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Abstract—Current trends and projections show that faults in computer systems become increasingly common. Such errors may be
detected, and possibly corrected transparently, e.g. by Error Correcting Codes (ECC). For a program to be fault-tolerant, it needs to
also handle the Errors that are Detected and Uncorrected (DUE), such as an ECC encountering too many bit flips in a codeword. While
correcting an error has an overhead in itself, it can also affect the progress of a program. The most generic technique, rolling back the
program state to a previously taken checkpoint, sets back any progress done since then. Alternately, application specific techniques
exist, such as restarting an iterative program with its latest iteration’s values as initial guess.
We introduce a novel error correction technique for iterative linear solvers, designed to preserve both the progress made and the
solver’s future convergence by recovering the program’s state exactly. Leveraging the asynchrony of task-based programming models,
we mask our technique’s overhead by overlapping error correction with the solver’s normal workload. Our technique relies on analysing
solvers to find redundancy in the form of relations between data. We are then able to restore discarded or corrupted data by
recomputing or inverting the appropriate relations. We demonstrate that this approach allows to recover any part of three widely used
Krylov subspace methods: CG, GMRES and BiCGStab, and their pre-conditioned versions.
We implement our technique for CG and recover lost data at the scale of a memory page, which is the granularity at which Operating
Systems (OS) report memory errors on commodity hardware, and study the effect of varying the memory page size to address
non-standard sizes and the possible use of huge pages in High Performance Computing (HPC). When compared to checkpointing and
to the state-of-the-art algorithmic restart technique, on small (8 cores) to large scale (1024 cores), our methods show less overhead. A
trade-off arises between our straightforward and asynchronous approaches, based on the rate at which faults happen. At the lowest
considered rate and page size, overlapping recoveries decreases their average cost from 5.40% to 2.24% of the ideal faultless
execution time. Our methods generally outperform the state-of-the-art even with increased overheads on big page sizes, and perform
similarly on edge cases. These results also indicate that our techniques are increasingly efficient as the matrix size increases.

Index Terms—Resilience, Detected Uncorrected Errors, Exact Recovery, Krylov-Subspace Methods, HPC

F

1 INTRODUCTION

A S High-Performance Computing (HPC) systems con-
tinuously scale up and chips shrink accordingly to-

wards the exascale era [8], [9], the increased risk of faults
in a computing system [41] causes reliability features to
flourish in Operating Systems (OS) and processors [23], [28],
[39]. Studies on actual software error rates indicate that
the increase in faults due to decreasing size and increasing
multiplicity of components is real, and that we can not rely
solely on hardware to be resilient anymore [30], [35]. This
tendency is expected to be aggravated by the reduction of
voltages required for exascale systems [15], [26].

Memory cells are among the most vulnerable hardware
components [33]. They are typically protected by Error
Correcting Codes (ECC) [34] implemented at the hardware
level. The widespread “SECDED” ECC can for example
detect and correct all single bit flips. It can also detect, but
not correct, when two bits are flipped in the same codeword.
This kind of errors are called Detected and Uncorrected
Errors (DUE), which are reported in specific registers in
most moden architectures [3], [24]. When such a register
is set, the processor generates a machine check exception
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that can be caught at the OS level. Different kinds of DUE
can be caught and signalled to the software stack and thus
assimilated to some data loss, provided the architectural
state is safe.

The responsibility of reacting against DUE is handed
to the software stack. Some straightforward approaches
like cancelling the affected process or relocating a faulty
memory page to another physical location may be effective
against low fault rates, but they are insufficient against the
predicted rates that processors will suffer in the future. Also,
very aggressive resilience strategies like process triplication
are completely impractical unless we face very high fault
rates [18]. Therefore, intermediate solutions that recompute
an approximation of the lost data [29] or that save the
process state in a checkpoint with a certain frequency have
been extensively used [12], [32], [37]. However, most of these
solutions involve backward recoveries, discarding useful
computations, and thus incur significant slowdowns.

The application itself may be able to handle the er-
ror and terminate cleanly [5] or perform some sort of
recovery procedure relying on Algorithmic-Based Fault
Tolerance (ABFT), which has been extensively applied to
MPI programs [10], [17], [29], as well as shared memory
programming models [38], [40]. Algorithmic approaches
have demonstrated to be more efficient than backward re-
coveries like checkpointing-rollback. However, most ABFT
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techniques so far suffer from two main drawbacks: being
very application dependent, and still incurring significant
overheads. In this paper we aim to reduce the impact of
these two issues which have avoided the wide-spread usage
of algorithmic resilience. The proposed ABFT methods to
deal with DUE are based on very simple algebraic relations
that do not require any kind of deep understanding of the
algorithm and can be almost always derived for iterative
methods. When a DUE is signalled, we always discard
the whole memory page where affected data resides, as
OSs do for bus and memory ECC errors, and recompute
the discarded data using the algebraic relations that we
derived. The cost of this recovery is proportional to the page
size, and we evaluate the proposed ABFT methods for all
possible sizes from 4K bytes up to 2M bytes. The overheads
related to recovering data are reduced by overlapping them
with algorithmic computations. Since the responsibility of
such overlapping is left to the runtime system, we do not
significantly increase the programming burden.

This paper proposes an integrated resilience approach,
where the error detection is performed by hardware mech-
anisms that report DUE to the OS, which identifies lost
data at a memory page level and triggers a signal caught
by the application. We use the OmpSs task-based data-flow
programming model [16], in which serial code is split into
several pieces, called tasks, that are dynamically scheduled
according to data dependencies explicitly expressed by the
programmer. We combine the OmpSs annotations with MPI
to scale our implementation up to over thousand cores. We
demonstrate the feasibility of our approach by applying
it to relevant iterative methods of the Krylov subspace
family: the Conjugate Gradient (CG), Bi-Conjugate Gradient
Stabilized (BiCGStab), and Generalized Minimal RESidual
(GMRES) [4], and implementing it for CG. The main contri-
butions of this paper are:

• A general resilience solution for DUE based on
straightforward algorithmic recoveries. With the
lowest error injection rate considered, corresponding
to one expected error per baseline execution time, the
overhead of this technique is 5.40%, whereas that of
the checkpointing-rollback technique is close to 55%.

• An asynchronous and programmer transparent vari-
ant of our recovery implementation that reduces the
overhead down to 2.24% under the lowest error rate,
and that offers a trade-off between low overhead and
convergence rate for higher error rates.

• A mathematical proof showing that Langou et al.’s
Lossy Approach [29] is the best ABFT recovery strat-
egy of all the restart techniques in the literature.

• An exhaustive and comprehensive evaluation, using
real world matrices, of our method against a more
sophisticated algorithm-specific restart method, de-
rived from the Lossy Approach, and checkpointing-
rollback mechanisms. We consider different parallel
scenarios from 8 up to 1024 cores and we show that
our methods always improve the performance of the
above mentioned state-of-the-art methods.

• This paper further extends the original conference
manuscript [25] with an in-depth study of the effect
of page sizes, from 4KB up to 2MB, on the overheads

of the techniques. Our algorithmic methods outper-
form the state-of-the-art on average up to 512KB
page sizes. For bigger sizes, our methods still per-
form better for the bigger matrices of the test set,
and perform similarly to the Lossy Restart method
on small matrices where a full vector can fit inside a
single memory page.

The rest of this paper is organized as follows: Section 2
explains how to recover from hardware detected memory
errors by using inherent redundancy, while Section 3 shows
how to use this redundancy to make Krylov subspace
methods resilient, as well as implementation details of this
methodology for CG. Section 4 introduces the methods with
which we compare our recoveries, and the next sections
provide the experimental setup in Section 5, numerical
validation in Section 6, and the evolution of these results
with page sizes in Section 7. Section 8 examines related work
and, finally, Section 9 provides our concluding remarks.

2 EXACT INTERPOLATION RECOVERY

2.1 Error Detection and Reporting
Due to the advent of faults, many processors have spe-

cific registers dedicated to signalling errors to the OS layer.
On modern x86 and AMD64 architectures for example,
a memory controller discovering data that is incoherent
with the ECC, while accessing or periodically scrubbing
it, reports it in a specific register [3], [24]. For memory
pages, when the corrected errors exceed a threshold, the OS
transparently relocates the page at another physical location.
When a DUE is reported, the OS kills the affected process.
This feature is known as memory page retirement on Solaris,
and soft or hard page offlining in Linux kernels [28], [39].

In practice, application termination after a page failure
is done by a SIGBUS signal. This signal can be caught and
also specifies the failing memory addresses. By catching the
signal and requesting a new hardware page at the same
virtual address, the program can continue executing without
further errors. Thus, to be resilient against memory DUE, an
HPC application simply has to be able to replace lost data.

We classify all data as either constant if it does not
change during execution time (matrix, preconditioners,
right-hand side), or dynamic if it may be modified. Constant
data is assumed to be saved to a reliable backing store,
from which it is reloaded when errors are detected, similarly
to other work using memory-page level fault models [7].
While there typically is not enough information available
in the solver to recover constant data, there may likely be
where the matrix was generated or read. Alternately, such
data could be protected by software ECC at low cost, by
exploiting the fact that this second ECC tier only needs to
correct, and not detect errors [42]. Thus, only dynamic data
needs to be made recoverable.

2.2 Extracting Redundancies of Linear Solvers
Linear iterative solvers perform operations like matrix-

vector multiplications q = Ap, linear combinations u = αv+
βw, and combinations of the above, e.g. the very common
residual g = b−Ax, where A is a matrix while q, p, u, w, g, b
and x are vectors and α and β are scalars. In many cases the
left and right hand side of these operations coexist during
the whole execution of the solver.
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TABLE 1
Block recoveries for operations q = Ap, v = αv + βw and g = b−Ax

Block relation, recover left side Inverted relation, recover right side
qi =

∑n−1
j=0 Aijpj Aiipi = qi −

∑
j 6=i Aijpj

ui = αvi + βwi wi = (ui − αvi)/β

gi = bi −
∑n−1

j=0 Aijxj Aiixi = bi − gi −
∑

j 6=i Aijxj

In some cases, we know that such a relation between
vectors holds true (minus round-off errors) without having
to recompute them. For example, if we define x′ = x + αp
and g′ = g−αq with the above notations, then g′ = b−Ax′.
Finally, similar relations can hold true by construction, with-
out ever having been computed. By analysing an iterative
solver, we find redundancies expressed in terms of explicit
or implicit relations between data.

Trivially, if any vector g, q, u is lost or partially corrupted,
it can be recovered by recomputing the relation involving
that vector. Given the inverses of A, α, β and other potential
operands of a relation, it would also be possible to recover a
lost or corrupted p, v, w, t or x. However, solvingAp = q for
p or Ax = b − g for x is as expensive as running the whole
iterative method. The matrix A can not be inverted either in
the general case, due to numerical and computational con-
siderations. However, recoveries based on such redundancy
relations are applicable if only a small portion of the data
structures involved in a relation is lost. This is the case with
our error model since modern hardware is able to report
errors at memory page level. In order to operate at such fine
grain level, the redundancies must be expressed in terms of
relations between small blocks of data.

2.3 Block Decomposition

The relations exposed previously, decomposed in n
blocks, are listed in Table 1. We use the normal block relation
to recover the left-hand side (lhs) of a relation, and the
inverse of this relation for the right-hand side (rhs). In the
event this inverse relation relies on a diagonal block of the
matrix, we need to use a solver to recompute the lost data.
If we know that a diagonal block is non-singular, e.g. when
A is Symmetric Positive Definite (SPD), we solve the inverse
block relations with a direct solver. Otherwise we solve this
relation in the sense of least squares for the full columns of
the matrix corresponding to the lost memory page as input,
similarly to what Agullo et al. do for restart methods [2].

The formula for xi’s recovery, shown at the bottom of
the right hand side of Table 1 has been used by Chen [11] to
recover the iterate, in complement of implicit checkpointing
methods. Our approach requires no checkpoints however,
as we protect all vectors with interpolation methods – as
detailed in Section 3.1 for CG, BiCGStab, GMRES, and
in Section 3.2 for their preconditioned variants. Exploiting
these relations for recovery is a novel idea, since all previ-
ous work on making Krylov-subspace solvers fault-tolerant
relies on a fail-stop failure model in a distributed memory
environment. The required information to use redundancy
of linear relations is then not available since corresponding
parts of different vectors are lost simultaneously.

Furthermore, the granularity of the blocks of lost data
in our recoveries is very different from the one in the
context of process failure, which allows different and faster
recoveries. Indeed, our block decomposition is dictated by
the underlying layers (hardware detection, OS, runtime)

that do the DUE reporting. This means the block size that
we use as granularity for recovery is a memory page. For
a typical off-the-shelf machine, memory pages are 4K bytes,
though bigger pages can be used in HPC settings – provided
architectural support, such as the 2MB “huge pages” on x86.
We evaluate our technique for any power of 2 sized page
from 4KB to 2MB, thus for data losses from 512 to 262,144
double precision floating-point values.

Any DUE in our data protected by relations can thus be
rectified by applying a small amount of computations, at
worst factorizing a diagonal block of a matrix if one is used
by that relation. This is a forward recovery scheme, since we
can continue executing the program with our interpolated
replacement data and the data that is not affected by the
error. When A’s diagonal block is non-singular or a linear
relation is used, we can even guarantee the exact same data
as was lost for all relations (up to rounding errors), thus
guarantee the same convergence rate as when the algorithm
is not subject to faults. These recovery operations are usually
small compared to the total computations, since matrix
dimensions reach up to more than a million rows for real-
life problems, as available in the University of Florida sparse
matrix collection [14].

2.4 Dealing with Multiple Errors

Our approach requires no assumptions on simultaneous
errors. Indeed, our techniques can easily handle multiple er-
rors (discovered simultaneously) in most situations. Errors
can always be recovered if they affect different instances of
blocked linear relations expressed in Table 1. However, if
simultaneous errors impact a single relation we have two
possible scenarios:

1) Simultaneous errors in a single vector are not a problem
for our recovery strategy. This is trivial for vectors
recovered from linear relations, and straightforward
for submatrix relations [29]. For two failed blocks i
and j, we can combine both block relations:(
Aii Aij
Aji Ajj

)(
xi
xj

)
=

(
bi − gi −

∑
k 6=i,j Aikxk

bj − gj −
∑
k 6=i,j Ajkxk

)
This relation is extendable to any number of blocks,
with an increasing submatrix size to be factorized.

2) Simultaneous errors on related data, e.g. both qi and pi
for a given i in a q = Ap relation. Assuming no other
relationship allows to recover these data, we may
fall back to a restart method, e.g. the Lossy Restart
which is adapted from the Lossy Approach [29] to
fit our error model (see Section 4.3).

In conclusion, our forward interpolation recovery relies
on very simple redundancy relations that are easy to iden-
tify in any iterative method, and that can efficiently be used
at memory page level. This recovery can deal with multiple
errors, but that may imply a more expensive computation
or, at worst, the usage of a restart method as fallback.

3 APPLYING RECOVERIES TO ITERATIVE SOLVERS

3.1 Making Redundancies Explicit

DUE are reported when a faulty operation is made or
when trying to access data that is corrupted. Even for
data corruption discovered by the OS while periodically
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Listing 1. CG pseudo code with redundancy relations

1 εold ⇐ +∞
2 g ⇐ b−Ax
3 f o r t in 0..tmax
4 ε⇐ ||g||2
5 i f ε < tol : break
6 β ⇐ ε/εold
7 d⇐ βd+ g
8 q ⇐ Ad
9 α⇐ ε/ < q, d >

10 x⇐ x+ αd
11 g ⇐ g − αq
12 εold ⇐ ε

g = b−Ax

d = A−1q g = b−Ax
see 3.1.1
q = Ad d = A−1q
d = A−1q x = A−1(b− g)
q = Ad g = b−Ax

scrubbing memory pages, no error is signalled until that
data is accessed, in the hope the page will be freed.

So in order to make an iterative solver resilient with our
technique, it is sufficient to find for each operand of each
operation done by the solver a relation

• that either allows to recover the operand, and then
compute the result of the operation,

• or that allows to compute the result without this
operand – that is, finding an alternate formulation.

Note that the main difference between this work and
previous application-level recoveries for the same iterative
solvers is the error model: since we do not consider com-
plete failure of a node, we do not incur the loss of a part of
every vector, which would render the relations we use here
inapplicable. Over the next Sections we explain in detail
how three commonly used iterative methods, CG, BiCGStab,
and GMRES, can be protected using redundancy relations.

3.1.1 Conjugate Gradient

The pseudo-code for CG is given in Listing 1 [36], with
the relations used for recovering each accessed data anno-
tated on the right. Relations are written as whole-matrix
relations for the sake of readability, but we use the memory
page grained system described previously. Whenever possi-
ble, the relation that last produced data is used, which is not
possible when data is updated in place. By construction,
the algorithm conserves the relation g = b − Ax, and
we can define an alternate way of computing q besides
performing Ad from the update formula of d ⇐ βd + g,
which is q ⇐ βq + Ag. When computing q, if a page of d is
missing, q can be computed using this alternate formulation.
When the whole matrix-vector multiplication is done, d
can be recovered using d = A−1q, in order to continue
computations. However, it is impossible to use this relation
when updating d. Let us consider the blocked formulation:

di = A−1ii
(
qi −

∑
j 6=i

Aijdj
)

At this stage in the update of d, all pages d0..di−1 are at
iteration t+ 1, and all pages di+1..dn−1 are at iteration t.

We have two possibilities for recovery:

1) Postpone the recovery and compute qi at iteration
t+ 1 using βq +Ag, then factorize Aii to get d.

2) Perform double buffering, thus have two copies of a
vector, either d or q, and use them alternately from
one iteration to the next to remove in place updates.

The first option, though possibly more elegant, would
imply taking rather considerable distances from the original
algorithm. It is also arguable that the βq + Ag operation
might need to be protected, since a matrix-vector multipli-
cation is the most computationally intensive and longest
operation in a CG iteration. We thus opted for the latter
option, and unrolled the loop to use two d vectors alter-
nately, as illustrated in Listing 2. Code unchanged by this
transformation is skipped. This solution adds redundancy to
the method at the cost of some minimal memory overhead.

3.1.2 Bi-Conjugate Gradient Stabilized

BiCGStab is one of the generalizations of CG to matrices
that are non-SPD. The pseudo-code for this method and the
relations that may be used to make it resilient are presented
in Listing 3, similarly to what has been done for CG. r is
constant, along with the usual A and b. BiCGStab exhibits
more redundancies than CG, and only an example set of
relations that can be used is shown.

With q = Ad, s = g − αq and t = As, updating g can
be rewritten g ⇐ g − αAd − ωAs. Thus we have another
way of computing g if for example q is faulty, but we also
verified that the algorithm still conserves g = b−Ax.

Note that other assignments can also be expressed
as slightly more complicated updates, we have e.g.
s⇐ s− ωt− αq. The reverse also holds true, from the
update of x we may get a direct relation such as
x = A−1(b− s+ ωt)

3.1.3 Generalized Minimal RESidual

The code for GMRES is available in Listing 4. Each
iteration of GMRES consists of running the Arnoldi method
- the part creating an orthogonal basis of vectors spanning
(g,Ag, ..., A(m−1)g) and an associated upper-Hessenberg
matrix H - followed by a QR decomposition of this matrix
H through Givens rotations. We may then increment the
iterate by the solution y of miny||g −Hy||.

Protecting the biggest part of the data, which is the vk

vectors, is straightforward thanks to the Hessenberg matrix.
At any time, we have at step t,

l > 0 and l < t⇒ vl =
1

hl,l−1

(
Avl−1 −

l−1∑
k=0

hk,l−1v
k

)
Thus the redundancy kept in the Hessenberg matrix’

elements allows us to recover any Arnoldi vector under our
error model.

Note that it is possible (and usual) to build the QR
decomposition of the Hessenberg matrix H as the Arnoldi
method goes, by computing the Givens rotation that corre-
sponds to each new vector of the Arnoldi method. Q is thus
computed as the set of Givens rotations, and QT ||g||2e1 is
also updated at every step. Thus we could use the relation
H = QR by keeping a copy of H even while building R:

• Givens rotations are easily deducible from H , thus Q
and R are recoverable from H

• Givens rotations are easily invertible, since inverting
a rotation means rotating by the opposite angle. Thus
H is recoverable from Q and R.

Even though space is a limiting factor in GMRES, the
H and R matrices are respectively upper Hessenberg and
upper triangular of size m(m + 1), thus much smaller than
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Listing 2. CG with d
double-buffered

1 f o r t in 0..tmax
2 · · ·
3 d1 ⇐ βd2 + g
4 q ⇐ Ad1
5 α⇐ ε/ < q, d1 >
6 x⇐ x+ αd1
7 · · ·
8 t++
9 d2 ⇐ βd1 + g

10 q ⇐ Ad2
11 α⇐ ε/ < q, d2 >
12 x⇐ x+ αd2
13 · · ·

Listing 3. BiCGStab pseudo code with redundancies listed

1 g, r, d⇐ b−Ax
2 ρ⇐< g, r >
3 f o r t in 0..tmax
4 q ⇐ Ad
5 α⇐ ρ/ < q, r >
6 s⇐ g − αq
7 t⇐ As
8 ω =< t, s > / < t, t >
9 x⇐ x+ αd+ ωs

10 g ⇐ s− ωt
11 check convergence
12 ρold ⇐ ρ
13 ρ⇐< g, r >
14 β ⇐ ρ/ρold ∗ α/ω
15 d⇐ g + β(d− ωq)

d double-buffered
q = Ad
g = b−Ax q = Ad
s = g − αq
t = As s = A−1t
x = A−1(b− g) d = A−1q
t = As s = A−1t

g = b−Ax

q = Ad d = A−1q

Listing 4. GMRES pseudo code

1 f o r t in 0..tmax
2 g ⇐ b−Ax
3 v0 ⇐ g/||g||2
4 f o r l in 0..m− 1
5 w ⇐ Avl

6 f o r k in 0..l
7 hk,l ⇐< w, vk >
8 w ⇐ w − hk,lvk
9 hl+1,l ⇐ ||w||2

10 vl+1 ⇐ w/hl+1,l

11 solve H = QR
12 y ⇐ R−1QT ||g||2e1
13 x⇐ x+

∑m−1
l=0 ylv

l

14 check convergence

the set of Arnoldi vectors of size mn (with m << n). Agullo
et al. consider H to be stored (and solved) redundantly [2],
which would then need no further protection. This also
indicates that keeping the matrix H has a reasonable cost.

3.2 Preconditioned algorithms

The described recovery techniques can be straightfor-
wardly applied to the same algorithms with a precondi-
tioner. To preserve the generality of our approach, and
to avoid preconditioners specifics, we consider a generic
preconditioning operation “solve Mu = v”, M being the
preconditioning matrix. To derive protected versions of the
preconditioned algorithms we have to protect all the linear
operations involving the preconditioned vectors. Protecting
the execution of the preconditioner itself is beyond the
scope of this paper, but a topic of complementary work,
describing for example how to effectively protect multi-grid
preconditioning [10].

To recover part of a preconditioned vector, there is no
general way to avoid re-applying the preconditioner. There-
fore, the prerequisite for the recovery to be cheap is the
ability to perform a partial application of the preconditioner,
that is, to apply the preconditioner to a small subset of v
such that all lost data in u is recovered. If M is a block-
diagonal matrix, solving Mu = v only on the set of blocks
that supersedes the lost data achieves this. If M is a fixed
point method’s matrix, the sparse set of elements in v that
contribute to the lost portion of u is sufficient. If M denotes
a multigrid method, we consider the nodes of the coarsest
grid that participate to producing lost data, then we only
need the inputs that contribute to these nodes for recovery.
In any case, re-running the preconditioner completely is
a viable, though slow, forward recovery for u. Finally, a
corrupted v after a “solve Mu = v” operation is always
recoverable without using the equation Mu = v. This is an
important point since M is not always explicitly formed.

This can be made explicit by looking at the precondi-
tioned versions of CG, BiCGStab, and GMRES, which are
shown in Listings 5, 6 and 7. We can easily observe that in
both CG and BiCGStab the preconditioned vectors z, p and
s always exist at the same time as their non-preconditioned
counterparts, g, d and r, because the latter are still used in
the solver. Thus we can always recover the preconditioned

vectors as discussed in the previous paragraph. All the
relations protecting operations that involve z or g in CG,
and p, s, d or r in BiCGStab are detailed next to the code
of the preconditioned versions. For preconditioned GMRES,
shown in Listing 7, the main redundancy relation from its
non-preconditioned counterpart linking all the vk is still
valid. The only addition is the need for g to be conserved
for the possible recovery of x.

3.3 Implementing Recovery with Asynchrony

CG and BiCGStab are harder to protect, as they require
both redundancy relations and double buffering approaches
to be fully protected, while GMRES just requires redundan-
cies. For this reason, as well as because CG is a very popular
method for solving SPD matrix equations in the HPC con-
text, we select it to test our approach. We implement two
versions of CG, one without a preconditioner and a second
one using a block-Jacobi preconditioner. Any conclusion
obtained from our experiments with CG can be trivially
extended to the other two since they constitute a similar and
simpler use-cases respectively, and to their preconditioned
versions as explained in Section 3.2.

We start by presenting the implementation of CG for
a shared-memory model, and extend it to a distributed
memory systems in Section 3.4.

3.3.1 Conjugate Gradient’s Parallel Decomposition

The pseudo-code for CG is given in Listing 1, and its
parallelization in tasks is done by strip-mining as shown
in Figure 1a, with each set of tasks being named after the
value or vector it outputs. Dependencies between tasks
are generated from annotations to the sequential code, and
represented by arrows on this graph. Tasks are then sched-
uled asynchronously by the runtime according to this data-
flow. Some dependencies that do not affect the ordering or
scheduling of tasks are not drawn for the sake of clarity.

Sets of tasks depicted in white represent operations that
are strip-mined into as many parallel tasks as available
threads. Blue tasks (after converging arrows) depend on all
the previous tasks (because of a reduction operation) and
represent a single task producing a scalar value. They are
thus de facto synchronization points. The lattice-like arrows
describe the fact that each following task depends on each
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Listing 5. Preconditioned CG

1 εold ⇐ +∞
2 g ⇐ b−Ax
3 f o r t in 0..tmax

4 solve Mz = g
5 ρ⇐< z, g >
6 β ⇐ ρ/ρold
7 d⇐ βd+ z
8 q ⇐ Ad
9 α⇐ ε/ < q, d >

10 x⇐ x+ αd
11 g ⇐ g − αq
12 ρold ⇐ ρ

g = b−Ax
Mz = g

Mz = g

Listing 6. Preconditioned BiCGStab

1 g, r, d⇐ b−Ax
2 ρ⇐< g, r >
3 f o r t in 0..tmax

4 solve Mp = d
5 q ⇐ Ap
6 α⇐ ρ/ < q, r >
7 r ⇐ g − αq
8 solve Ms = r
9 t⇐ As

10 ω =< t, r > / < t, t >
11 x⇐ x+ αp+ ωs
12 g ⇐ r − ωt
13 ρold ⇐ ρ
14 ρ⇐< g, r >
15 β ⇐ ρ/ρold ∗ α/ω
16 d⇐ g + β(d− ωq)

d double-buffered
Mp = d
r = g + ωt

Ms = r
r = g − αq
p = A−1q,Ms = r
r = g − αq

r = g + ωt

d double-buffered

Listing 7. Preconditioned GMRES

1 f o r t ln 0..tmax

2 g ⇐ b−Ax
3 solve Mz = g
4 v0 ⇐ z/||z||2
5 f o r l in 0..m− 1
6 u⇐ Avl

7 solve Mw = u
8 f o r k in 0..l
9 hk,l ⇐< w, vk >

10 w ⇐ w − hk,lv
k

11 hl+1,l ⇐ ||w||2
12 vl+1 ⇐ w/hl+1,l

13 solve H = QR
14 y ⇐ R−1QT ||z||2e1
15 x⇐ x+

∑m−1
l=0 ylv

l

g = b−Ax
Mz = g

x = A−1(g − b)

previous task, as the block-row matrix-vector multiplication
takes a whole vector as input for each single block as output.

3.3.2 Packing Recovery Tasks out of the Critical Path

We divide those relations in blocks as described in Sec-
tion 2.2 and maintain an atomic bitmask (e.g. an int) per
block of failure granularity, thus per memory page. Each
data vector and task output is represented by a bit in this
mask. Thus, if a task T works on a page p of a vector, it can
check whether (one of) its inputs(s) is corrupted, and if so
skip the computation while marking the bitmask with the
bit representing T ’s output. We similarly skip computations
that have inputs whose computation was skipped, due to
their inputs being corrupted. This is necessary as to keep
track of when errors happen and avoid overwriting data
potentially needed for recovery, and works especially well
with linear relations (which are the majority of considered
relations). There is a memory overhead directly proportional
to the size of the linear system n to store this information.

Skipping computations is critical for reductions, because
a floating point accumulation can be irremediably corrupted
by adding (or multiplying by) +/-inf or nan. Through a
thread-private sig_atomic_t variable, each task is made
aware of interruptions, and only contributes a page-level
accumulation to the task-level one when no errors were
reported. For this page based division to be valid, the re-
duction needs to be associative, which is always guaranteed
since it is already required for the strip-mining into tasks.

q

〈d, q〉

α

xg
ε

β

d

(a) textbook version

q

〈d, q〉

α
x

g
ε

β

d

r1

r3
r2

(b) with recovery tasks
Fig. 1. Task decomposition of CG. Circles represent tasks producing
the data inscribed on them, with white sets of tasks for strip-mined
operations and blue for tasks producing a scalar, and full arrows rep-
resenting data dependencies. Green tasks implement recoveries of the
tasks linked to them with dashed arrows.
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(b) AFEIR, overlapped
Fig. 2. Traces illustrating scheduling of recovery tasks

While errors are not corrected, the skipping of computa-
tions that depend on not-produced data propagates through
the different tasks. When reaching a scalar task, skipping de-
pendent computations would mean stop progressing com-
pletely. Thus we have to recover errors before the said scalar
tasks. The graph in Figure 1b shows the modified cycle with
the green tasks where recoveries take place: replacing lost
data and recomputing skipped computations.

Each recovery task recovers the inputs and outputs of
normal tasks which point to it with dashed lines. Recovery
tasks are always added to the execution flow of the program
and check the global variables for signalled errors. If none
occurred, the recovery tasks do nothing.

The more conservative approach allows the recovery
tasks to execute in the critical path, that is, waiting for all
computations that do not need lost data to finish and only
then run the recovery, as illustrated in Figure 2a. This option
makes no compromise on the coverage of faults, since all
the tasks (thus potential error discoveries) have finished
executing when the recovery starts, as we will see with high
error injection rates in Section 6.2. We call this technique
Forward Exact Interpolation Recovery (FEIR).

Because dashed lines represent communication through
atomic global bitmasks rather than dependencies, recovery
tasks can execute concurrently to CG tasks, which do not
touch the memory pages to be recovered, either skipping
them or working on unrelated data. This allows to overlap
computations and recoveries, thereby reducing overheads;
however errors discovered between recovery tasks and the
following scalar task are not recoverable. Thus we execute
r1 and r2 asynchronously as late as the scheduler allows us
to schedule them, which means concurrently with < d, q >
and ε respectively, and with a lower priority as to start all
reduction tasks first, see Figure 2b. Faults discovered after
the recovery tasks start being executed can not be corrected.
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This technique is the Asynchronous Forward Exact Interpo-
lation Recovery (AFEIR).

The parallelization strategy for the preconditioned CG is
exactly the same as for the non-preconditioned CG. The only
added recovery technique is the partial “solve Mu = v”,
as explained in Section 3.2, which is easy to perform since
block-Jacobi is a blocked preconditioner.
3.4 Recovery on Distributed Memory Systems

The recovery methods described so far apply to shared
memory models, in a single node or in a partitioned global
address space for example. We list here the few modifica-
tions needed to extend our resilient methods to distributed
memory programming models like MPI, which we will use
to evaluate how the recovery techniques impact the scaling
of the application in highly parallel scenarios.

More specifically, we use a hybrid implementation where
the node level parallelism is leveraged using MPI and the
intra-socket parallelism is exploited by the asynchronous
task-based data-flow programming model, OmpSs. Our CG
solver only requires the following additions:

• Global MPI reductions after the local reductions
• A task to exchange locally updated parts of p with

neighbouring nodes depending on it.

This new exchange task takes place instead of the lattice-
like dependencies between tasks d and q, while the MPI
reductions occur during the α and β tasks (see Figure 1).

For our FEIR and AFEIR methods, we instantiate a
second r1 recovery task to be executed before our new
exchange task, to avoid sending potentially failed and non-
corrected data. Finally, MPI communications added inside
the task recovering the x vector, r3, request and perform
exchanges of parts of x when needed for recovery, since this
vector is not exchanged at every iteration.

4 OTHER RECOVERY APPROACHES

4.1 Trivial Forward Recovery
The trivial forward recovery consists in simply keep-

ing the program running, by allocating new (uninitialized)
memory for corrupt or lost data. No other actions are taken.
While an error in a part of the data that is not reused later
would be masked, we lose all guarantees on convergence.
4.2 Rollback Recovery

Checkpointing is applied only to dynamic data in CG,
to be fair in our comparison of methods, and to be con-
sistent with the assumptions on which the DUE recovery
relies. Each Processing Element (PE) periodically writes to
its local disk the values of the iterate and search direction
vectors it has at that given moment (x and p), which is the
minimum to allow rolling back; frequency of checkpointing
is expressed in terms of iterations of the solver.

There is no need to use a parallel file system, since we
assume that the program will not crash (as we catch the
errors). At rollback, each PE restores the vector portions that
were saved to its local disk at the last checkpoint.

Checkpoints and rollbacks are global, that is, they in-
volve all the PEs of a parallel run. In a distributed memory
scenario, we perform a global MPI reduction once per
iteration to decide whether a rollback is needed. This global
communication is executed simultaneously with the α MPI
reduction to avoid further synchronization overheads.

4.3 Lossy Restart
Langou et al. [29] present a forward recovery method for

the fail-stop model of an MPI process, the Lossy Approach,
applicable to all Krylov-subspace methods. To compensate
for the loss of a part of the iterate x, a step of the block-
Jacobi is used, which relies only on constant data and
the remaining parts of x. This operation is similar to our
recovery for the iterate, while discarding the residual in
the block relation. After such an interpolation, a restart is
necessary since the residual g is outdated and not easily
deducible.

We adapt this Lossy Approach into a recovery for our
error model, that we name the Lossy Restart:

1) If part of the iterate is lost we use the interpolation
from the Lossy Approach. With i the failed block:

Aiixi = bi −
∑
j 6=i

Aijxj

2) We restart the method with either the intact or the
newly interpolated iterate as initial guess.

Before comparing these methods, let us consider theo-
retical results presented on this interpolation, by noting x∗

the solution of the system b = Ax∗, x the iterate, xI the
newly interpolated iterate, e = x∗ − x and eI = x∗ − xI

the respective errors, and g = b−Ax and gI = b−AxI the
respective residuals. Langou et al. show the following:

Theorem 1. The interpolation is contracting for a constant
ci = (1 + ||A−1ii ||

∑
j 6=i ||Aij ||)1/2, thus ||eI || ≤ ci||e||.

This result has been improved for A SPD [2]:

Theorem 2. With A symmetric positive definite, the interpola-
tion diminishes the A-norm of the error: ||eI ||A ≤ ||e||A.

Both theorems grant the block-Jacobi’s fixed point prop-
erty: if x = x∗, then xI = x∗, since e = 0.

From here on, we will restrict ourselves to SPD matrices
and show that the block-Jacobi step does not just give better
replacement data, but the best possible – in the short run.

Theorem 3. For A SPD, the interpolation minimizes the A-
norm of the error ||eI ||A over all possible values for xIi

The proof of our theorem relies on the transformation of
the error implied by the linear interpolation, pIi : e → eI

being a linear projection, orthogonal for the norm || · ||A
Proof. By construction, the residual at xI for the block i
is gIi = bi −

∑n−1
j=0 Aijx

I
j = 0. Let us also notice that

g = b−Ax = A(x∗ − x) = Ae and similarly gI = AeI .
Now let us show that the kernel and image of pIi are

orthogonal for A:
∀e ∈ <, < pIi (e), e− pIi (e) >A =< eI , e− eI >A

=< AeI , e− eI >

=
n−1∑
j=0

< gIj , ej − eIj >

This is always zero, since for j = i, gIj = 0 and for j 6= i,
xIj = xj thus ej = eIj . It then comes clearly that:

||e||A = ||pIi (e)||A + ||(Id− pIi )(e)||A
where pIi (e) depends solely on the ej (thus xj) with j 6= i.
Hence the minimum of this norm for all possible xi, or ei, is
reached in pIi (e).
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We can also deduce this from Theorem 2 and the fact that
the unknown part of x is in the kernel of pIi . ||eI ||A ≤ ||e||A
then holds for any xi, hence themin relation of our theorem.

Restarting the solver, with a good or unmodified initial
guess, still harms the superlinear convergence of CG, which
relies on the fact that the sequence of iterates x minimizes at
each iteration the norm ||x∗−x||A on a sequence of increas-
ing subspaces. However, this disturbance benefit methods
who have a tendency to stagnate (such as GMRES).

All recoveries based on restarting are identical as long
as the iterate is untouched, and trade in convergence prop-
erties for simplicity of recovery in the same way. It is to be
expected that such methods would behave very similarly
to the Lossy Restart, though always worse in the short run,
hence it is the only restart method against which to compare.

5 EXPERIMENTAL SET-UP

We measure solving 9 matrices selected from the Univer-
sity of Florida sparse matrix collection [14]. They are well-
conditioned matrices for CG selected among the biggest of
each family of SPD matrices. We run experiments on an
Intel® Xeon® E5-2670, with one thread on each of its 8 cores.

Our evaluation is done on two versions of CG, a non-
preconditioned version to show the hardest case possible,
and one using a block-Jacobi preconditioner. Due to the
wide variety of preconditioners available for CG, it is impos-
sible for us to evaluate every single one. We list in Section 3.2
the desirable properties of preconditioners for an efficient
recovery. The block-Jacobi is simple to implement, and
trivially applicable to a subset of a vector. We select it also
because, if its block size coincides with the memory page
size, the factorization of diagonal blocks for the recovery of
single errors is already computed. Thus we will use diagonal
blocks of 512 by 512 elements, which coincides with 4KB
page sizes.

We compare the following methods: our Forward Ex-
act Interpolation Recovery (FEIR) without asynchrony (re-
covery tasks in the critical path), our Asynchronous FEIR
(AFEIR), the Lossy Restart, checkpointing-rollback to lo-
cal disk, and trivial forward recovery. The optimal check-
pointing rate is used whenever errors are injected, and no
fallback is used for FEIR or AFEIR: simultaneous errors on
related data are simply ignored (see Section 2.4).

5.1 Techniques Overheads

From here on, the “ideal” CG will refer to our version of
CG with no resilience mechanisms nor error injections.

We present in Table 2 the harmonic means of overheads
for all methods in absence of faults, compared to the ideal
CG. The Lossy Restart and trivial techniques have no over-
head when no errors are injected, since catching the error,
replacing memory pages and ordering a restart is done in
a signal handler which is never called. To give a sense of
checkpointing cost we arbitrarily consider checkpointing
periods of 1000 and 200 CG iterations. The corresponding
overhead raises from 17.62% to 46.20% as the checkpointing
frequency increases, which constitutes a significant cost.

The overheads associated to the AFEIR and FEIR tech-
niques are much smaller since they are associated to activi-
ties like task creation or scheduling, that are much cheaper
than writing data to disk. The asynchronous nature of

TABLE 2
Resilience methods’ overheads, no errors

Lossy trivial AFEIR FEIR ckpt 1K ckpt 200
overhead 0.00% 0.00% 0.23% 2.73% 17.62% 46.20%

TABLE 3
Increase of time spent per state for FEIR methods

imbalance runtime useful
AFEIR 4.30% 8.11% 1.90%
FEIR 25.06% 7.84% 2.78%

the AFEIR technique allows to compensate much of the
overhead incurred by the FEIR technique. We can see in
Table 3 a detailed breakdown of what is involved in the
overheads of the FEIR and AFEIR methods, expressed as
the increase of the proportion of time spent in each state
while the solver is running: either idle, thus suffering load
imbalance, or performing runtime work, such as creating
and scheduling tasks, or finally executing tasks, thus doing
computations for the solver. Executing the recovery tasks in
the critical path obviously increases the load imbalance.

Most of the runtime overhead of FEIR and AFEIR tech-
niques could be removed if application-level resilience were
supported by the runtime, instantiating recovery tasks only
when DUE are signalled.

5.2 Error Injection

We consider the most common DUE to test the con-
sidered recovery techniques: the corruption of a memory
page. However, this is generalizable to more types of errors,
since a DUE very often ends up being a data corruption.
DUE can also bring changes in the control flow of the
programs, which typically ends up with a data corruption
or an execution failure. Our model covers the first scenario,
while the second lies beyond the scope of this paper.

Errors are injected from a separate thread at times de-
fined by an exponential distribution parametrized by the
Mean Time Between Errors (MTBE). To account for the wide
range of convergence times across different matrices (from
1 to 100 seconds), we normalize the MTBE to the ideal
convergence time. Affected memory pages are selected at
random with uniform distribution.

To simulate errors we use the mprotect system call
available in Linux kernels to change the authorizations
of the targeted memory page. This is more practical than
triggering a real hardware retiring of a memory page, and
behaves identically: the program receives a signal at the
time of access to the memory page. We recover in the same
way as we would from a real error: in a signal handler,
we request a new memory page at the same virtual ad-
dress through means of the mmap system command. All
the recoveries operate exactly in the same way as they
would if a real DUE took place. For the solver, there is
no difference between real hardware DUE and our error
injection mechanism.

Errors are injected in the memory pages of the Krylov
vectors, which we cover with our resilience techniques,
and not in the pages that contain constant data, program
instructions, scalar or control values of the algorithm, or our
bitmasks used for resilience. The amount of non-constant
data that is not covered by our error injections is very small
compared to the targeted memory space, and relatively
constant across the different resilience techniques.
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Fig. 3. CG convergence for different resilience methods with matrix
thermal2 and same single error injection in the iterate x around t = 30s

6 EVALUATION

6.1 Convergence

Figure 3 illustrates the convergence of CG for a sample
scenario consisting of a single error injection. The x-axis rep-
resents the time and the y-axis shows the execution progress
in terms of the logarithm of the residual norm defined as
||Ax − b||/||b||, updated at each iteration. The ideal CG
is represented by the cyan line; all the other experiments
have a single error injected 30 seconds after the beginning
of the execution at a certain memory page that contains a
portion of the iterate x. Before the error is injected, each
resilience method pays its typical overhead in absence of
faults. The purple line corresponding to the checkpointing
mechanism is the one with more overhead, which is con-
sistent with the analysis presented in Section 5.1, as we use
a checkpointing frequency of 1000 iterations. At the time
of the error, it already incurs a 9.12% slowdown. Once the
error is injected, the checkpointing mechanism rolls back
a certain number of iterations and resumes progress from
there. The Lossy Restart, represented by the blue line, has an
immediate reduction in the error thanks to its block-Jacobi
step interpolation, but converges slower afterwards because
restarting harms CG’s superlinear convergence. The FEIR
and AFEIR methods recover the lost data by using an exact
interpolation and keep progressing. The overhead paid by
the AFEIR technique is significantly smaller than the one
paid by FEIR, since asynchrony allows most of the recovery
work to be overlapped with other computations.

6.2 Shared-Memory Performance

Figure 4 shows an exhaustive evaluation of the per-
formance slowdown associated to the 5 resilience mech-
anisms listed in Section 5: trivial, checkpointing-rollback,
Lossy Restart, FEIR and AFEIR. The checkpointing rate is
computed for each experiment to minimize execution time,
taking into account the time to write and read checkpoints,
the MTBE, and no downtime [6]. We consider the same 9
input matrices as for the overhead measures, and 6 error
injection scenarios per matrix and method, which means
that we provide an evaluation of 270 different experiments.
Each experiment has been run over 50 times and Figure 4
reports their harmonic mean, and standard deviation as
error bars. In each repetition, the errors have been injected
randomly at different times and memory pages. On the x-
axis of Figure 4 we display the name of the considered
matrices and, for each matrix, the error injection frequency

normalized to the ideal CG’s convergence time τ for that
matrix. A value n means an error frequency of n

τ , thus
an MTBE of τ

n . In other words, n is the expected number
of errors injected during the ideal convergence time τ .
The y-axis is displayed in logarithmic scale and shows the
measured performance slowdown in percentage for each
experiment, with respect to the ideal CG. A slowdown close
to 0 means the resilient CG converges at a speed close to
that of the ideal one, whereas a bigger slowdown means its
convergence is slower. The convergence threshold is 10−10.

We have run the exact same 270 experiments with the
block-Jacobi Preconditioned CG (PCG), however due to
space limitations, we only report the mean of those results,
displayed at the right hand side of Figure 4.

The trivial method reacts badly against few errors and its
convergence times diverge extremely fast, with overheads
over 200% with a normalized error frequency of 5 only. For
PCG, the overheads of the trivial recovery reach 50% with a
normalized frequency of 2 and become larger than 700% for
frequencies of 10 or more. The checkpointing scheme reacts
better than the trivial method, with substantial overheads
that tend to increase slower, ranging on average from 55%
to 433% for CG and from 60% to 752% for PCG. These
convergence times are close to the expected values from the
checkpointing frequency computation [6]. The Lossy Restart
behaves better on average than the trivial method and the
checkpointing schemes. Regarding CG, it has an overhead
of 8.4% with one expected error per ideal convergence time,
reaching up to 87% and 170% against 20 and 50 times higher
frequencies respectively, whereas for PCG these overheads
are 12.80% and 500% for normalized frequencies of 1 and 20.
This better behaviour of the lossy mechanisms with respect
to checkpointing and trivial techniques is already reported
in the literature [2], and the fact that our experimental
framework has reproduced known results demonstrates its
accuracy and reliability. This is matrix specific however, as
non-ABFT methods are clearly outperformed for af shell8
or cfd2 but have overheads similar to Lossy for thermal2.

The most important fact of our evaluation is that meth-
ods FEIR and AFEIR behave much better than the current
state-of-the-art resilience techniques for iterative solvers.
When applied to CG, FEIR has an overhead of 5.37% and
29.68% under normalized frequencies of 1 and 50, whereas
AFEIR has overheads of 3.59% and 50.47% respectively for
the same error rates. On PCG, FEIR and AFEIR have an
overhead of 5.36% and 2.72% with the smallest frequency,
and reach 40.55% and 48.55% with the largest.

While FEIR has a roughly constant overhead on most
matrices, the impact of recoveries in the critical path can
be seen where execution times are the shortest, such as for
Dubcova3 and especially qa8fm and thermomech. As recov-
eries run on a per iteration basis, the error rates per iteration
determine the chances of encountering errors on related
data and during recovery tasks. Under injection frequencies
of 20 and 50, both qa8fm and thermomech experience over
0.2 and 0.6 errors per iteration, which significantly pulls up
the mean overheads. Such extreme cases could be dealt with
by using more recoveries per iteration, or a fallback method
for unrecoverable errors. These matrices also show that
Lossy Restart is most efficient on fast converging problems.
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Fig. 4. Comparison of the execution time for resilience methods and matrices, varying error injection rates

AFEIR is slower than FEIR for high error injection rates,
because errors happening between the end of a recovery
task and its following scalar task are unrecoverable. That is
the time between the end of r1 or r2 and the beginning of
α and β respectively, as illustrated by Figure 2b. With very
high error injection rates, the probability of an error happen-
ing during these time windows may cause the contribution
of a memory page to 〈d,q〉 or ε (see Figure 1b) to be ignored.
Depending on the matrix and the actual data lost, this might
have a significant impact, as matrix ecology2’s behaviour
shows. The FEIR method is not at risk of discovering an
error after a recovery task ran, because these tasks start
after all computations are done. However, both methods
are still vulnerable during the recovery’s execution. There
is thus a trade-off between the low overheads of AFEIR
at frequencies of 10 and less, and a more conservative
approach, FEIR, which trades in some convergence speed
for safer recoveries and is thus useful at higher error rates.
The same trade-off applies to the PCG results for low error
injection rates. The precomputed factorization of diagonal
blocks reduces recovery time, thus a block-Jacobi precondi-
tioner weakens this trade-off for high error injection rates.
It is to be expected that when using a preconditioner whose
partial application is computationally hard (see Section 3.2),
the average recovery time will increase and this trade-off
will become stronger.

6.3 Scaling Results

In this section, an evaluation of the scalability of our re-
covery techniques is performed with a hybrid MPI + OmpSs
implementation. Since the previously considered matrices
are not well suited for large scale experiments, we solve
Poisson’s equation in 3D using a 27 point stencil discretiza-
tion, which is also used in the HPCG benchmark [20], with
a system size of 5123 unknowns. Experiments are run in
the MareNostrum supercomputer, whose nodes contain two
Intel Xeon CPU E5-2670 sockets. Each MPI rank is mapped
to one 8-core socket, running 1 OmpSs thread per core. We
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Fig. 5. Speedup of the MPI+OmpSs resilient CGs

consider runs on 8, 16, 32, 64 and 128 sockets (64 to 1024
cores), since we need 8 sockets to fit the matrix in memory.

We present in Figure 5 a complete evaluation in terms
of speedup, injecting one and two errors per run. The
speedups are computed taking the execution time of an
ideal CG on the smallest possible core count, 64, as a
reference. We display data concerning the FEIR, AFEIR,
Lossy Restart, checkpointing and trivial techniques, and
include the ideal CG’s and linear speedups for reference.
Our MPI+OmpSs CG implementation achieves a parallel
efficiency of 80.17% on 1024 cores in a faultless run, which
highlights its quality in terms of parallel performance.

AFEIR and FEIR techniques clearly overcome the trivial
and the checkpointing techniques, achieving speedups of
10.01 and 7.50 respectively when 1 error is injected and
6.03 and 7.65 against two errors on 1024 cores. The Lossy
Restart achieves speedups of 8.17 and 4.82 respectively on
1024 cores. It is worth noting that only a few tens of iter-
ations are required to achieve convergence for the 27-point
stencil matrix, which causes any overhead to be important
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Fig. 6. Subdivision of CG vectors in blocks, with one block per page

compared to the ideal execution time, but also makes this
matrix the ideal workload for a restart method. Even in
this case, restarting is as costly if not more than our FEIR
and AFEIR methods’ overheads. Regarding checkpointing,
writing vectors to disk already causes the checkpointing to
perform significantly worse than our baseline, and when
injecting errors its speedups stay below a third of the ideal
CG, close to that of the trivial method.

7 ANALYSIS OF DATA LOSS GRANULARITY AND
MEMORY PAGE SIZE

While the checkpointing scheme recovers full vectors,
the algorithmic techniques recover or replace data at the
memory page level, which is usually 4KB. However, some
systems use different page sizes, and some HPC codes rely
on huge pages (2MB) to improve performance, hence we
present an in-depth study of the impact of varying page
sizes on recoveries and convergence rates.

The impact of using huge pages on the ideal perfor-
mance (without resilience methods nor error injections) was
evaluated as well, however details are left out due to space
constraints. Overall, the number of TLB misses decreased
drastically with negligible impact on convergence time.

The number of pages, thus blocks of data erased by a
single error, per vector (b, x, g, d, q, see Listing 1) are dis-
played in Figure 6. At the biggest page sizes, a single page
may contain a vector entirely, thus full vectors can be erased
by a single error, as is the case for qa8fm and cfd2 starting
at 1MB page sizes, and Dubcova3 and thermomech dM at a
page size of 2MB. In this case, the Lossy recovery consists of
solving the problem by factorizing directly the whole matrix
until the resulting vector is not subject to faults.

7.1 Impact of page size depending on matrix size

To show the different impact of page size on different
matrices, we display in Figure 7 the overheads for 3 different
page sizes and 3 matrices: the smallest, qa8fm, the biggest,
thermal2, and an intermediate one, af shell8, which appear
respectively at the bottom, middle and top of Figure 6.
These matrices represent all possible behaviours that we
observed. The plotted values are, as in previous Figures,
average performance slowdown compared to the “ideal”
baseline execution time, and this data is a subset of the data
that will be presented in Figure 8. Each point corresponds
to the harmonic mean of up to 70 runs divided by the
ideal time, where each configuration consists of a recovery
method, matrix, page size, and fault injection rate.
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The overall tendency is the same as previously: FEIR and
AFEIR perform significantly better than Lossy in most sce-
narios, with the notable exception of big page sizes for small
matrices. However, looking at differences per matrix sizes,
we note that all methods diverge for qa8fm under high fault
injections rates, except FEIR with 4KB pages which incurs a
141% slowdown. For af shell8, until 64KB pages the FEIR
and AFEIR methods stay below 11% while Lossy peaks at
60%, and with 1MB pages the fault rates are similar until a
fault injection rate of 5 faults per run, with quick divergence
after that. The biggest matrix, thermal2, behaves similarly
as FEIR and AFEIR have low slowdowns for page sizes
of 4KB and 64KB while Lossy’s slowdown seems roughly
proportional to the fault injection rate, until 307%. With 1MB
pages we see a similar divergence to previous matrices for
Lossy, while the increase in slowdowns is slower for FEIR
and AFEIR with 254% and 171% respectively.

This Figure allows to illustrate that the bigger the matrix,
the better FEIR and AFEIR perform in comparison to Lossy.
This is in part due to bigger matrices usually having worse
convergence [36]. Such matrices will incur more slowdown
from restarting than from exact recoveries, such as FEIR’s
and AFEIR’s. Coincidentally, dividing a vector into more
blocks due to a matrix being bigger also reduces the prob-
ability of having two faults affect related data, which ad-
versely impacts FEIR and AFEIR as explained in Section 2.4.

7.2 Overall Page Size Evaluation

Figure 8 presents the average overheads of all algorith-
mic techniques (trivial, FEIR, AFEIR, Lossy) for CG, with
different page sizes. We repeat for all page sizes ranging
from 4KB to 2MB the full evaluation done in Figure 4 for
each matrix, technique (except checkpointing), and fault
injection rate, for a total of 2160 different configurations.
We use the same methodology as explained in Section 5 and
compute the harmonic means of slowdowns (convergence
time divided by baseline execution time) for each configu-
ration of up to 70 runs. We then report the harmonic means
of all the matrices’ slowdowns. That is, every point is the
average of all the averaged runs of all the matrices, for that
page size and fault injection rate. The first graph “4KB”
coincides with the graph titled “CG mean” in Figure 4.

Overall, the trade-off between asynchronous and critical-
path recoveries discussed in Section 6.2 is still applicable
up to 64KB page sizes, above which FEIR and AFEIR show
similar performances. The high cost of recoveries for 128KB
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Fig. 8. Evolution of the overheads of algorithmic techniques for page sizes from 4KB to 2MB, varying error injection rates

page sizes and above makes the choice of overlapping
recoveries largely irrelevant. Both methods outperform the
Lossy Restart strategy significantly up to 512KB page sizes,
above which all the convergence times are similar, and even
to the advantage of Lossy for an error injection rate of 50
with 2MB page sizes.

At the same time, all forward recovery methods (FEIR,
AFEIR and Lossy) still outperform by far the trivial method,
even though it does not perform any computation. The
trivial method often does not converge at all, as is the case
with normalized error injection rates over 5 with page sizes
of 128KB or more.

With increasing page sizes comes an increasing cost of
computations during recoveries, and we can indeed see
how increasing recovery costs drive convergence times up
for all algorithmic techniques. The minimum slowdowns
of AFEIR, FEIR and Lossy are all around 28% for a single
expected fault per run at 2MB pages against 4.2%, 5.5% and
11.2% respectively with 4KB pages. This means all methods
still outperform checkpointing, whose overhead for a single
expected fault is 55% as presented in the previous Section.
Maximums values increase, and for 1MB pages the slow-
downs of FEIR, AFEIR and Lossy are 1072%, 1146% and
1516.59%. As in Section 6.2, these high numbers are mostly
driven by the overheads of small matrices.

The different techniques are affected differently by the
page size modification. For similar convergence rates, the
Lossy recovery has higher rates of converging runs than
FEIR and AFEIR. However, these runs are also on average
much longer (up to 1000 times), and their duration has much
higher variability. This is expected as with both the FEIR and
AFEIR techniques several simultaneous faults may cause a
failure to recover, whereas Lossy only relies on constant data
and thus can always continue solving. The smaller relative
differences between the expected convergence times of all
methods indicate that with high page sizes, the convergence
time is dominated by recoveries.

With increasing page sizes, all interpolation recoveries
become less performant, however the exact ones (FEIR,
AFEIR) still outperform the Lossy approach, and all these
techniques remain better than the checkpointing approach
for low fault rates.

8 RELATED WORK

8.1 Localizing and Detecting Errors

In a multi-node and distributed memory execution, a
fail-stop error model for each process yields a localized loss
of data error model globally. This naturally leads to the
proposal for a Fault-Tolerant Message Passing Interface (FT-
MPI), that hands control back due to a node having stopped,
in order to recover data from this part of the program [17].

Chen more recently proposed to use two application
specific invariant relations to detect Silent Data Corrup-
tion (SDC) [12] in CG and its derived method BiCGStab,
which are the (bi-)orthogonality of search directions, and
the relation between gradient and iterate. The latter consists
in checking ||b−Ax− g|| = 0 (with our notations), which
reflects the use of inherent redundancy between vectors of
CG, as leveraged in this paper. Liang et al. similarly detect
soft faults online in the fast Fourier transform [31].

8.2 Checkpointless Algebraic Recoveries

Many ABFT methods add checksum values such that
transformations applied by a program to its data are sim-
ilarly applied to these checksums. This has been accom-
plished for matrix-vector multiplications by adding a check-
sum row in a matrix [22], but also for other operations such
as QR and LU factorizations [13], [19]. This approach adds
little memory space overhead at the price of computational
overhead. However, checks on finite precision numbers (as
opposed to bitwise checks) are sensible to round-off errors,
and they do not cover reduction operations.

While exploiting MPI message logging as an implicit
checkpoint, Chen et al. [11] proposed an algebraic recovery
method for Krylov solvers with matrix A and right-hand
side b, whose iterate x is seldom passed in MPI messages.
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Once all the other variables are recovered through the
implicit checkpoint, the relation between the residual g and
x, thus g = b−Ax, is used with the lost part of the iterate as
unknown. This allows to recover x without checkpointing
it, using inherent redundancy of the solver instead.

Langou et al. introduced the Lossy Approach with the
block-Jacobi step interpolation [29]. This restart method,
designed for an MPI fail-stop error model, is already ex-
tensively discussed in Section 4.3. Agullo et al. extended
this work by introducing least-squares methods for the
interpolation, and further studying strategies to minimize
computations and communications in recoveries in the case
of multiple simultaneous errors [2]. These trade-offs can
naturally be applied to the interpolations we use, if needed.
Agullo et al. have further extended restart recoveries relying
on lost data interpolation to eigensolvers [1].

8.3 Selective Reliability

The Fault Tolerant GMRES [21] is a method consisting
of GMRES iterations, run safely, enclosing a preconditioner
which may run unreliably and return inexact values. Our
protection of GMRES provides the complement to this se-
lective approach tolerating errors in the preconditioner, by
protecting the outer iterations – and especially the vector
basis which is, according to Hoemmen et al., the most im-
portant to guarantee convergence. This work also suggests
that we might not need to recover preconditioned vectors
exactly, instead replacing lost data with an approximation.

9 CONCLUSIONS

This paper demonstrates that hardware DUE reporting
can be exploited jointly with redundancy relations to protect
iterative solvers paying a very low cost. Our two proposed
methods, FEIR and AFEIR, overcome the state-of-the-art
techniques in terms of overheads. They are moreover based
on very simple relations that do not require deep algo-
rithmic understanding, whereas an algorithmic technique
like the Lossy Approach [29] is harder to derive. Varying
page sizes up to 2MB has shown that our methods retain
lower expected convergence times than the current state-
of-the-art, until the edge case where vectors fit in a single
memory page. At that moment, all methods become roughly
equivalent due to single errors erasing full vectors. In short,
our methods’ efficiency is increasing with matrix size, rela-
tive to state-of-the-art methods. These straightforward low-
overhead recoveries open the door to wide-spread use of
algorithmic-based techniques to protect iterative methods
when DUE detection is available.

Second, the paper demonstrates that by overlapping
recovery with algorithmic computation, overheads can be
drastically reduced. Under high error rates, of roughly more
than 0.1 errors per second, the overlapping stops paying
off since the chances of getting errors on non-protected
computations increase, even though this trade-off is largely
matrix specific. The FEIR technique provides then better
performance. In any case, task-based data-flow program-
ming models have interesting properties for resilience, not
only because of inherently splitting programs into tasks, but
also because overlapping computations and recoveries is
done without explicit programmer intervention. Runtime
support for application-level resilience could reduce the

overheads by injecting recovery tasks only when errors are
encountered – this would also increase AFEIR’s coverage by
executing the recovery later, and still asynchronously.

Our resilience method opens the door to interesting
trade-offs when SDC comes into play. Since we cover with
very low overhead nearly all memory page failures, an ECC
that focuses more on detecting than correcting errors would
reduce SDC [27], while delegating some correction to the
application level. This work will hopefully encourage future
architectural, OS and runtime features to expose errors at
the application level whenever lower level recoveries fail,
allowing resilience aware applications to resist significantly
higher fault rates than applications oblivious to resilience.
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