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Abstract 
The objective of this project is to investigate the feasibility of machine learning algorithms 
in predicting the conversion to multiple sclerosis (MS) of patients with a clinically isolated 
syndrome (CIS), using MRI-derived features. Many CIS patients only present a mild 
degree of affectation, making the radiological diagnostic not easy. MRI-derived features 
included in this project are related with brain atrophy and with the inflammatory 
component through brain lesion volume and topography (density of lesions in each brain 
lobe). These features have been used together with clinico-demographic data. Several 
experiments have been performed using three different definitions of conversion to MS. 
The results vary according to the definition used, with balanced accuracies of 0.68, 0.61 
and 0.73 (recall = [0.51, 0.60, 0.68], specificity = [0.85, 0.62, 0.78]). The proposed 
approach does not overcome current radiological diagnosis, but further investigation 
including more MRI-derived features is needed. 
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Resum 

L'objectiu d'aquest projecte és investigar la factibilitat d'utilitzar algoritmes d'aprenentatge 
automàtic per predir la conversió a Esclerosi Múltiple (EM) de pacients amb síndrome 
clínic aïllat (CIS), utilitzant característiques derivades d'imatges de ressonància magnètica 
(RM). Molts pacients amb CIS presenten un nul o lleu grau d'afectació, fent que el 
diagnòstic radiològic no sigui fàcil. Les característiques extretes de les RM estan 
relacionades amb l'atròfia cerebral i amb la component inflamatòria a través del volum de 
lesió cerebral i de la  densitat de lesions a cada lòbul (topografia). Aquestes 
característiques es combinen amb dades demogràfiques i clíniques dels pacients. S'han 
realitzat experiments utilitzant tres definicions diferents de conversió a EM. Els resultats 
varien per cada definició, amb precisions equilibrades de 0.68, 0.61 i 0.73 
(sensibilitat=[0.51, 0.60, 0.68], especificitat=[0.85, 0.62, 0.78]). La solució proposada no 
supera la precisió del mètode actual de diagnòstic de EM, però es requereix més 
investigació. 
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Resumen 

El objetivo de este proyecto es investigar la factibilidad de utilizar algoritmos de 
aprendizaje automático para predecir la conversión a Esclerosis Múltiple (EM) de 
pacientes con síndrome clínico aislado (CIS), utilizando características derivadas de 
imágenes de resonancia magnética (RM). Muchos pacientes con CIS presentan un nulo o 
leve grado de afectación, haciendo que el diagnóstico radiológico no sea fácil. Las 
características extraídas de las RMs están relacionadas con la atrofia cerebral y con la 
componente inflamatoria a través del volumen de lesión cerebral i de la densidad de 
lesiones en cada lóbulo cerebral (topografía). Estas características se combinan con datos 
clínicos y demográficos de los pacientes. Se han realizado experimentos utilizando tres 
definiciones diferentes de conversión a EM. Los resultados varían para cada definición, 
con precisiones balanceadas de 0.68, 0.61 y 0.73 (sensibilidad=[0.51,0.60, 0.68], 
especificidad =[0.85, 0.62, 0.78]). La solución propuesta no supera la precisión del 
método actual de diagnóstico de EM, pero se requiere más investigación. 
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1.   Introduction 
This project was proposed and has been supervised by Deborah Pareto from the MRI Unit 
of Vall d’Hebron University Hospital. It has been co-supervised by Veronica Vilaplana 
from the Image and Video Processing Group (GPI) from the Signal Theory and 
Communications Department (TSC) of the Technical University of Catalonia (UPC). 
 

1.1.   Multiple sclerosis 

Multiple sclerosis is a chronic, autoimmune, demyelinating and inflammatory 
neurodegenerative disease. It is one of the most frequent causes of non-traumatic 
neurological disability, affecting almost 2.5 million people worldwide. The disease affects 
more women than men, with a ratio of 3 to 1, affecting one in every thousand women and 
one in every three thousand men.  
 
There are treatments being used to reduce the sequels after an attack and to prevent the 
progression of the disease, but there is no known cure for it. 
 

1.1.1.   Causes 

The cause of the multiple sclerosis (MS) is unknown, although evidence shows that it has 
some relation with genetic and environmental factors. 
 
MS is not considered a hereditary disease but the genetic factors have an important role. 
The probability of having MS for the general population is approximately 0.2%, the 
probability for first-degree relatives of a MS patient is 3%, the probability for a non-
identical twin is 5% and 30% for an identical twin [1]. 
 
MS is less common in people living near the equator. A lack of vitamin D due to getting 
less sun exposure has been studied as a cause of the disease, and even though the studies 
support a protective effect of vitamin D, it is not proved how does vitamin D help and how 
genetic variations modify the effect [2]. 
 
The influence of stress, toxins, solvents, vaccines or diet has also been studied, but no 
direct relationship has been found. One factor that has been shown to be harmful is the 
consumption of tobacco, with smokers being 1.5 times more likely to suffer from the 
disease. In addition, tobacco consumption also influences the progression of the disease. 
According to a study in which 179 patients were analyzed, the risk of progressing to a 
more advanced stage of the disease was 3.6 times higher in smokers [4]. 
 
 



  

   11  

1.1.2.   Disease progression 

The disease begins in 85% of cases as a Clinically Isolated Syndrome (CIS). 45% of CIS 
patients have a first attack in which they suffer motor or sensory problems, 20% have 
optic neuritis, 10% have symptoms related to brainstem dysfunction, and the remaining 
25% have two or three of the above symptoms [5].  
 
Of the patients with CIS, between 30% and 70% will suffer a second attack, which means 
that they will convert to Relapsing-Remitting MS (RRMS) [6]. Patients with RRMS have 
periods without symptoms of the disease, interrupted by new attacks from which they may 
recover or not. The remaining CIS patients will not develop the disease. Identifying those 
who are going to develop MS and those who are not is extremely relevant for patient 
management and treatment decision. 
 
In the remaining 15% of cases, the disease begins with Primary Progressive MS (PPMS). 
Patients with PPMS do not recover after the first attack, and have a gradual progression of 
the disease. 
 

1.1.3.   Diagnosis 

The diagnosis of MS is not easy. The different neurological symptoms can be the 
manifestation of different diseases that must be ruled out before reaching a definitive 
diagnosis. 
 
The biomedical technique that has more relevance to diagnose MS is magnetic resonance 
imaging (MRI). Based on the information gathered from the MRI images, the McDonald 
criteria have been developed and are widely used [7]. 
 
According to the McDonald criteria, after the first attack, a patient is considered to have 
MS if one or more lesions are observed in the MR image in at least two of the following 
regions of the central nervous system: periventricular, juxtacortical, infratentorial and 
spinal cord. 
 
McDonald criteria are the most commonly used method for diagnosis of MS. In a study 
presented in [8], the criteria showed a sensitivity of 74%, specificity of 86%, and accuracy 
of 80%, but results may vary depending on the cohort. 
 
The disease, in addition to causing white matter lesions (WML), also causes gray matter 
(GM) atrophy [9]. Unlike WML, changes in the GM volume are difficult to observe with 
the naked eye, but it is possible to calculate it using image processing techniques. 
Therefore, a possible way of overtaking the accuracy of the McDonald criteria is to use 
both WML and GM atrophy to make the diagnosis. 
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1.2.   Objectives 

The main objectives of the project are: 

•   To elaborate a classification method to predict the conversion to MS of patients 
with CIS using machine learning techniques, determining the most informative 
feature combination. 

 

•   Evaluate the quality of the classifier with metrics such as accuracy, sensitivity and 
specificity, and compare the results obtained with other studies. 

 

1.3.   Requirements and specifications 

This project studies the possibilities that machine learning offers to solve this problem. 
There are no requirements on the accuracy that should be achieved. At the end of the 
project, the metrics will be evaluated to assess the viability of the proposed solution. 
 
Project requirements: 

•   Allow to future users, the possibility of training the model with their database. 

 
Project specifications: 

•   Work with the database provided by Vall d’Hebron University Hospital, which 
consists in 141 images of CIS patients acquired following standardized MRI 
protocols in a 3.0T system (Trio, Siemens). 

 

1.4.   Methods and procedures 

The MRI Unit of Vall d’Hebron University Hospital and The Image and Video Processing 
Group from the UPC have had an important weight in the project, but no algorithms or 
software previously developed by them has been used. 
 
The MR images were scanned by the MRI Unit of hospital, and almost all the images had 
already been processed by them using the following software: 

•   Lesion Segmentation Toolbox (LST). 
•   Statistical Parametric Mapping (SPM). 
•   Freesurfer. 

 
As part of this project, only a few images have had to be processed, using the SPM 
software package and FreeSurfer. 
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The machine learning scripts have been written in Python, using the machine learning 
library called Scikit-learn. Other libraries like NumPy, Pandas or matplotlib, among others, 
have also been used. 
 

1.5.   Work plan, deviations and incidences 

The work plan with tasks, milestones and the Gantt diagram can be found in Appendix A. 
 
Preparing the database including the clinical data required more time than expected and 
this caused a delay in the development of the project. 
 
In addition, in the first experiments the classifier performed poorly. To improve the 
performance additional features were extracted from the MR images related to lesion 
topography. This took an additional time that was not planned in the initial work plan. 
 
For these two reasons it was decided to extend the project and postpone the deadline from 
February to May. 
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2.   State of the art of the technology used or applied in this thesis 
In recent decades there have been many advances in magnetic resonance imaging (MRI). 
MRI is used to obtain information about the structure and composition of the body. This 
information is processed by computers and transformed into images. 
 
These advances have allowed its use in medicine, to observe alterations in tissues and 
detect cancer and other pathologies. In the case of multiple sclerosis, the MRI technology, 
together with the McDonald criteria, allow the diagnosis of patients who have typical 
symptoms of multiple sclerosis. 
 
Another technology that has advanced a lot in the last decades is machine learning (ML). 
ML is a branch of artificial intelligence whose objective is to develop techniques that 
allow computers to learn. Specifically, it is about creating programs capable of 
generalizing behaviors from given information. 
 
The branch of ML that is most commonly used in medicine is supervised ML. Supervised 
ML algorithms try to find patterns in labeled samples, to be able to predict the label of 
new unlabeled samples. In medicine, it has many applications such as predicting the 
diagnosis or predicting the disease stage of patients. 
 
In several studies, MRI has been used to observe and analyze how multiple sclerosis 
affects the human brain. Classically, the approach used has been voxel-based 
morphometry [10]. It has been used to investigate the differences in volumetry or tissue 
integrity caused by multiple sclerosis [11]-[12]. However, one limitation of this type of 
approach is that it highlights common features among the groups compared, and multiple 
sclerosis is highly heterogeneous. 
 
Some studies have tried to predict the clinical outcome of clinically isolated syndrome 
patients, focusing on the number of WML and their location [13]-[14]. A recent study [15] 
proposed a machine learning approach to predict outcome in CIS, based on WML size and 
location and clinical features of patients. In this study, information about the GM volume 
was not used, and therefore the results may have room for improvement. 
 
In some studies [16]-[17], machine learning has been used to classify between patients at a 
more advanced stage of the disease and healthy patients. The accuracies obtained in these 
studies were very high, but this is because the brains of patients with more advanced 
disease are badly damaged, and the difference with healthy brains is visible, even to the 
naked eye. 
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3.   Materials and preprocessing  

3.1.   Subjects 

The database of this project consists of 141 CIS patients followed at the Cemcat (Centre 
d'Esclerosi Múltiple de Catalunya), with at least three years of clinical follow-up. All 
patients were scanned after the onset of a CIS and one year later. In all patients, clinical 
and demographic information was recorded after the first attack: sex, age, type of CIS 
presentation, and Expanded Disability Status Scale (EDSS) score. 

 
 

 

Table 1: Demographic and clinical characteristics of patients with CIS. 
 

3.1.1.   Definition of conversion to multiple sclerosis 

The purpose of this project is to predict between the patients who have a first attack (CIS), 
those who will convert to multiple sclerosis. But first, it is important to define the meaning 
of conversion to multiple sclerosis. 
 
After the first attack, patients are diagnosed by the radiologist using the McDonald criteria. 
Patients that do not meet the criteria at baseline, will be diagnosed with MS if any of the 
following two conditions are fulfilled: 

•   They suffer a second attack: when a patient has a second attack, it is considered to 
have Clinically Definite Multiple Sclerosis (CDMS). 
 

•   After twelve months they meet the McDonald criteria: one year after the first 
attack, an MRI is performed again, and if there are symptoms of disease progress 
that meet the McDonald criteria, patients are diagnosed with MS. 

 
In this project, three definitions of conversion have been used: 
 
First def.: Patients who meet McDonald criteria in the first MRI are considered to 

have MS, this means that they are not considered CIS patients and therefore 
are discarded from the classification. Using this definition, the objective is 
to predict, among patients that after a first attack are not considered to have 
MS, which ones convert to MS. In other words, the goal is to find the false 
negatives of the baseline diagnosis. 

Sex (F/M) 84 / 57 
Mean age (range) 33.6 (18-49) 

Type of CIS presentation 

brainstem/cerebellum: 32 
spinal cord: 32 

optic neuritis: 63 
other: 14 

Mean EDSS score (range) 1.7 (0-4.5) 
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Second def.: For this definition, the McDonald criteria are not taken into account. All 
patients that have a first attack are considered CIS patients and those who 
suffer a second attack are considered converters. 

 
Third def.:  All patients who have a first attack are considered CIS patients. Those that 

meet at least one of the following conditions are considered converters: 

•   Fulfill McDonald criteria after the first attack. 
•   Fulfill McDonald criteria one year after the first attack. 
•   Have a second attack in the following three years. 

Those who do not meet any of these three conditions are considered non-
converters. 

 
The following table shows the number of converters and non-converters according to each 
definition of conversion. 
 

 Converters Non-converters Total 
First definition 21 76 97 

Second definition 32 109 141 
Third definition 65 76 141 

 
Table 2: Number of available subjects depending on the definition of conversion used. 

 
It is difficult to decide which one is the best definition and, in the end, it will depend on 
the purpose of each project. And probably, some of the patients that have been considered 
as non-converters in the three definitions may have had a second attack after the 
observation time of 3 years. 
 

3.2.   MRI acquisition and pre-processing 

The MR images were captured by the MRI Unit of Vall d’Hebron University Hospital, 
using a 3.0-T MRI magnet with a 12-channel phased-array head coil (Trio Tim, Siemens, 
Germany). 
 
The following pulse sequences were obtained:  

•   Transverse proton density (PD). PD-weighted images provide good contrast 
between GM and WM. Pathological processes, such as demyelination or 
inflammation, often increase water content in tissues, which increases the intensity 
of the tissues affected because water appears whiter. 

•   T2-weighted fast spin-echo. T2-weighted images provide good contrast between 
cerebrospinal fluid (CSF) and brain tissue. Tissues with demyelination or 
inflammation often appear whiter. 
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•   Sagittal 3D T1 magnetization prepared rapid gradient-echo (MPRAGE). T1-
weighed images provide good contrast between GM and WM tissues, and CSF 
appears black. Tissues with demyelination or inflammation often appear darker. 

•   Transverse fast T2-FLAIR. In T2-FLAIR images only WML appear bright. 

  
All the images were normalized to the Montreal Neurological Institute standard space 
using the SPM tool. 
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4.   Methods 

4.1.   Feature extraction 

Information about WML and GM atrophy was extracted from the MR images. 
 
To extract the GM features, the FreeSurfer suite has been used. Two types of features have 
been extracted: 

•   Cortical thickness (CT). CT features, as the name suggests, measure the thickness 
of different cortical regions. Each hemisphere is divided into 34 regions, for a total 
of 68 regions. The list with all the regions can be found in Appendix B. 

 

•   Subcortical deep gray matter (SDGM). The SDGM features measure the volume of 
seven GM regions: thalamus, caudate, putamen, pallidum, hypocampus, amygdala 
and accumbens. 

 
According to a study [18], increasing head size is associated with larger volumes but not 
CT. For this reason, SDGM features were normalized by the total intracranial volume of 
each patient, but CT features were not normalized. 
 
To obtain features related to WML, the LST software was used. The LST estimates a 
lesion mask based on 3D T2-FLAIR images. These masks were used to calculate the total 
WML volume, counting the number of lesion voxels. 
 
In the second part of the project, to obtain more information about WML, a WML lesion 
topography was performed. To do so, the lesion masks were used together with masks of 
different regions of interest (ROIs).  
 
Each hemisphere was divided in eight ROIs: frontal lobe, parietal lobe, occipital lobe, 
temporal lobe, limbic lobe, insular cortex, cingulate cortex, cerebellum. The lesion masks 
of each patient were multiplied by each ROI mask, obtaining 16 images for each patient. 
Finally, the lesion volume of each region was calculated, counting the number of lesion 
voxels in each image. 
 
On the other hand, to perform voxel-based experiments, GM and WM segmentations of 
each brain have been used. The images corresponding to the segmentations were provided 
by the Hospital MRI Unit and, therefore, this feature extraction is not considered a part of 
this project. 

4.2.   Data analysis 

Before starting to perform machine learning experiments, the features were analyzed using 
histograms and boxplots. 
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The left histogram in figure 1 shows the average CT. Converters are shown in orange and 
non-converters in blue. It is clearly observed that the classes are heavily overlapped, with 
the exception of one outlier that has very low average CT. The same happens with the 
total SCGM volume, the classes are overlapped too, and in this case there are two outliers. 
 
The right histogram in figure 1 shows the total WML volume. Although the two classes 
are also quite overlapping, the distribution of the two classes is different. While converters 
have sparse values, most non-converters have low lesion volumes. A few patients have 
very high values of WML volume, in order to show them in the histogram, they were 
added in the last bin. 
 

             
Figure 1: Histograms of average CT (left), total SCGM volume (center) and total WML 

volume (right), using the first definition of conversion.  
 

In figure 2 below, there are nine histograms corresponding to the CT of nine different 
regions. As can be seen, the two classes are overlapped in all the regions. 
 
 

 
Figure 2: Histograms of the CT of nine different regions, using the first definition of 

conversion. Converters are represented in orange and non-converters in blue. 
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In figure 3, there are nine histograms corresponding to the WML volume of nine different 
regions. Almost all of them are similar to the total WML volume histogram in figure 2. 
Comparing these histograms with GM histograms, it seems that these features will be 
more relevant for the classification with machine learning. 

 
Figure 3: Histograms of WML of nine different regions. Using the first definition of 

conversion. Converters are represented in orange and non-converters in blue. 
 
 
To summarize the degree of spread and skewness in the data, boxplots have been used. In 
the boxplots below, the rectangular box contains 50% of the values, the orange line 
represents the median of the dataset, and the individual data points represent the outliers. 
 
The previous histograms are all generated using the first definition of conversion. As can 
be seen in the boxplots in figures 4, 5 and 6, total CT distributions of converters and non-
converters are very similar with the three definitions of conversion, total SCGM volume 
distributions are slightly different only using the third definition of conversion, and total 
WML volume distributions are clearly different with any of the three definitions, 
especially with the second and third definitions (note that the scale of the vertical axis 
changes).  
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Figure 4: Boxplots of average CT using the first (left), second (center) and third (right) 

definitions. 

 

 
Figure 5: Boxplots of total SCGM volume using the first (left), second (center) and third 

(right) definitions. 

 

 
Figure 6: Boxplots of total WML volume, using the first (left), second (center) and third 

(right) definitions. 
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4.3.   Machine learning 

In this project supervised machine learning algorithms have been used to classify between 
the two classes (converters and non-converters). 
 
This classification problem is challenging due to several reasons: 

•   Small dataset. Especially with the first definition of conversion, the minority class 
contains only 21 patients. For this reason, it is important to use a simple model to 
avoid overfitting.  

 

•   Class overlap. As observed in histograms and boxplots from individual features in 
the previous section, classes are heavily overlapped. Machine learning algorithms 
combine information from different features and hence in some cases it is possible 
to classify between overlapping classes, but it is not always possible. 

 

•   High intraclass variance. As observed in the histograms and boxplots in the 
previous section, intraclass variance is high, especially in converters. Together 
with a small dataset, this usually causes that the results of the classifier vary a lot 
depending on the splits (train / test) of the dataset. To solve this problem, a method 
called repeated holdout cross-validation has been used. 

 

•   Large number of features. The number of features available in this project is high 
compared to the size of the dataset. As a rule of thumb, it is recommended to have 
at least 5 training samples for each feature [19], and in this project there is 
approximately one training sample for each feature. To solve this problem, two 
different feature selection methods have been implemented.  

 

4.3.1.   Performance metrics 
To evaluate the quality of the classifiers, the following metrics have been used: 

•   Accuracy. It is the ratio of correctly predicted samples to all tested samples. 
•   Recall / sensitivity. It measures the probability that a positive sample is correctly 

classified as positive. 
•   Specificity. It measures the probability that a negative sample is correctly 

classified as negative.  
•   Balanced Accuracy (BA). It is calculated as the average of the recall and the 

specificity. When the classes are balanced, the BA equals the accuracy. 
•   Precision. It is the probability that a sample classified as positive has been 

correctly classified. 
•   F1-Score. It is the harmonic average of the precision and recall. 
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The formulas to calculate these metrics are the following: 
 
 𝐴𝑐𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃	
   + 	
  𝑇𝑁
𝑇𝑃	
   + 	
  𝑇𝑁	
   + 	
  𝐹𝑃	
   + 	
  𝐹𝑁 (1) 

 
 𝑅𝑒𝑐𝑎𝑙𝑙	
  /	
  𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =

𝑇𝑃
𝑇𝑃 + 𝐹𝑁 (2) 

 
 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =

𝑇𝑁
𝑇𝑁 + 𝐹𝑃 (3) 

 
 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑	
  𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑅𝑒𝑐𝑎𝑙𝑙	
   + 	
  𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2  (4) 

 
 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
  

𝑇𝑃
𝑇𝑃 + 𝐹𝑃 (5) 

 
 𝐹> = 2 ·

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 

(6) 

 
where 
True positives (𝑇𝑃): positive samples (converters) correctly classified. 
False negatives (𝐹𝑁): negative samples (non-converters) classified incorrectly as 
converters. 
False positives (𝐹𝑃): positive samples (converters) classified incorrectly as non-converters.  
True negatives (𝑇𝑁): negative samples (non-converters) correctly classified. 
 
 

4.3.2.   Feature selection 

In machine learning experiments, contrary to what may seem intuitive, increasing the 
number of features does not imply improving the predictive capacity of the classifier. 
When the number of features is very large in proportion to the number of samples, the so-
called "curse of dimensionality" occurs. 
 
Typically, as the number of features increases, the predictive power increases to a certain 
point but then begins to decrease [20]. This is known as Hughes phenomenon or peaking 
phenomena. This typical behavior can be seen in figure 7.  
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Figure 7: Typical classifier performance when the number of features increases 

  
A database with M samples and N features, can be represented as M points in an N-
dimensional space. Given M points, if the number of features increases, the data points 
become sparse, and this sparsity sometimes reduces the performance of the machine 
learning algorithms. 
 
Models created with a high number of features tend to overfit, that is, they generalize 
worse and therefore have poor performance on unseen data. 
 
Reducing the number features has some benefits: 

•   Redundant features and features that do not provide information are removed.  
 

•   With fewer features, the training time of the classifier is significantly reduced. 
 

•   The classifier model is easier to interpret. 

 
This last point is especially important since it is interesting to be able to understand which 
are the most relevant features for classification, to see if they are consistent with medical 
findings. 
 
There are three different methods to perform feature selection: filters, wrappers and 
embedded methods [21]. Wrapper methods have not been used in this project because they 
require a higher number of samples. Filters and embedded methods are explained in the 
following sections. 

 
4.3.1.1 Filter methods 
 

In filter methods, the features are selected based on the score obtained in a scoring 
function. Once the scores are calculated, features are ranked according to the score 
obtained, and the best ones in the ranking are selected. The irrelevant features are filtered 
before the classification stage. 



  

   25  

The procedure is as follows: 

1.   Features are evaluated using a scoring function. 
2.   Features are sorted according to the value obtained. 
3.   The k best features are selected. 

 
Four different score functions have been used in this project: 

•   Welch's t-test. This statistical test is used to test if two populations have the same 
mean. Unlike the typically used Student's t-test, Welch's t-test does not assume that 
the two populations have equal variances, and it is more reliable when the two 
populations are unbalanced. For each feature, this test has been used to calculate 
the difference between the mean value of the two classes. It is assumed that 
features with more different means are more relevant and therefore, they are 
selected. 

 

•   ANOVA F-test. This statistical test is similar to the t-test, but instead of comparing 
the means of two populations, the variances are compared. In this case, the features 
with more different variances between converters and non-converters are selected. 

 

•   Pearson correlation coefficient. It measures the linear correlation between two 
variables. When used in feature selection, the correlation between each feature and 
the labels is measured. It provides a value between -1 (negative linear correlation) 
and 1 (positive linear correlation), and a coefficient of 0 means no correlation 
between the two variables. The features with higher absolute values are selected. 

 

•   Spearman's rank correlation coefficient. It is similar to the Pearson correlation 
coefficient, but instead of measuring a linear correlation, it assesses monotonic 
relationships. For this reason, it is more recommended when the relation of the two 
variables is not linear. The features with higher absolute values are selected. 

 
4.3.1.2. Embedded methods 
 

In embedded methods, the feature selection is performed as part of the training of the 
model. In this project, two different methods have been used. 
 
The Least Absolute Shrinkage and Selection Operator (LASSO) method has been used as 
a constraint to construct the linear model. The LASSO penalizes the coefficients with the 
L1 penalty, causing many of the coefficients to be 0. The features with coefficients 
different from 0 are the selected features.  
 
The dataset used in this project contains highly correlated features. For this reason, the 
regularization technique called Elastic Net has also been used, since it is recommended for 
datasets that contain highly correlated variables [22]. The Elastic Net is a regularized 
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regression method that combines the L1 and L2 penalties of the LASSO and ridge 
methods. It produces a sparse model with good prediction accuracy. 

4.3.3.   Classifiers 

In this project two classifiers have been used: Support Vector Machines (SVMs) and 
Logistic Regression (LR).  
 

4.3.3.1.  Support Vector Machines 

SVMs are supervised learning algorithms that can be used for classification or regression. 
When an SVM is trained for classification, the algorithm constructs a hyperplane that tries 
to separate the samples of the two classes, maximizing the distance to the nearest data 
point. Figure 8 shows a simple example of a hyperplane that separates the samples of two 
classes. The highlighted data points, called support vectors, define the boundary between 
the classes.  
 
This example is very simple since it has only two features and the classes are linearly 
separable, but SVMs can also perform non-linear classification, implicitly mapping their 
inputs into high-dimensional feature spaces. However, with small datasets non-linear 
models tend to overfit. For this reason, a linear SVM has been used in this project. 
 
A standard SVM tries to build a hyperplane that separates all the samples of the two 
classes. However, this can lead to poorly fit models if classes are non-separable. To solve 
this, soft-margin SVMs allow some samples to be placed in the wrong side of the 
hyperplane [23]. The hyperparameter C is the parameter of the cost function of the soft-
margin, and it controls the influence of each individual support vector. 
 
For large values of C, the algorithm constructs a hyperplane with a smaller margin, trying 
to classify all the training samples correctly. On the other hand, for small values of C, the 
algorithm constructs a hyperplane with larger margins, even if that hyperplane 
misclassifies more training samples. 
 

 
Figure 8: SVM hyperplane representation 
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4.3.3.2.  Logistic regression 

Logistic regression (LR), despite its name, is a generalized linear model that can be used 
for binary classification. Generalized linear models expect the predicted value to be a 
linear combination of a set of independent variables, in other words, the outcome always 
depends on the sum of the inputs and parameters. 
 
Like SVMs, LR also has a regularization parameter. In case of LR, the cost function is  
regularized by adding a penalty, with λ as the regularization parameter. The parameter C 
of SVMs, has a similar effect of inversed λ, 1/λ. It is commonly said that LR has a 
hyperparameter C, with C = 1/λ. In the following section, this definition is going to be 
used. 
 
Like any other classification algorithm, it has to be trained to learn to classify new 
unlabeled data. When a new sample is classified, the algorithm calculates the probability 
that the sample belongs to the positive class. If this probability is greater than 0.5, the 
sample will be classified as positive and if it is lower, as negative. 
 
This can be useful for medical decisions, where mistakes can be costly. For example, a 
threshold of 90% could be applied, and in patients with lower probability, the medical test 
could be repeated or a different test could be performed. 
 

4.3.3.3.  Hyperparameter tuning 

The optimal C value varies according to each dataset; actually, it also varies for each 
different division of the same dataset into train and test subsets. To increase the 
performance of the classifier, this hyperparameter has to be optimized.  
 
In order to avoid choosing an optimal C based on only one division of the dataset, a 
stratified cross-validation has been implemented. The dataset is split into K subsets using 
a stratified K-fold, seeking to ensure that each subset is representative of all the data, by 
having the same proportion of converters and non-converters in each subset. Then, the 
classifier is trained and evaluated K times, using a different test subset every time and the 
remaining K-1 subsets to train. 
 
To optimize the regularization parameter, the scheme in figure 9 has been implemented. 
The procedure is as follows: 

1.   The training set is divided into K subsets using a stratified K-fold. 
 

2.   K-1 subsets are used to train the classifier and the other one to test. This process is 
repeated using different values of C, saving the results of the classifier for each 
value. 
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3.   Step 2 is repeated K more times, changing the training and test subsets until all the 
subsets have been used to test. 

 

4.   The average results for every value of C are calculated, and the value of C that 
achieves the highest F1-Score is selected. 

 
Figure 9: Parameter optimization scheme. 

 

4.3.4.   Repeated hold-out cross-validation 

The dataset of this project is small and there is high intraclass variance. For this reason, 
the classifier performance varies greatly depending on the division that is made of the 
database. 
 
To solve this problem, a method called repeated hold-out has been used in all the 
experiments. It consists in repeating each experiment N times, with different train and test 
partitions, and averaging the results. 
 
The graph in figure 10 illustrates how the performance of the classifier is stabilized as 
more repetitions are averaged. The number of repetitions is shown on the horizontal axis. 
The first data point shows the metrics obtained in the first repetition. The second data 
point shows the average of the first two repetitions, and so on until the last point that 
shows the average metrics of 1000 repetitions. 
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Figure 10: Average results using repeated holdout cross-validation. 

 

4.3.5.   Experiments 
In this project many experiments have been carried out, which can be grouped into two 
types of experiments. The two types of experiments differ in the method used for the 
feature selection. They are explained in the following sections. 
 

4.3.4.1. Experiments using filter-based feature selection 

The first set of experiments use filter-based methods to perform the feature selection. The 
scheme of these experiments can be seen in figure 11. Different configurations, changing 
the feature selection scoring function, the classifier and the definition of conversion have 
been carried out. 
 
The procedure is as follows: 

1.   The dataset is split in two subsets, using p% for training and the remaining (1-p)% 
for test. The dataset is shuffled randomly in order to have different training and test 
sets in each repetition. 

 

2.   The m best features are selected using a filter method. 
 

3.   The regularization parameter C is optimized using the optimization scheme 
explained in the previous section. 

 

4.   Using the optimal C, the classifier is trained using the whole training subset and 
evaluated on the test subset, and the results are saved. 

 

5.   Steps 2, 3 and 4 are repeated for every value of m. 
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6.   Steps 1 through 5 are repeated N times. 

 
In the experiments that use filter-based feature selection methods, instead of optimizing 
the number of features, the classification process is repeated with all the possible number 
of features, starting with one until all the features are used. The reason is that the objective 
of this project is not to create production-ready solution, but to analyze and understand 
how machine learning can solve this classification problem. In these experiments, the 
results are shown in graphs. The number of features is shown on the horizontal axis and 
the metrics on the vertical axis.  
 
This scheme has also been used to perform the voxel-based experiments. The only 
difference is that instead of selecting the m best features, the m best voxels are selected. 
 
 

 
 

Figure 11: Scheme of the experiments using filter-based feature selection. 
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4.3.5.1.  Experiments using embedded feature selection 

The second set of experiments use embedded methods to perform the feature selection. In 
figure 12 the scheme of this experiments is shown. This scheme is simpler than the 
scheme of the previous section because the feature selection is performed internally in the 
classifier. 
 
The procedure is as follows: 

1.   The dataset is split in two subsets, using p% for training and the remaining (1-p)% 
for test. The dataset is shuffled randomly in order to have different training and test 
sets in each repetition. 

 
 

1.   The regularization parameter C is optimized. 
 

2.   Using the optimal C, the classifier is trained and evaluated, and the results are 
saved. 

 
 

3.   Steps 1 through 3 are repeated N times. 

 

 
Figure 12: Scheme of the experiments that use embedded feature selection. 
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5.   Results 

5.1.   Results using only WML features 
Experiment configuration: 

•   Filter-based feature selection using the Spearman correlation. 
•   Using an SVM with parameter optimization. 
•   Experiment repeated 1000 times. 
•   Using only WML features: 16 WML volumes of each brain lobe. 

 
Figure 13 shows the evolution of the performance of the classifier as a function of the 
number of features included, using the first definition of conversion. The best result is 
obtained when all the 16 WML features are used, the BA is 0.68 and the F1-Score is 0.52. 
Using the second and the third definitions of conversion, the best result is also obtained 
when all the 16 WML features are used. With the second definition of conversion, the 
results are worse (BA = 0.58, F1-Score = 0.38). And with the third definition the results 
are better (BA = 0.74, F1-Score = 0.70).  
 
Patients that were diagnosed with MS at baseline MRI, have high WML values. For this 
reason, the results are better with the third definition of conversion.  
 
 

 
Figure 13: Classifier performance using WML features 
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5.2.   Results using only GM features 

Experiment configuration: 

•   Filter-based feature selection using the Spearman correlation. 
•   Using an SVM with parameter optimization. 
•   Experiment repeated 1000 times. 
•   Using only GM features: CT of 68 regions and 7 SCGM volumes. 

 
As can be seen in figure 14, using the first definition of conversion, the balanced accuracy 
is greater than 0.5. Even though the metrics are very low, these results show that GM 
features contain information useful for classification.  
 
Using the first definition of conversion, patients who meet the McDonald criteria at 
baseline MRI are discarded, because they are diagnosed with MS, and are not considered 
CIS patients anymore. These patients are not used for evaluation, but they can be added to 
the training set to train the classifier. 
 
The same experiment was repeated, adding the MS patients to the training set and the 
results improved remarkably, especially when all the features were used (BA = 0.65, F1-
Score = 0.48). For the second definition of conversion, the results decrease considerably 
(BA = 0.55, F1-Score = 0.37). But with the third definition, the results improved notably, 
reaching a balanced accuracy of 0.68 and an F1-Score of 0.65.  
 
This makes sense because, as seen in the data analysis, SCGM features differ more 
between converters and non-converters using the third definition of conversion. 
 

Figure 14: Classifier performance using GM features. 
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5.3.   Experiments using all the features 

In the experiments explained in this section, all the features have been used: GM and WM 
features, together with clinico-demographic features. 
 
As can be seen in figure 15, the results are very similar to the results obtained using only 
WML features. The results only improve with the second definition of conversion (max. 
BA = 0.61, max. F1-Score = 0.42).  
 
This experiment was repeated using the four different scoring functions in the filter-base 
feature selection. The best performance was achieved using Spearman correlation. The 
results can be found in Appendix C. 
 
This experiment was repeated with logistic regression instead of an SVM and the results 
are almost identical (max. BA=0.61, max. F1-Score=0.42). 
 
Using embedded feature selection methods, the classifier performance decreased. Using 
LASSO, the results were slightly worse (BA=0.60, F1-Score=0.40), and using elastic net 
the performance decreased even more (BA=0.58, F1-Score=0.39). 
 
The experiments on the previous section have shown that GM features have information, 
but they are almost redundant when combined with WML. This seems to indicate that the 
inflammatory component of the disease, reflected through the WML features, plays a 
major role as compared to atrophy (GM features) in the conversion of these patients.  
 
 

 
Figure 15: Classifier performance using all the features. Using the first definition of 

conversion. 
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5.4.   Relevant features 

In order to translate the results obtained in this project to a clinical setting, it is important 
to identify which features contribute more. 
 
When a linear SVM is trained, the algorithm computes a coefficient for each feature. 
Features with more weight in the model have higher absolute coefficients. Therefore, 
features can be sorted by its coefficient to create a relevance ranking. 
 
The ranking in Table 2 contains the twenty features with higher coefficients using the first 
definition of conversion (similar rankings are obtained with the other definitions). WML 
topography is the major contributor, followed by cortical GM features. It is interesting that 
both left and right paracentral appear in high positions in the raking (10 and 17). It should 
be noted that in position 12, there is the EDSS score at baseline (EDSS0), a clinical value 
that reflects the disability stage of the patient (the higher the value, the higher the 
disability degree). In our study, a higher EDSS score at baseline increases the probability 
of converting to MS. 
 

Position Feature name Coefficient 

1 WML_left_cingulate 45.99 
2 WML_left_temporal 36.69 
3 WML_right_limbic 31.34 
4 WML_left_parietal -26.19 
5 WML_right_temporal -24.01 
6 WML_left_frontal -20.92 
7 WML_right_occipital 20.26 
8 WML_left_insula 9.38 
9 WML_right_parietal 8.97 
10 paracentral_ThickAvgRight -8.25 
11 WML_right_cingulate -7.43 
12 edss0 6.74 
13 WML_left_occipital 6.72 
14 lateraloccipital_ThickAvgRight 6.36 
15 caudalanteriorcingulate_ThickAvgRight -5.17 
16 WML_right_frontal 4.76 
17 paracentral_ThickAvgLeft -4.07 
18 precuneus_ThickAvgRight -3.00 
19 pericalcarine_ThickAvgRight -1.91 
20 caudate -1.09 

 

Table 3: Top 20 features ranked according to its coefficient in the classifier 
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5.5.   Voxel-based classification 

Experiment configuration: 

•   Filter-based feature selection using the F-test. 
•   Using an SVM with parameter optimization. 
•   Experiment repeated 1000 times. 
•   Using the voxels as features. 

In this context, the feature is the intensity value of the voxel. Masks are included to 
evaluate only selected portions of voxels. In this case, the GM and WM segmented masks 
were used to assess the two components independently. The GM component mostly 
reflects brain atrophy, while WM reflect mostly inflammatory activity. 
 
Using the GM segmentation of the brain, the BA was approximately 0.50 for the three 
definitions of conversion, which means that the classification was done randomly. 
 
Using the WM segmentation, with the first and the second definitions of conversion, the 
balanced accuracy is also approximately 0.50. But with the third definition the results 
improve, reaching a balanced accuracy of 0.59 and an F1-Score of 0.54, when the 100 best 
voxels are selected. 
 
The 100 best voxels selected by the feature selection method can be seen in figure 16. 
These voxels are located in the superior corona radiata. This finding is consistent with a 
study [24] in which it was concluded that most typical WML locations are the superior 
and posterior regions of the corona radiata. 
 

 

Figure 16: In red, the voxels in the image that contribute to the group classification 
overlaid over the mean MPRAGE MRI of the whole cohort (skull-stripped). 
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6.   Budget 
For the realization of this project, no hardware has been required apart from the computer. 
The computer that has been used is a Macbook Pro. It has an approximate cost of 1200 € 
and lasts at least three years. The proportional part of the cost during the time that has 
been used is 300€. 
 
The only applications used that require a license are MATLAB and Microsoft Office. The 
cost of a Microsoft Office license is 7 euros per month, so this equates to a cost of 63€. 
The price of a standard MATLAB annual license is 800€. This license has been provided 
by the UPC but it will be taken into account in the budget.  
 
Regarding labor, taking into account that this is a 24 ECTS project, it corresponds to 600 
hours of work. Calculating approximately that the cost per hour of a junior engineer is 12 
€/h, the total cost is: 

600 h · 12 €/h = 7200 € 
 
Additionally, the work of the advisors must be taken into account. This project has been 
directed by two co-directors with an average dedication of 1.5 hours per week during 36 
weeks. Considering a cost per hour of 40 €/h, the total cost is: 
 

2 co-directors · 36 weeks · 1.5 h/week · 40 €/h = 4320 € 

 
The following table summarizes the costs of the project. 
 
 

Item Cost 
MATLAB 800 € 

Microsoft Office 63 € 
MacBook Pro 300 € 

Work hours (junior engineer) 7200 € 
Work hours (advisors) 4320 € 

TOTAL 12683 € 
 

Table 4: Budget 
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7.   Conclusions and future development: 
The objective of this project was to explore the possibilities of machine learning in 
predicting the conversion to MS of patients with a CIS, using MRI-derived features. Three 
different definitions of conversion to MS have been used, repeating the experiments for 
each definition. 
 
Different methods of feature selection have been implemented and two classifiers have 
been used (SVM, LR). The best performance has been achieved with a filter-based feature 
selection, using the Spearman correlation, and the results obtained with SVMs and LR are 
very similar. 
 
The results of the experiments are within the expected range, although the performance 
varies depending on the definition of MS conversion used (BA = [0.68, 0.61, 0.73], recall 
= [0.51, 0.60, 0.68], specificity = [0.85, 0.62, 0.78]). 
 
The results show that GM atrophy starts in an early stage of MS, although in most patients 
it is imperceptible. GM features are informative, but when combined with WML features, 
they become less relevant to predict MS conversion. 
 
Once the experiments using MRI-derived features were finished, we performed 
experiments using the voxels as features, but the performance is very poor, specially using 
the first and the second definitions (BA = [0.51, 0.49, 0.59], recall = [0.07, 0.13, 0.52], 
specificity = [0.95, 0.85, 0.66]).  
 
When the voxels are used as features, the 3D matrix that represents the image is flattened 
into a 1D array and hence the spatial information is lost. Moreover, the MR images used 
are made up of approximately two million voxels and therefore, the number of features is 
very high for the number of samples. For these two reasons, the results of the voxel-based 
experiments were already expected to be poor. 
 
In conclusion, the results obtained are not good enough to confirm the feasibility of 
developing a ML solution into routine clinical practice, in order to predict conversion to 
MS in CIS patients. 
 
Since MS is a heterogeneous disease, it is difficult to find patterns among patients, 
specially with a small number of subjects. Therefore, it would be interesting to use the 
proposed approach in this project with a larger dataset. Also, with a large database it 
would be suitable to use deep learning. 
 
In ML, when a new sample is predicted, the classifier returns the most probable class, and 
some ML classifiers can also provide the probability of belonging to each class. In our 
problem, this means that we can obtain the probability that a patient will convert or not. 
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There is the possibility, to only take into account the prediction when the probability 
exceeds a certain threshold, and use the current diagnosis of MS when the probability is 
below the threshold. It would be interesting to study the viability of this approach.  
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Appendix A 

Work packages 
 
Project: Project proposal and work plan WP ref: 1 
Major constituent: Documentation Sheet 1 of 7 
Short description: 
Documentation on project description and project work 
plan. 
 
 
 

Planned start date: 25/09/2017 
Planned end date: 05/10/2017 

Start event: T1 
End event: T3 

Internal task T1: Project description. 
Internal task T2: Work Plan. 
Internal task T3: Document review and approval. 

Deliverables: 
TFG Proposal 
and Work 
Plan 

Dates: 
05/10/2017 

 

Table 5: Work package 1 
 
 
 
Project: Information research WP ref: 2 
Major constituent: Documentation and learning. Sheet 2 of 7 
Short description: 
State-of-the-art analysis. 
 
 
 

Planned start date: 
01/09/2017 
Planned end date: 10/10/2017 
Start event: T1 
End event: T7 

Internal task T1: Study how MRI images are acquired. 
Internal task T2: Study general traits of MS. 
Internal task T3: Study how MS diagnostic is done 
currently. 
Internal task T4: Study papers in which machine learning 
is used to predict MS conversion. 
Internal task T5: Familiarization with Pattern Recognition 
for Neuroimaging Toolbox (PRoNTo). 
Internal task T6: Familiarization with Python. 

Deliverables: Dates: 

 

Table 6: Work package 2 
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Project: Software development WP ref: 3 
Major constituent: Software Sheet 3 of 7 
Short description: 
Implement the algorithm able to predict MS conversion. 
 
 
 

Planned start date: 
10/10/2017 
Planned end date: 25/12/2017 
Start event: T1 
End event: T3 

Internal task T1: Create a database with the features of 
every patient. 
Internal task T2: Study and implementation of different 
machine learning approaches. 
Internal task T3: Testing the different approaches. 

Deliverables: Dates: 

 

Table 7: Work package 3 
 

 
Project: Critical Review WP ref: 4 
Major constituent: Documentation Sheet 4 of 7 
Short description: 
Document the development of the project and review the 
initial work plan. 
 
 
 

Planned start date: 27/11/2017 
Planned end date: 01/12/2017 

Start event: T1 
End event: T3 

Internal task T1: Writing about progress to date. 
Internal task T2: Review of the work plan. 
Internal task T3: Document review and approval. 

Deliverables: 
Critical 
review 

Dates: 
01/12/2017 

 

Table 8: Work package 4 
 
 
Project: Test and results assessment WP ref: 5 
Major constituent: Documentation Sheet 5 of 7 
Short description: 
Compare results to state-of-the-art techniques. 
 
 
 

Planned start date: 
10/12/2017 
Planned end date: 31/12/2017 
Start event: T1 
End event: T2 

Internal task T1: Test the algorithm implemented with the 
testing database. 
Internal task T2: Compare the results obtained with state-
of-the-art techniques. 

Deliverables: Dates: 

 

Table 9: Work package 5 
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Project: Final report WP ref: 6 
Major constituent: Documentation Sheet 6 of 7 
Short description: 
This report will describe the entire project, from the 
theoretical background to the results obtained 
 
 
 

Planned start date: 
01/01/2018 
Planned end date: 25/01/2018 
Start event: T1 
End event: T2 

Internal task T1: Write the document 
Internal task T2: Document review and approval.  

Deliverables: Dates: 
 

Table 10: Work package 6 
 
Project: Project presentation WP ref: 7 
Major constituent: Documentation Sheet 7 of 7 
Short description: 
Prepare an oral presentation to explain the project. 
 
 
 

Planned start date: 
22/01/2018 
Planned end date: 01/02/2018 
Start event: T1 
End event: T4 

Internal task T1: Prepare the document and the speech. 
Internal task T2: Review. 
Internal task T3: Practice the presentation. 
Internal task T4: Project presentation. 

Deliverables: Dates: 

 

Table 11: Work package 7 
 
 
Milestones 
 
WP# Task# Short title Milestone / deliverable Date (week) 
1 3 Project Proposal and Work 

Plan 
Project Proposal and Work 
Plan 

4 

3 1 Create database with the 
features selected 

Database 9 

3 2 Machine learning classifier Machine learning classifier 12 
4 3 Critical Review Documentation 13 
5 1 Test of classifier results  Documentation 16 
6 2 Final report Documentation 19 
7 4 Project presentation Documentation 20 

 

Table 12: Milestones 
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Gantt diagram 
 

 

Figure 17: Gantt diagram  
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Appendix B 
Frontal 

•   Superior Frontal. 
•   Rostral and Caudal Middle Frontal. 
•   Pars Opercularis, Pars Triangularis, and Pars Orbitalis. 
•   Lateral and Medial Orbitofrontal. 
•   Precentral. 
•   Paracentral. 
•   Frontal Pole. 

Parietal 

•   Superior Parietal. 
•   Inferior Parietal. 
•   Supramarginal. 
•   Postcentral. 
•   Precuneus. 

Temporal 

•   Superior, Middle, and Inferior Temporal. 
•   Banks of the Superior Temporal Sulcus. 
•   Fusiform. 
•   Transverse Temporal. 
•   Entorhinal. 
•   Temporal Pole. 
•   Parahippocampal. 

Occipital 

•   Lateral Occipital. 
•   Lingual. 
•   Cuneus. 
•   Pericalcarine. 

Cingulate  

•   Rostral Anterior (Frontal). 
•   Caudal Anterior (Frontal). 
•   Posterior (Parietal). 
•   Isthmus (Parietal).  
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Appendix C 

 
Figure 18: Performance of the classifier using a T-test to rank the features, with the first 

definition of conversion. 
 
 

 

 
Figure 19: Performance of the classifier using an F-test to rank the features, with the first 

definition of conversion. 
 
 



  

   47  

 
Figure 20: Performance of the classifier using the Pearson correlation coefficient to rank 

the features, with the first definition of conversion. 
 
 
 

 
Figure 22: Performance of the classifier using the Spearman correlation to rank the 

features, with the first definition of conversion. 
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Glossary 
BA: Balanced Accuracy. 
CDMS: Clinically Definite Multiple Sclerosis. 
CIS: Clinically Isolated Syndrome. 
CSF: Cerebrospinal fluid. 
CT: Cortical Thickness. 
EDSS: Expanded Disability Status Scale. 
GM: Gray Matter. 
LASSO: Least Absolute Shrinkage and Selection Operator. 
LR: Logistic Regression. 
LST: Lesion Segmentation Toolbox. 
ML: Machine Learning. 
MPRAGE: Magnetization-Prepared Rapid Gradient-Echo. 
MRI: Magnetic Resonance Imaging. 
PPMS: Primary Progressive Multiple Sclerosis. 
ROI: Region of Interest. 
RRMS: Relapsing-Remitting Multiple Sclerosis. 
SDGM: Dubcortical Deep-Gray Matter. 
SPM: Statistical Parametric Mapping. 
SVM: Support Vector Machines. 
WM: White Matter. 
WML: White Matter Lesions. 


