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Abstract

Edge-distance-regularity is a concept recently introduced by the authors which is
similar to that of distance-regularity, but now the graph is seen from each of its edges
instead of from its vertices. More precisely, a graph Γ with adjacency matrix A is
edge-distance-regular when it is distance-regular around each of its edges and with
the same intersection numbers for any edge taken as a root. In this paper we study
this concept, give some of its properties, such as the regularity of Γ, and derive some
characterizations. In particular, it is shown that a graph is edge-distance-regular if
and only if its k-incidence matrix is a polynomial of degree k in A multiplied by the
(standard) incidence matrix. Also, the analogue of the spectral excess theorem for
distance-regular graphs is proved, so giving a quasi-spectral characterization of edge-
distance-regularity. Finally, it is shown that every nonbipartite graph which is both
distance-regular and edge-distance-regular is a generalized odd graph.

1 Introduction

Since its introduction by Biggs in the 70’s (see [1]), the theory of distance-regular graphs
has been widely developed in the last decades. Its importance is highlighted in the preface’s
comment of the comprehensive textbook of Brower, Cohen and Neumaier [2]: “Most finite
objects bearing ‘enough regularity’ are closely related to certain distance-regular graphs.”
Thus, many characterizations of combinatorial and algebraic nature of distance-regular
graphs are known (see for instance Van Dam and Haemers [19] and Fiol [9]). Moreover,
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Dalfó, Van Dam and Fiol [6] recently obtained some new characterizations of distance-
regular graphs in terms of the cospectrality of their perturbed graphs. Also, distance-
regular graphs have given rise to several generalizations, such as association schemes (see
Brouwer and Haemers [3]) and almost distance-regular graphs [7]. When we look at the
distance partition of the graph from each of its edges instead of its vertices, we arrive, in
a natural way, to the concept of edge-distance-regularity. The definition of edge-distance-
regular graph was introduced by Fiol and Garriga in [12]. Here we study this concept, give
some of its properties and derive some characterizations. In particular, it is shown that a
graph Γ = (V,E), with adjacency matrix A, is edge-distance-regular if and only if every
k-incidence matrix Bk (with entries bue = 1 if the distance between vertex u ∈ V and
edge e ∈ E is k and bue = 0 otherwise) is a polynomial of degree k in A multiplied by the
(standard) incidence matrix B = B0. Also, the analogue of the spectral excess theorem
for distance-graphs is proved, so giving a quasi-spectral characterization of edge-distance-
regularity: A graph Γ is edge-distance-regular if and only if its edge-spectral-excess (a
number which can be computed from the spectrum of Γ) equals the excess of every edge
(that is, the number of vertices at maximum distance from every edge). Finally, it is shown
that every nonbipartite distance-regular and edge-distance-regular graph is a generalized
odd graph (also known as an almost-bipartite distance-regular graph, or a regular thin
near (2D + 1)-gon). With this aim, the next section is devoted to present the basic
notation and theoretical background on which our study is based. Apart from the basic
notions on graphs and their spectra, we recall some theory on orthogonal polynomials
of a discrete variable and pseudo-distance-regularity around a set. Section 3 deals with
the new concept of edge-spectrum-regularity, which is closely related to walk-regularity (a
concept due to Godsil and McKay [15]) and its generalizations such as m-walk-regularity
(see Dalfó, Van Dam, Fiol, Garriga and Gorissen [7]). Finally, the main body of the
paper is in Section 4, where we study some properties and obtain some characterizations
of edge-distance-regular graphs.

2 Preliminaries

2.1 Graphs and their spectra

Throughout this paper, Γ = (V,E) denotes a (finite, simple and connected) graph with
order |V | and adjacency matrix A. The distance between two vertices u and v is denoted
by ∂(u, v), so that the eccentricity of vertex u is εu = maxv∈V ∂(u, v) and the diameter
of the graph is D = maxu∈V εu. The set of vertices at distance k, from a given vertex
u ∈ V is denoted by Γk(u), for k = 0, 1, . . . , D. The degree of vertex u is denoted by
δu = |Γ1(u)|. More generally, the distance between two subsets U1, U2 ⊂ V is ∂(U1, U2) =
minu∈U1,v∈U2{∂(u, v)} and, for a given vertex subset C ⊂ V and some integer k ≥ 0, we
denote by Γk(C) the set of vertices at distance k from C and Nk(C) = Γ0(C) ∪ Γ1(C) ∪
· · · ∪ Γk(C) is its k-neighborhood. The eccentricity of C, denoted by εC , is then defined as
the maximum distance of any vertex of Γ from C. In Coding Theory this corresponds to
the covering radius of C. The antipodal C of C is the subset in V at maximum distance
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from C, that is, C = ΓεC (C).

The spectrum of Γ is denoted by spΓ = spA = {λm0
0 , λm1

1 , . . . , λmd
d }, where the different

eigenvalues of Γ are in decreasing order, λ0 > λ1 > · · · > λd, and the superscripts stand
for their multiplicities mi = m(λi). In particular, note that m0 = 1 (since Γ is connected)
and m0+m1+ · · ·+md = n. Moreover, λ0 has a positive eigenvector, denoted by ν, which
is normalized in such a way that its minimum component is 1. For instance, if Γ is regular,
we have ν = j, the all-1 vector. For a given ordering of the vertices of Γ, the vector space
of linear combinations (with real coefficients) of the vertices is identified with Rn, with
canonical basis {eu : u ∈ V } and, hence, vectors and matrices are indexed by the vertices
of V . The matrices Ei = λ⋆

i (A), where λ⋆
i , i = 0, 1, . . . , d, is the Lagrange interpolating

polynomial satisfying λ⋆
i (λj) = δij , are the (principal) idempotents of A representing the

orthogonal projections of Rn onto the eigenspaces Ei = Ker(A − λiI). These matrices
satisfy the known properties: EiEj = δijEi; AEi = λiEi; and p(A) =

∑d
i=0 p(λi)Ei, for

any polynomial p ∈ R[x] (see for example Godsil [14, p. 28]). The (u-)local multiplicities
of the eigenvalue λi are defined as

mu(λi) = ∥Eieu∥2 = ⟨Eieu, eu⟩ = (Ei)uu (u ∈ V ; i = 0, 1, . . . , d),

and satisfy
∑d

i=0mu(λi) = 1 and
∑

u∈V mu(λi) = mi, i = 0, 1, . . . , d (see Fiol and Garriga
[10]). Related to this concept, we say that Γ is spectrum-regular if, for any i = 0, 1, . . . , d,
the u-local multiplicity of λi does not depend on vertex u. Then, the above equations
imply that the (standard) multiplicities ‘split’ equitably among the n vertices, giving
mu(λi) = mi/n, i = 0, 1, . . . , d.

By analogy with the local multiplicities, which correspond to the diagonal entries of the
idempotents, Fiol, Garriga, and Yebra [13] defined the crossed (uv-)local multiplicities of
eigenvalue λi, denoted by muv(λi), as

muv(λi) = ⟨Eieu,Eiev⟩ = ⟨Eieu,ev⟩ = (Ei)uv (u, v ∈ V ; i = 0, 1, . . . , d).

Thus, in particular, muu(λi) = mu(λi). These parameters allow us to compute the number
of walks of length ℓ between two vertices u, v in the following way:

a(ℓ)uv = (Aℓ)uv =

d∑
i=0

muv(λi)λ
ℓ
i (ℓ = 0, 1, . . . ). (1)

Let a
(ℓ)
u denote the number of closed walks of length ℓ rooted at vertex u, that is, a

(ℓ)
u = a

(ℓ)
uu.

If these numbers only depend on ℓ, for each ℓ ≥ 0, then Γ is called walk-regular (a concept

introduced by Godsil and McKay [15]). Notice that, as a
(2)
u = δu, the degree of vertex u,

a walk-regular graph is necessarily regular. From (1), it follows that spectrum-regularity
and walk-regularity are equivalent concepts. As it is well known, any distance-regular
graph, as well as any vertex-transitive graph, is walk-regular, but the converse is not true
(see Godsil [14]). The above concepts were generalized by Dalfó, Fiol and Garriga [5] as
follows: A graph Γ with diameter D is m-walk-regular, for some 0 ≤ m ≤ D, if the number
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of walks a
(ℓ)
uv depends only on ℓ and the distance ∂(u, v), provided that ∂(u, v) ≤ m. Thus,

a 0-walk-regular graph is walk-regular, while a D-walk-regular graph is distance-regular.
Analogously, we say that Γ is m-spectrum-regular if, for any i = 0, 1, . . . , d, the crossed
local multiplicity of muv(λi) does not depend on the vertices u, v but only on their distance

∂(u, v) ≤ m. In [5], the authors showed that m-walk-regularity and m-spectrum-regularity
are also equivalent concepts .

2.2 Polynomials of a discrete variable

Let M = {λ0, λ1, . . . , λd} be a finite set of real numbers with λ0 > λ1 > · · · > λd and
consider a weight function g : M → (0, 1] such that

∑d
i=0 g(λi) = 1. Let M⋆ = M\{λ0}.

Here, all the equalities involving polynomials are considered in R[x]/(Z), where (Z) is the
ideal generated by the polynomial Z =

∏d
i=0(x−λi). As a representant of each equivalence

class we consider its unique polynomial with degree at most d = |M⋆|.

In our study we make ample use of the moment-like parameters

πi =

d∏
j=0,j ̸=i

|λi − λj | (0 ≤ i ≤ d) (2)

and the polynomial H = 1
g(λ0)π0

∏d
i=1(x− λi). Also, given the pair (M, g), we define the

scalar product

⟨p, q⟩ =
d∑

i=0

g(λi)p(λi)q(λi). (3)

An orthogonal system with respect to (M, g) is a family of polynomials {rk}0≤k≤d, with
deg(rk) = k, satisfying ⟨rs, rt⟩ = 0 if s ̸= t. For our purposes we always assume that
r0 = 1, so that ∥r0∥ = 1. As in every sequence of orthogonal polynomials, the following
three-term recurrence applies:

xrk = bk−1rk−1 + akrk + ck+1rk+1 (0 ≤ k ≤ d), (4)

where the constants bk−1, ak and ck+1 are the Fourier coefficients of xrk in terms of rk−1,
rk and rk+1, respectively, and b−1 = cd+1 = 0. The following proposition gives a matricial
version of this recurrence, as well as other properties of special interest in our context.

Proposition 2.1 [4] Every orthogonal system r0, r1, . . . , rd satisfies the following proper-
ties:

(a) There exists a tridiagonal matrix R (called the recurrence matrix of the system) such
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that, in R[x]/(Z):

xr = x



r0
r1
r2
...

rd−2

rd−1

rd


=



a0 c1 0
b0 a1 c2 0

0 b1 a2
. . .

. . .

0
. . .

. . .
. . . 0

. . .
. . . ad−2 cd−1 0
0 bd−2 ad−1 cd

0 bd−1 ad





r0
r1
r2
...

rd−2

rd−1

rd


= Rr.

(b) All the entries bk and ck of R are nonzero and satisfy bkck+1 > 0.

(c) The matrix R diagonalizes with eigenvalues the elements of M = {λ0, λ1, . . . , λd}.
An eigenvector associated to λi is r(λi) = (r0(λi), r1(λi), . . . , rd−1(λi), rd(λi))

⊤.

(d) For every k = 1, 2, . . . , d, the polynomial rk has simple real roots. If Mk denotes the
set of the ordered roots of rk, then (the points of) Md interlaces M and, for each
k = 1, 2, . . . , d− 1, Mk interlaces Mk+1.

Moreover, it is worth noting that we can obtain the system {rk}0≤k≤d from R without the
iterative application of the above recurrence.

Lemma 2.2 Let Rk be the principal submatrix of R with diagonal entries a0, a1, . . . , ak.
Then rk = 1

c1c2···ckϕk−1 for k = 1, 2, . . . , d, where ϕk−1 stands for the characteristic poly-
nomial of Rk−1.

Proof. The result can be proved by induction on k. The first two cases k = 1 and k = 2
are proved by simple computations. For k ≥ 3 and expanding along the last column we
get:

ϕk−1 = (x− ak−1)ϕk−2 + ck−1bk−2ϕk−3

= (x− ak−1)c1c2 · · · ck−1rk−1 − ck−1bk−2c1c2 · · · ck−2rk−2

= c1c2 · · · ck−1((x− ak−1)rk−1 − bk−2rk−2) = c1c2 · · · ckrk,

and the result is obtained. 2

In our context, we use the so-called canonical orthogonal system {pk}0≤k≤d of polynomials
associated to (M, g), characterized by the normalization condition ∥pk∥2 = pk(λ0), k =
0, . . . , d. (This makes sense as, from the theory of orthogonal polynomials, pk(λ0) > 0, see
for instance [17].) In fact, the following result holds.

Proposition 2.3 [4] Let p0, p1, . . . , pd be an orthogonal system with respect to the scalar
product associated to (M, g) and recurrence matrix R. Then, the following statements are
equivalent:
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(a) ∥pk∥2 = pk(λ0) for any k = 0, 1, . . . , d;

(b) p0 + p1 + · · ·+ pd = H =
1

g(λ0)π0

d∏
i=1

(x− λi);

(c) The entries of the matrix R satisfy ak + bk + ck = λ0 for any k = 0, 1, . . . , d (where
c0 = bd = 0).

From the above results, we can also give explicit expressions for pd, as it is shown in the
next lemma.

Lemma 2.4 [4] The highest degree polynomial pd of the canonical orthogonal system as-
sociated with (M, g), with gi = g(λi), satisfies:

(a) pd =

(
d∑

i=0

g0π0
giπ2

i

)−1 d∑
i=0

1

giπ2
i

d∏
j=0,j ̸=i

(x− λj);

(b) pd(λ0) =
1

g0

(
d∑

i=0

g0π
2
0

giπ2
i

)−1

=

1
g20π

2
0∑d

i=0
1

giπ2
i

;

(b) pd(λi) = (−1)i
g0π0
giπi

pd(λ0) (1 ≤ i ≤ d).

In our work we also use the sum polynomials {qk}0≤k≤d associated to (M, g), which are
defined by qk = p0 + p1 + · · · + pk. Note that, from Proposition 2.3(b), qd = H. These
polynomials are optimal in the following sense:

Let S = S(M, g) ⊂ Rd[x] denotes the sphere with antipodal points 0 and H. That is, S is
the sphere with center 1

2H and radius 1
2∥H∥. Notice that its equation ∥p− 1

2H∥2 = 1
4∥H∥2

can also be written as ∥p∥2 = ⟨H, p⟩ = p(λ0). Consequently,

S =
{
p ∈ Rd[x] : ∥p∥2 = p(λ0)

}
= {p ∈ Rd[x] : ⟨H − p, p⟩ = 0} .

Let Sk = Sk(M, g) = S ∩ Rk[x]. Then, we have following optimization result.

Lemma 2.5 [4] The function q 7→ q(λ0) attains its maximum in Sk(M, g) at qk.

Let us now prove some more particular results about orthogonal polynomials suited to
our study. Let M = {λ0, λ1, . . . , λd} be a set as before, with the additional conditions
λ0 + λd > 0 and a weight function g : M → R satisfying

d∑
i=0

gi = 1,
d∑

i=0

giλi = 0,
d∑

i=0

giλ
2
i = λ0, (5)
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where gi = g(λi). Note that this is the case when, with Γ being a nonbipartite regular
graph with eigenvalues ev Γ = {λ0, λ1, . . . , λd} and multiplicity function m : ev Γ → R, we
consider M = evΓ and g = 1

|V |m.

Let {pk}0≤k≤d be the canonical orthogonal system associated to (M, g). The conditions
(5) can be expressed, respectively, by ⟨1, 1⟩ = 1, ⟨x, 1⟩ = 0 and ⟨x, x⟩ = λ0, implying,
in particular, that p0 = 1 and p1 = x. In this case, the recurrence matrix R has entries
a0 = 0, b0 = λ0 and c1=1. If we define sk = ckpk − bk−1pk−1, using equation (4) and
Proposition 2.3(c) we obtain:

sk = ckpk − bk−1pk−1 = xpk−1 − bk−2pk−2 − ak−1pk−1 − (λ0 − ak−1 − ck−1)pk−1

= (x− λ0)pk−1 + ck−1pk−1 − bk−2pk−2 = (x− λ0)pk−1 + sk−1.

Then, since s1 = c1p1 − b0p0 = x− λ0, the above recurrence leads to:

sk+1 = ck+1pk+1 − bkpk = (x− λ0)qk (0 ≤ k ≤ d). (6)

From (M, g), consider now the new pair (M, g̃) with g̃i = gi

(
1 + λi

λ0

)
.

Lemma 2.6 Let p, q ∈ Rd[x] with p = (x+ λ0)r. The discrete scalar products associated
to (M, g̃) and (M, g) satisfy

⟨r, q⟩∼ =
1

λ0
⟨p, q⟩.

Proof. Just note that ⟨r, q⟩∼ =
∑d

i=0 gi

(
1 + λi

λ0

)
r(λi)q(λi) =

1
λ0
⟨(λ0+x)r, q⟩ = 1

λ0
⟨p, q⟩.

2

Proposition 2.7 The canonical orthogonal system {p̃k}0≤k≤d associated to (M, g̃) is
given by

(x+ λ0)p̃k = −λ0qk(−λ0)

(
1

pk+1(−λ0)
pk+1 −

1

pk(−λ0)
pk

)
(0 ≤ k ≤ d).

Proof. Let {pk}0≤k≤d be the canonical orthogonal system associated to (M, g) and

pd+1 =
∏d

i=0(x− λi). Consider the polynomials r̃0, r̃1, . . . , r̃d defined by

(x+ λ0)r̃k = pk+1 −
pk+1(−λ0)

pk(−λ0)
pk.

(As in the case of pk(λ0), the theory of orthogonal polynomials assures that pk(−λ0) ̸= 0
for every k = 0, 1, . . . , d.) Note that r̃0 = 1 and r̃k has degree k for every k. For
0 ≤ h < k ≤ d, Lemma 2.6 gives

⟨r̃k, r̃h⟩∼ =
1

λ0

⟨
pk+1 −

pk+1(−λ0)

pk(−λ0)
pk, r̃h

⟩
= 0.
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Thus, r̃0, r̃1, . . . , r̃d is an orthogonal system associated to (M, g̃). Moreover, its corre-

sponding canonical orthogonal system {p̃k}0≤k≤d satisfies p̃k = r̃k(λ0)
∥r̃k∥2∼

r̃k. Then, our aim is

to compute r̃k(λ0) and ∥r̃k∥2∼. Let b−1 = 0, p−1 = 0 and define cd+1 as the leader coeffi-
cient of pd. Then, we can write xpk = bk−1pk−1+akpk+ck+1pk+1 for every k = 0, 1, . . . , d,
and

r̃k(λi) =
1

λ0 + λi

(
pk+1(λi)−

pk+1(−λ0)

pk(−λ0)
pk(λi)

)
=

λipk(λi)−bk−1pk−1(λi)−akpk(λi)+(λ0pk(−λ0)+bk−1pk−1(−λ0)+akpk(−λ0))
pk(λi)

pk(−λ0)

ck+1(λ0+λi)

=
1

ck+1

(
pk(λi) +

bk−1

λ0 + λi

pk−1(−λ0)

pk(−λ0)

(
pk(λi)−

pk(−λ0)

pk−1(−λ0)
pk−1(λi)

))
=

1

ck+1

(
pk(λi) + bk−1

pk−1(−λ0)

pk(−λ0)
r̃k−1(λi)

)
.

Thus, r̃k = 1
ck+1

(
pk + bk−1

pk−1(−λ0)
pk(−λ0)

r̃k−1

)
for k = 0, 1, . . . , d. Now we can compute:

∥r̃k∥2∼ = ⟨r̃k, r̃k⟩∼ =
1

λ0

⟨
pk+1 −

pk+1(−λ0)

pk(−λ0)
pk, r̃k

⟩
=

1

λ0ck+1

⟨
pk+1 −

pk+1(−λ0)

pk(−λ0)
pk, pk + bk−1

pk−1(−λ0)

pk(−λ0)
r̃k−1

⟩
= − 1

λ0ck+1

pk+1(−λ0)

pk(−λ0)
pk(λ0).

Using the definition of r̃k, we get r̃k(λ0) =
1

2λ0

(
pk+1(λ0)− pk+1(−λ0)

pk(−λ0)
pk(λ0)

)
, implying

(x+ λ0)p̃k =
r̃k(λ0)

∥r̃k∥2∼
(x+ λ0)r̃k

=
ck+1

2

(
1− pk+1(λ0)pk(−λ0)

pk+1(−λ0)pk(λ0)

)(
pk+1 −

pk+1(−λ0)

pk(−λ0)
pk

)
=

1

2
(ck+1pk+1(−λ0)− bkpk(−λ0))

(
1

pk+1(−λ0)
pk+1 −

1

pk(−λ0)
pk

)
,

since pk(λ0)bk = pk+1(λ0)bk+1 for every k = 0, 1, . . . , d. Using (6), we have the equality

ck+1pk+1(−λ0)− bkpk(−λ0)

2
= −λ0qk(−λ0),

which concludes the proof. 2

From Proposition 2.7 and recalling that qd = 1
g0π0

∏d
i=1(x− λi), we get:

Corollary 2.8 For k = 0, 1, . . . , d,

p̃k(λ0) =
1

2

(
pk(λ0)

pk(−λ0)
− pk+1(λ0)

pk+1(−λ0)

)
qk(−λ0)
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and, in particular,

p̃d(λ0) =
1

2g0

π̂0
π0

pd(λ0)

(−1)d pd(−λ0)
,

where π̂0 =
∏d

i=1(λ0 + λi).

2.3 Distance-regularity around a set

Let Γ = (V,E) be a graph with adjacency matrix A, maximum eigenvalue λ0 and
corresponding positive eigenvector ν. Consider the map ρ : 2V −→ Rn defined by
ρ(C) = ρC =

∑
u∈C νueu for any nonempty vertex subset C and ρ∅ = 0. Consider

also the normalized vector eC =
ρC

∥ρC∥ . The C-local multiplicity of λi is mC(λi) = ∥EieC∥2

and evC Γ denotes the set of C-eigenvalues, that is, those eigenvalues of Γ with nonzero
C-multiplicity. Since eC is unitary, we have

∑d
i=0mC(λi) = 1. Moreover, as

E0eC =
⟨eC,ν⟩
∥ν∥2

ν =
1

∥ρC∥
⟨ρC,ν⟩
∥ν∥2

ν =
∥ρC∥
∥ν∥2

ν ⇒ mC(λ0) =
∥ρC∥2

∥ν∥2
, (7)

we always have λ0 ∈ evC Γ. Let ev⋆C Γ = evC Γ \ {λ0} and dC = | ev⋆C Γ|. In [11] it was
shown that then the eccentricity of C satisfies εC ≤ dC. When equality is attained, we say
that C is an extremal set.

Note that, with ρu = ρ{u}, we have ∥ρu∥ = νu, so that we can see ρ as a function which
assigns weights to the vertices of Γ. In doing so we “regularize” the graph, in the sense
that the average weighted degree of each vertex u ∈ V becomes a constant:

δ∗u =
1

νu

∑
v∈Γ(u)

νv = λ0. (8)

Using these weights, we consider the following concept: A partition P of the vertex set
V = V1 ∪ · · · ∪ Vm is called pseudo-regular (or pseudo-equitable) whenever the pseudo-
intersection numbers

b∗ij(u) =
1

νu

∑
v∈Γ(u)∩Vj

νv (1 ≤ i, j ≤ m) (9)

do not depend on the chosen vertex u ∈ Vi, but only on the subsets Vi and Vj . In
this case, such numbers are simply written as b∗ij , and the m × m matrix B∗ = (b∗ij)
is referred to as the pseudo-quotient matrix of A with respect to the (pseudo-regular)
partition P. Pseudo-regular partitions were introduced by Fiol and Garriga [11], as a
generalization of the so-called regular partitions, where the above numbers are defined by
b∗ij(u) = |Γ(u) ∩ Vj | for u ∈ Vi, and they are simply called the intersection numbers. A
detailed study of regular partitions can be found in Godsil [14] and Godsil and McKay
[15]. A graph Γ is said to be pseudo-distance-regular around C ⊂ V or C-local pseudo-
distance-regular if the distance-partition around C, that is V = C0 ∪C1 ∪ · · · ∪CεC where
Ck = Γk(C) for k = 0, 1, . . . , εC , is pseudo-regular. In this case, C is also referred to
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as a completely pseudo-regular code. From the characteristics of the distance-partition, it
is clear that its pseudo-quotient matrix is tridiagonal with nonzero entries ck = b∗k−1,k,
ak = b∗k,k and bk = b∗k+1,k, 0 ≤ k ≤ εC , with the convention c0 = bεC = 0. By (8),
notice that ak + bk + ck = λ0 for k = 0, 1, . . . , εC . In particular, when Γ is regular
and C consists of a single vertex u, the C-pseudo-distance-regularity coincides with the
distance-regularity around u (see Brouwer, Cohen and Neumaier [2]). We refer to the pair
(evC Γ,mC), constituted by the set of C-eigenvalues and the normalized weight function
mC defined by the C-local multiplicities, as the C-spectrum of Γ.

We now come back to the results on orthogonal polynomials of the previous subsection,
by taking (M, g) = (evC Γ,mC). Then, since eC =

∑d
i=0EieC and p(A)Ei = p(λi)Ei,

the scalar product can be written in the form

⟨p, q⟩C =

d∑
i=0

mC(λi)p(λi)q(λi) = ⟨p(A)eC, q(A)eC⟩, p, q ∈ RdC [x]. (10)

(Notice that the sum has at most dC nonzero terms.) In what follows, the corresponding
canonical orthogonal system {pk}0≤k≤dC plays a key role. Its elements are referred to
as the predistance polynomials of C or C-predistance polynomials. From their definition,
they satisfy pk(λ0) = ∥pk∥2C = ∥pk(A)eC∥2. Besides, if evC Γ = {µ0(= λ0), µ1, . . . , µdC},
Proposition 2.3(b) and Eq. (7) yield

p0 + p1 + · · ·+ pdC = HC =
∥ν∥2

∥ρC∥2π0

dC∏
i=0

(x− µi),

where π0 =
∏dC

i=1(λ0 − µi). In [11] it was shown that the predistance polynomial pdC

satisfies pdC (λ0) ≥
∥ρCdC

∥2

∥ρC∥2 and equality holds if and only if pdC (A)ρC = ρCdC
. An

equivalent result, stated in terms of the sum polynomial qdC−1 = p0 + p1 + · · ·+ pdC−1, is
the following:

Proposition 2.9 [11] Let C be a vertex subset of a graph, with C-predistance polynomials
{pk}0≤k≤dC and let qdC−1 =

∑dC−1
i=0 pi. Then, for any polynomial r ∈ RdC−1[x], we have

r(λ0)

∥r∥C

≤
∥ρNdC−1(C)

∥
∥ρC∥

, (11)

and equality holds if and only if C is extremal and

1

∥r∥C

r(A)eC = eNdC−1(C). (12)

In this case, r = ηqdC−1 for any η ∈ R, whence (11) and (12) become, respectively,

qdC−1(λ0) =
∥ρNdC−1(C)

∥2

∥ρC∥2
and qdC−1(A)ρC = ρNdC−1(C)

. (13)
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As a consequence, the following characterizations of pseudo-distance-regularity around a
set were also proved by the authors.

Theorem 2.10 [11] Let Γ = (V,E) be a connected graph and let C ⊂ V be a nonempty
vertex subset with eccentricity εC and antipodal set C = ΓεC (C). Then, the following
assertions are equivalent:

(a) Γ is C-local pseudo-distance-regular.

(b) There exist polynomials {rk}0≤k≤εC with dgr rk = k such that ρCk
= rk(A)ρC.

(c) C is extremal and there exists a polynomial r ∈ RεC [x] such that ρC = r(A)ρC.

(d) The predistance polynomial of C with maximum degree satisfies pdC (λ0) =
∥ρCdC

∥2

∥ρC∥2 .

3 Edge-spectrum-regularity

Let Γ = (V,E) be a graph with spectrum spΓ = (evΓ,m), where ev Γ is the set of
different eigenvalues of Γ and m : ev Γ → N the multiplicity function. Let λ0 be the
maximum eigenvalue and ν the unique vector of its eigenspace with minimum component
equal to one. We write ev⋆ Γ = evΓ \ {λ0} and d = | ev⋆ Γ|.

Formally, we do not distinguish between an edge e ∈ E with vertices u, v and the set {u, v}.
Thus, we denote the (local) e-multiplicities of Γ asme(λi) = ∥Eiee∥2, i = 0, 1, . . . , d, where

ee =
ρe

∥ρe∥
= νueu+νvev√

ν2u+ν2v
.

From this, note that the relationship between the e-multiplicity and the local and crossed
multiplicities of u and v is:

me(λi) = ∥Eiee∥2 =
1

ν2u + ν2v
⟨Ei(νueu + νvev), νueu + νvev⟩

=
1

ν2u + ν2v
(ν2u(Ei)uu + 2νuνv(Ei)uv + ν2v (Ei)vv)

=
1

ν2u + ν2v
(ν2umu(λi) + 2νuνvmuv(λi) + ν2vmv(λi)), (14)

and, if Γ is regular,

me(λi) =
1

2
(mu(λi) +mv(λi)) +muv(λi). (15)

For a general graph, Eq. (7) yields that the e-multiplicity of λ0 is

me(λ0) =
∥ρe∥2

∥ν∥2
=

ν2u + ν2v
∥ν∥2

. (16)
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If |eve Γ| = de + 1, the eccentricity of e, seen as a set of two vertices, satisfies εe ≤ de.
We define the edge-diameter of Γ by D̃ = maxe∈E εe. Notice that D̃ coincides with the
diameter of the line graph LΓ. Consequently, we have the following well-known result.

Lemma 3.1 Let Γ be a connected graph with diameter D and edge-diameter D̃. Then,
D − 1 ≤ D̃ ≤ D and, if Γ is bipartite, D̃ = D − 1.

We remark that D̃ = D− 1 does not imply that Γ is bipartite. An example of this fact is
any nonbipartite (connected) graph with pendant edges attached to some of its vertices.

Lemma 3.2 The e-multiplicities of a graph Γ = (V,E) with spectrum sp Γ satisfy the
following properties:

(a)

d∑
i=0

me(λi) = 1 for every e ∈ E.

(b) If Γ is regular, then
∑
e∈E

me(λi) =
λ0 + λi

2
m(λi) for every λi ∈ ev Γ.

Proof. The first statement is known for a general vertex subset. In order to prove the
second one, we have:

∑
e∈E

me(λi) =
∑
e∈E

⟨Eiee, ee⟩ =
1

2

∑
u∼v

⟨
Ei

1√
2
(eu + ev),

1√
2
(eu + ev)

⟩

=
1

4

∑
u

∑
v∼u

(Ei)uu +
1

4

∑
v

∑
u∼v

(Ei)vv +
1

2

⟨∑
u

Eieu,
∑
v∼u

ev

⟩
=

1

4
λ0

∑
u

mu(λi) +
1

4
λ0

∑
v

mv(λi) +
1

2

∑
u

⟨Eieu,Aeu⟩

=
1

2
λ0m(λi) +

1

2

∑
u

⟨AEieu, eu⟩ =
1

2
λ0m(λi) +

1

2
tr(AEi)

=
1

2
λ0m(λi) +

1

2
m(λi)λi =

λ0 + λi

2
m(λi),

where we used that AEi = λiEi and trEi = m(λi). 2

For every eigenvalue λi ∈ evΓ, the mean vertex-multiplicity and mean edge-multiplicity
are, respectively,

g(λi) =
1

|V |
∑
u∈V

mu(λi), g̃(λi) =
1

|E|
∑
e∈E

me(λi).
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Since
∑

u∈V mu(λi) = m(λi), we have g(λi) =
m(λi)
|V | . Moreover, if Γ is regular, Lemma 3.2

gives

g̃(λi) =
1

|E|
λ0 + λi

2
m(λi) =

(
1 +

λi

λ0

)
m(λi)

|V |
=

(
1 +

λi

λ0

)
g(λi). (17)

Inspired by the concept of (vertex) spectrum-regularity, we say that Γ is edge-spectrum-
regular if, for every λi ∈ evΓ, the edge-multiplicity me(λi) does not depend on e ∈ E.
Whereas spectrum-regularity implies regularity, in the case of edge-spectrum-regularity
we have the following result.

Proposition 3.3 Let Γ be a connected edge-spectrum-regular graph. Then, Γ is either
regular or bipartite biregular.

Proof. First, let u and v be two adjacent vertices and e = {u, v} ∈ E. From (16),
we have that ν2u + ν2v = ∥ν∥2me(λ0) = a is a constant over all the edges. Now, let u
and v be two vertices that can be joined by a walk of even length, that is, u = w0 ∼
w1 ∼ · · · ∼ w2p−1 ∼ w2p = v. Then, (−1)kν2wk

+ (−1)kν2wk+1
= (−1)ka. By adding up

for k = 0, 1, . . . , 2p − 1, we get ν2u − ν2v = 0 and, since all the entries of ν are positive,
νu = νv. Thus, if we consider the equivalence relation in V defined by u ≃ v, if and only
if there exists a path of even length joining u and v, the map u 7→ νu is constant over
every equivalence class. Let [u] and [v] be two different equivalence classes. The existence
of a vertex w not belonging to any of them would imply the existence of a path of even
length from u to v. Hence, the quotient set has at most two classes. If there exists only
one class, ν = j and the graph is regular. On the other hand, if there are two classes Vi,
i = 1, 2, any two vertices in the same class cannot be adjacent (odd distance) and, hence,
Γ is bipartite with independent sets V1 and V2. Let αi be the value of the components of
ν corresponding to vertices of Vi, i = 1, 2. If u ∈ V1, then

δuα2 = ⟨Aeu,ν⟩ = ⟨eu,Aν⟩ = λ0⟨eu,ν⟩ = λ0α1,

giving δu = α1
α2
λ0. A similar argument leads to δv = α2

α1
λ0 for all v ∈ V2. 2

We say that a graph Γ is bispectrum-regular when it is both spectrum-regular and edge-
spectrum-regular. This is the case, for instance, when Γ is distance-regular. More gener-
ally, we have the following result.

Proposition 3.4 A graph Γ is bispectrum-regular if and only if it is 1-walk-regular.

Proof. Suppose that Γ is bispectrum-regular. In particular, the graph is regular and,
from (17), g̃(λi) = (1 + λi

λ0
)g(λi). Since the number of k-walks rooted at vertex u is

a
(k)
uu =

∑d
i=0 g(λi)λ

k, this number is independent of such a vertex. Besides, for every edge
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e = {u, v},

a(k)uv = ⟨Akeu,ev⟩ =
1

2
⟨Ak(eu + ev), eu + ev⟩ −

1

2
⟨Akeu,eu⟩ −

1

2
⟨Akev, ev⟩

= ⟨Akee, ee⟩ − a(k)uu =

d∑
i=0

g̃(λi)λ
k
i −

d∑
i=0

g(λi)λ
k
i =

d∑
i=0

g(λi)
λi

λ0
λk
i

=
1

λ0
a(k+1)
uu (18)

is constant. Hence, Γ is 1-walk-regular.

Conversely, let u ∈ V and e = {u, v} ∈ E. Since ⟨Akeu, eu⟩ and ⟨Akeu, ev⟩ are constant
over the vertices and edges, for every polynomial p ∈ R[x] the values of ⟨p(A)eu, eu⟩ and
⟨p(A)eu, ev⟩ do not depend on u ∈ V and the chosen edge {u, v} ∈ E. From

⟨p(A)ee, ee⟩ =
1

2
⟨p(A)eu, eu⟩+

1

2
⟨p(A)ev, ev⟩+ ⟨p(A)eu, ev⟩,

we get that ⟨p(A)ee, ee⟩ is also constant over the edges. In particular, using the interpo-
lating Lagrange polynomial λ⋆

i giving Ei = λ⋆
i (A), we get that mu(λi) = ⟨Eieu, eu⟩ and

me(λi) = ⟨Eiee, ee⟩ are independent of u and e, respectively. Hence, Γ is bispectrum-
regular. 2

4 Edge-distance-regular graphs

Given a graph Γ = (V,E) and an edge e ∈ E, we consider the partition of V induced
by the distance from e, that is V = e0 ∪ e1 ∪ · · · ∪ eεe , where ek = Γk(e). We say
that Γ is e-local pseudo-distance-regular if this partition is pseudo-regular. Note that all
the characterizations in subsection 2.3 for completely pseudo-regular codes apply on this
context. One of the advantages of considering edges is that we can see the graph from a
global point of view, that is, from every edge, in the same way as we get distance-regularity
by seeing the graph from every vertex.

Definition 4.1 A graph Γ is edge-distance-regular when it is e-local pseudo-distance-
regular with pseudo-intersection numbers not depending on e ∈ E.

Examples of edge-distance-regular graphs are the odd graphs Ok (see [1]), which are
distance-regular with degree k. As an example, Figure 1 shows O4 with the intersec-
tion numbers of the distance partition induced by an edge. In an edge-distance-regular
graph every edge e constitutes an extremal set with eccentricity εe = D̃, which coincides
with d̃ = de = |eve Γ|. Since the e-predistance polynomials are determined by the in-
tersection matrix, there exist polynomials {p̃k}0≤k≤d̃ satisfying p̃k(A)ρe = ρek

for every
e ∈ E. We refer to this family of polynomials as the edge-distance polynomials. Since the
e-multiplicities can be obtained from the recurrence matrix (see Fiol and Garriga [11]),
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Figure 1: The odd graph O4 and its intersection diagram induced by an edge.

the graph is also edge-spectrum-regular. Thus an edge-distance-regular graph is either
regular or bipartite biregular. Assume that Γ is bipartite biregular with degrees δ1 and
δ2 and independent sets V1 and V2. If α1 and α2 are the values of the components of ν
corresponding to vertices of V1 and V2 respectively, we have:

δ1α2

α1
=

δ2α1

α2
= λ0 and

(δ1 − 1)α2

α1
=

(δ2 − 1)α1

α2
,

where the first equation was obtained in the proof of Proposition 3.3, using that Γ is
edge-spectrum regular, and the second one follows from the definition of edge-distance-
regularity (that is, the pseudo-regularity of the partition induced by any edge). By using
both equalities we obtain δ1 = δ2, proving that the graph is regular.

Using (17), if Γ is edge-spectrum-regular, we have me(λi) = 1
|E|

λ0+λi
2 m(λi) for every

λi ∈ evΓ. In particular, if Γ is nonbipartite, then −λ0 /∈ evΓ and D̃ + 1 = |eve Γ| =
|ev Γ| ≥ D+1, giving that D̃ = D, by Lemma 3.1. Moreover, if Γ is edge-distance-regular
and bipartite, we get |evΓ| − 1 = |eve Γ| = D̃ + 1 = D from the same lemma. The above
reasonings are summarized in the following proposition.

Proposition 4.2 Let Γ be an edge-distance-regular graph with diameter D and d + 1
distinct eigenvalues. Then,

(a) Γ is regular.

(b) Γ has spectrally maximum diameter (D = d) and its edge-diameter satisfies:

(b1) If Γ is nonbipartite, then D̃ = D.

(b2) If Γ is bipartite, then D̃ = D − 1.
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(c) Γ is edge-spectrum regular and, for every e ∈ E, the e-spectrum satisfies:

(c1) If Γ is nonbipartite, then eve Γ = evΓ and me(λi) =
(
1 + λi

λ0

)
m(λi)
|V | , λi ∈ evΓ.

(c2) If Γ is bipartite, then eve Γ = evΓ \ {−λ0} and me(λi) =
(
1 + λi

λ0

)
m(λi)
|V | ,

λi ∈ ev Γ \ {−λ0}.

Definition 4.3 The k-incidence matrix of Γ = (V,E) is the (|V |×|E|)-matrix Bk = (bue)
with entries bue = 1 if ∂(u, e) = k, and bue = 0 otherwise.

Theorem 4.4 A regular graph Γ with edge-diameter D̃ is edge-distance-regular if and
only if, for every k = 0, 1, . . . , D̃, there exists a polynomial p̃k of degree k such that
p̃k(A)B0 = Bk.

Proof. If Γ is edge-distance-regular, the edge-predistance polynomials satisfy p̃k(A)ρe =
ρek

for every edge e ∈ E. By arranging these equalities in columns, we get the claimed
condition and the necessity is proved.

To prove sufficiency, note that the polynomial T =
∑D̃

k=0 p̃k satisfies T (A)B0 = J , where
J stands for the all-1 (|V |× |E|)-matrix. Let e be an edge with eccentricity D̃. The scalar
product

⟨p, q⟩e = ⟨pee, qee⟩ =
d∑

i=0

me(λi)p(λi)q(λi) (p, q ∈ Rde [x])

satisfies

⟨p̃s, p̃k⟩e = ⟨p̃s(A)ee, p̃k(A)ee⟩ =
1

2
⟨p̃s(A)ρe, p̃k(A)ρe⟩ =

1

2
⟨ρes ,ρek

⟩ = 0 for s ̸= k

and

⟨p̃k, p̃k⟩e =
1

2
∥ρek

∥2 = |ek|
2

= p̃k(λ0),

where we used that ρe =
2
|V |j+ze, ρek

= |ek|
|V | j+zek , with ze, zek ∈ j⊥, and p̃k(A)ρe = ρek

,

implying that p̃k(λ0) = |ek|
2 . Then, p̃0, p̃1, . . . , p̃D̃ are the first D̃ + 1 polynomials of

the canonical orthogonal system with respect to the scalar product ⟨·, ·⟩e. In particular,
p̃D̃(λ0) ̸= 0. Now, let e ∈ E be an arbitrary edge. From T (A)ρe = j, we know that

εe ≤ de ≤ D̃. Moreover,

ρeD̃
= p̃D̃(A)ρe = p̃D̃(A)

(
2

|V |
j + ze

)
=

2

|V |
p̃D̃(λ0)j + p̃D̃(A)ze ̸= 0.

Thus, D̃ ≤ εe ≤ de ≤ D̃. That is, all the edges have the same eccentricity D̃ = de and the
polynomials p̃0, p̃1, . . . , p̃D̃ constitute the canonical orthogonal system with respect to the

scalar product ⟨·, ·⟩e for every e ∈ E. Since ρek
= p̃k(A)ρe for k = 0, 1 . . . , D̃, the distance
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partition with respect to e is pseudo-regular for every edge, and since the edge-distance
polynomials are the same for all the edges, all the recurrence matrices also coincide. 2

Let evE Γ =
∪

e∈E eve Γ and denote by ev⋆E Γ = evE Γ \ {λ0} and d̃ = |ev⋆E Γ|. Within this
notation, if Γ is edge-distance-regular Proposition 4.2 establishes that, for every e ∈ E,
evE Γ = eve Γ = evΓ if Γ is nonbipartite, and evE Γ = eve Γ = evΓ \ {λ0} if Γ is bipartite.
For a general graph, notice that the scalar product ⟨·, ·⟩∼ associated to (evE Γ, g̃) is the
average, over all edges, of the local scalar products in (eve Γ,me) for every e ∈ E:

⟨p, q⟩∼ =
1

|E|
∑
e∈E

⟨p, q⟩e. (19)

Consider the canonical orthogonal system {p̃k}0≤k≤d̃ associated to (evE Γ, g̃), where now
g̃(λi) = me(λi) for every e ∈ E, and their sum polynomials {q̃k}0≤k≤d̃. Then,

Lemma 4.5 Let Γ be an edge-distance-regular graph. Then, for every e ∈ E,

p̃d̃(λ0) =
1

2
|Γd̃(e)| and q̃d̃−1(λ0) =

1

2
|Nd̃−1(e)|.

Proof. The first equality follows from the regularity of Γ and the characterization in
Theorem 2.10(d). Moreover, from Eq. (17), g̃(λ0) =

2
|V | . Thus, Proposition 2.3(b) estab-

lishes that q̃d̃(λ0) =
1

g̃(λ0)
= |V |

2 , giving

q̃d̃−1(λ0) =
(
q̃d̃ − p̃d̃

)
(λ0) =

1

2
|Nd̃−1(e)|, (20)

as claimed. 2

Godsil and Shawe-Taylor [16] defined a distance-regularised graph as that being distance-
regular around each of its vertices. (These graphs are a common generalisation of distance-
regular graphs and generalised polygons.) Such authors showed that distance-regularised
graphs are either distance-regular or distance-biregular. Inspired by this, we introduced
the following concept.

Definition 4.6 A regular graph Γ is said to be edge-distance-regularised when it is edge-
distance-regular around each of its edges.

The next result gives an almost spectral characterization of edge-distance-regularised
graphs in terms of the harmonic mean of the numbers |Nd̃−1(e)| and the sum polyno-
mial q̃d̃−1.

Theorem 4.7 Let Γ = (V,E) be a regular graph with d̃ = |evE Γ|. Let Hd̃−1 be the
harmonic mean of the numbers |Nd̃−1(e)| for e ∈ E. Then, Γ is edge-distance-regularised
if and only if

Hd̃−1 = 2q̃d̃−1(λ0).
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Proof. Lemma 4.5 establishes the necessity of the condition. Conversely, from the
regularity of Γ, C = e and r = q̃d̃−1, we have that the inequality (11) of Proposition 2.9

reads
q̃d̃−1(λ0)

∥q̃d̃−1∥e
≤

√
|Nd̃−1(e)|√

2
, or

|Nd̃−1(e)|
−1 ≤ 1

2

∥q̃d̃−1∥
2
e

q̃2
d̃−1

(λ0)
for every e ∈ E. (21)

Thus, by taking the arithmetic mean on E, we have

1

|E|
∑
e∈E

|Nd̃−1(e)|
−1 ≤ 1

2q̃2
d̃−1

(λ0)

1

|E|
∑
e∈E

∥q̃d̃−1∥
2
e =

∥q̃d̃−1∥
2
E

2q̃2
d̃−1

(λ0)
=

1

2q̃d̃−1(λ0)
,

where we used (19). Consequently,

2q̃d̃−1(λ0) ≤
|E|∑

e∈E |Nd̃−1(e)|−1
= Hd̃−1 (22)

and the equality can only hold if and only if all the inequalities in (21) are also equalities.
Hence, by Proposition 2.9, every edge is extremal and eve Γ = evE Γ. Consequently, by
Theorem 2.10, Γ is distance-regular around each of its edges. 2

As a consequence, we can give a similar result in terms of the average of numbers of
vertices at maximum distance from e, |ed̃| = |Γd̃(e)|, and the highest degree polynomial
p̃d̃.

Corollary 4.8 Let Γ = (V,E) be a regular graph with d̃ = |evE Γ|. Let Md̃ be the (arith-
metic) mean of the numbers |ed̃| for e ∈ E. Then, Γ is edge-distance-regularised if and
only if

Md̃ = 2p̃d̃(λ0).

Proof. The necessity follows again from Lemma 4.5. To prove sufficiency, note that, as
q̃d̃−1 = q̃d̃ − p̃d̃, inequation (22) gives

2p̃d̃(λ0) ≥ 2q̃d̃(λ0)−Hd̃−1 = |V | − |E|∑
e∈E(|V | − |ed̃|)−1

≥ |V | −
∑

e∈E(|V | − |ed̃|)
|E|

=
1

|E|
∑
e∈E

|ed̃| = Md̃,

where we used that the harmonic mean is always smaller than or equal to the arithmetic
mean. Thus, in case of equality, Theorem 4.7 applies and we complete the proof. 2

As another consequence of Theorem 4.7, we also have an almost spectral characterization
of edge-distance-regularity.
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Theorem 4.9 A regular graph Γ = (V,E) with d̃ = |evE Γ| is edge-distance-regular if and
only if, for every edge e ∈ E,

|ed̃| = 2p̃d̃(λ0).

Proof. Again, we only need to prove sufficiency. Since the hypothesis of Theorem 4.7
holds, we have already seen that all the inequalities in (21) are equalities and that every
edge is extremal. Moreover, by Proposition 2.9, there exist constants ηe ∈ R such that
qe = ηeq̃d̃−1 ∈ Sd̃−1(eve Γ,me) = Sd̃−1(evE Γ,me) for every edge e ∈ E. Also, since
|ed̃| = 2p̃d̃(λ0), Eq. (20) holds and, together with Proposition 2.9, we have

ηe
1

2
|Nd̃−1(e)| = ηeq̃d̃−1(λ0) = qe(λ0) ≤

1

2
|Nd̃−1(e)|,

thus ηe ≤ 1, or, equivalently, for every edge e ∈ E there exists ξe ≥ 1 such that q̃d̃−1 = ξeqe
with qe ∈ Sd̃−1(evE Γ,me). Consider the norms ∥ · ∥∼ associated to (evE Γ, g̃) and ∥ · ∥e
associated to (evE Γ,me). From

q̃d̃−1(λ0) = ∥q̃d̃−1∥
2
∼ =

d∑
i=0

g̃(λi)
(
q̃d̃−1(λi)

)2
=

1

|E|

d∑
i=0

[∑
e∈E

me(λi)

] (
q̃d̃−1(λi)

)2
=

1

|E|
∑
e∈E

ξ2e

d∑
i=0

me(λi)q
2
e(λi) =

1

|E|
∑
e∈E

ξ2e∥qe∥2e =
1

|E|
∑
e∈E

ξ2eqe(λ0)

=
1

|E|
∑
e∈E

ξeq̃d̃−1(λ0) =

[
1

|E|
∑
e∈E

ξe

]
q̃d̃−1(λ0) ≥ q̃d̃−1(λ0),

we get that ξe = 1 for every e ∈ E. Consequently, qe = q̃d̃−1 and qe(λ0) = 1
2 |Nd̃−1(e)|

for every edge e ∈ E. Then, Proposition 2.9 gives q̃d̃−1(A)ρe = ρed̃−1
or, equivalently,

p̃d̃(A)ρe = ρed̃
. Theorem 2.10 and the independence of the result from the chosen edge

complete the proof. 2 2

Note that, using Lemma 2.4 applied to (evE Γ, g̃), we can specify the value of p̃d̃(λ0). First

recall that d̃ = |evE Γ| is either d = |evΓ| if Γ is nonbipartite or d − 1 = |evΓ \ {−λ0}|
otherwise. Thus, in order to give a statement valid for both situations, let us consider the
set ev Γ = evΓ ∪ {−λ0} and

πi = (λi + λ0)
d̃∏

j=0,j ̸=i

|λi − λj | = (λi + λ0)π̃i (0 ≤ i ≤ d),
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where the π̃i’s correspond to the moment-like parameters of (2) defined on evE Γ. Using
Lemma 2.4 we get:

|ed̃| = 2p̃d̃(λ0) =
2

g̃2(λ0)π̃2
0

 d̃∑
i=0

1

g̃(λi)π̃2
i

−1

= 2
|V |2

4

4λ2
0

π2
0

 d̃∑
i=0

λ0

λ0 + λi

|V |
m(λi)

(λ0 + λi)
2

π2
i

−1

=
2λ0

π2
0

 d̃∑
i=0

λ0 + λi

m(λi)π2
i

−1

|V | = 2λ0

π2
0

(
d∑

i=0

λ0 + λi

m(λi)π2
i

)−1

|V |

=
4|E|
π2
0

(
d∑

i=0

λ0 + λi

m(λi)π2
i

)−1

,

since the (possible) term corresponding to −λ0 is null. Thus, we have the following
characterization which can be seen as the analogue of the spectral excess theorem [10, 18, 8]
for edge-distance-regularity.

Theorem 4.10 Let Γ = (V,E) be a regular graph with d + 1 distinct eigenvalues, and
spectrally maximum edge-diameter D̃ = d̃. Then, Γ is edge-distance-regular if and only if,
for every edge e ∈ E,

|eD̃| =
4|E|
π2
0

(
d∑

i=0

λ0 + λi

m(λi)π2
i

)−1

.

Let Γ be a nonbipartite regular graph. If we apply Corollary 2.8 to the pairs
(
evΓ, 1

|V |m
)

and
(
evΓ, 1

λ0|V |(x+ λ0)m
)
, we get the following equation relating the highest degree

polynomials of their canonical orthogonal systems (recall that π̂0 =
∏d

i=1(λ0 + λi)):

(−1)dpd(−λ0) =
π̂0
π0

pd(λ0)

p̃d(λ0)

|V |
2

. (23)

Proposition 4.11 Let Γ be a λ0-regular graph with edge-diameter D̃ = | ev⋆ Γ| = d.
Assume that, for every vertex u ∈ V and every edge e ∈ E,

|ed|
|ud|

=
π̂0
π0

|V |
(−1)d pd(−λ0)

,

where pd is the d-th predistance polynomial of Γ. Then, Γ is edge-distance-regular if and
only if it is distance-regular.
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Proof. Note that the condition D̃ = d implies that D̃ = D. Thus, by Lemma 3.1, Γ is
nonbipartite. Distance-regularity is equivalent to pd(λ0) = |ud| for every vertex u ∈ V and
edge-distance-regularity is equivalent to 2p̃d(λ0) = |ed|. The equivalence of both conditions
follows from equation (23). 2

As an immediate consequence, we have the following result.

Corollary 4.12 Let Γ be a distance-regular and edge-distance-regular graph with D̃ = D.
Then, for every vertex u ∈ V and every edge e ∈ E,

|ed|
|ud|

=
π̂0
π0

|V |
(−1)d pd(−λ0)

.

Now, in order to give a characterization of those distance-regular graphs which are also
edge-distance-regular, we have the two following technical results.

Lemma 4.13 Given d ≥ 1, let b0, b1, . . . , bd−1, c1, c2, . . . , cd be positive real numbers and
c0 = bd = 0. Let Ii = [bi + ci,∞), 0 ≤ i ≤ d. The map F : I0 × I1 × · · · × Id ⊂ Rd+1 → R
defined by the determinant

F (x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

x0 c1

b0 x1
. . .

. . .
. . .

. . .
. . . xd−1 cd

bd−1 xd

∣∣∣∣∣∣∣∣∣∣∣∣∣
is nonnegative and it only vanishes at (b0 + c0, b1 + c1, . . . , bd + cd).

Proof. Let x0 = (b0+ c0, b1+ c1, . . . , bd+ cd) and let B be the matrix with determinant
F (x0). The product uB with u = (1,−1, 1,−1, . . . , (−1)d) is zero, so F (x0) = 0. It
remains to prove that, for every d ≥ 1, if x = (x0, x1, . . . , xd) ̸= x0 satisfies xi ≥ bi + ci
for every i, then F (x) > 0. The case d = 1 is straightforward. Assume that the claim
holds for all values smaller than d. The mean value theorem ensures that there exists
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ξ ∈ {x0 + tx|0 < t < 1} such that

F (x) =

d∑
k=0

∂F

∂xk
(ξ)(xk − bk − ck)

=

d∑
k=0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ξ0 c1

b0
. . .

. . .
. . .

. . . ck−1

bk−2 ξk−1

ξk+1 ck+2

bk+1
. . .

. . .
. . .

. . . cd
bd−1 ξd

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(xk − bk − ck).

Since ξk−1 ≥ bk−1 + ck−1 > ck−1 and ξk+1 ≥ bk+1 + ck+1 > bk+1, we obtain ∂F
∂xk

(ξ) > 0 for
every k. Thus, F (x) > 0. 2

Lemma 4.14 Given d ≥ 1, let b0, b1, . . . , bd−1, c1, c2, . . . , cd be positive real numbers and
c0 = bd = 0. Let λ0 ≥ bk+ck for k = 0, 1, . . . , d and ak = λ0−bk−ck ≥ 0. The tridiagonal
determinant ∣∣∣∣∣∣∣∣∣∣∣∣∣

λ0 + a0 c1

b0 λ0 + a1
. . .

. . .
. . .

. . .
. . . λ0 + ad−1 cd

bd−1 λ0 − ad

∣∣∣∣∣∣∣∣∣∣∣∣∣
vanishes if and only if a0 = a1 = · · · = ad−1 = 0.

Proof. Applying Lemma 4.13, we obtain that the determinant vanishes if and only if
λ0 + ak = bk + ck for k = 0, 1, . . . , d− 1, which is equivalent to a0 = a1 = · · · = ad−1 = 0,
and λ0 − ad = bd + cd. 2

A distance-regular graph Γ with diameter D and odd-girth (that is, the shortest cycle of
odd length) 2D + 1 is called a generalized odd graph, also known as an almost-bipartite
distance-regular graph or a regular thin near (2D+1)-gon. (In particular, these conditions
are fulfilled by the mentioned odd graphs Ok.) Notice that, in this case, the intersection
parameters of Γ satisfy a0 = a1 = · · · = ad−1 = 0 and ad ̸= 0. Recently, Van Damm and
Haemers [20] showed that any connected regular graph with d+1 distinct eigenvalues and
odd-girth 2d + 1 is a generalized odd graph. Here we show that the same result holds
when Γ is both distance-regular and edge-distance-regular.

Proposition 4.15 Let Γ be a distance-regular graph with intersection numbers ck, ak, bk,
0 ≤ k ≤ d. Suppose that ad ̸= 0. Then, Γ is edge-distance-regular if and only if it is a
generalized odd graph.
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Proof. In a distance-regular graph, ad ̸= 0 is equivalent to D̃ = d. Indeed, on one hand
we have D̃ ≤ D = d and, on the other hand, if we take u ∈ V , ad ̸= 0 implies that any
edge between vertices of ud is at distance d from u, thus D̃ ≥ d.

Using Proposition 4.11 and Corollary 4.12, we obtain that edge-distance-regularity is
equivalent to the equality:

(−1)dpd(−λ0)ad =
π̂λ0

πλ0

λ0|V | = |V |
2πλ0

det(λ0I +D)

=
|V |
2πλ0

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ0 + a0 c1 · · · 0 0

b0 λ0 + a1
. . . 0 0

...
. . .

. . .
. . .

...

0 0
. . . λ0 + ad−1 cd

0 0 · · · bd−1 λ0 + ad

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where D is the intersection matrix of Γ. Using Lemma 2.2, we get

pd =
1

c1c2 · · · cd

∣∣∣∣∣∣∣∣∣
x− a0 −c1 · · · 0
−b0 x− a1 · · · 0
...

...
. . .

...
0 0 · · · x− ad−1

∣∣∣∣∣∣∣∣∣
=

|V |
πλ0

∣∣∣∣∣∣∣∣∣
x− a0 −c1 · · · 0
−b0 x− a1 · · · 0
...

...
. . .

...
0 0 · · · x− ad−1

∣∣∣∣∣∣∣∣∣ ,
where the second equality is due to the fact that pd and p0+p1+· · ·+pd = |V |

π0

∏d
i=1(x−λi)

have the same leading coefficient. Then, equation (24) can be rewritten as

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ0 + a0 c1 · · · 0 0 0
b0 λ0 + a1 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · λ0 + ad−2 cd−1 0
0 0 · · · bd−2 λ0 + ad−1 0
0 0 · · · 0 0 2ad

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ0 + a0 c1

b0 λ0 + a1
. . .

. . .
. . .

. . .
. . . λ0 + ad−1 cd

bd−1 λ0 + ad

∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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Thus, ∣∣∣∣∣∣∣∣∣∣∣∣∣

λ0 + a0 c1

b0 λ0 + a1
. . .

. . .
. . .

. . .
. . . λ0 + ad−1 cd

bd−1 λ0 − ad

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

and the result follows from Lemma 4.14. 2

For a distance-regular graph it is immediate to check that ak = 0, k = 0, 1, . . . , d − 1, is
equivalent to the parity of the distance polynomials; more precisely, pk(−x) = (−1)kpk(x).

Proposition 4.16 Let Γ be a nonbipartite distance-regular graph with intersection array 0 c1 · · · cd−1 cd
a0 a1 · · · ad−1 ad
b0 b1 · · · bd−1 0


and distance polynomials {pk}0≤k≤d. Then, the following statements are equivalent:

(a) Γ is edge-distance-regular;

(b) a0 = a1 = · · · = ad−1 = 0 and ad ̸= 0;

(c) For every k = 0, 1, . . . d, pk has even parity for even k and odd parity for odd k.

In this case, the edge-distance polynomials {p̃k}0≤k≤d and the edge-intersection array are:

p̃k = pk − pk−1 + pk−2 − · · ·+ (−1)kp0 (0 ≤ k ≤ d− 1),

p̃d = 1
2(pd − pd−1 + pd−2 − · · ·+ (−1)dp0), 0 c̃1 · · · c̃d−2 c̃d−1 c̃d

ã0 ã1 · · · ãd−2 ãd−1 ãd
b̃0 b̃1 · · · b̃d−2 b̃d−1 0



=

 0 c1 · · · cd−2 cd−1 2cd
c1 c2 − c1 · · · cd−1 − cd−2 cd − cd−1 ad − cd
b1 b2 · · · bd−1 ad 0

.

Proof. The equivalences follow from Proposition 4.15 and the above remark.
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Let nr = pr(λ0) and recall that brnr = cr+1nr+1. Since ar = 0 for r = 0, 1, . . . , d − 1, we
have

λ0qk(−λ0) = λ0

k∑
r=0

pr(−λ0) = λ0

k∑
r=0

(−1)rnr =
k∑

r=0

(−1)r(br + cr)nr

=

k∑
r=0

(−1)rbrnr +

k∑
r=0

(−1)rcrnr =

k∑
r=0

(−1)rbrnr +

k∑
r=1

(−1)rbr−1nr−1

=

k∑
r=0

(−1)rbrnr −
k−1∑
r=0

(−1)rbrnr = (−1)kbknk

for every k = 0, 1, . . . , d− 1. Using Proposition 2.7 and equation (6), we have

(x+ λ0)p̃k = −λ0qk(−λ0)

(
1

pk+1(−λ0)
pk+1 −

1

pk(−λ0)
pk

)
= (−1)k+1bknk

(
1

nk+1
pk+1(−x)− 1

nk
pk(−x)

)
= (−1)k+1(ck+1pk+1(−x)− bkpk(−x))

= (−1)k+1(−x− λ0)qk(−λ0) = (−1)k(x+ λ0)qk(−λ0),

implying that p̃k = (−1)kqk(−x) = pk−pk−1+pk−2−· · ·+(−1)kp0 for k = 0, 1, . . . , d−1.

Since the edge distance-polynomials {p̃k}0≤k≤d are the canonical orthogonal system with
respect to (ev Γ, g̃), using Proposition 2.3 we can compute p̃d:

p̃d =
1

g̃0π0

d∏
i=1

(x− λi)−
d−1∑
k=0

p̃k =
1

2g̃0π0

d∏
i=1

(x− λi)−
d−1∑
k=0

k∑
s=0

(−1)k+sps

=
1

2

d∑
s=0

ps −
d−1∑
s=0

(−1)sps

d−1∑
k=s

(−1)k =
1

2

d∑
s=0

ps −
1

2

d−1∑
s=0

(1− (−1)d+s)ps

=
1

2

(
pd + (−1)d

d−1∑
s=0

(−1)sps

)
=

1

2
(pd − pd−1 + pd−2 − · · ·+ (−1)dp0).

Consider the column matrices P = (pk)0≤k≤d and P̃ = (p̃k)0≤k≤d. The recurrence matrices
of the canonical orthogonal systems of (ev Γ, g) and (evΓ, g̃), R and R̃, satisfy xP = RP
and xP̃ = R̃P̃ in the quotient ring R[x]/I, where I is the ideal generated by

∏d
i=1(x−λi).

The previous expression can be expressed in terms of these matrices by P̃ = MP , where

M =



1 0 0 · · · 0 0
−1 1 0 · · · 0 0
1 −1 1 · · · 0 0
...

...
...

. . .
...

...
(−1)d−1 (−1)d−2 (−1)d−3 · · · 1 0
1
2(−1)d 1

2(−1)d−1 1
2(−1)d−2 · · · −1

2
1
2


,
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with inverse matrix

M−1 =



1 0 0 · · · 0 0
1 1 0 · · · 0 0
0 1 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · 1 2


.

From R̃P̃ = xP̃ = xMP = MxP = MRP = MRM−1P̃ , we obtain R̃ = MRM−1.
That is,

R̃ =



c1 c1 0 · · · 0 0 0
b1 c2 − c1 c2 · · · 0 0 0
0 b2 c3 − c2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · cd−1 − cd2 cd−1 0
0 0 0 · · · bd−1 cd − cd−1 2cd
0 0 0 · · · 0 ad ad − cd


,

as claimed. 2
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