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Abstract: Stray capacitance can seriously affect the behavior of high-voltage devices, including
voltage dividers, insulator strings, modular power supplies, or measuring instruments, among others.
Therefore its effects must be considered when designing high-voltage projects and tests. Due to the
difficulty in measuring the effects of stray capacitance, there is a lack of available experimental data.
Therefore, for engineers and researchers there is a need to revise and update the available information,
as well as to have useful and reliable data to estimate the stray capacitance in the initial designs.
Although there are some analytical formulas to calculate the capacitance of some simple geometries,
they have a limited scope. However, since such formulas can deal with different geometries and
operating conditions, it is necessary to assess their consistency and applicability. This work calculates
the stray capacitance to ground for geometries commonly found in high-voltage laboratories and
facilities, including wires or rods of different lengths, spheres and circular rings, the latter ones being
commonly applied as corona protections. This is carried out by comparing the results provided by the
available analytical formulas with those obtained from finite element method (FEM) simulation, since
field simulation methods allow solving such problem. The results of this work prove the suitability
and flexibility of the FEM approach, because FEM models can deal with wider range of electrodes,
configurations and operating conditions.
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1. Introduction

The calculation of capacitance formulas has received little attention compared to the analysis
of inductance calculation formulas [1,2]. Nearby surfaces separated by an insulating medium such
as air, subjected to different electric potentials, induce a stray or parasitic capacitance, and therefore
this configuration acts as a capacitor. High voltages and high frequencies tend to amplify the effects
of the unwanted stray capacitance. The analysis of stray capacitance effects is of interest in different
disciplines, including electrical engineering, high-voltage applications, radio engineering or physical
sciences, among others [3].

Different studies prove that the stray capacitance produces an uneven voltage distribution across
each insulator unit in a high-voltage insulator string [4,5]. The effect of the stray capacitance is to
reduce the efficacy of each additional insulator unit due to the non-linear voltage distribution [6].
This is because the capacitive current and the corresponding voltage drop across each insulator unit
are greater in the insulator units closer to the conductors, due to the effect of the distributed stray
capacitances to ground [7]. The string elements closer to the line are subjected to a higher electrical
stress than those closer to the tower. Grading rings can be used at both ends of the string to homogenize
the voltage drop across each insulator unit [8]. A similar effect occurs in high-voltage switching mode
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power supplies composed of several modules in series, since in [9] it is proved that the stray capacitance
to ground has a significant impact on the individual voltage of each module. In other high-voltage
applications, including high-voltage transformers [10] or high-voltage motors, parasitic capacitances
have a key role to predict the frequency behavior of such machines.

Accurate methods to calculate the capacitance are based on the calculation of the electrostatic field
generated by the system of charged objects under consideration [3]. The capacitance of basic isolated
geometries, such as very long horizontal cylindrical conductors, coaxial cylindrical conductors, concentric
spheres, or spheres well above ground, can be easily deduced theoretically. However, such formulas have
very restricted practical use. The calculation of the capacitance of conductive objects which are close to
ground leads to challenging mathematical problems, even for simple geometries. Therefore, analytical
solutions for capacitance only exist for a limited number of electrode geometries and configurations,
which have almost no practical applications [11], and often only contemplate the stray capacitance to
ground, thus disregarding the effects of nearby grounded electrodes, structures or walls [3].

As a consequence, computational methods are increasingly being applied to solve such problem,
although most of the published works deal with very particular problems, such as insulator
strings [4,5,7], transformer windings [10] or voltage dividers [12], among others. FEM is perhaps the
most applied computational technique to calculate the effects of capacitance, since it allows dealing
with complex three-dimensional geometries, as reflected in several works [13–19].

Since stray capacitances are not easily measurable, because of the low immunity to noise of
the small signal to be acquired [20], results provided by numerical methods are a good alternative
during the design stage of high-voltage devices and instruments. Therefore, the capacitance between
energized electrodes or between electrodes and ground is a factor to be considered when designing
and planning high-voltage projects and tests [11].

Most works analyze specific problems related to the unwanted effects of stray capacitance,
such as in transformer windings [10], motor windings [21] or insulator strings [7], among others.
However, there are no recent works providing a systematic account of the problems to calculate
the stray capacitance to ground for geometries found in high-voltage laboratories and high-voltage
installations such as substations. These geometries include wires, rods, spheres, and circular rings,
the latter ones being commonly applied as corona protections. The stray capacitances due to these
high-voltage electrodes can have a non-negligible impact on the measurement results and behavior of
the devices involved.

This paper is focused to review and analyze the accuracy of different formulas found in the
technical literature to calculate the stray capacitance to ground of various high-voltage electrodes.
To this end, due to the lack of available experimental data because of experimental difficulties related to
the small signal to be acquired and noise immunity, the results provided by the formulas are compared
with the results provided by FEM simulations. It is noted that regardless the impact of the stray
capacitance in high-voltage applications, at our knowledge, there are no published technical works
assessing the accuracy of such formulas; thus this work contributes in this area. Results presented prove
that FEM models offer flexibility, simplicity and accuracy to analyze the effects of stray capacitance in
high-voltage systems with different geometries.

2. The FEM Approach to Analyze the Stray Capacitance

The stray capacitance to ground is directly related to the distribution of the electric field around
high-voltage electrodes [22]. It is a recognized fact that the effects of stray capacitance can be
determined by means of FEM-based approaches [12,23].

The capacitance can be calculated from the ratio C = Q/U, defined by the charge Q stored in the
system and the electric potential U, supposing that the system under analysis is far from other charged
bodies [3]. Therefore, the stray capacitance concept arises between any two charged bodies subjected
to different electric potentials, and can be important in high-frequency and high-voltage applications.
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For low-frequency applications, the capacitance can be calculated by analyzing the energy related
to the electrostatic field, thus disregarding the displacement current. To evaluate the capacitance
of a given geometry, it is necessary to calculate the electric potential on the surface of the analyzed
conductor. Next, the outer electric potential and the electric field are calculated within all points
surrounding the conducting electrodes, by applying the potential as boundary condition [14,24].
Finally, the capacitance of the analyzed system is calculated by applying:

C = 2·WE/U2 (1)

WE being the stored electrostatic energy.
The next paragraphs detail the process to follow for determining the stored electrostatic energy.
From the Gauss law that relates the distribution of the electric charge density (C/m3) to the

electric field
→
E (V/m),

→
∇ ·

(
ε·
→
E
)
= ρ (2)

and the relationship between the electric field and the electric potential U,
→
E = −

→
∇ ·U, the Poisson’s

equation for electrostatics arises [25],
∇2U = −ρ/ε (3)

Equation (3) allows solving for the electric potential and field in all points of the domain [26].
Next, the energy density in any point of the air domain is calculated as:

uE(x, y, z) =
1
2
· εo · E(x, y, z)2(J/m 3) (4)

The electrostatic energy stored in the domain can be calculated by integrating the energy density
over the volume of the domain outside the conductive high-voltage electrode [14,27]:

WE =
1
2

y

v
εo·E(x, y, z)2dxdydz(J) (5)

Finally, the capacitance is calculated by applying Equation (1) [24]. Therefore, the capacitance is
calculated from the electrostatic energy stored in the air because of the incitation of U.

Figure 1 shows the surface meshes applied to some of the geometries analyzed in this paper,
including cylindrical conductors, circular rings and spheres.
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Figure 1. Surface meshes of some of the geometries analyzed in this paper. (a) Single- and
multi-conductor arrangements; (b) Circular ring or toroid; (c) Sphere.

Figure 2 shows the blocks and meshes types applied in the simulations. Whereas a sufficiently
large outer block was used to set the boundary conditions, a much smaller inner block was used in
order to apply a much finer tetrahedral mesh to ensure improved accuracy.

Both three-dimensional (3D) and two-dimensional (2D) FEM simulations were carried out to
simulate all geometries analyzed in this work. Whereas 3D-FEM simulations were applied to wires
of finite length, circular rings and spheres, 2D-FEM simulations were applied to analyze wires
of infinite length. Parametric simulations were carried out to automatically change the value of
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different parameters, such as the height about ground level or the curvature radius of the different
analyzed geometries.
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Figure 2. Blocks and meshes applied in the finite element method (FEM) simulations.

Simulations conducted in this work were performed by means of the Comsol Multiphysics
package using the electrostatics module. They consist of approximately 0.5–9.5 million tetrahedral
elements, 66–590 thousand triangular elements, 0.5–73 thousand edge elements, and 22–96 vertex
elements, depending on the specific geometry analyzed.

3. The Analyzed Geometries

This section analyzes the accuracy of formulas to calculate the capacitance between different
electrode geometries and an infinite ground plane, some of them being based on the method of images.

3.1. Finite-Length Straight Round Wire Which Is Parallel to the Ground Plane

Figure 3 shows the layout of a straight conductor of round section which is parallel to a
conducting plane.
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Figure 3. Finite-length straight round wire of radius a and length l. which is parallel to the ground plane.

According to [3], the capacitance of a straight conductor of round section which is parallel to a
conducting plane can be approximated as:

C =
2πεl

ln(2h/a)− 2.303D1(0.5l/h)
(F) (6)

being the permittivity of air, 8.85× 10−12 F/m, l the length of the conductor, h the height above ground
and D1 a coefficient depending on l/(2h), which is obtained by interpolating the values given in Table 1.

Table 2 compares the capacitance of a finite-length straight round wire, which is parallel to the
ground plane, provided by Equation (6) with those obtained by means of FEM simulations.
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Table 1. Values of coefficient D1 as a function of l/(2h).

l/(2h) D1 l/(2h) D1 l/(2h) D1

10.00 0.042 0.85 0.379 0.40 0.617
5.00 0.082 0.80 0.396 0.35 0.664
2.50 0.157 0.75 0.414 0.30 0.721
2.00 0.191 0.70 0.435 0.25 0.790
1.25 0.283 0.65 0.457 0.20 0.874
1.11 0.310 0.60 0.482 0.15 0.990
1.00 0.336 0.55 0.510 0.10 1.155
0.95 0.350 0.50 0.541 0.05 1.445
0.90 0.364 0.45 0.576 0.00 0.000

Table 2. Capacitance of a straight round wire of finite length which is parallel to a conducting plane.

Radius Equation (6) (pF) FEM (pF)

a (m) l = 1 m, h = 1 m

0.01 13.728 14.014
0.02 16.561 16.981
0.03 18.834 19.314
0.04 20.867 21.356
0.05 22.773 23.230
0.06 24.609 24.982
0.07 26.410 26.654
0.08 28.198 28.262
0.09 29.988 29.824
0.10 31.793 31.346

a (m) l = 10 m, h = 1 m

0.01 108.881 109.590
0.02 125.970 127.056
0.03 138.705 140.094
0.04 149.422 151.092
0.05 158.948 160.880
0.06 167.683 169.852
0.07 175.540 178.252
0.08 183.604 186.216
0.09 191.029 193.844
0.10 198.200 201.200

a (m) l = 1 m, h = 5 m

0.01 13.097 13.360
0.02 15.651 16.031
0.03 17.666 18.095
0.04 19.442 19.876
0.05 21.086 21.490
0.06 22.651 22.980
0.07 24.168 24.388
0.08 25.657 25.726
0.09 27.130 27.016
0.10 28.600 28.256

a (m) l = 10 m, h = 5 m

0.01 90.696 91.464
0.02 102.251 103.384
0.03 110.484 111.916
0.04 117.179 118.880
0.05 122.958 124.906
0.06 128.121 130.292
0.07 132.837 135.222
0.08 137.212 139.796
0.09 141.317 144.090
0.10 145.203 148.152
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Data presented in Table 2 show a good agreement between the results provided by Equation (6)
and those from FEM simulations.

3.2. Finite-Length Straight Wire of Round Section Which Is Perpendicular to the Ground Plane

According to [3], the capacitance of a straight conductor of round section which is perpendicular
to a conducting plane, (see Figure 4) can be approximated as:

C =
2πεl

ln(l/a)− 2.303D2
(7)

D2 being a coefficient, which is calculated by interpolation of the values given in Table 3, as a
function of h/l.
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conducting plane.

Table 3. Values of coefficient D2 as a function of h/l.

h/l D2 h/l D2 h/l D2

10.00 0.144 0.80 0.219 0.15 0.323
5.00 0.153 0.70 0.227 0.10 0.345
2.50 0.170 0.60 0.236 0.08 0.356
2.00 0.177 0.50 0.247 0.06 0.369
1.25 0.196 0.40 0.261 0.04 0.384
1.11 0.202 0.30 0.280 0.02 0.403
1.00 0.207 0.25 0.291 - -
0.90 0.2125 0.20 0.305 - -

Table 4 compares the capacitance of a finite-length straight round wire, which is perpendicular to
the ground plane, provided by Equation (7) with those obtained by means of FEM simulations.

Table 4. Capacitance of a straight round wire of finite length which is perpendicular to a conducting plane.

Radius Equation (7) (pF/m) FEM (pF/m)

a (m) l = 1 m, h = 1 m

0.01 13.475 14.014
0.02 16.194 16.981
0.03 18.362 19.314
0.04 20.288 21.356
0.05 22.085 23.230
0.06 23.808 24.982
0.07 25.490 26.654
0.08 27.151 28.262
0.09 28.807 29.824
0.10 30.469 31.346
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Table 4. Cont.

Radius Equation (7) (pF/m) FEM (pF/m)

a (m) l = 10 m, h = 1 m

0.01 91.004 92.004
0.02 102.642 104.146
0.03 110.941 112.882
0.04 117.693 120.036
0.05 123.524 126.246
0.06 128.735 131.818
0.07 133.497 136.924
0.08 137.917 141.682
0.09 142.065 146.158
0.10 145.993 150.408

a (m) l = 1 m, h = 5 m

0.01 13.081 13.346
0.02 15.629 16.010
0.03 17.638 18.085
0.04 19.408 19.881
0.05 21.046 21.506
0.06 22.605 23.012
0.07 24.116 24.434
0.08 25.597 25.786
0.09 27.064 27.094
0.10 28.526 28.354

a (m) l = 10 m, h = 5 m

0.01 87.763 88.516
0.02 98.538 99.650
0.03 106.163 107.574
0.04 112.329 114.008
0.05 117.629 119.552
0.06 122.346 124.498
0.07 126.639 129.004
0.08 130.609 133.176
0.09 134.323 137.080
0.10 137.829 140.770

Results presented in Table 4 show a good match between the data provided by Equation (7), with
the data obtained from FEM simulations, especially when the height h of the conductor above the
ground plane increases.

3.3. Infinite-Length Straight Circular Wire Which Is Parallel to a Conducting Plane

By applying the images method, the capacitance per unit length of a round straight conductor of
infinite-length, which is parallel to a conducting plane, as shown in Figure 5, can be calculated as [3]:

C/l =
2πε

acosh(h/a)
(F/m) (8)

where a is the radius of the conductor, and h is the distance between its center and the ground plane.
In [28], an equivalent formula is proposed:

C/l =
2πε

ln
(

h+
√

h2−a2

a

) (F/m) (9)

Figure 5 shows an infinite straight conductor of radius a, which is parallel to the ground plane:
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at a height h.

Table 5 summarizes the results attained by means of Equations (8), (9) and FEM simulations for
different values of the radius a, and the height h. It shows an excellent agreement between the results
provided by Equations (8), (9) and FEM simulations.

Table 5. Capacitance of a straight round wire of infinite length which is parallel to a conducting plane.

Radius Equation (8) = Equation (9) (pF/m) FEM (pF/m)

a (m) l = ∞ m, h = 1 m

0.01 10.500 10.499
0.02 12.081 12.079
0.03 13.247 13.246
0.04 14.222 14.220
0.05 15.084 15.082
0.06 15.869 15.867
0.07 16.601 16.599
0.08 17.292 17.289
0.09 17.951 17.949
0.10 18.586 18.583

a (m) l = ∞ m, h = 5 m

0.01 8.054 8.035
0.02 8.952 8.928
0.03 9.577 9.550
0.04 10.076 10.046
0.05 10.500 10.468
0.06 10.874 10.840
0.07 11.212 11.175
0.08 11.522 11.483
0.09 11.810 11.770
0.10 12.081 12.038

3.4. Infinite-Length Straight Wire of Square Section Which Is Parallel to a Conducting Plane

By applying the method of the mirror images, the capacitance per unit length of an infinite-length
straight conductor of square section, which is parallel to a conducting plane, can be calculated as [3]:

C/l =
4πε

ln
(
x2 − 2x

x−1
) (F/m) (10)

where x = 3.39 h/a, a being the side length of the square, and h the distance between the geometrical
center of the wire and the ground plane.

Figure 6 shows the layout of the analyzed conductor.
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Figure 6. Infinite-length straight wire of square section of side length a. which is placed parallel to a
conducting plane at a height h.

Table 6 shows the results attained by applying Equation (10) and FEM for different values of the
side length a, and the height h.

Table 6. Capacitance of a straight wire of infinite length and square section which is parallel to a
conducting plane.

Side Length Equation (10) (pF/m) FEM (pF/m)

a (m) l = ∞ m, h = 1 m

0.01 9.549 9.546
0.02 10.839 10.825
0.03 11.768 11.740
0.04 12.531 12.485
0.05 13.194 13.128
0.06 13.791 13.702
0.07 14.340 14.225
0.08 14.851 14.710
0.09 15.334 15.163
0.10 15.793 15.591

a (m) l = ∞ m, h = 5 m

0.01 7.482 7.469
0.02 8.251 8.234
0.03 8.779 8.758
0.04 9.197 9.172
0.05 9.549 9.520
0.06 9.858 9.825
0.07 10.134 10.098
0.08 10.387 10.347
0.09 10.621 10.577
0.10 10.839 10.791

3.5. Sphere Over a Conducting Plane

Spheres are frequently applied as corona protections in high-voltage applications, although their
stray capacitance can affect the behavior of sensitive high-voltage devices.

Figure 7 shows the layout of a sphere, where r is its radius, and h the distance between the lowest
point of the sphere and the ground plane.
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Figure 7. Sphere of radius r placed at a height h over a conducting plane.

By applying the method of the images, the capacitance of a conductive sphere of radius r placed
at a height h above a ground plane is given by [29]:

C = 4πεr
∞

∑
i=0

2 · sin h(η0)

e(1+2i)η0 − 1
(11)

where η0 = acos h(1 + h/r).
A simplified expression for this arrangement is given in [29] as:

C = 4πεr[1 + 0.5 log(1 + r/h)] (12)

An equivalent formulation to Equation (11) was proposed by Snow [28]:

C = 8πεr
√

h ∗2 −r2
∞

∑
n=0

e−(n+0.5)γ

1− e−(n+0.5)γ
(13)

being defined as:

γ = 2 ln

(
h ∗+

√
h ∗2 −r2

r

)
(14)

and h* = h + r.
Table 7 shows the results obtained by applying Equations (11)–(13) and FEM, for different values

of the radius r and the height h.

Table 7. Capacitance of a sphere over a conducting plane.

Radius Equation (11) = Equation (13) (pF) Equation (12) (pF) FEM (pF)

r (m) h = 1 m

0.01 1.118 1.115 1.118
0.02 2.247 2.235 2.248
0.03 3.387 3.359 3.388
0.04 4.538 4.489 4.539
0.05 5.699 5.622 5.701
0.06 6.870 6.760 6.873
0.07 8.052 7.903 8.055
0.08 9.244 9.050 9.247
0.09 10.445 10.210 10.449
0.10 11.656 11.357 11.662

r (m) h = 5 m

0.01 1.114 1.113 1.114
0.02 2.230 2.227 2.230
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Table 7. Cont.

Radius Equation (11) = Equation (13) (pF) Equation (12) (pF) FEM (pF)

0.03 3.348 3.342 3.349
0.04 4.468 4.458 4.470
0.05 5.591 5.575 5.593
0.06 6.716 6.693 6.718
0.07 7.843 7.812 7.847
0.08 8.972 8.932 8.976
0.09 10.103 10.053 10.108
0.10 11.237 11.174 11.242

r (m) h = 1 m

0.1 11.656 11.357 11.662
0.2 24.277 23.134 24.294
0.3 37.741 35.281 37.778
0.4 51.950 47.758 51.992
0.5 66.823 60.531 66.880
0.6 82.297 73.572 82.366
0.7 98.315 86.860 98.412
0.8 114.832 100.373 114.942
0.9 131.809 114.096 131.920
1.0 149.213 128.012 149.333

r (m) h = 5 m

0.1 11.237 11.174 11.242
0.2 22.689 22.443 22.708
0.3 34.352 33.802 34.388
0.4 46.218 45.250 46.266
0.5 58.282 56.784 58.340
0.6 70.538 68.402 70.600
0.7 82.982 80.102 83.040
0.8 95.608 91.881 95.666
0.9 108.411 103.738 108.448
1.0 121.386 115.670 121.418

Results presented in Table 7 show an excellent match between Equations (11), (13) and FEM
results, although a greater difference when applying Equation (13), as expected.

3.6. Circular Ring or Toroid Which Plane Is Parallel to a Conducting Plane

Toroidal rings are commonly used as corona protections in high-voltage applications.
However, the rings introduce a non-negligible capacitance in the system, whose impact cannot be
neglected depending on the application.

Figure 8 shows a toroid of round section which is parallel to a conducting plane and different
toroids lying in parallel planes.

By applying the images method, the capacitance of a circular ring or toroid, which is parallel to a
conducting plane, can be calculated as [3]:

C =
4π2εR

ln(8R/a)− K(k2) · k [F] (15)

where a and R are, respectively, the minor and major radiuses, h is the distance between the geometrical
center of the toroid and the ground plane, k2 = R2

R2+h2 and K is the complete elliptic integral of first
kind with modulus k2, which can be computed by means of the ellipke function of MATLAB (2017,
The MathWorks Ltd., Natick, MA, USA).

Table 8 summarizes the results obtained by applying Equation (15) and FEM, for different values
of the radiuses a, R and the height h. It shows a good agreement between the results of both systems.
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Figure 8. (a) Toroid of circular cross section which plane is parallel to a conducting plane at a height h,
with inner radius a, and outer radius R; (b) Different toroids lying in parallel planes.

Table 8. Capacitance of a toroid which is parallel to a conducting plane for different configurations.

Inner Radius Equation (15) (pF) FEM (pF)

a (m) R = 0.25 m, h = 1 m

0.01 17.792 17.835
0.02 20.716 20.840
0.03 22.919 23.166
0.04 24.789 25.204
0.05 26.464 27.084
0.06 28.011 28.872
0.07 29.467 30.592
0.08 30.856 32.290
0.09 32.195 33.962
0.10 33.495 35.626

a (m) R = 0.25 m, h = 5 m

0.01 16.741 16.779
0.02 19.305 19.412
0.03 21.204 21.418
0.04 22.796 23.150
0.05 24.204 24.726
0.06 25.493 26.210
0.07 26.692 27.618
0.08 27.827 28.994
0.09 28.911 30.340
0.10 29.955 31.660

a (m) R = 0.10 m, h = 1 m

0.005 7.107 7.128
0.010 8.273 8.338
0.015 9.151 9.283
0.020 9.896 10.115
0.025 10.563 10.886
0.030 11.179 11.622
0.035 11.759 12.338
0.040 12.312 13.040
0.045 12.845 13.731
0.050 13.362 14.418

Mean difference - 3.7%

a (m) R = 0.10 m, h = 5 m

0.005 6.930 6.950
0.010 8.034 8.095
0.015 8.860 8.983
0.020 9.557 9.759
0.025 10.178 10.474
0.030 10.749 11.157
0.035 11.284 11.814
0.040 11.792 12.455
0.045 12.280 13.086
0.050 12.752 13.709
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FEM allows the simple simulation of several concentric corona rings sharing the same vertical axis
as shown in Figure 8b. This configuration common applied in high-voltage generators, voltage dividers,
or capacitors, among others. However, there are no analytical formulas to deal with this geometry.

Table 9 presents the results obtained by means of FEM simulations, when dealing with a row of
five circular rings which are placed as shown in Figure 8b.

Table 9. Capacitance of a row of five circular rings which are parallel to a conducting plane.

a (m) R = 0.10 m, h = 5 m, b = 3a

0.005 11.547
0.010 14.945
0.015 18.036
0.020 20.914
0.025 23.654
0.030 26.294
0.035 28.862
0.040 31.370
0.045 33.836
0.050 36.266

3.7. n Parallel Round Wires of Finite Length Lying in a Plane Parallel to the Ground Plane

According to [3], the capacitance of n parallel round conductors of finite length lying in the same
plane, which is parallel to the ground plane, can be calculated as:

C =
2πεnl

ln(2h/a) + (n− 1) ln(2h/b)− 2.303n[D1(0.5l/h) + Bn]
(16)

a being the radius of the conductors, l the length of any conductor, h the distance between the
center of any conductor and the ground plane, b the distance between the centers of two adjacent
conductors, and Bn a coefficient, which is calculated as:

Bn =
2
n2 [log(n− 1) + 2 log(n− 2) + 3 log(n− 3) + . . . (n− 2) log 2] (17)

The values of D1 (0.5l/h) are given in Table 1. It is noted that Equation (16) is not a general formula,
since it is only valid when b ≤ l/(n−1).

When the distance dk (k = 1, 2, . . . , n−1) between any two wires is inferior than the mean height
above the ground plane, that is, dk << h, [3] suggests to apply:

C =
2πεnl

2.303F1
(18)

F1 being calculated as:

F1 = log(2h/a) +
n−1

∑
k=1

[log(2h/dk) + 0.434(dk/l)]− nD1 (19)

Figure 9 shows the layout of the n parallel round wires of finite length, lying in a plane parallel to
the ground plane.

Table 10 summarizes the results obtained by applying Equations (16), (18) and FEM, for different
values of the radius a, the length l, and the height h.
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Figure 9. n parallel round wires of finite length lying in a plane parallel to the ground plane.

Table 10. Capacitance of n round straight wires of finite length lying in a plane which is parallel to the
ground plane.

Radius Equation (16) (pF/m) Equation (18) (pF/m) FEM (pF/m)

a (m) n = 9, l = 1 m, b = 3·a, h = 1 m

0.01 25.486 27.567 26.768
0.02 37.344 38.507 37.170
0.03 51.310 47.995 46.584
0.04 69.840 56.118 55.654
0.05 97.018 * 62.642 * 64.592
0.06 142.245 * 67.377 * 73.482
0.07 234.783 * 70.292 * 82.390
0.08 537.921 * 71.522 * 91.328
0.09 −3873.668 * 71.327 * 100.334
0.10 −464.680 * 70.019 * 109.402

a (m) n = 9, l = 1 m, b = 3·a, h = 10 m

0.01 23.146 24.845 24.214
0.02 32.526 33.396 32.454
0.03 42.633 40.307 39.500
0.04 54.690 45.885 45.958
0.05 70.057 * 50.156 52.060
0.06 90.936 * 53.147 57.908
0.07 121.568 * 54.944 63.576
0.08 171.655 * 55.693 69.110
0.09 269.653 * 55.574 74.528
0.10 551.085 * 54.777 79.860

a (m) n = 9, l = 10 m, b = 3·a, h = 1 m

0.01 171.708 187.492 179.876
0.02 218.441 243.370 230.580
0.03 259.804 293.982 274.540
0.04 300.125 344.125 315.860
0.05 341.199 395.835 * 355.940
0.06 384.154 450.434 * 395.400
0.07 429.917 509.035 * 434.560
0.08 479.385 572.740 * 473.660
0.09 533.535 642.756 * 512.800
0.10 593.505 720.493 * 552.120

a [m] n = 9, l = 10 m, b = 3·a, h = 10 m

0.01 124.029 132.046 129.028
0.02 146.699 157.517 153.758
0.03 164.261 177.270 172.856
0.04 179.509 194.345 189.294
0.05 193.436 209.826 204.120
0.06 206.529 224.233 217.880
0.07 219.065 237.865 230.820
0.08 231.223 250.906 243.180
0.09 243.125 263.480 255.060
0.10 254.860 275.672 266.540

* Does not fulfill the requirements of the formula.
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According to the results summarized in Table 10, FEM results are more general results.
FEM simulations avoid the inherent limitations and applicability of Formulas Equations (16) and (18),
since they are not general, and only provide accurate results when fulfilling some constraints.

3.8. n Identical Straight Wires of Finite Length Parallel to the Ground Plane and Arranged on the Surface of a
Circular Cylinder

According to [3], the capacitance of n identical straight wires of finite length parallel to the ground
plane, and arranged on the surface of a circular cylinder, is given by Equation (18). It is noted that the
coefficients D1 (0.5l/h) and dk (distance between the centers of any two wires) included in Equation (19)
are obtained from Table 1, and by applying dk = 2R sin(kπ/n) with k = 1, 2, 3, . . . , n−1, respectively.
It is known that Equation (18) is not accurate when the distance dk (k = 1, 2, . . . , n−1) between any two
wires is inferior than the height of any conductor above the ground plane, that is, dk << h.

Figure 10 shows n straight round conductors of finite length (radius a, length l) parallel to the
ground plane, which are placed on the surface of a circular cylinder of radius R whose center is placed
at a height h above the ground plane.
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Figure 10. n straight round conductors of finite length parallel to the ground plane and arranged on
the surface of a circular cylinder.

Table 11 summarizes the results obtained by applying Equation (20) and FEM, for different values
of the radius a, the length l, and the height h.

Table 11. Capacitance of n infinitely long parallel wires of round section lying in a plane parallel to a
conducting plane.

Radius Equation (18) (pF) Equation FEM (pF)

a (m) n = 8, l = 1 m, R = 0.5 m, h = 1 m

0.01 55.753 65.468
0.02 61.055 73.360
0.03 64.652 78.964
0.04 67.472 83.520
0.05 69.835 87.470
0.06 71.892 91.030
0.07 73.729 94.322
0.08 75.397 97.424
0.09 76.932 100.390
0.10 78.360 103.254
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Table 11. Cont.

Radius Equation (18) (pF) Equation FEM (pF)

a (m) n = 8, l = 1 m, R = 0.5 m, h = 10 m

0.01 45.641 51.538
0.02 49.134 56.286
0.03 51.436 59.506
0.04 53.206 62.032
0.05 54.664 64.156
0.06 55.917 66.018
0.07 57.021 67.694
0.08 58.014 69.232
0.09 58.919 70.668
0.10 59.752 72.020

a (m) n = 8, l = 10 m, R = 0.5 m, h = 1 m

0.01 373.467 391.420
0.02 396.536 420.140
0.03 411.400 440.020
0.04 422.642 456.240
0.05 431.793 470.540
0.06 439.570 483.760
0.07 446.367 496.380
0.08 452.427 508.620
0.09 457.911 520.680
0.10 462.930 532.660

a (m) n = 8, l = 10 m, R = 0.5 m, h = 10 m

0.01 203.369 209.640
0.02 210.022 217.680
0.03 214.120 222.900
0.04 217.126 226.940
0.05 219.516 230.340
0.06 221.508 233.380
0.07 223.221 236.140
0.08 224.726 238.720
0.09 226.071 241.140
0.10 227.288 243.480

Results summarized in Table 11 prove that the accuracy of Equation (18) lowers when reducing
the height of the conductors above the ground plane.

4. Discussion

This section summarizes the results attained in this work. As deduced from Section 3, FEM
simulations offer more flexibility, generalization capability, and the possibility to deal with more
complex geometries than analytical formulas for calculating the stray capacitance of high-voltage
electrodes to ground. Although analytical formulas only are available for some simple geometries, they
can be effectively applied to determine the straight capacitance to ground of high-voltage electrodes
with simple geometries.

Tables 12–14 summarize the main results attained in this work.
Results summarized in Table 12 clearly show a very good agreement between the results provided

by analytical formulas and FEM simulation for wires of infinite length, whereas in the case of straight
wires of finite length, maximum differences around 1–5% are found.

Results presented in Table 13 clearly show that in the case of spheres, analytical and FEM results
are almost the same, whereas in the case of circular rings, maximum differences around 5–8% are found.
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Table 12. Single straight wires. Comparative results between analytical formulas and FEM simulations.

Geometry Analyzed Mean Difference Maximum Difference

Finite-length straight round wire which is parallel to the ground plane: Equation (6) vs. FEM

a = 0.01–0.1 m, l = 1 m, h = 1 m 1.6% 2.5%

a = 0.01–0.1 m, l = 10 m, h = 1 m 1.2% 1.5%

a = 0.01–0.1 m, l = 1 m, h = 5 m 1.5% 2.4%

a = 0.01–0.1 m, l = 10 m, h = 5 m 1.6% 2.0%

Finite-length straight wire of round section which is perpendicular to the ground plane: Equation (7) vs. FEM

a = 0.01–0.1 m, l = 1 m, h = 1 m 4.3% 5.0%

a = 0.01–0.1 m, l = 10 m, h = 1 m 2.2% 2.9%

a = 0.01–0.1 m, l = 1 m, h = 5 m 1.6% 2.5%

a = 0.01–0.1 m, l = 10 m, h = 5 m 1.6% 2.0%

Infinite-length straight circular wire which is parallel to a conducting plane: Equation (8) = Equation (9) vs. FEM

a = 0.01–0.1 m, h = 1 m <0.1% <0.1%

a = 0.01–0.1 m, h= 5 m 0.3% 0.4%

Infinite-length straight wire of square section which is parallel to a conducting plane: Equation (10) vs. FEM

a = 0.01–0.1 m, h = 1 m 0.6% 1.3%

a = 0.01–0.1 m, h= 5 m 0.3% 0.4%

Table 13. Spheres and circular rings. Comparative results between analytical formulas and
FEM simulations.

Geometry Analyzed Mean Difference Maximum Difference

Sphere over a conducting plane: Equation (11) = Equation (13); Equation (12) vs. FEM

r = 0.01–0.1 m, h = 1 m <0.1%; 1.4% <0.1%; 2.6%
r = 0.01–0.1 m, h = 5 m <0.1%; 0.3% <0.1%; 0.6%
r = 0.1–1.0 m, h = 1 m <0.1%; 9.4% <0.1%; 14.2%
r = 0.1–1.0 m, h = 5 m <0.1%; 2.7% 0.1%; 4.7%

Circular ring or toroid which plane is parallel to a conducting plane: Equation (15) vs. FEM

a = 0.01–0.1 m, R = 0.25, h = 1 m 2.9% 6.4%
a = 0.01–0.1 m, R = 0.25, h = 5 m 2.5% 5.7%

a = 0.005–0.05 m, R = 0.10, h = 1 m 3.7% 7.9%
a = 0.005–0.05 m, R = 0.10, h = 5 m 3.6% 7.5%

Table 14. Multiple wires. Comparative results between analytical formulas and FEM simulations.

Geometry Analyzed Mean Difference Maximum Difference

n parallel round wires of finite length lying in a plane parallel to the ground plane: Equation (18) vs. FEM *

a = 0.01–0.1 m, n = 9, l = 1 m, b = 3a, h = 1 m 16.4% 56.2%
a = 0.01–0.1 m, n = 9, l = 1 m, b = 3a, h = 10 m 14.0% 45.8%
a = 0.01–0.1 m, n = 9, l = 10 m, b = 3a, h = 1 m 8.1% 8.6%

a = 0.01–0.1 m, n = 9, l = 10 m, b = 3a, h = 10 m 5.1% 5.5%

n identical straight wires of finite length parallel to the ground plane and arranged on the surface of a circular
cylinder: Equation (18) vs. FEM

a = 0.01–0.1 m, n = 8, l = 1 m, R = 0.5 m, h = 1 m 25.5% 31.8%
a = 0.01–0.1 m, n = 8, l = 1 m, R = 0.5 m, h = 10 m 17.4% 20.5%
a = 0.01–0.1 m, n = 8, l = 10 m, R = 0.5 m, h = 1 m 9.7% 15.1%
a = 0.01–0.1 m, n = 8, l = 10 m, R = 0.5 m, h = 10 m 5.1% 7.1%

* Some of the input parameters are out of the applicability limits of the formula.
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When dealing with multi-wire configurations, the differences are much higher than in the
geometries above, since differences around 5–56% can be found. In addition, for some geometries, the
analytical formulas available for multi-wire geometries cannot be applied, since some of the input
parameters are out of the applicability limits of such formulas.

5. Conclusions

This work has analyzed the behavior of several approximate and exact formulas to calculate
the capacitance to ground of high-voltage electrodes with different geometries. Due to experimental
difficulties involved, there is a lack of experimental data, so it is necessary to develop numerical
methods to infer the value of the capacitance when designing high-voltage tests and projects.
The analyzed geometries found in high-voltage applications include different combinations of wires
and rods, spheres and circular rings, the latter two being commonly applied as corona protections in
high-voltage projects. The results provided by the analyzed formulas have been compared against the
results provided by FEM simulations, since FEM simulations are internationally recognized as a valid
means of obtaining accurate and reliable data. The analysis performed in this work has proved the
inherent limitations of the analyzed formulas. It has been proved that although in some configurations
the results are very accurate (single straight wires or single sphere configurations), while in other
cases important differences arise, especially when dealing with multi-wire configurations. The stray
capacitance of a multi-toroid geometry has been also analyzed, which cannot be calculated by means
of analytical formulas. Therefore, this work has proven that analytical formulas can only deal with a
narrow number of geometries, and has also proven the enhanced performance and flexibility of FEM
simulations, due to their suitability, flexibility, and the wider range of geometries that FEM simulations
allow to be evaluated.

Author Contributions: Jordi-Roger Riba conceived and designed the numerical tests, analyzed the data and
wrote the paper; Francesca Capelli performed the simulations.
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