CREATING THE HOLISTIC ENGINEER
TABLE OF CONTENTS

Session 1A: EESD Evolution

1A.1 J. Segalas, R. Drijvers, J. Tijseen ... 12

16 years of EESD. A review of the evolution of the EESD conference and its future challenges

1A.2 Dr.ir. Karel F. Mulder .. 20

Widening Engineering Education, scientification of engineering and increased specialisation. Is progress stalking?

1A.3 Irina N. Ciobanescu Husanu, Yalcin Ertekin .. 27

Global Engineer Curricula: Developments towards a New Direction of Engineering Technology Education

Session 2A: Ethics and Social Changes

2A.1 Magdalena Svanström ... 36

Can education lead to behavioural change? Effects of sustainable consumption projects in an engineering programme

2A.2 Kyle Kershaw, John Aidoo, Rebecca Bercich, Timothy Grose, Kathy Hammett, Richard Onyancha, Irene Reizman, Deborah Walter and Tony Ribera ... 44

Global Engineering and the Social Context: A Cross-Disciplinary Course for Undergraduates

2A.3 Eddie Conlon, Diana Martin, Iacovos Nicolaou and Brian Bowe .. 52

Holistic Engineering Ethics?

Session 2B: Integrating Sustainable Education

2B.1 Nand K Jha ... 61

COMPUTER AIDED DESIGN, FINITE ELEMENT ANALYSIS, AND SUSTAINABILITY CONSIDERATIONS IN THE TURBOFAN ENGINE

2B.2 Bondehagen, D. and Komisar, S. ... 72

Integration of Sustainability into the Environmental and Civil Engineering Curriculum

2B.3 Sampath Satti ... 81

An Electrical Engineering Design Course with a Sustainability Theme

(Abstract only included)

Session 2C: Sustainability and Economics

2C.1 John J. Fitzpatrick, Edmond P. Byrne ... 83
Ecological economics and engineering education

2C.2 Adam de Eyto, Jordi Segalas, Muireann McMahon, Yekta Bakirlioglu, Gemma Tejedor, Boris Lazarin, Marcel Crul, Peter Joore, Patrick O’Donnell, Marc O’Riain, Alex Jiménez, Alba Obiols, Renee Wever, Anna Velander-Gisslen, Eileen Blackmore, Karin Haberman, Jonas Martins... 92

Circular Design - adventures in interdisciplinary collaboration and learning for a circular economy

2C.3 Elise M. Barrella and Mary Katherine Watson... 101

Identifying Imbalances in Sustainable Design Curricula: A Spotlight on Economic Sustainability

Session 3A: European Initiatives in Sustainable Education

The EDINSOST project. Training sustainability change agents in Spanish and Catalan Engineering Education.

3A.2 Kiyohisa Nishiyama and Emanuel Leleito... 117

Testing Effectiveness of a Proposed Template for Supporting Multidisciplinary Research Communication in the Engineering Field

3A.3 Nand K Jha... 126

Environment, Sustainability, and Mechanical Engineering

Session 3B: Innovative Curriculum for Sustainability

3B.1 Kauser Jahan, Roisin Breen, Patricia Hurley, Erin Pepe, Jiayun Shen.......................... 136

Teaching Sustainable Development Using Algae

3B.2 Pritpal Singh.. 142

A New Course on Sustainable Product Development for Low Resource Settings

3B.3 Elena Tsalaporta, John J. Fitzpatrick and Edmond P. Byrne...................................... 149

Cycling for a sustainable future: Considerations around the Development of a Masters Level Module on Carbon Capture, Sequestration and Utilization

3B.4 Deborah Grubbe... 158

Enhancing Engineering Education in Occupational Safety and Process Safety

Session 3C: Sustainable Community Development

3C.1 C. Colaux, Y. Beckers, Y. Brostaux, C. Charles, H. Claessens, B. Heinesch, M. Sindic, A. Degré.. 159

Soft Skills: how to make the young engineers aware of their new talents?
Overview of a Whole Systems Multidisciplinary Sustainable Engineering Research Program

Environmental Engineering for Community Development - Engineering Design for Non-Engineering Majors

Session 4A: Attitudes in Sustainable Education

4A.1 Abdullah Atmacasoy, Ahmet Ok, Güvenç Şahin
An Evaluation of Introduction to Industrial Engineering Course at Sabanci University Using CIPP Model

4A.2 Cory D. Jensen
Piloting the flight, a systems methodology for sustainability education.

4A.3 Jon-Erik Dahlin, Ola Leifler
Attitudes towards curriculum integration of sustainable development among program directors in engineering education

Session 4B: The Holistic Engineer

4B.1 Michelle K. Marincel Payne and Wayne T. Padgett
Teaching Engineers to Think Appropriately by Thinking Holistically

4B.2 Salwa Beheiry
Rethinking Curricula to Develop the Holistic Engineer

(Abstract only included)

4B.3 Jennifer S. Mueller
Incorporating a holistic approach to Senior Capstone Design

Session 5A: Peace Engineering

5A.1 Cheryl A. Bodnar, Kaitlin Mallouk and Courtney Faber
Student Approaches to Ambiguity while Working on a Community-Based Design Problem

5A.2 Iain J. Hunt and Jordan F. Ermilio
Leveraging Experienced Graduate Students to Enhance International Service Learning Programming

5A.3 Deborah Grubbe
Ethics in Sustainability and Engineering
(Abstract only included)

Session 5B: Sustainable Education

5B.1 Edmond P. Byrne*, John J. Fitzpatrick... 242
Embedding sustainability to produce an award winning chemical engineering programme: some challenges and learnings

5B.2 Dai C. Morgan, Edmond P. Byrne*, Susan Nesbit, Naoko Ellis, Kas Hemmes and Javier Orozco-Messana.. 253
Process, Improvisation, Holarchic Learning Loops and all that Jazz: Experiences in Transdisciplinary Education for Sustainable Development

5B.3 Vivian Neal, Kevin Oldknow, John Edgar, Ivan V. Bajić, Marilyn Trautman and Mehrdad Moallem... 262
A New Program in Sustainable Energy Engineering - Balancing subject matter with transformative pedagogies to produce Global Citizens

Session 5C: Sustainable Research: Case Studies

5C.1 Bartlett Jones, Timothy Wilson, Joe Gossen, Bradley A. Striebig.. 271
Comparing Point-of-Use Water Treatment Technologies for Emergency Response

5C.2 Bradley Striebig and Eric Smits.. 280
GREET-based comparison of carbon emissions from locally and non-locally sourced food for a college dining hall

5C.3 Zenaida Otero Gephardt... 295
Media Loss Minimization in Simultaneous Air/Water Backwash Operations of Gray Water Filtration Systems

(Abstract only included)

Session 6A: Sustainable Education with Industrial Ties

6A.1 Jess Everett, William Riddell, Samantha Valentine, Kevin Dahm, Sarah Zorn, Shalyn Brangman, Robert Krchnavek... 296
Project-based learning with a real client: Sustainable Facilities

6A.2 C. Stewart Slater, Mariano J. Savelski, Christian M. Wisniewski.. 305
Partnering Academia with Industry to Engage Students in Providing Sustainable Solutions for Water Recovery in Food Manufacturing

6A.3 James Porter.. 313
Ensuring Organizational Sustainability in Today's Challenging Work Environments

(Abstract only included)
Session 6B: Developing a Sustainable Mindset

6B.1 Scott Daniel, Llewellyn Mann
Using a practice-based approach to develop the holistic engineer

6B.2 Katherine A. Whalen, Dr. Tatiana V. Vakhitova
Creating experiences, not lectures: experiential methods in the context of sustainable development teaching

6B.3 Joseph Stanzione
CREATING THE HOLISTIC ENGINEER VIA SUSTAINABLE MATERIALS RESEARCH THAT UTILIZES ALTERNATIVE, YET COMMONLY RECOGNIZABLE RESOURCES

(Abstract only included)
16 years of EESD. A review of the evolution of the EESD conference and its future challenges.

J. Segalas1, R. Drijvers2, J. Tijseen2

1Research Institute for Sustainability Science and Technology. UPC-Barcelona Tech, Catalonia.

Jordi.segalas@upc.edu

2University of Applied Sciences Den Bosch, ’s-Hertogenbosch. The Netherlands.

Abstract

Since the first Engineering Education in Sustainable Development (EESD) conference in 2002 in Delft, EESD has provided a platform for the exchange of concepts, policies, and strategies to enhance a sustainable education in engineering that train future engineering professionals with the appropriate competences to deal with sustainability challenges. During these 16 years (8 EESD conferences), engineering education has evolved and so has the EESD conference. This article aims to analyze the evolution of the EESD conferences and the future challenges of EESD through the characterization of all the papers (600) published and semi-structured interviews to the coordinators of previous conferences.

Authors from The Netherlands, Catalonia and Sweden were responsible for publishing the largest number of articles (46%) and they have played key roles in the collaboration networks among the ten countries, whose authors published the majority of JCLP’s articles. At the institutional level, the Universities TUDelft and UPC-Barcelona Tech were the universities with the largest number of articles (27%) and were central to the EESD’s collaborative networking processes.

By investigating the co-occurrences of keywords, some topic clusters were identified. The categories that have most declined relevance during the EESD conferences are: Environmental Design, LCA and Management and policy; while Transdisciplinarity, Circular Economy, Ethics and philosophy have increased their relevance.

The interviews to EESD conference organizers analysis shows that most argue that transdisciplinarity is crucial to improve EESD, that real EESD is not happening at the pace it should at universities; moreover, new topics and networking activities for conference organization are highlighted.

1 Introduction

In 2002, Delft University of Technology organized the first EESD conference in Delft. It was initially organized as an isolated event, but due to its success, in 2004 Universitat Politecnica de Catalunya Barcelona Tech took over and organized the second EESD conference in Barcelona. Since then EESD conferences have been organized (Table 1). EESD has provided a platform for the exchange of concepts, policies, and strategies to enhance a sustainable education in engineering that train future engineering professionals with the appropriate competences to deal with sustainability challenges. During these 16 years (8 EESD conferences), engineering education has evolved and so has the EESD conference.
Table 1: EESD Conferences data

<table>
<thead>
<tr>
<th>Year</th>
<th>Country</th>
<th>Organizer</th>
<th>Theme</th>
<th>Nº papers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>Holland</td>
<td>- Delft University of Technology</td>
<td>-</td>
<td>87</td>
</tr>
<tr>
<td>2004</td>
<td>Catalonia</td>
<td>- Universitat Politècnica de Catalunya – Barcelona Tech</td>
<td>-</td>
<td>106</td>
</tr>
<tr>
<td>2006</td>
<td>France</td>
<td>- Institut national des sciences appliquées de Lyon</td>
<td>-</td>
<td>51</td>
</tr>
<tr>
<td>2008</td>
<td>Austria</td>
<td>- Graz University of Technology</td>
<td>Bridging the Gap</td>
<td>66</td>
</tr>
<tr>
<td>2010</td>
<td>Sweden</td>
<td>- Chalmers University of Technology</td>
<td>Learning for Transformation</td>
<td>65</td>
</tr>
<tr>
<td>2013</td>
<td>United Kingdom</td>
<td>- Cambridge University</td>
<td>Rethinking the Engineer</td>
<td>89</td>
</tr>
<tr>
<td>2015</td>
<td>Canada</td>
<td>- University British Columbia</td>
<td>Cultivating the T-Shaped Engineer</td>
<td>73</td>
</tr>
<tr>
<td>2016</td>
<td>Belgium</td>
<td>- Ghent University</td>
<td>Building a circular economy together</td>
<td>63</td>
</tr>
</tbody>
</table>

The knowledge that is gathered by the EESD through the years can be very essential for changing the education systems in the future and can help the general knowledge of society regarding sustainability. To get a clear view of the evolution that the EESD made through the years and which connections are made between different authors, organizations and countries inside it is important to analyze the steps that have been made by the organization since its start in 2002 in Delft until the last conference in Bruges in 2016. This article aims to analyze the evolution of the EESD conferences and the future challenges of EESD through the characterization of all the papers published and semi structured interviews to the coordinators of previous conferences.

2 Methodology

The methodology used is the mix concurrent nested where the qualitative research is nested in the quantitative one. The quantitative analysis consist in applying bibliometric techniques using QDAminer software analysis of discourses and networks. The qualitative analysis consist of semi-structured interviews to past EESD conference coordinators.

2.1 Quantitative analysis.

Bibliometric techniques can provide a way to analyze quantitatively the development of academic literature (Tsay, 2008). In that context, the authors developed this review paper based upon bibliometric analysis techniques. The subjects of the analyses included countries, research institutions, keywords and Networks during the EESD history.

2.1.1 Categories and content analysis.

To investigate the contributions of the EESD papers and the possible future content trends, this research team analyzed the topical clusters. The keywords and titles of articles and abstracts were used as the basis
for the analyses. The word frequency was calculated to identify the topical clusters of research in the different dimensions of EESD.

2.1.2 *The social network.*

The social network analysis is a method of social science, which can be used to visualize networks based upon statistical and mathematical analyses (Ye et al., 2012). Social networks consist of two parts. The first is comprised of multiple points, which represent the social actors. The second was focused upon the collaborative interconnections between and among the researchers. (Jeong-Yeon et al., 2014). In this article, this method was also employed to investigate the collaborative relationships among countries and institutes.

2.2 *Qualitative analysis.*

Based in the qualitative results a semi structured interview was design. Coordinators (those coordinators has been involved in the scientific committee in most of the conferences) of EESD conferences where contacted to be interviewed by skype. All interviews took place between 25 June to 5 July 2017.

<table>
<thead>
<tr>
<th>Interviewed</th>
<th>Organization</th>
<th>Conference</th>
<th>Role</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karel Mulder</td>
<td>The Hague University of Applied Sciences</td>
<td>EESD 2002</td>
<td>Chair</td>
<td>Interview</td>
</tr>
<tr>
<td>Didac Ferrer</td>
<td>Universitat Politècnica de Catalunya – Barcelona Tech</td>
<td>EESD 2004</td>
<td>Chair</td>
<td>Interview</td>
</tr>
<tr>
<td>Michael Narodoslawsky</td>
<td>Graz University of Technology</td>
<td>EESD 2008</td>
<td>Chair</td>
<td>Interview</td>
</tr>
<tr>
<td>Magdalena Svanström</td>
<td>Chalmers University of Technology</td>
<td>EESD 2010</td>
<td>Chair</td>
<td>e-mail</td>
</tr>
<tr>
<td>Richard Fenner</td>
<td>Cambridge University</td>
<td>EESD 2013</td>
<td>Chair</td>
<td>Interview</td>
</tr>
<tr>
<td>Bernard Mazijn</td>
<td>Ghent University</td>
<td>EESD 2016</td>
<td>Chair</td>
<td>Interview</td>
</tr>
</tbody>
</table>

The semi structured interview was organized around the next questions.

- Are you satisfied with the progress the EESD made through the years?
- Do you feel that there has been an evolution in the topics that are discussed over the years? Which one?
- Do you feel that the evolution, regarding the education of the ‘future engineer’ is developing quickly enough?
- How do you think the EESD will develop in the (near) future and what will the major topics be? Why?
- How do you think that the organization can be improved?
- What kind of activities can be used to stimulate the collaboration between authors and/or organizations during the conferences?

Moreover interviewed have the possibility to build new discourse during the interview.
3 Results and Conclusion

To investigate the publication characteristics of the EESD, 600 papers presented between 2002 and 2016 have been evaluated. The information analyzed from these articles included titles, keywords (when possible) and year of EESD conference.

3.1 Evolution of the numbers of papers in EESD since 2002 and 2016

600 papers has been presented in the history of EESD conferences. There is not a trend in terms on number of papers or authors (Figure 1 and table 3).

Table 3: The characteristics of papers presented in EESD conferences between 2002 and 2016.

<table>
<thead>
<tr>
<th>Location + year</th>
<th>TP</th>
<th>AU</th>
<th>AU/TP</th>
<th>PG</th>
<th>PG/TP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delft 2002</td>
<td>87</td>
<td>185</td>
<td>2,13</td>
<td>746</td>
<td>8,57</td>
</tr>
<tr>
<td>Barcelona 2004</td>
<td>106</td>
<td>242</td>
<td>2,28</td>
<td>1046</td>
<td>9,87</td>
</tr>
<tr>
<td>Lyon 2006</td>
<td>51</td>
<td>107</td>
<td>2,10</td>
<td>413</td>
<td>8,10</td>
</tr>
<tr>
<td>Graz 2008</td>
<td>66</td>
<td>147</td>
<td>2,23</td>
<td>605</td>
<td>9,17</td>
</tr>
<tr>
<td>Gothenburg 2010</td>
<td>65</td>
<td>174</td>
<td>2,68</td>
<td>593</td>
<td>9,12</td>
</tr>
<tr>
<td>Cambridge 2013</td>
<td>89</td>
<td>235</td>
<td>2,64</td>
<td>762</td>
<td>8,56</td>
</tr>
<tr>
<td>Vancouver 2015</td>
<td>73</td>
<td>199</td>
<td>2,73</td>
<td>584</td>
<td>8,00</td>
</tr>
<tr>
<td>Bruges 2016</td>
<td>63</td>
<td>172</td>
<td>2,73</td>
<td>449</td>
<td>7,13</td>
</tr>
</tbody>
</table>

TP: The number of total papers presented per year; AU: The number of authors; PG: The number of pages

Figure 1: The number of papers per EESD Conference

The average of papers per conference of 75 papers and 182 authors. The number of authors per paper is also quite similar in all conferences with an average of 2.4 authors per paper but showing an increase of authors per paper in recent conferences.

3.2 The EESD paper distribution per country and academic institution

The contributions of authors from different countries/territories and academic institutions were evaluated by means of the addresses and affiliations of at least one author of each journal article. During the EESD conferences authors from 39 countries contributed to the conferences.
The analysis shows that in terms of quantity of papers there is a considerable concentration in few universities and countries (Figure 2, 3 and 4). The most active universities are TUDelft and UPC, 80 papers each, from Holland and Catalonia respectively, which actually are the two initial organizers of the conference. An expected trend shows that the participation of “local” authors increases in each conference.
The cooperative relationships among the countries contributing to the EESD conferences have been documented, as presented by the cooperation network diagram in Figure 5. The share of one country regarding published papers for the EESD is shown in the size of each circle. The thickness of each line between two countries resembles the amount of times these two countries worked together on a paper. It’s been found that Balkan countries show a strong network of collaboration. Sweden, The Netherlands and Spain appear as the most collaborative countries.

3.3 **Keyword network analysis: distribution and trend.**

The most discussed key-topics in EESD 2002 have been taken as a reference. Over time, some key-topics disappear and new ones were added. Some key-topics appeared in the papers under slightly different names while handling more or less the same matter. An example of this is environmental design. This key-topic
appeared in the papers under numerous slightly different names being, sustainable design, ecological design and eco-design. Every time one these key-topics was discussed in a paper it was coded under the name ‘environmental design’. The same principle goes for the key-topic management and policy. This key-topic is a collective term for the search terms, sustainable management, environmental management and policy and management. Chemical engineering is a collective name for the search terms, chemical, mechanical, - and civil engineering. The key-topic integration, deals with both the integration as implementation of environmental practices in engineering studies.

The difference with between the key-topics renewing curriculum and integration is the fact that, renewing curriculum captures the papers that are about changing the curriculum of engineering curriculum that already deal with environmental and sustainable subjects.

![Figure 8](image_url)

Figure 8: Network of countries that collaborated in one or more EESD-conference(s)

There are also clusters of key-topics based on terms that relate to each other. An example of this is, transition and backcasting. Both these key-topics discuss how to create a future image and how to influence it. Management and policy both discuss, making a change in a judicial sense. The terms, social dimension and ethics are merged in one key-topic because they both deal with changing the mind-set of nowadays society and making changes in the way of thinking of people to create a more holistic perception of their view of the world and to make them understand why this is necessary. E-learning captures all the papers that involve learning and education programs set up on the World Wide Web. The final set of key-topics that have been distinguished are: Competences; curriculum changing; triple P; integration; social dimension and ethics; multi-, inter- and transdisciplinary; paradigm; pedagogical; e-learning; gamification; circular economy; development/cooperation; transition and back-casting; social dimension; ethics and philosophy. Figure 8 shows the results in the first, intermediate and last EESD conference. The three most discussed key-topics in the last conference are multi-, inter- and transdisciplinary, integration and renewing curriculum are
omnipresent from the first EESD-conference in Delft until the last one in Bruges. However multi-, inter- and transdisciplinary was at the first conferences merely a topic that was discussed in other papers, it grew out to be a central theme in lots of papers in later editions. Key-topics in which the interest grew later on is learning through games. Although triple p was already discussed in Delft the interest in the topic really took a lift since Gothenburg and the later conferences, before falling into oblivion again during the conference in Bruges.

3.4 Interviews to EESD conferences’ organizers.

Six out of eight organizers of EESD conferences has been interviewed (Table 2). Results of the interviews match the results of the key-topic analysis and most interviewed highlight transdisciplinarity as crucial to improve EESD, that real EESD is not happening at the pace it should at universities; The interview also show that the EESD made some progress regarding the education of the ‘future engineer’, but it is not enough. It is hard to convince universities and their teachers to change their way of education Interviewed claim that the social dimension of the sustainable education should play a bigger part during the conferences. The EESD should also take a more advising role towards universities. Another important topic that should be discussed in the future is how to organize a conference with new topics and networking activities like workshops and unconference methods.

4 Future view

The future view is based on both the quantitative and qualitative analysis. It seems that the European growth regarding participants of the EESD is stagnating; the core group is not growing nor changing in its composition. Therefore it is very likely a good step to expand the reach of the EESD and have more conferences outside of Europe. The first conference that took place in another continent was the conference in Vancouver in 2015. That conference formed the introduction for a lot of new members and it would a positive step if the same could happen in the U.S.A. When the conferences are every three years in Europe and alternately in the U.S.A., this would release the pressure on the core-group of the EESD who now have to (partly) organize a new conference approximately every two years. A negative side effect that European members only visit the conferences in Europe and the American members only the one on their continent.

Another future step of the EESD is to invite more students to the conferences. This could be stimulated by financing students for actively participating at the future conferences. Another option is to let students (partly) organize the conference itself. Students will bring innovating ideas, and get a better insight on the EESD itself. This will give the organization new impulses and a better dynamic between the different generations that are trying to achieve the same goals. It will also help to stimulate collaborations between organizations, universities and third parties.

References