
UNIVERSITAT POLITÈCNICA DE CATALUNYA

FACULTAT D’INFORMÀTICA DE BARCELONA

GRAU EN ENGINYERIA INFORMÀTICA (GEI)
SOFTWARE ENGINEERING

Definition and execution of security
protocols through conceptual modeling

languages

Memory

Author: Gerard Pradas San José

Supervisor: Ernest Teniente Lopez

Cosupervisor: Xavier Oriol Hilari

16th January 2018

Abstract
Nowadays, the definition and execution of security protocols is done direct by

means of the implementation through imperative languages.

Indeed, the protocol may suffer from conceptual errors that are difficult to detect
by looking at the code, as well as the typical bugs that may appear during its
development. On the other hand, today there are conceptual modeling languages that
allow to define, in a clear and unambiguous way, processes, information systems
and software components.

In this thesis, we want to use these conceptual modeling languages to define
security protocols. In this way, it’s pretended that the definition of a security protocol
consists only on the unambiguous definition of the protocols own concepts.

Taking advantage of the non-ambiguity of these descriptions, it is also pretended
to build an environment in which these protocols can be executed in an automated
way.

i

Resum
Actualment, la definició i execució de protocols de seguretat es realitza directa-

ment mitjançant la implementació a través de llenguatges imperatius.

De fet, el protocol pot patir errors conceptuals que són difícils de detectar
observant el codi, així com el típic bugs que pot aparèixer durant la seva programació.
D’altra banda, avui hi ha llenguatges de modalització conceptuals que permeten
definir, de manera clara i sense ambigüitats, processos, sistemes d’informació i
components software.

En aquesta tesi, volem utilitzar aquests llenguatges de modalització conceptual
per definir protocols de seguretat. D’aquesta manera, es pretén que la definició d’un
protocol de seguretat consisteix únicament en la definició inambigua dels conceptes
propis del protocol.

Aprofitant la no ambigüitat d’aquestes descripcions, també es pretén construir
un entorn en què aquests protocols es puguin executar de forma automàtica.

ii

Resumen
Hoy en dia, la definición y ejecución de los protocolos de seguridad se realiza de

forma directa mediante la implementación a través de lenguajes imperativos.

De hecho, el protocolo puede sufrir errores conceptuales que son difíciles de
detectar al mirar el código, así como el típico bugs que puede aparecer durante su de-
sarrollo. Por otro lado, hoy en día existen lenguajes de modelización conceptual que
permiten definir, de manera clara e inequívoca, procesos, sistemas de información y
componentes de software.

En esta tesis, queremos utilizar estos lenguajes de modelización conceptual para
definir protocolos de seguridad. De esta forma, se pretende que la definición de
un protocolo de seguridad consista solo en la definición inequívoca de los propios
conceptos de los protocolos.

Aprovechando la no ambigüedad de estas descripciones, también se pretende
construir un entorno en el que estos protocolos se puedan ejecutar de forma automát-
ica.

iii

Contents

Abstract i

Resum ii

Resumen iii

Contents iv

List of Tables vii

List of Figures viii

Glossary ix

Acronyms xii

1 Introduction 1
1.1 Context . 3
1.2 Formulation of the problem . 3

1.2.1 Objectives . 3
1.3 Scope . 3

1.3.1 Possible obstacles . 4
1.4 Stakeholders . 4

1.4.1 Project Team . 5
1.4.2 Software Developers . 5
1.4.3 Internet Users . 5

2 Contextualization 6
2.1 State-of-the-art . 6

2.1.1 Linking Data and BPMN Processes to Achieve Executable Models . . . 6
2.2 Methodology and rigor . 7

2.2.1 Work methodology . 7
2.2.2 Monitoring tools . 7

iv

2.2.3 Developing tools . 7

2.2.4 Validation methodology . 8

3 Requirement analysis 9
3.1 Functional requirements . 9

3.2 Non-functional requirements . 12

4 Software requirements specification 14
4.1 Functionalities . 14

4.1.1 Client Credentials Grant functionalities 15

4.1.2 Resource Owner Grant functionalities 16

4.1.3 Authorization Code Grant functionalities 17

4.1.4 Alter the definition of an OAuth 2.0 protocol. 18

4.2 Conceptual models . 19

4.2.1 Client Credentials Grant conceptual models 19

4.2.2 Resource Owner Grant conceptual models 22

4.2.3 Authorization Code Grant conceptual models 26

5 Design 31
5.1 Software architecture . 31

5.1.1 Database schema . 31

5.1.2 Dessing patterns . 31

5.2 Technology . 32

5.2.1 Java . 32

5.2.2 MySQL . 32

5.2.3 Spring Boot . 32

6 Development 34
6.1 Library . 34

6.2 Web Application . 35

7 Validation 36
7.1 Sprint Review Meeting . 36

7.2 OAuth 2.0 Server . 36

8 Management 37
8.1 Project planning . 37

8.1.1 Resources . 37

8.2 Time management . 38

8.2.1 Project iterations . 38

8.2.2 Scheduling . 40

v

8.3 Budget management . 41
8.3.1 Identification of costs . 41
8.3.2 Control management . 45

8.4 Sustainability . 45
8.4.1 Economic . 45
8.4.2 Social . 45
8.4.3 Environmental . 46

8.5 Laws and regulations . 46

9 Conclusions 47
9.1 Contributions . 47
9.2 Objective achievement . 47
9.3 Personal assessment . 48
9.4 Future work . 48
9.5 Special thanks . 49

Bibliography 50

A Web Application Screenshots 51

vi

List of Tables

4.1 Client Credentials Grant use case. 15
4.2 Resource Owner Grant use case. 16
4.3 Resource Owner Grant use case. 17
4.4 Alter definition use case. 18

8.1 Hour estimation . 40
8.2 Human resource’s cost . 42
8.3 Direct costs . 42
8.4 Indirect costs . 43
8.5 Contingency costs . 44
8.6 Risk costs . 44
8.7 Final budget . 44
8.8 Sustainability matrix . 45

vii

List of Figures

1.1 Google APIs explorer OAuth 2.0 . 2
1.2 Components scheme . 2

3.1 Client Credentials Grant schema . 10
3.2 Resource Owner Grant schema . 10
3.3 Authorization Code Grant schema . 11

4.1 Client Credentials Grant data schema . 19
4.2 Client Credentials Grant process flow . 20
4.3 Resource Owner Grant data schema . 22
4.4 Resource Owner Grant process flow . 23
4.5 Authorization Code Grant data schema . 26
4.6 Authorization Code Grant process flow . 27

8.1 Gantt diagram . 41

A.1 Web Application request resource form . 51
A.2 Web Application request response . 52
A.3 Web Application authentication on an authenticated protocol 52
A.4 Web Application request response on an authenticated protocol 53

viii

Glossary

agile Agile software development describes a set of values and principles for software develop-
ment under which requirements and solutions evolve through the collaborative effort of
self-organizing cross-functional teams.. 7–9, 38

API An application programming interface (API) is a set of subroutine definitions, protocols,
and tools for building application software. In general terms, it is a set of clearly defined
methods of communication between various software components.. 8, 11, 12, 36, 39

Authorization Code Grant The Authorization Code Grant is a flow where the browser receives
an Authorization Code from OAuth server and sends this to the web app. The web app will
then interact with OAuth server and exchange the Authorization Code for an access_token,
and optionally an id_token and a refresh_token. The web app can now use this access_token
to call the API on behalf of the user.. viii, 9, 11, 17, 18, 26, 27, 38, 48

back-end The backend developer is one that is on the server side, that is, this person is re-
sponsible for languages such as PHP, Python, .Net, Java, etc., is one that is responsible
for interacting with databases, verify session management of users, mount the page on
a server, and from this "serve" all the views that the FrontEnd creates, that is, one as a
backend is responsible more than anything for the manipulation of data.. 35

bug Is a problem causing a program to crash or produce invalid output. i–iii, 1, 3

classic Classic methodology is a sequential development approach, in which development is
seen as flowing steadily downwards (like a waterfall) through several phases, typically:
requirements analysis resulting in a software requirements specification, software design,
implementation, testing, integration, if there are multiple subsystems, deployment and
maintenance. . 7

Client Credentials Grant In Client Credentials Grant a non interactive client, can directly ask
OAuth server for an access_token, by using its client credentials (client id and client secret)
to authenticate. In this case the token represents the non interactive client itself, instead of
an end user.. vii, viii, 9, 10, 15, 19, 20, 23, 38, 48

ix

framework A framework establishes a common practice for creating, interpreting, analyzing
and using architecture descriptions within a particular domain of application or stakeholder
community.. 8, 32, 35, 36

front-end The frontend are all those technologies that run on the client’s side, that is, all those
technologies that run on the side of the web browser, generalizing more than anything in
three languages, Html, CSS and JavaScript.. 35

Gradle Gradle is an open-source build automation system that builds upon the concepts of
Apache Ant and Apache Maven and introduces a Groovy-based domain-specific lan-
guage (DSL) instead of the XML form used by Apache Maven for declaring the project
configuration.. 35

Implicit Grant The Implicit Grant is similar to the Authorization Code Grant, but the main
difference is that the client app receives an access_token directly, without the need for an
authorization_code. This happens because the client app, which is typically a JavaScript
app running within a browser, is less trusted than a web app running on the server, hence
cannot be trusted with the client_secret. Also, in the Implicit Grant, no refresh tokens for
are returned, for the same reason.. 48

JSON Is an open-standard file format that uses human-readable text to transmit data objects
consisting of attribute–value pairs and array data types (or any other serializable value).
It is a very common data format used for asynchronous browser–server communication,
including as a replacement for XML in some AJAX-style systems.. 35

library A software library is a suite of data and programming code that is used to develop
software programs and applications. It is designed to assist both the programmer and the
programming language compiler in building and executing software.. 2, 3, 6, 9, 12–18, 31,
32, 34–36, 39, 47, 48

OAuth 2.0 OAuth 2.0 is the industry-standard protocol for authorization. OAuth 2.0 supersedes
the work done on the original OAuth protocol created in 2006. OAuth 2.0 focuses on client
developer simplicity while providing specific authorization flows for web applications,
desktop applications, mobile phones, and living room devices.. 1–3, 5, 6, 8–13, 15–20, 27,
36, 38, 39, 47, 48

Resource Owner Grant The Resource Owner Grant can be used directly as an authorization
grant to obtain an access token, and optionally a refresh token. This grant should only be
used when there is a high degree of trust between the user and the client and when other
authorization flows are not available.. vii, viii, 9, 10, 16, 17, 22, 23, 48

x

scrum Scrum is a framework for managing work with an emphasis on software development.. 8

Twitter Bootstrap Bootstrap is a free and open-source front-end web framework for designing
websites and web applications. It contains HTML- and CSS-based design templates for
typography, forms, buttons, navigation and other interface components, as well as optional
JavaScript extensions. Unlike many web frameworks, it concerns itself with front-end
development only.. 35

volere Is considered to be the most usable and accessible template. It is a distillation of hundreds
of requirements documents, and serves as a guide to writing your specifications.. 12

xi

Acronyms

AWS Amazon Web Services. 36

BPMN Business Process Model and Notation. 4, 6, 19, 23, 27, 34, 35, 38, 39, 49

GUI Graphical User Interface. 8

IDE Integrated Development Environment. 7, 8

LOPD Ley Organica de Protección de Datos. 46

MPI Information Modelling and Processing. 32

OCL Object Constraint Language. 4, 6, 19, 34, 35, 39

SQL Structured Query Language. 32

UML Unified Modeling Language. 4, 6, 19

xii

Chapter 1

Introduction

Nowadays, the definition and execution of security protocols is done direct by means of the
implementation of the protocol through imperative languages. This praxis tends to be slow, and
susceptible to errors.

Indeed, the protocol may suffer from conceptual errors that are difficult to detect by looking
at the code, as well as the typical bugs that may appear during its development. On the other hand,
today there are conceptual modeling languages that allow to define, in a clear and unambiguous
way, processes, information systems and software components.

The models of these languages allow engineers to abstain from the implementation details
and concentrate on the fundamental concepts of the process / system to develop.

The security protocols that we are going to deal with, are the authorization OAuth 2.0
protocols. OAuth 2.0 protocols are the most used way to protect APIs and are used by companies
around the world such as Google, Microsoft, Facebook ...

1

Chapter 1. Introduction

Figure 1.1: Google APIs explorer OAuth 2.0

In this thesis, we want to use these conceptual modeling languages to define security pro-
tocols. In this way, it’s pretended that the definition of a security protocol consists only on the
unambiguous definition of the protocols own concepts.

Our solution is to create a library such that, given an application that wants to consume
data from a protected resource in an OAuth 2.0 server, our library will receive as an input, the
description of the protocol to use to access that resource, and the library will be capable of
executing the protocol and return the resource data to the main application.

Figure 1.2: Components scheme

2

Chapter 1. Introduction

In this way, if the server decides to change the protocol, the only thing we must do is to
change the input of the library.

1.1 Context

This bachelor thesis is a modalty "A" project from the specialization of Software Engineering
done at the Faculty of Informatics of Barcelona. This project is supervised by Ernest Teniente
and co-supervised by Xavier Oriol, which arises from the need to apply in an automated way,
several security protocols.

1.2 Formulation of the problem

The main problem that has decided to treat in this project is when a programmer wants to use
an authorization protocol, such as OAuth 2.0, it falls to the programmer that is who implements
this protocol, and this practice tends to have errors. That is why we want to create a library,
made from the conceptual modeling of these protocols, which means that they are free of bugs,
and can be executed automatically.

1.2.1 Objectives

The main objective is to design and develop a library that allows to automate the whole
process when a programmer wants to implement the OAuth 2.0 protocol in one of its programs. In
this way, the programmer will only have to import that library, configure a few basic parameters,
and the library will take care of everything. From this main objective, we can extract several
more specific objectives:

• Improve the time a developer uses to authorize their applications using an OAuth 2.0
protocol.

• Make the execution of the protocol based on its conceptual model, not its imperative
implementation by code.

1.3 Scope

The scope of this thesis, focuses on the whole development process of a library to automate
several OAuth 2.0 protocols for authorization, and depends on the time it takes to achieve this
point, we proceed to add more OAuth 2.0 protocols.

3

Chapter 1. Introduction

The whole process entails, first to perform the conceptual modeling of the security protocol,
which will be performed using BPMN and UML. For the definition of each BPMN task it will
be done using the OCL.

Once the protocol is modeled correctly, we will proceed to the translation of the BPMN flows
and OCL contracts into executable code. In this step we will research if we can use developed
software to save time, but the assumption is not assured.

The next step, we will join the two parts in a library, so that later, a programmer can use it,
just configuring a few basic parameters.

Finally, we will develop a simple web application, so we can verify that the work done works
correctly.

1.3.1 Possible obstacles

The obstacles that are most at risk when carrying out this project would be the following:

Many technological incompatibilities

In the development of this project, many different tools are integrated, and one possible
drawback is that they are not compatible. And this obstacle may appear very early or at the end
of the project, which will probably force us to modify part of the project that was previously
validated.

Poor information on the web

This project has the risk of being less documented on the internet as it deals with more
abstract topics such as conceptual modeling and very specific topics.

Limited time

The final thesis has a limited time, and this time can play against if the planning does not
follow its course correctly. For this reason, if we do not do a good planning that contemplates
some deviations, it can be a risk for the project

1.4 Stakeholders

The stakeholders are those people or entities interested and involved in the development of
the project. In this project we can distinguish two types of stakeholders, the direct ones, which

4

Chapter 1. Introduction

are the project team and the software developers, and the indirect ones, which are basically the
internet users.

1.4.1 Project Team

Here we refer to the team in charge of the project. From the system design to the validation
of their requirements.

1.4.2 Software Developers

These are the the people the thesis is headed for. They will use the result of this thesis to
simplify the part of developing the implementation of a OAuth 2.0 protocol.

1.4.3 Internet Users

The internet users are one of our stakeholders because their credentials will be safer in those
sites that take profit of this project

5

Chapter 2

Contextualization

2.1 State-of-the-art

Developers who are currently developing software using the OAuth 2.0 authentication method
need to implement these protocols by hand, and each time they interact with an OAuth 2.0 for a
specific service, it has its own configuration. Currently there are OAuth 2.0 libraries for several
programming languages, but these libraries only facilitate the use of the protocol, and we intend
to be able to automate the entire process.

As we have said, a security protocol ends up being a process (activities + data + modification
of data per task).

2.1.1 Linking Data and BPMN Processes to Achieve Executable
Models

Linking Data and BPMN Processes to Achieve Executable Models[1] is a report in which is
described a formal way to describe a process (link data and processes conceptually, based on
adopting UML class diagrams to represent data, and BPMN to represent the process and OCL to
represent the task definitions) and execute that process.

This report is the base of this thesis and we will take advantage from a library that this report
uses, that works for executing described contracts in OCL. So our project will focus on these
aspects:

• Execution of operations in the order indicated in the BPMN.

• Invocation of remote services.

• Calls by value between tasks.

6

Chapter 2. Contextualization

2.2 Methodology and rigor

2.2.1 Work methodology

The working methodology of this project follows some aspects related to the agile methodo-
logy, but by the nature of the project, it follows mainly a classic methodology.

More concretely, the agile aspects that this project follows[2] are:

• Sprint planning, which means that we meet every 2 weeks, to discuss, revise and validate
the work of the last 2 weeks, and to plan the work for the next 2 weeks.

• Sprint review, is a meeting that is done at the end of every sprint, to validate the work
done.

• Iterative and incremental development,that means that in every iteration (or sprint), the
result is an ended valuable piece of the project, produced by the result of past iterations.

2.2.2 Monitoring tools

For monitoring the project evolution we mainly use 3 artifacts. The fisrts two are the meetings
in the "sprint planning" (that we take every 2 weeks), and the email.

These two are used for the communication of the team, and have served mainly for the
monitarization of the design and specification.

To monitor the evolution of the implementation a version control has been used, more
concretely Git and GitHub, which is a Web-based Git version control repository hosting service.

2.2.3 Developing tools

During the software development different tools are used, each one for a specific functionality.
The tools that have been used in this project are the following:

GenMyModel

GenMyModel is a modeling platform in the cloud for software architects, developers and
business process analysts. Is the one of the few online modeling platform that allows to create
BPMN 2.0 diagrams.

IntelliJ IDEA

IntelliJ IDEA is a Java Integrated Development Environment (IDE) for developing computer
software.

7

Chapter 2. Contextualization

IntelliJ IDEA is one of the most complete IDE and it is developed by JetBrains, and is
available as an Apache 2 Licensed community edition, and in a proprietary commercial edition.

Sequel Pro

Sequel Pro is a fast, easy-to-use Mac database management application for working with
MySQL databases. Sequel Pro gives you direct access to your MySQL Databases on local and
remote servers.

PhpStorm

PhpStorm is a commercial, cross-platform IDE for PHP built on JetBrains’ IntelliJ IDEA
platform.

PhpStorm provides an editor for PHP, HTML and JavaScript with on-the-fly code analysis,
error prevention and automated refactorings for PHP and JavaScript code.

Postman

Postman is a powerful GUI platform to make development faster and easier, from building
requests through testing, documentation and sharing.

2.2.4 Validation methodology

The validation of this project, as we are using some artifacts from the agile framework
Scrum, will be done during the sprint review of each iteration. Additionally, to validate the
implementation, an OAuth 2.0 server will be required to verify its works correctly.

Also, during the sprint review, the tasks that have not been validated, would remain pending
for the next iteration.

8

Chapter 3

Requirement analysis

This section presents the analysis of requirements to clearly and precisely define the func-
tionalities and restrictions that must be taken into account when starting to develop the library.

As in our case the project is a proof of concept that an stakeholder has already defined, all
functionalities are defined from the beginning, unlike what could happen in agile methodologies.

3.1 Functional requirements

The functional requirements define the functionalities or services that the software must have.
The functionalities that will be implemented in our library will be that it works with several
OAuth 2.0 protocols, more specifically the Client Credentials Grant, Resource Owner Grant and
Authorization Code Grant protocols, through their conceptual definitions.

These protocols work in the following way:

Client Credentials Grant

In Client Credentials Grant a non interactive client, can directly ask OAuth server for an
access_token, by using its client credentials (client id and client secret) to authenticate. In this
case the token represents the non interactive client itself, instead of an end user.

9

Chapter 3. Requirement analysis

Figure 3.1: Client Credentials Grant schema

1. The application authenticates with OAuth 2.0 server using its Client Id and Client Secret.

2. OAuth 2.0 server validates this information and returns an access_token.

3. The application can use the access_token to call the on behalf of itself.

Resource Owner Grant

The Resource Owner Grant can be used directly as an authorization grant to obtain an access
token, and optionally a refresh token. This grant should only be used when there is a high degree
of trust between the user and the client and when other authorization flows are not available.

Figure 3.2: Resource Owner Grant schema

10

Chapter 3. Requirement analysis

1. The end user enters the credentials into the client application.

2. The client forwards the credentials to the OAuth 2.0 server.

3. OAuth 2.0 server validates the information and returns an access_token, and optionally a
refresh_token.

4. The client can use the access_token to call the on behalf of the end user.

Authorization Code Grant

The Authorization Code Grant is a flow where the browser receives an Authorization Code
from OAuth server and sends this to the web app. The web app will then interact with OAuth
server and exchange the Authorization Code for an access_token, and optionally an id_token and
a refresh_token. The web app can now use this access_token to call the API on behalf of the
user.

Figure 3.3: Authorization Code Grant schema

1. The web app initiates the flow and redirects the browser to OAuth 2.0 server, so the user
can authenticate.

11

Chapter 3. Requirement analysis

2. OAuth 2.0 server authenticates the user (via the browser). The first time the user goes
through this flow a consent page will be shown where the permissions are listed that will
be given to the Client (for example: post messages, list contacts, and so forth).

3. OAuth 2.0 server redirects the user to the web app (specifically to the redirect_uri, as
specified in the /authorize request) with an Authorization Code in the querystring (code).

4. The web app sends the Authorization Code to Auth0 and asks to exchange it with an
access_token (and optionally an id_token and a refresh_token). When making this request,
the web app authenticates with OAuth 2.0 server, using the Client Id and Client Secret.

5. OAuth 2.0 server authenticates the web app, validates the Authorization Code and responds
back with the token.

6. The web app can use the access_token to call the on behalf of the user.

3.2 Non-functional requirements

The non-functional requirements represent general and crosscutting characteristics of the
application to be implemented, and are defined in the Volere[3] template.

Usability and Humanity Requirements: Ease of Use Requirements

• Description: this describes your client’s aspirations for how easy it is for the intended
users of the product to operate it. The product’s usability is derived from the abilities of
the expected users of the product and the complexity of its functionality.

• Justification of the requirement: the library has to be very simple to use, so that only
configuring the minimum possible parameters, can be as automated the maximum as
possible.

• Acceptance criteria: the number of instructions that the library user has to do to use the
library will be counted, and that count can’t be bigger than 5.

Maintainability and Support Requirements: Maintenance Requirements

• Description: a quantification of the time necessary to make specified changes to the
product.

• Justification of the requirement: the library has to be very flexible, since it is a proof of
concept and it is an unfinished product, so it has to be easy to modify the work done in the
future.

12

Chapter 3. Requirement analysis

• Acceptance criteria: certain development patterns have been followed to focus on the
maintenance of the library.

Performance Requirements: Scalability or Extensibility Requirements

• Description: this specifies the expected increases in size that the product must be able to
handle. As a business grows (or is expected to grow), our software products must increase
their capacities to cope with the new volumes.

• Justification of the requirement: the library has to be scalable, since it is a proof of
concept and is an unfinished product, this will not include all the protocols defined by
OAuth 2.0, but the library must be ready so they can be added later.

• Acceptance criteria: certain development patterns have been followed to focus on the
scalability of the library.

Security Requirements: Privacy Requirements

• Description: specification of what the product has to do to ensure the privacy of individuals
about whom it stores information. The product must also ensure that all laws related to
privacy of an individual’s data are observed.

• Justification of the requirement: the library can not have security issues that allow third
parties to obtain the tokens that are saved, without the authorization of the library user.

• Acceptance criteria: the code has been encapsulated, so that the library user can only
execute the few methods we allow.

13

Chapter 4

Software requirements specification

This chapter presents the complete description of the implemented library behavior. The
functionalities of the library and the conceptual model of the protocols to be implemented are
specified.

4.1 Functionalities

In this section we will define the functionalities that this project requires in more detail.

14

Chapter 4. Software requirements specification

4.1.1 Client Credentials Grant functionalities

Title Consume a web resource using the Client Credentials
Grant authorization protocol of OAuth 2.0.

Main stakeholder Library user.
Precondition Library user has valid credentials of the server OAuth

2.0 to which he will ask authorization.
Trigger The library user wants to consume an web resource under

an OAuth 2.0 server.
Main stage of success

1. Library user creates a Client Credentials Grant in-
stance and populates the necessary parameters.
2. The library is in charge of obtaining and storing the
access_token, and making the request to the resource, to
return the info to the library user.

Extension of the the use
case

-

Alternative courses of the
use case

2.a Access_token is available.
2.a.1 The library is responsible for searching the saved
access_token, and,making the request to the resource, to
return the info to the library user.

Table 4.1: Client Credentials Grant use case.

15

Chapter 4. Software requirements specification

4.1.2 Resource Owner Grant functionalities

Title Consume a web resource using the Resource Owner
Grant authorization protocol of OAuth 2.0.

Main stakeholder Library user.
Precondition Library user has valid credentials of the server OAuth

2.0 to which he will ask authorization.
Trigger The library user wants to consume an web resource under

an OAuth 2.0 server.
Main stage of success

1. Library user creates a Resource Owner Grant instance
and populates the necessary parameters.
2. Library user asks the lib if he has a valid token.
3. The library responds that it has no valid token.
4. Library user configures the username and password
in the library.
5. The library is in charge of obtaining and storing
the access_token and the refresh_token, and making the
request to the resource, to return the info to the library
user.

Extension of the the use
case

-

Alternative courses of the
use case

4.a The user credentials are incorrect.
4.a.1 The library user writes the username or password
incorrectly.
4.a.2 Library returns an exception warning of the error.

5.a A valid token is available.
5.a.1 The library is responsible for searching the saved
access_token, and making the request to the resource, to
return the info to the library user.

5.b An expired access_token is available.
5.b.1 The library is responsible for searching the saved
refresh_token, obtains and stores a new access_token,
and makes the resource request, to return the info to the
library user.

Table 4.2: Resource Owner Grant use case.

16

Chapter 4. Software requirements specification

4.1.3 Authorization Code Grant functionalities

Title Consume a web resource using the Authorization Code
Grant authorization protocol of OAuth 2.0.

Main stakeholder Library user.
Precondition Library user has valid credentials of the server OAuth

2.0 to which he will ask authorization.
Trigger The library user wants to consume an web resource under

an OAuth 2.0 server.
Main stage of success

1. Library user creates a Authorization Code Grant in-
stance and populates the necessary parameters.
2. Library user asks the lib if he has a valid token.
3. The library responds that it has no valid token.
4. Library user configures the username and password,
as well as the ids of the browser elements, in the library.
5. The library is in charge of obtaining and storing
the access_token and the refresh_token, and making the
request to the resource, to return the info to the library
user.

Extension of the the use
case

-

Alternative courses of the
use case

4.a The user credentials or the ids of the html elements
of the server OAuth 2.0 are incorrect.
4.a.1 The library user writes the username, password
or the id of the html elements of the server OAuth 2.0
incorrectly.
4.a.2 Library returns an exception warning of the error.

5.a A valid token is available.
5.a.1 The library is responsible for searching the saved
access_token, and making the request to the resource, to
return the info to the library user.

5.b An expired access_token is available.
5.b.1 The library is responsible for searching the saved
refresh_token, obtains and stores a new access_token,
and makes the resource request, to return the info to the
library user.

Table 4.3: Resource Owner Grant use case.

17

Chapter 4. Software requirements specification

4.1.4 Alter the definition of an OAuth 2.0 protocol.

Title Consume a web resource using the Authorization Code
Grant authorization protocol of OAuth 2.0.

Main stakeholder Developer.
Precondition The developer has a set of correct definition files.
Trigger The developer wants to update a definition of an OAuth

2.0 protocol.
Main stage of success

1. The developer replaces the definition files of the
protocol in a repository.
2. The library user download the new protocol definitions
and replace them with the current ones.
3. The library already detects the new definitions and
starts to work with them.

Extension of the the use
case

-

Alternative courses of the
use case

-

Table 4.4: Alter definition use case.

18

Chapter 4. Software requirements specification

4.2 Conceptual models

In this section we will show the conceptual model of the OAuth 2.0 protocols that are
implemented in this project, more specifically for each one they will show:

• Data conceptual schema (in UML): these are the objects that the client needs to store in
order to make the protocol work. To simplify the automation, we will save the information
using the minimal data structures.

• process flow (in BPMN): is the flow of tasks that follows the protocol according to its
definition. We have chosen to represent the process flow with the Business Process Model
and Notation (BPMN) annotation since it is a language that is understood for both technical
and non-technical people.

• Description of each task from the process flow (in OCL): are the definitions of each
task. The OCL language has been chosen because it is a specification formal language.

4.2.1 Client Credentials Grant conceptual models

Data schema

Figure 4.1: Client Credentials Grant data schema

For the conceptual data schema of Client Credentials Grant, we only need to save the basic
information related to client, request, and token.

19

C
hapter

4.
Softw

are
requirem

ents
specification

Process flow

Figure 4.2: Client Credentials Grant process flow

As we see in the diagram, when the protocol receives a request to a resource, it search if it has a valid token, if so, it sends the request to the
resource server, if not, it asks for a token to the server OAuth 2.0 with its credentials.

20

Chapter 4. Software requirements specification

Task definition

c o n t e x t : System : : s t a r t (u r l : Str ing , p a r a m e t e r s : Str ing ,
h e a d e r s : Str ing , body : Str ing , t y p e : S t r i n g)

pre :
pos t : Reques t . a l l I n s t a n c e s ()−> e x i s t (

r | r . oc l IsNew () and r . u r l = u r l and
r . p a r m e t e r s = p a r a m e t e r s and
r . h e a d e r s = h e a d e r s and r . body = body and
r . r e q u e s t _ t y p e = t y p e

)
−−−
c o n t e x t : System : : hasVa l idToken () : Boolean
pre :
body : r e s u l t = Token . a l l I n s t a n c e s ()

−> e x i s t s (t | t . a c c e s _ t o k e n −> notEmpty ())
−−−
c o n t e x t : System : : ge tTok enReques t () : TupleType (g r a n t : Str ing ,

c l i e n t _ i d : Str ing , c l i e n t _ s e c r e t : Str ing ,
t o k e n _ e n d p o i n t : Str ing , s c o p e s : S t r i n g)

pre :
body : l e t c l i : C l i e n t = C l i e n t . a l l I n s t a n c e s ()−> s e l e c t

(c | c . c l i e n t _ i d −> NotEmpty ())
i n r e s u l t =

Tuple { g r a n t = c l i . g r a n t ,
c l i e n t _ i d = c l i . c l i e n t _ i d ,
c l i e n t _ s e c r e t = c l i . c l i e n t _ s e c r e t ,
t o k e n _ e n d p o i n t = c l i . t o k e n _ e n d p o i n t ,
s c o p e s = c l i . s c o p e s }

−−−
c o n t e x t : System : : saveToken (acces sToken : Str ing ,

tokenType : Str ing , e x p i r e s I n : S t r i n g)
pre :
pos t : Token . a l l I n s t a n c e s ()−> e x i s t s (

t | t . oc l IsNew () and
t . a c c e s _ t o k e n = acces sToken and
t . t o k e n _ t y p e = tokenType and
t . e x p i r e s _ i n = e x p i r e s I n

)

21

Chapter 4. Software requirements specification

−−−
c o n t e x t : System : : d o R e s o u r c e t R e q u e s t () : TupleType (

a c c e s s _ t o k e n : Str ing , u r l : Str ing ,
p a r a m e t e r s : Str ing , h e a d e r s : Str ing ,
body : Str ing , r e q u e s t _ t y p e : S t r i n g)

pre :
body : l e t r e q : Reques t = Reques t . a l l I n s t a n c e s ()−> s e l e c t

(r | r . u r l −> NotEmpty ())
l e t t o k : Token = Token . a l l I n s t a n c e s ()−> s e l e c t

(t | t . a c c e s _ t o k e n −> NotEmpty ())
Reques t . a l l I n s t a n c e s ()−> r e j e c t

(r | r . u r l −> NotEmpty ())
i n r e s u l t =

Tuple { a c c e s s _ t o k e n = t o k . a c c e s s _ t o k e n ,
u r l = r e q . u r l ,
p a r a m e t e r s = r e q . p a r a m e t e r s ,
h e a d e r s = r e q . h e a d e r s ,
body = r e q . body ,
r e q u e s t _ t y p e = r e q . r e q u e s t _ t y p e }

4.2.2 Resource Owner Grant conceptual models

Data schema

Figure 4.3: Resource Owner Grant data schema

For the conceptual data schema of Resource Owner Grant, in addition to all the information
of the previous protocol, we will need to save the refresh token as an additional field in the token.

22

C
hapter

4.
Softw

are
requirem

ents
specification

Process flow

Figure 4.4: Resource Owner Grant process flow

The BPMN of Resource Owner Grant, is similar to the Client Credentials Grant process flow, with the difference that here we also need a
username and password to obtain the token, and in case the token is no longer valid, we can request another token without the need to enter the user
again thanks to the refresh token.

23

Chapter 4. Software requirements specification

Task definition

c o n t e x t : System : : s t a r t (u r l : Str ing , p a r a m e t e r s : Str ing ,
h e a d e r s : Str ing , body : Str ing , t y p e : S t r i n g)

pre :
pos t : Reques t . a l l I n s t a n c e s ()−> e x i s t (

r | r . oc l IsNew () and
r . u r l = u r l and
r . p a r m e t e r s = p a r a m e t e r s and
r . h e a d e r s = h e a d e r s and r . body = body and
r . r e q u e s t _ t y p e = t y p e

)
−−−
c o n t e x t : System : : hasVa l idToken () : Boolean
pre :
body : r e s u l t = Token . a l l I n s t a n c e s ()

−> e x i s t s (t | t . a c c e s _ t o k e n −> notEmpty ())
−−−
c o n t e x t : System : : ge tOldToken () : TupleType (

r e f r e s h _ t o k e n : Str ing , t o k e n _ e n d p o i n t : S t r i n g)
pre :
body : l e t c l i : C l i e n t = C l i e n t . a l l I n s t a n c e s ()−> s e l e c t

(c | c . c l i e n t _ i d −> NotEmpty ())
l e t t o k : Token = Token . a l l I n s t a n c e s ()−> s e l e c t

(t | t . a c c e s _ t o k e n −> NotEmpty ())

i n r e s u l t =
Tuple { r e f r e s h _ t o k e n = t o k . r e f r e s h _ t o k e n ,

t o k e n _ e n p o i n t = c l i . t o k e n _ e n d p o i n t
}

−−−
c o n t e x t : System : : ge tTok enReques t () : TupleType (g r a n t : Str ing ,

c l i e n t _ i d : Str ing , c l i e n t _ s e c r e t : Str ing ,
t o k e n _ e n d p o i n t : Str ing , s c o p e s : S t r i n g)

pre :
body : l e t c l i : C l i e n t = C l i e n t . a l l I n s t a n c e s ()−> s e l e c t

(c | c . c l i e n t _ i d −> NotEmpty ())
i n r e s u l t =

Tuple { g r a n t = c l i . g r a n t ,

24

Chapter 4. Software requirements specification

c l i e n t _ i d = c l i . c l i e n t _ i d ,
c l i e n t _ s e c r e t = c l i . c l i e n t _ s e c r e t ,
t o k e n _ e n d p o i n t = c l i . t o k e n _ e n d p o i n t ,
s c o p e s = c l i . s c o p e s

}
−−−
c o n t e x t : System : : saveToken (acces sToken : Str ing ,

tokenType : Str ing , e x p i r e s I n : S t r i n g)
pre :
pos t : Token . a l l I n s t a n c e s ()−> e x i s t s (

t | t . oc l IsNew () and
t . a c c e s _ t o k e n = acces sToken and
t . t o k e n _ t y p e = tokenType and
t . e x p i r e s _ i n = e x p i r e s I n

)
−−−
c o n t e x t : System : : d o R e s o u r c e t R e q u e s t () : TupleType (

a c c e s s _ t o k e n : Str ing ,
u r l : Str ing ,
p a r a m e t e r s : Str ing ,
h e a d e r s : Str ing ,
body : Str ing ,
r e q u e s t _ t y p e : S t r i n g)

pre :
body : l e t r e q : Reques t = Reques t . a l l I n s t a n c e s ()−> s e l e c t

(r | r . u r l −> NotEmpty ())
l e t t o k : Token = Token . a l l I n s t a n c e s ()−> s e l e c t

(t | t . a c c e s _ t o k e n −> NotEmpty ())
Reques t . a l l I n s t a n c e s ()−> r e j e c t

(r | r . u r l −> NotEmpty ())

i n r e s u l t =
Tuple { a c c e s s _ t o k e n = t o k . a c c e s s _ t o k e n ,

u r l = r e q . u r l ,
p a r a m e t e r s = r e q . p a r a m e t e r s ,
h e a d e r s = r e q . h e a d e r s ,
body = r e q . body ,
r e q u e s t _ t y p e = r e q . r e q u e s t _ t y p e

}

25

Chapter 4. Software requirements specification

4.2.3 Authorization Code Grant conceptual models

Data schema

Figure 4.5: Authorization Code Grant data schema

For the conceptual schema of acg data, in addition to all the information of the previous
protocol, we will need to save the authentication endpoint and the redirection uri.

26

C
hapter

4.
Softw

are
requirem

ents
specification

Process flow

Figure 4.6: Authorization Code Grant process flow

The BPMN of glsacg is different from the others, since it needs to be used in a web application, because a web browser is involved. In this case
we also need to login with a username and password, but this time we will not receive the token, but we will receive a code that we can change in the
OAuth 2.0 server for the token. In this protocol we also have the possibility to update the access_token with the refresh_token.

27

Chapter 4. Software requirements specification

Task definition

c o n t e x t : System : : s t a r t (u r l : Str ing , p a r a m e t e r s : Str ing ,
h e a d e r s : Str ing , body : Str ing , t y p e : S t r i n g)

pre :
pos t : Reques t . a l l I n s t a n c e s ()−> e x i s t (

r | r . oc l IsNew () and
r . u r l = u r l and
r . p a r m e t e r s = p a r a m e t e r s and
r . h e a d e r s = h e a d e r s and r . body = body and
r . r e q u e s t _ t y p e = t y p e

)
−−−
c o n t e x t : System : : hasVa l idToken () : Boolean
pre :
body : r e s u l t = Token . a l l I n s t a n c e s ()

−> e x i s t s (t | t . a c c e s _ t o k e n −> notEmpty ())
−−−
c o n t e x t : System : : ge tOldToken () : TupleType (

r e f r e s h _ t o k e n : Str ing , t o k e n _ e n d p o i n t : S t r i n g)
pre :
body : l e t c l i : C l i e n t = C l i e n t . a l l I n s t a n c e s ()−> s e l e c t

(c | c . c l i e n t _ i d −> NotEmpty ())
l e t t o k : Token = Token . a l l I n s t a n c e s ()−> s e l e c t

(t | t . a c c e s _ t o k e n −> NotEmpty ())

i n r e s u l t =
Tuple { r e f r e s h _ t o k e n = t o k . r e f r e s h _ t o k e n ,

t o k e n _ e n p o i n t = c l i . t o k e n _ e n d p o i n t
}

−−−
c o n t e x t : System : : g e t A u t h E n d p o i n t () : TupleType (

a u t h _ e n d p o i n t : Str ing , c l i e n t _ i d : Str ing ,
c l i e n t _ s e c r e t : Str ing , s c o p e s : Str ing ,
r e d i r e c t _ u r i : S t r i n g)

pre :
body : l e t c l i : C l i e n t = C l i e n t . a l l I n s t a n c e s ()−> s e l e c t

(c | c . c l i e n t _ i d −> NotEmpty ())
i n r e s u l t =

28

Chapter 4. Software requirements specification

Tuple { a u t h _ e n d p o i n t = c l i . a u t h o r i z e _ e n d p o i n t ,
c l i e n t _ i d = c l i . c l i e n t _ i d ,
c l i e n t _ s e c r e t = c l i . c l i e n t _ s e c r e t ,
s c o p e s = c l i . scopes ,
r e d i r e c t _ u r i = c l i . r e d i r e c t _ u r i

}
−−−
c o n t e x t : System : : exchangeAuthCode () : TupleType (

g r a n t : Str ing , c l i e n t _ i d : Str ing ,
c l i e n t _ s e c r e t : Str ing , t o k e n _ e n d p o i n t : Str ing ,
s c o p e s : Str ing , code : S t r i n g)

pre :
body : l e t c l i : C l i e n t = C l i e n t . a l l I n s t a n c e s ()−> s e l e c t

(c | c . c l i e n t _ i d −> NotEmpty ())
i n r e s u l t =

Tuple { g r a n t = c l i . g r a n t ,
c l i e n t _ i d = c l i . c l i e n t _ i d ,
c l i e n t _ s e c r e t = c l i . c l i e n t _ s e c r e t ,
t o k e n _ e n d p o i n t = c l i . t o k e n _ e n d p o i n t ,
s c o p e s = c l i . s c o p e s

}
−−−
c o n t e x t : System : : saveToken (acces sToken : Str ing ,

tokenType : Str ing , e x p i r e s I n : S t r i n g)
pre :
pos t : Token . a l l I n s t a n c e s ()−> e x i s t s (

t | t . oc l IsNew () and
t . a c c e s _ t o k e n = acces sToken and
t . t o k e n _ t y p e = tokenType and
t . e x p i r e s _ i n = e x p i r e s I n

)
−−−
c o n t e x t : System : : d o R e s o u r c e t R e q u e s t () : TupleType (

a c c e s s _ t o k e n : Str ing ,
u r l : Str ing ,
p a r a m e t e r s : Str ing ,
h e a d e r s : Str ing ,
body : Str ing ,
r e q u e s t _ t y p e : S t r i n g)

29

Chapter 4. Software requirements specification

pre :
body : l e t r e q : Reques t = Reques t . a l l I n s t a n c e s ()−> s e l e c t

(r | r . u r l −> NotEmpty ())
l e t t o k : Token = Token . a l l I n s t a n c e s ()−> s e l e c t

(t | t . a c c e s _ t o k e n −> NotEmpty ())
Reques t . a l l I n s t a n c e s ()−> r e j e c t

(r | r . u r l −> NotEmpty ())

i n r e s u l t =
Tuple { a c c e s s _ t o k e n = t o k . a c c e s s _ t o k e n ,

u r l = r e q . u r l ,
p a r a m e t e r s = r e q . p a r a m e t e r s ,
h e a d e r s = r e q . h e a d e r s ,
body = r e q . body ,
r e q u e s t _ t y p e = r e q . r e q u e s t _ t y p e

}

30

Chapter 5

Design

In this chapter we describe the design of the system and the technologies that have been used.

5.1 Software architecture

In this section the design and the system architecture of the library system is explained.

5.1.1 Database schema

The schema of the database is extracted from the previous conceptual models. So in our case
we will use several databases, more specifically one for each protocol implemented.

5.1.2 Dessing patterns

When it comes to making the library we have used mainly 2 patterns, to improve the
maintainability and scalability of the code, these patterns are the strategy pattern and the template
template.

The strategy pattern is a behavioral software design pattern that enables selecting an
algorithm at runtime. The strategy pattern:

• Defines a family of algorithms

• Encapsulates each algorithm

• Makes the algorithms interchangeable within that family

The template method pattern is a behavioral design pattern that defines the program
skeleton of an algorithm in an operation, deferring some steps to subclasses. It lets one redefine
certain steps of an algorithm without changing the algorithm’s structure.

31

Chapter 5. Design

5.2 Technology

This section specifies the tools used for the development of the library.

When choosing a programming language, a preliminary study of the currently used technolo-
gies must be done, why are used and if they suit to our project.

In our case it was decided to develop the library in Java, because we used a library of the
Information Modelling and Processing (MPI) research group written in Java, and it was the
simplest thing to do.

The database management system to save the data managed by the library is MySQL and for
the web application, to test the library, the Spring Boot framework is chosen since for simple
projects it is very easy to use and comes with an embed Tomcat server.

5.2.1 Java

Java is a general-purpose computer programming language that is concurrent, class-based,
object-oriented, and specifically designed to have as few implementation dependencies as
possible. It is intended to let application developers "write once, run anywhere" (WORA),
meaning that compiled Java code can run on all platforms that support Java without the need for
recompilation. Java applications are typically compiled to bytecode that can run on any Java
virtual machine (JVM) regardless of computer architecture.

5.2.2 MySQL

MySQL is a relational database manager system based on Structured Query Language (SQL).

MySQL runs on virtually all platforms, including Linux, UNIX, and Windows. Although it
can be used in a wide range of applications, MySQL is most often associated with web-based
applications and online publishing.

5.2.3 Spring Boot

Spring is a very popular Java-based framework for building web and enterprise applications.
Unlike many other frameworks, which focus on only one area, Spring framework provides a
wide verity of features addressing the modern business needs via its portfolio projects.

Spring Boot aims to make it easy to create Spring-powered, production-grade applications
and services with minimum fuss. It takes an opinionated view of the Spring platform so that new

32

Chapter 5. Design

and existing users can quickly get to the bits they need. You can use it to create stand-alone Java
applications that can be started using ‘java -jar’ or more traditional WAR deployments.

33

Chapter 6

Development

In this chapter we explain how the process has been and the development of the project.

6.1 Library

The implementation of the library has focused on the execution of the process flow in BPMN,
since the translation and execution of the OCL definitions have been done by the co-director of
the project, Xavier Oriol.

Because in a typical case, a BPMN diagram is not meant to be some executable tasks attached
to processes, we researched several libraries for the automation of the BPMN diagram, such as:

• jBPT (https://github.com/jbpt/codebase)

• jBPM (http://jbpm.jboss.org/)

• Camuda (https://camunda.com/products/bpmn-engine/)

• Activiti (https://www.activiti.org/)

And tried to apply the one that had a behavior that more resembled what we wanted to
represent with our BPMN, that was jBPT, but given that the main use of BPMN is different
from the one we are giving, none of the libraries ended up working at all and we ended up
implementing our own representation of the BPMN process flow.

Our representation of the execution flow is based on three basic artifacts and their subclasses.
These artifacts are:

• Node: it is the basic unit of the process flow and represents an executable task.

34

Chapter 6. Development

• ProcessModel: it is a set of nodes, with their navigabilities and basic functions.

• Grant: it is the definition of a protocol in BPMN. It contains an instance of a ProcessModel,
and all the instances of the nodes that are necessary.

As we have used the strategy pattern together with the template pattern. These basic
artifacts are interfaces, which are implemented by abstract classes, which at the same time, are
implemented by their specific classes.

We have also created a factory class, which creates instances of the protocol to be used, to
abstract the final user from the implementation of the library.

Another critical point of the library are pool switches that happen in the BPMN, since in
our library they are translated as requests to a server, and we can not make these requests from
OCL. Therefore we have to make a technological leap, and implement templates for each type of
request that is made to the server.

6.2 Web Application

The back-end of the web application consists of only 3 routes, in which a single controller
and 3 different views have been used. The biggest issue here was learning to use Gradle, which
is a dependency manager for java.

For the front-end of the web, we used the Twitter Bootstrap framework, and to show the
result of the request, as the server returns a string in JSON format, we used the vkBeautify library
that improves the visualization of a string in JSON format.

35

Chapter 7

Validation

This chapter focuses on the validations that are done in the project.

7.1 Sprint Review Meeting

In the meetings at the end of each iteration, the work done is validated. For the specification
of the OAuth 2.0 protocols there is a security expert present in the meeting.

7.2 OAuth 2.0 Server

To prove that the library works correctly with a real server, an EC2 test server of AWS has
been created.

Amazon Elastic Compute Cloud (Amazon EC2) is a web service that provides secure,
resizable compute capacity in the cloud. It is designed to make web-scale cloud computing easier
for developers.

All the software necessary to create a web server with its database is installed and configured
in our EC2 instance. More specifically, an Apache server with MySQL.

This server runs a web application to make the OAuth 2.0 server. This web application is in
PHP using the Laravel[4] framework, since this framework has native libraries that implement
all OAuth 2.0 protocols, preparing the server is relatively simple. It is also implemented a basic
API to consume data.

36

Chapter 8

Management

This chapter shows the documentation related to the management of the project: general
planning, temporary planning, economic management and a small analysis of sustainability and
the laws.

8.1 Project planning

The length of the project is four months. The project began on September 12, 2017 and is
expected to be delivered in mid-January 2018. In this project we want to accomplish a proof
of concept, therefore, the planning will include the basic tasks for the realization of the project,
but in case we don’t face any issue and progress well, complementary tasks will be done for the
completition of the proof of concept.

8.1.1 Resources

For the realization of this project, we will need 3 types of resources: personal resources,
material resources and technological resources.

Personal resources

For the development of this project, we have had a team of four people:

Director and co-director of the project: two people in charge of both directing and struc-
turing the project, and validating the work done.

Security expert: a person to consult doubts in the security protocols and in charge to validate
the steps that involve security protocols.

Developer: a person in charge of the realization of the project.

37

Chapter 8. Management

Material resources

Computer: to develop the project, and the memory of the final thesis.

Work space: to be able to work on the project.

Paper, pencil and whiteboard: to make notes, make quick conceptual models or to clarify
project doubts in meetings.

Technological resources

IntelliJ: the chossen IDE for the developing.

ShareLaTEX: web tool for doing documents on LaTEX.

MyGenmodel: web tool for doing digital conceptual modeling.

Email: the tool we use to comumnicate between the team.

8.2 Time management

8.2.1 Project iterations

As the meetings with the director are regular every 2 weeks, we can group the functionalities
in iterations of two weeks, which is known in the agile methodologies, as sprints.

Iteration 1: Understanding and initial research

The first thing to do, will be to understand exactly what the project consists of, and to do
research on the subject, existing bibliography or technologies involved.

Iteration 2: Conceptual modeling of Authorization Code Grant

During this iteration, the conceptual design of the authorization process will be done, by
means of the Authorization Code Grant protocol of OAuth 2.0.

In this iteration is also included the learning of Business Process Model and Notation
(BPMN), which is the type of diagram with which the design of the protocol will be made.

Iteration 3: Definitions of BPMN process in OCL

In this iteration, we will design another authorization process, this time between two com-
puters, using the protocol Client Credentials Grant of OAuth 2.0.

38

Chapter 8. Management

This protocol is simpler than the one of the previous iteration, together with the already
acquired knowledge, it will be faster to be done.

Also in this iteration, we will perform the definitions of the processes for the two diagrams,
in Object Constraint Language (OCL) language.The learning curve of OCL will be smaller, since
it has been given in a subject, and the definitions are not complex.

Iteration 4: Translation of OCL definitions to executable code

In iteration 4 the translations of the definitions of OCL will be done by logical derivation
rules. This functionality is already developed from a previous work, but the work has to be
understood (which is a complicated topic), and integrated into the project.

Iteration 5: Automation of the BPMN flow

The translation of the definitions to code will be completed in this iteration, also in iteration
5 will be developed the automation of the previous definitions, following the Business Process
Model and Notation (BPMN) diagram. To perform the automation, a research to find the best
solution have to be done, since in the market there are several libraries that seem that can work
as we want, but the integration with the definitions, will be a difficult task.

Iteration 6: Automation of the BPMN flow

In the iteration 6, we will finish the automation of the BPMN diagram flow. As is considered
one of the difficult tasks to deal with, we consider to finish it in two iterations.

Iteration 7: Creation of a simple WebApp

In iteration 6 will be develop a basic web application, where it will be integrated with the
automation and the definitions already made, and where we will be able to prove that the whole
authentication process really works and consumes data of an API.

Iteration 8: Project completion

The iteration 8 will be the last one of the project, and will be to finish the pending task of the
project, as well as to refine other parts that can be improved.

Depending on the time that is dedicated to the finalization of the project, in this iteration, we
will make the designs and definitions of the other protocols of OAuth 2.0. Optionally, we will
also create a basic server to consume our API.

39

Chapter 8. Management

GEP

This block is performed during the first 4 iterations, and consists of the necessary document-
ation for the subject of GEP.

Memory and exposure

This block will be made in parallel with the project, starting from iteration 5, and is composed
of the realization of all the memory, the presentation and final defense of the project.

8.2.2 Scheduling

Task Dates Estimated time
Iteration 1 12/09/2017 - 25/09/2017 25
Iteration 2 26/09/2017 - 09/10/2017 30
Iteration 3 10/10/2017 - 23/10/2017 30
Iteration 4 24/10/2017 - 06/11/2017 40
Iteration 5 07/11/2017 - 20/11/2017 40
Iteration 6 21/11/2017 - 04/12/2017 40
Iteration 7 05/12/2017 - 18/12/2017 35
Iteration 8 19/12/2017 - 02/01/2018 30
GEP 12/09/2017 - 30/10/2017 80
Memory and exposure 06/11/2017 - 12/01/2018 95
Total 12/09/2017 - 12/01/2018 445

Table 8.1: Hour estimation

40

Chapter 8. Management

Gantt chart

This is the resulting gantt chart of this project.

Figure 8.1: Gantt diagram

(an interactive and better quality chart can be found in goo.gl/694wJn)

8.3 Budget management

Once the project is planned, it is necessary to do an economic study to determine whether
the project is viable or not, according to the budget and the costs of the necessary resources.

8.3.1 Identification of costs

Identification and estimation of project costs, is the previous step in the making of a budget.
Therefore, first of all we have to make an estimate of wages. The wages has been obtained
directly from the UPC website.[5]

Direct costs for the activity

Direct costs for the activity are disaggregated between the hourly estimation of every member,
their job and their salary. Keep in mind that the direct costs will be low since most of the hours

41

goo.gl/694wJn

Chapter 8. Management

Role Salary Hourly price Members
University professor 2.563,97e 16e 2

Associate teacher (6 hours dedication) 1.354,34e 11,28e 1
Student - - 1

Table 8.2: Human resource’s cost

are from the student, and these hours are at zero cost.

Activity Estimated hours Role Members Cost (e)
Iteration 1 1,5 University professor 1 24

1,5 Associate teacher 1 16,92
22 Student 1 0
25 40,92

Iteration 2 1,5 University professor 1 24
1,5 Associate teacher 1 16,92
27 Student 1 0
30 40,92

Iteration 3 2 University professor 2 64
2 Associate teacher 1 22,56

24 Student 1 0
30 86,56

Iteration 4 2 University professor 2 64
2 Associate teacher 1 22,56

34 Student 1 0
40 86,56

Iteration 5 2 University professor 2 64
2 Associate teacher 1 22,56

34 Student 1 0
40 86,56

Iteration 6 2 University professor 2 64
2 Associate teacher 1 22,56

34 Student 1 0
40 86,56

Iteration 7 1 University professor 2 36
1 Associate teacher 1 11,28

32 Student 1 0
35 47,28

Iteration 8 1 University professor 1 16
1 Associate teacher 1 11,28

28 Student 1 0
30 27,28

GEP 80 Student 1 0
Memory and exposure 95 Student 1 0
TOTAL 445 502,64

Table 8.3: Direct costs

42

Chapter 8. Management

Indirect costs

Apart from the direct costs that come from labor, the indirect costs caused by the project
must be taken into account. These indirect costs include everything necessary for the project to
be carried out.

• Work space. In order to carry out the project we do not need any special work space since
we can work in it from any place. For this reason we have made the assumption that 50%
of the work will be done at home and the other 50% of the work will be done in the library.
So, in this section, only a percentage of the home expenses will be taken into account.
This percentage will be the 5% of the total price , which cost 1200 e.

• Transport. In this section, we include the cost of transportation from home to university.
As the trips are short, most times they will be on foot, but for reasons of comfort or weather
conditions, it is expected that of the total of the monthly trips, 25% will be on public
transport. For this reason, the cost of public transport will be taken into account.

• Internet connection. An internet connection is necessary because some tools need it and
also to be able to search on the web. In this section only the cost of the internet at home
will be taken into account. At home we are 4 people and the bandwidth used for the project
will be 75% of a person.

• Hardware amortization. The hardware to develop the project will be a personal computer.
This computer costs 1,800 euros, and its useful life is 10 years. A 70% use is expected
during the duration of the project.

• Software.As all the software used is free or we can obtain a free license (respecting the
use contract), no cost will be taken into account in the software section.

Resource Duration Price Percentage Cost
Work space 4 months 1.200e / month 5% 240e
Transport 4 months 9,95e (T-10 1 zone) 50% 19,9e

Internet connection 4 months 40e / month 18,75% 30e
Hardware amortization 4 months 1.800e / 10 years 70% 42e

Software 4 months 0e - 0e
TOTAL 331,90e

Table 8.4: Indirect costs

Contingency costs

As in any project, a contingency cost has to be estimated to correct possible errors in the
estimates of the previous costs. The contingency cost is generally 15% of the direct and indirect
costs.

43

Chapter 8. Management

Concept Total cost Percentage Contingency cost
Direct cost 502,64e 15% 75,40e

Indirect cost 331,90e 15% 49,79e
TOTAL 125,19e

Table 8.5: Contingency costs

Risk costs

We can face several types of economic incidents, for this reason, we have to include a section
of incidence costs, to protect us in case any incident happens. These incidents are:

• The need for more meetings. It may happen that more meetings are needed with the
experts, from those initially planned and this fact would increase the estimated budget.If
we calculate the hour price of the 3 experts, a total of 43.28 euros comes out. Due to the
nature of the project, there is a probability of 20% on average of this happening in each
sprint.

• Computer failure. In case the computer is damaged, it would have to be replaced, because
of the age it has, the repair would be expensive and would not be worth it. If this happened,
the new computer would not be a high-end one like the current one, so the cost would be
lower. The estimated probability of computer failure during the development of the project
will be 2.5%.

Incident Total cost Probability Incidence cost
More meetings 346,24e 20% 69,25e

Computer failure 700e 2,5% 17,50e
TOTAL 86,75e

Table 8.6: Risk costs

Final budget

Finally, all the costs calculated previously for the realization of the budget are added.

Concept Cost
Direct costs 502,64e

Indirect costs 331,90e
Contingency costs 125,19e

Risk costs 86,75e
TOTAL 1.046,48e

Table 8.7: Final budget

44

Chapter 8. Management

8.3.2 Control management

To control expenses, a constant inspection will be made to detect possible deviations as soon
as possible in order to act quickly. This inspection consists of recalculating the direct and indirect
costs in each iteration, and in case the spending trend is greater than that estimated in several
iterations, it will be assessed whether these increases are covered with the contingency costs. In
case the expenses are greater than the contingency cost, actions will be taken.

8.4 Sustainability

This section shows the study of sustainability related to the project. The following table
presents the results of the study in the form of a matrix, proposed by the GEP course guide.

PPP Useful life Risks
Environmental 9 20 -1
Economic 8 20 -3
Social 7 17 0
Sustainability Rank 24 57 -4

77

Table 8.8: Sustainability matrix

8.4.1 Economic

An evaluation of the costs of the project has been done, both material and human resources,
taking into account the cost of repairs and / or substitutions of the material and of temporary
deviations in any of the deliveries within the unforeseen item.

It is necessary to emphasize that in a project, what increases the price is the direct cost
of human resources, and in this project the majority of hours are student, for this reason, the
economic viability is assured.

For these reasons, economic viability is assessed with an 8.

8.4.2 Social

The goal of the project is to automate a recurring task that developers have to deal with often.
With this automation, we will improve the life of the developers when using our library, due to
not having to continually develop the authentication mechanisms.

In addition, as our library does not contain bugs, it is also a headache less for the developer,
since he is assured that this library will not produce errors later.

45

Chapter 8. Management

For these reasons, social viability is assessed with an 7.

8.4.3 Environmental

During the development of the project, only personal computers have been used, therefore,
the environmental impact will only be the electricity. The vast majority of the diagrams have
also been made in digital format, so that no excess paper has been spent.

For these reasons, environmental viability is assessed with an 8.

8.5 Laws and regulations

On this section the laws and regulations that affect this project are ex- plained, but this project
is not affected by any law, since it does not store any kind of sensitive data.

Even we store the tokens, those are not affected by the Ley Organica de Protección de Datos
(LOPD), so there is no special regulation applied to this project.

46

Chapter 9

Conclusions

In the last chapter we will be evaluate the work done and the future work and the personal
assessment of the project.

9.1 Contributions

This project has ended as a proof of concept. This prototype will not be a final version,
because it lacks of protocols to implement and has not been thoroughly tested, but it can be said
that thanks to this project it has been possible to validate the possibility of automating protocols,
based on its specification.

Therefore, it could be said that its main contribution is being able to execute a protocol (in
our case OAuth 2.0), based on the definitions of specification, which means that if the protocol
suffers from modifications, with replacing the old definitions with the new ones the protocol will
be updated, without touching any code.

9.2 Objective achievement

Once the project has finished, we must check if the objectives that were marked at the
beginning have been archived.

The main objective of designing and developing a library to automate the execution of the
OAuth 2.0 protocols has not been fully achieved.

The objectives derived from the main objective were:

• Improve the time a developer uses to authorize their applications using an OAuth 2.0
protocol.

47

Chapter 9. Conclusions

• Make the execution of the protocol based on its conceptual model, not its imperative
implementation by code.

In principle with this library those objectives are achieved, but before we said that the main
objective has not been fully achieved.

The specification and implementation of the Client Credentials Grant and Resource Owner
Grant protocols has been achieved, but the implementation of the Authorization Code Grant
protocol has not been achieved due to time constraints. However, the protocol has been specified
and there is an approximate idea of how to make it work.

9.3 Personal assessment

Personally, this project has been satisfactory, since it has been a project that I started from 0,
and I personally prefer that instead of inherit code, since it takes time to understand the work
that is already done.

In addition, the subject of the project has been somewhat different from the typical informa-
tion system, which is what I was looking for, and I have had the opportunity to be able to see the
work that is done at the university.

It has been a great experience, because apart from being the first project of this kind, I have
learned many technical skills that are not directly related to the specialty I’ve done, but I have
found them very useful for any computer engineer.

Apart from the experience and being able to put into practice many things that I have learned
in these 4.5 years of degre, I believe that I have grown as a person acquiring non-technical
knowledge such as learning to defend the work done, always also from the self-criticism.

9.4 Future work

The first thing of future work of the library would be to finish the implementation that could
not be achieved. Apart from finishing the project’s objectives, there are also several objectives
that were not defined at the beginning, but that are important for the future. These objectives are:

• Add the Implicit Grant protocol, since it is the last protocol that defines OAuth 2.0.

• Do deep testing on the library.

48

Chapter 9. Conclusions

• Include a battery of unit tests.

• Include a parser for the definition of the protocol itself (not the BPMN tasks), since now it
is done in a programmatic way.

9.5 Special thanks

Finally, I would like to thank all the people who have been involved in this project, either
directly or indirectly.

To Ernest Teniente and Xavier Oriol for trusting me and giving me this opportunity to turn
this project into my bachelor final thesis. Also to Juan Hernandez who has been the security
expert and has been present at several of the meetings.

To all the people that I met from these bachelor degree years, of which some have already
finished, others end these days, others still have some subjects left and others have abandoned. In
particular I want to thank the people who have been closer in the different stages of the bachelor
degree, and these are: Petru, Gerard, Juan, Xavier, Alex and Albert. And to Miguel Angel, with
whom 10 years ago, we started in the world of computer science.

Finally to several coworkers, of the more than 2 years that I have been in the inLab as a
scholar, for everything what they have taught me. Especially to Carla, Manel, Ricard, Adria and
Josep.

Thanks to each of the people who have supported me.

49

Bibliography

[1] Montserrat Estañol Ernest Teniente Giuseppe De Giacomo, Xavier Oriol. Linking data and
bpmn processes to achieve executable models. CAiSE 2017: Advanced Information Systems

Engineering, pages 612–628, 2017.

[2] Jordi Pradel. Gestió de projectes de software: gestió àgil de projectes. Technical report,
Universitat Politecnica Catalunya, 2015.

[3] Volere template. http://www.volere.co.uk/template.htm.

[4] Laravel framework. https://laravel.com/.

[5] Upc remunerable tables. https://www.upc.edu/transparencia/ca/

informacio-de-personal/.

50

http://www.volere.co.uk/template.htm
https://laravel.com/
https://www.upc.edu/transparencia/ca/informacio-de-personal/
https://www.upc.edu/transparencia/ca/informacio-de-personal/

Appendix A

Web Application Screenshots

Figure A.1: Web Application request resource form

51

Appendix A. Web Application Screenshots

Figure A.2: Web Application request response

Figure A.3: Web Application authentication on an authenticated protocol

52

Appendix A. Web Application Screenshots

Figure A.4: Web Application request response on an authenticated protocol

53

	Abstract
	Resum
	Resumen
	Contents
	List of Tables
	List of Figures
	Glossary
	Acronyms
	Introduction
	Context
	Formulation of the problem
	Objectives

	Scope
	Possible obstacles

	Stakeholders
	Project Team
	Software Developers
	Internet Users

	Contextualization
	State-of-the-art
	Linking Data and BPMN Processes to Achieve Executable Models

	Methodology and rigor
	Work methodology
	Monitoring tools
	Developing tools
	Validation methodology

	Requirement analysis
	Functional requirements
	Non-functional requirements

	Software requirements specification
	Functionalities
	Client Credentials Grant functionalities
	Resource Owner Grant functionalities
	Authorization Code Grant functionalities
	Alter the definition of an OAuth 2.0 protocol.

	Conceptual models
	Client Credentials Grant conceptual models
	Resource Owner Grant conceptual models
	Authorization Code Grant conceptual models

	Design
	Software architecture
	Database schema
	Dessing patterns

	Technology
	Java
	MySQL
	Spring Boot

	Development
	Library
	Web Application

	Validation
	Sprint Review Meeting
	OAuth 2.0 Server

	Management
	Project planning
	Resources

	Time management
	Project iterations
	Scheduling

	Budget management
	Identification of costs
	Control management

	Sustainability
	Economic
	Social
	Environmental

	Laws and regulations

	Conclusions
	Contributions
	Objective achievement
	Personal assessment
	Future work
	Special thanks

	Bibliography
	Web Application Screenshots

