia, even if it translates into 

different control parameters, it can be concluded that it is not significant and therefore the 

approximations hold for both the original model and the updated one. 

5.2.3. Forces 

Using the same Simulink design than for the original model, the forces have been computed reaching 

the following results: 

 
Fig. 5.31. Horizontal force in Point 0. F01x.(Units: N) For an initial perturbation 𝜃1=0,1 rad. 
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Fig. 5.32. Vertical force in Point 0. F01y (Units: N) For an initial perturbation 𝜃1=0,1 rad. 

As it can be seen, compared to the original model the situation is the same even if the values are 

bigger. It is still an impossible situation. Following the same procedure as before, in order to 

understand better the results a new simulation has been performed with a smaller angle. 

 

 
Fig. 5.33. Horizontal force in Point 0. F01x.  (Units: N) For an initial perturbation 𝜃1=0,05 rad. 
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Fig. 5.34. Vertical force in 0. F01y (Units: N) For an initial perturbation 𝜃1==0,05 rad. 

In this case, the results are like expected, not only the magnitudes of the forces have been reduced 

but also the sign leading to a viable situation.  

 

Finally, a simulation with a non null initial value for the second angle has been performed. 

 
Fig. 5.35. Horizontal force in Point 0. F01x.  (Units: N) For an initial perturbation 𝜃2=0,1 rad. 
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Fig. 5.36. Vertical force in Point 0. F01y (Units: N) For an initial perturbation 𝜃2=0,1 rad. 

Again, the results were the expected ones, following also the same tendency than for the initial 

model. 

5.3. Non-linear controller system 

The non-linear control law has been implemented in the Simulink file for the initial system. However, 

when the simulation was performed the system did not stabilize. After checking all the computations 

and the implementation no solution has been found. However, the following are the results. 

 
Fig. 5.37. Response of the non-linear system for a initial perturbation of 𝜃1=0,05 rad. 
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Fig. 5.38. Response of the non-linear system for a initial perturbation of 𝜃2=0,05 rad. 

 
Fig. 5.39. Response of the non-linear system for a initial perturbation of 𝜃1=0,05 rad and 𝜃2=0,05 rad. 
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6. Conclusions 

In this thesis a study and design of a balance postural control system with a frontal approach has 

been made. It has been a transversal study as it has involved numerous engineering fields which have 

presented numerous difficulties along the way, but all of them have been properly solved by 

performing an extensive research in the literature regarding each particular topic. Not only the initial 

expectations have been met, but also an update on the model has been performed in order to design 

a more realistic model by including an elastic element. 

The first step has been a research on the existing literature on biomechanical data. While analyzing 

the state of the art in such a topic, it has been clear that the recent research focuses in specific goals 

and parameters instead of performing a statistical approach to determine the average values for 

partial masses and lengths for the different body components. Therefore, in order to obtain the 

necessary values for the model, older investigations have been analyzed leading to authors like 

Hanavan (1964), Drillis and Contini (1966), Dempster (1973) or Winter et al. (1998). These focused in 

a wider field by using different techniques to obtain the main anthropometric parameters of the 

human body. 

In order to perform a more accurate project, different moments of inertia have been computed by 

approximating the different body parts with various geometrical shapes. By obtaining these values 

and through the simulation of the system it has been confirmed that the difference in the results is so 

subtle that can be completely neglected. Therefore, it can be confirmed that in such basic models the 

shape in which the body components are approximated is not relevant. 

Regarding the non-linear model, after considering the different techniques available, Lagrange’s 

equations have been chosen as it is a more useful method when the system gets more complex. By 

performing the basic modeling already using the techniques that would be used in a more extensive 

future research, the bases are properly set and allow a direct comparison. Moreover, this method 

can be easily transported to any computation software allowing faster and saver results. 

When dealing with the necessity of a linear model different approaches have been considered. 

However, Taylor’s technique offers the best results and provides a structured methodology to 

linearize the equations. As this method implies the calculation of numerous partial derivatives 

external software; Maple16, had been used. The implementation in Maple16 has implied a more 

extensive knowledge on the software, but also a reliable source to ensure proper results. Moreover, 

providing a tool easy to modify when any change or update had to be made. 
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Another key element of the project has been the design and implementation of a control system. To 

do so, the Linear Quadratic Regulation (LQR) method has been chosen as it allowed the regulation of 

the system while letting some parameters up to the design so more or less weight could be given to 

its parameters. Translating into a faster stabilization thanks to a high control action or a slower 

regulation but with a lower control action. 

Moreover, in order to make a full analysis of the system and the results, the exchanged forces 

between the floor and the subject during the whole stabilization process have been computed and 

implemented on Matlab. The obtained results lead to a wider understanding as showed the 

limitations of the system when depending on the perturbation they required an implausible force 

value and direction. However, values have been found where the required forces to stabilize the 

system were performed in a plausible sense and direction. 

Once the initial objective of designing and implementing a controller for a balance system with a 

frontal approach had been accomplished new ways of improving the model have been discussed. The 

natural step, though, was to implement an elastic parameter in order to simulate the hip joint. In 

order to do so, an extended bibliographical research has been done. After analyzing numerous 

studies that dealt with values for damping and stiffness coefficients regarding the different joints, it 

can be concluded that there is a lack of research for a frontal approach. All studies focused on a 

sagittal study of movement, and even in this case the values for elastic coefficients differed 

significantly from subject to subject. However, all the research has been crucial to understand the 

behavior of the joints and be able to approximate a value taking into account the mobility range of 

the hip joint in the frontal plane. 

Finally, the study of a non-linear control law allowed a different approach to the case of study itself. 

Leading to a wider understanding of the field of control and regulation even though the results were 

not the expected ones, but it set a start point for future projects. 

Overall, the use of powerful software such as Matlab and its graphical programming environment; 

Simulink, has allowed avoiding the necessity to solve the system of differential equations by 

simulating the system itself. It has been a key element, as only by obtaining the simulations of the 

different scenarios it has been possible to compare the results and reach all the conclusions stated 

above.  

Regarding where a future research could be focused on, it would be really interesting to approximate 

the elastic component of the joints with an exponential function instead of a linear one. Moreover, in 

order to get a more precise research, it would be better to follow a sagittal approach as there is more 

literature about it and more precise values could be used. Also a more extent study on non-linear 

controllers could be performed leading to more complex regulating systems. 
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Annex A 

In this Annex all the Matlab detailed files for the original model can be found. 

A1. Matlab Script 

Matlab Script of the initial model, both linear and non-linear 
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A2. Simulink Linear system 

Simulink model of the linear system. 

The file is called Poleplc, from pole placement. 
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A3. Simulink Non-Linear system 

Simulink model of the non-linear system 

 

Inside the “Non linear system block”: 

 

In order to make it easy to find typing mistakes the functions have been divided in different blocs 
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Inside view of the bloc “Fcn3” 

 

The “Denominatore1” having the following value: 

Denominatore1: B1*A2*(cos(u(1)-u(2)))^2-B2*A1 

While the inside view of the “Numeratore1” bloc is the following: 

 

As it can be seen, the numerator has been divided in each different term for an easier control of 

mistakes, leading to the following values: 

n1t1: B2*A3*u(4)^2*sin(u(1)-u(2)) 
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n1t2: B2*A4*sin(u(1)) 

n1t3: B3*A2*u(3)^2*sin(u(1)-u(2))*cos(u(1)-u(2)) 

n1t4: B4*A2*sin(u(2))*cos(u(1)-u(2)) 

n1t5: A2*cos(u(1)-u(2))*u(5) 

n1: u(1)-u(2)+u(3)+u(4)+u(5) 

 

Inside view of the block “Fnc4” 

The same structure has been followed for the last equation 

 

The “Denominatore2” having the following value: 

Denominatore2: ((B1*A2)/A1)*(cos(u(1)-u(2)))^2-B2 

While the inside view of the “Numeratore2” bloc is the following: 
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As it can be seen, the numerator has been divided in each different term for an easier control of 

mistakes, leading to the following values: 

n2t1: (B1*A3/A1)*u(4)^2*sin(u(1)-u(2))*cos(u(1)-u(2)) 

n2t2: (B1*A4/A1)*sin(u(1))*cos(u(1)-u(2)) 

n2t3: B3*u(3)^2*sin(u(1)-u(2)) 

n2t4: B4*sin(u(2)) 

n2t5: u(5) 

n2: -u(1)+u(2)-u(3)-u(4)-u(5) 

 

A4. Simulink Non-Linear system with forces 

To study how plausible the results were, the forces between the body and the floor have been 

simulated, meaning the addition of some blocks to the Simulink system while keeping the “Non linear 

system” the same. 
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Where the block “fcn:Fo1x” has the following structure and values 

 

 

m1*ddxG1: m1*(lG1*u(5)*cos(u(1))-lG1*(u(3))^2*sin(u(1))) 

m2*ddxG2: m2*(l1*u(5)*cos(u(1))-l1*(u(3))^2*sin(u(1))+lG2*u(6)*cos(u(2))-lG2*(u(4))^2*sin(u(2))) 

 

And the block “fcn:Fo1y” has the following structure and values 
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m1*ddyG1: m1*(-lG1*u(5)*sin(u(1))-lG1*(u(3))^2*cos(u(1))) 

m2*ddyG2: m2*(-l1*u(5)*sin(u(1))-l1*(u(3))^2*cos(u(1))-lG2*u(6)*sin(u(2))-lG2*(u(4))^2*cos(u(2))) 

m2g: m2*g 

m1g: m1*g 
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Annex B 

In this Annex the modifications performed to the original Matlab files can be found in order to adapt 

them to the updated model including an elastic element equivalent to the hip joint. 

B1. Matlab script for the updated model 
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B2. Simulink diagrams for the updated model 

In order to adapt the original Simulink diagrams two blocs had to be added in the functions of the 

non-linear system.  

In this Annex the inside view of the modificated blocs can be found. The blocs that are not shown 

means that remain the same. 

The general scheme remains the same as it can be seen below: 
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Inside view of the bloc “Numeratore 1” inside the bloc “Fcn3” 

 

 

As it can be seen, a 6th bloc has been added corresponding to the elastic element. 
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n1t1: B2*A3*u(4)^2*sin(u(1)-u(2)) 

n1t2: B2*A4*sin(u(1)) 

n1t3: B3*A2*u(3)^2*sin(u(1)-u(2))*cos(u(1)-u(2)) 

n1t4: B4*A2*sin(u(2))*cos(u(1)-u(2)) 

n1t5: A2*cos(u(1)-u(2))*u(5) 

n1n6 elastic B2*(-Kelas*(u(1)-u(2))) 

n1: u(1)-u(2)+u(3)+u(4)+u(5)-u(6) 

Inside view of the bloc “Numeratore 2” inside the bloc “Fcn4” 

 

Again, a 6th bloc has been added corresponding to the elastic component. 

n2t1: (B1*A3/A1)*u(4)^2*sin(u(1)-u(2))*cos(u(1)-u(2)) 

n2t2: (B1*A4/A1)*sin(u(1))*cos(u(1)-u(2)) 

n2t3: B3*u(3)^2*sin(u(1)-u(2)) 
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n2t4: B4*sin(u(2)) 

n2t5: u(5) 

n2t6 elastic (B1/A1)*(-Kelas*(u(1)-u(2)))*cos(u(1)-u(2)) 

n2: -u(1)+u(2)-u(3)-u(4)-u(5)+u(6) 
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Annex C 

The implementation of the non-linear controller in Matlab can be found below. 

C1. Matlab Script Non-linear control law 
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C2. Matlab Simulink Non-linear control law 
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Inside view of the bloc “Controllore non-lineare” 

 

Inside view of the bloc “C.Numeratore” inside the bloc “Controllore non-lineare” 

 

Being the block n1 equal to: 

n1:  -(Q1*Q4-Q2^2*(cos(u(1)-u(2)))^2)*(u(4)+kp*u(2)) 

And the block F(th,dth) following the next inner structure: 
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Where: 

F.T1: Q2^2*cos(u(1)-u(2))*sin(u(1)-u(2))*(u(4))^2 

F.T2: -Q2*Q3*g*cos(u(1)-u(2))-sin(u(1)) 

F.T3: Q1*Q2*sin(u(1)-u(2))*u(3)^2 

F.T4: Q1*Q5*g*sin(u(2)) 

Inside view of the bloc “C.Denominatore” inside the bloc “Controllore non-lineare” 
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Being the block d1 equal to: 

d1:  ke*(Q1*Q4-Q2^2*(cos(u(1)-u(2)))^2) 

And the block ~E=E-Etop following the next inner structure: 

 

Where: 

E.T1: 0.5*Q1*u(3)^2 

E.T2: Q3*g*cos(u(1)) 

E.T3: Q5*g*cos(u(2)) 

Etop: (Q3+Q5)*g 

 

Regarding the subtraction of “Etop”, be aware of the negative sign in the “Add” block itself. 
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Annex D 

Maple16 has been used to compute the partial derivatives from the Taylor’s expansion and evaluate 

them in the equilibrium point in order to linearize the non-linear systems. 

In this Annex all the detailed Matlab files and results can be found for both the original and updated 

model. 

D1. Maple16 Initial model 
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D2. Maple16 Updated model 

Linearization of the model that includes the stiffness element for the hip joint. 
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D3. Maple16 Non-linear Controller 
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