
Grid and P2P Middleware for Scientific Computing Systems

Fatos Xhafa
Department of Computer Science

and Information Systems
Birkbeck, University of London

London WC1N 3QS UK
EMail: fatos@dcs.bbk.ac.uk

Sabri Pllana
Department of Scientific Computing

Faculty of Computer Science
University of Vienna

Nordbergstrasse 15/C308
1090 Vienna, Austria

EMail: pllana@par.univie.ac.at

Leonard Barolli
Department of Information and

Communication Engineering
Fukuoka Institute of Technology

3-30-1 Wajiro-higashi, Higashi-ku
Fukuoka 811-0295, Japan
EMail: barolli@fit.ac.jp

Abstract—Grid and P2P systems have achieved a notable
success in the domain of scientific and engineering applications,
which commonly demand considerable amounts of computa-
tional resources. However, Grid and P2P systems remain still
difficult to be used by the domain scientists and engineers due
to the inherent complexity of the corresponding middleware
and the lack of adequate documentation. In this paper we
survey recent developments of Grid and P2P middleware in
the context of scientific computing systems. The differences on
the approaches taken for Grid and P2P middleware as well
as the common points of both paradigms are highlighted. In
addition, we discuss the corresponding programming models,
languages, and applications.

Keywords-Grid, P2P Computing, Parallel Processing, Mid-
dleware, Communications Libraries, e-Science Applications.

INTRODUCTION

Computational Grids and P2P systems have emerged as
new distributed computing paradigms for the development
of large-scale distributed applications. With the fast devel-
opments in Internet technologies and with the continuous
increase in the connected computational resources, Grid and
P2P appeared as the disruptive technologies that can greatly
affect not only scientific and academic activity but also
business and enterprise productivity. The rationale is that
such technologies are inexpensive (often built up and main-
tained in a contributory way), technologically manageable
and easy to maintain and extend, thus reducing the needs
for replacement of existing systems or acquisition of new
infrastructures.

The demand for more computing power has been a con-
stant trend in many fields of science, engineering and busi-
ness. Now more than ever, the need for more and more pro-
cessing power is raising in the resolution of problems from
life sciences, financial services, drug discovery, weather
forecasting, massive data processing for e-Commerce and
e-Government, etc. Grid and P2P computing are based on
the premise to deliver greater computing power at less cost
enabling thus the solution of complex problems from many
fields of science, engineering and business.

The term Grid computing was introduced in 1990s [9]
to express the ”computing power Grid” in analogy to an

electric power Grid. Computational Grids were motivated
by the need to develop computational frameworks to support
large-scale applications that benefit from the large comput-
ing potential offered by such distributed infrastructures.

P2P systems became quite popular for file sharing among
Internet users through Napster, Gnutella, FreeNet, BitTorrent
and other similar systems. Clearly, the motivation and the
community of users and developers behind P2P systems
have been different from that of Grid computing. Foster et
al. stressed the difference between Grids and P2P systems
by stating that ”the sharing that we are concerned with
is not primarily file exchange but rather direct access to
computers, software, data, and other resources”

Commonly Grid or P2P middleware provides fundamental
services that are at a low-level of abstraction, making thus
difficult their use in the process of application development.
Moreover, such middleware is not complete with regard
to the demands of different application domains, requiring
thus some ad-hoc development. Because of the inherent
complexity of the Grid and P2P middleware and the lack of
adequate documentation, Grid and P2P systems remain still
difficult to be used by the domain scientists and engineers.

In this paper we describe and evaluate recent develop-
ments in Grid and P2P middleware with respect to scientific
and engineering applications. We highlight the differences
on the approaches taken for Grid and P2P middleware as
well as the common points of both paradigms. In addition,
we discuss the corresponding programming models and
languages. We also highlight a collection of applications that
have been successfully Grid-enabled or P2P-enabled in the
context of e-Science.

The remainder of this paper is organized as follows. In
Section I we give an overview of the Grid paradigm for
parallel processing, and survey the corresponding middle-
ware as well as programming models and languages. The
P2P counterpart is presented in Section II. The use of Grid
and P2P paradigms for e-Science applications is discussed
in Section III. The common characteristics and lessons
learned from both paradigms are presented in Section IV.
We conclude the paper in Section V.

2010 International Conference on Complex, Intelligent and Software Intensive Systems

978-0-7695-3967-6/10 $26.00 © 2010 IEEE

DOI 10.1109/CISIS.2010.109

409

I. GRID PARADIGM

The Grid paradigm may be used in various contexts,
such as the high throughput computing or high performance
computing.

High throughput computing. The aim is to complete the
largest number of applications per unit of time. It should be
noted that in such case, we have a coarse-grained parallelism
while the fine-grained is not necessarily exploited. System-
related QoS requirements are important in this case.

High performance computing. The aim is to reduce the
execution time of applications. To achieve this goal, the
exploitation of fine-grained parallelism is necessary. In this
case is important the user’s requirement on fast completion
of a certain application.

A common set of requirements on Grid application-level
tools includes: (1) Grid tools should be built on top of the
Grid software infrastructure, (2) should isolate users from
the dynamics of the Grid infrastructure, (3) should reduce
application development cost and complexity, and (4) should
be generic and easy to use facilitating thus the application
development also to domain scientists or engineers non-
familiar with the low-level details of Grid technology. Much
of the current research efforts are devoted to bridging the
gap between existing Grid middleware and application-level
needs.

A. Grid Middleware and Communication Libraries

A major concern in Grid environments is dealing with
the high degree of heterogeneity of resources that can
range from laptops and PCs to supercomputers. The uni-
fied virtual view of Grid systems and the efficient and
transparent access to computational resources is achieved
by Grid middleware. Grid middleware aims at integrating
heterogeneous resources, abstract low-level characteristics,
efficient assignment of resources, job/application allocation
and execution, monitoring, data access and transfer, and
secure access to resources. Grid middleware can be seen as
distributed software that enables the communication between
applications and underlying computational platforms and
as such it should be as complete and generic as possible
in terms of operations/services offered to mach any needs
of applications to be build on top of it. Due to such
vital functionalities, Grid middleware is considered as the
backbone of Grid computing systems.

Considerable research efforts are currently devoted to the
design and implementation of Grid middleware. Since Grid
systems are considered as a natural development step of
parallel and distributed systems, existing middleware and
communication libraries used in parallel and distributed
systems such as Condor, MPI and PVM were extended
to support Grid-enabled applications. Certainly, the existing
libraries showed several limitations when faced to Grid in-
frastructures, therefore new middleware and communication
libraries are proposed by Grid computing community to cope

with new characteristics of such systems and thus match the
needs of the development of large scale Grid applications.
Below we briefly consider some of them, that are currently
widely used by the Grid computing community.

MPI-based middleware: Message Passing Interface
(MPI) is established as the main paradigm in the devel-
opment of parallel scientific applications. Message passing
paradigm is more appropriate for tightly-coupled parallel
applications rather than loosely-coupled Grid model, how-
ever, new versions of MPI appeared attempting to improve
the performance of the MPI collective communications for
fault tolerant MPI implementations. MPICH-G2 [13] is a
Grid-enabled implementation of the MPI, which allows to
couple multiple heterogeneous machines to run MPI applica-
tions. PACX-MPI (PArallel Computer eXtension to MPI) [4]
enables an MPI application to run on a meta computer
consisting of several, possibly heterogeneous, machines,
each of which may itself be massively parallel.

Java RMI-based middleware: Due to its platform in-
dependent nature, Java is expected to be of growing im-
portance for the development of Grid middleware. MPJ
(Java MPI) [3] is the MPI-like Message Passing for Java,
attempting to establish a standard Java parallel programming
APIs after Message Passing Interface (MPI). Other efforts
use Java’s Remote Method Invocation model. RepMI [14]
is a compiler-based approach for object replication in Java
and is based on RMI. It implements a MagPIe-like broadcast
operation for Grid environments.

NetSolve/GridSolve: NetSolve/GridSolve [2], [6] is
among the first Grid middleware used for high performance
computing that enabled the solution of complex scientific
problems using geographically distributed resources. Net-
Solve intents to use the best computational resources on a
network. Fault tolerance and load-balancing are also features
of the NetSolve system to achieve high performance. It
should be noted however that NetSolve is based on client-
server RPC-like model and has thus the limitations of a
centralized system in contrast to full-featured Grid systems
which are cheaper than a server farm like approaches. It
specializes for coarse-grain task parallelism. Another limi-
tation of NetSolve is the lack of universal interface; in fact,
its interface protocol can only be applied in the clients of
NetSolve system.

Globus and Globus-based middleware: Globus
Toolkit [12] is the most widely used middleware for
Grid applications. It allows discovering resources, running
applications, dealing with heterogeneity and security issues.
It is an integrated toolkit of Grid services offering resource
allocation and process management, communication
services, authentication and security services, system
monitoring, remote data access, etc. Due to its wide use,
Globus has been integrated by other projects such as
Condor-G, MPICH-G2 and NetSolve.

410

gLite.: gLite1 is another middleware for Grid comput-
ing, which provides a framework for building Grid applica-
tions through an integrated set of components that support
resource sharing. gLite is developed as part of the Enabling
Grids for E-sciencE (EGEE) project. The gLite Grid services
follow a Service Oriented Architecture, aiming to facilitate
compliance with Grid standards, such as Open Grid Service
Architecture (OGSA). One distinguished feature of gLite is
that users can implement just services according to their
particular needs without having to use the whole system.

B. Programming Languages and Models for Grid Systems

Grid programming languages and models should be able
to cope with heterogeneous and dynamic nature of the Grid
computing infrastructures.

Programming Languages and Runtime Environments:
Due to space limitations we briefly describe recent devel-
opments in languages and runtime environments for Grid
computing. The reader is referred to Lee et al. [17] and
Laforenza [15], for surveys on Grid programming models.
One common observation is that up-to-date programming
tools and languages are insufficient to support the effective
development of Grid applications. In particular, the lack
of a simple, standard programming interface that hides
complexities of Grid systems makes difficult and tedious
the programming task in Grid systems.

GEL (Grid Execution Language) [8] is a scripting lan-
guage for programming parallel applications for a Grid
environment. The language is aimed to facilitate coping
with high-latency communications and heterogeneity in Grid
environments. GEL’s semantics provides structures for while
loops, conditionals and explicitly parallel execution. Aba-
cus [27] is a service-oriented programming language for
Grid applications. Abacus offers a service abstraction at
language level and hides the user from low-level details
such as service deployment are supported by the compiler
and the runtime system. Abacus has a similar syntax with
Java. Lightweight Java taskspaces framework [22] is suited
for applications that require inter-task communication. The
framework is characterized by decentralization, direct com-
munication between tasks through tuple space distributed
over the worker hosts.

Programming Models: Programming models employed
for Grid applications are essentially the known ones from
parallel and distributed computing such as Shared Memory
Model, Threads/OpenMP, Message Passing Model, Object
and Service Oriented Models as well as their hybridizations.
Yet, due to the intrinsic characteristics of Grid infrastruc-
tures, the known models need adaption in order to efficiently
exploit the Grid systems.

Classical parallel models such as Master-Worker, Task
Farming, Parametric Computation and Divide-and-Conquer

1http://glite.web.cern.ch/glite/

Models are commonly used for developing Grid applica-
tions. On the other hand, adaption of workflow models has
been proposed for Grid applications having dependencies
among their tasks in order to exploit coarse-grain, dataflow-
like parallelism. Finally, specific models are also proposed
to address needs for specific classes of applications. For
instance, the IBM’s Compute Grid programming models
includes two programming models, namely, transactional
batch and compute-intensive models within the WebSphere
Software. In this case, a compute Grid application is a
J2EE application that conforms to the aforementioned Grid
programming models.

II. P2P PARADIGM

While Grid computing originated in the scientific commu-
nity and was as at the very beginning conceived as a way to
gain more processing power for applications, scientists have
only recently started to use P2P technologies for large-scale
scientific applications. P2P technologies can contribute in
several ways to large-scale distributed systems and applica-
tions, however, the most important one is collaborative and
contributory computing. Harnessing the power of networked
PCs, through CPU scavenging and volunteer computing [1],
P2P systems are showing their great potential in solving
complex problems such as protein folding. It should be noted
however that in a P2P system, the performance is usually
”best effort”-like as compared to high performance Grid.
Despite of recent advances, there are still many issues that
prevent P2P from being widely used as paradigm for parallel
processing.

Scalability. Unlike current Grid systems which tend to be
moderate to medium size, P2P systems can actually be very
large, virtually joining millions of peers.

Fault-tolerance. Grid systems can be considered as more
problematic as regards fault tolerance due to their centralized
nature, while P2P systems are in principle more robust.
However, it is not yet clear nor implementable in practice
how to build robust P2P applications for parallel applica-
tions. Decentralization and dynamism are not fully addressed
in current P2P systems.

Efficiency. The efficiency of the P2P systems depends
much on the contributed bandwidth and other peer resources
(storage, processing power, ...). Incentive mechanisms and
implementing give-to-get algorithms so that any peer is both
a contributor and a beneficiary of the shared resources would
increase the systems’ efficiency of parallel applications.

Security. P2P systems have all security issues of volunteer
computing. Peers might wish to hide personal identifying
information, so maintaining anonymity is each time more
important to contributing peers. Detecting malicious peers,
such as those who can falsify and return incorrect results or
distributing malicious executable programs to peers, etc. are
important problems in P2P systems.

411

A. P2P Middleware and Programming Models
As in the case of Grid computing, middleware and

communication libraries are vital for the development of
P2P-enabled applications. Compared to Grid systems, there
have been developed fewer middleware and communication
libraries for P2P systems. They are centred around three
architectures: client/server, pure P2P (fully decentralized)
and hybrid (super-peer) architectures.

JXTA Library: JXTA [18] is a library of generalized
P2P protocols that enable the communication between any
connected devices in the network. The set of protocols can
be used as a basis for the implementation and deployment
of P2P networks ubiquitously and independently of com-
puting platforms. Inter-operability among different networks
is also claimed (using peerIds, peers can traverse different
networks).

A JXTA-based P2P network consists of a set of inter-
connected peers, which can be self-organized in groups and
offer common services to the rest of the network. Services
are announced using XML documents, the so called, adver-
tisements. Advertisement is an important piece in a JXTA
network; through advertisements peers can join other peers,
be aware and use available services in the network. Among
others, they include peer advertisement, peer-group adver-
tisement, pipe advertisement, rendezvous advertisement and
peer information advertisement. Messages among peers are
sent through pipes, asynchronous communication channels.
Messages are XML documents encapsulating routing in-
formation, credential information (binary data can be also
encoded and included).

Peers use several protocols for communication and ac-
complishing their functionalities. Essentially there are six
protocols; it should be noted that a peer needs not to
implement all these protocols but only those required for its
specification. These protocols are: peer discovery protocol,
which serve for announcing resources (peers, groups, pipes,
services, ...) and discover other peers’ resources; peer infor-
mation protocol, which serves for getting state information
(time, state, traffic, ...); peer resolver protocol, which serves
for sending generic requests to one or more peers, usually for
information exchange; pipe binding protocol, which serves
for establishing virtual communication channels (pipes);
endpoint routing protocol, which serves for finding routing
to other peers through relay peers; and, rendezvous protocol,
which enables peers for subscribing to service propagation.

As can bee seen from the above description, JXTA is a ba-
sic library and can be still considered as low level to be used
in a straightforward way by programmers for developing
P2P applications. Its features such as stable API, NAT and
firewall traversal, decentralized architecture and scalability
make JXTA appropriate for developing middleware building
on top of JXTA.

JXTA-based middleware: Several middleware based on
JXTA have been reported in the literature. These include

JXTA-Overlay, P3, JXTPIA, Jalapeno, JNGI, JXTA-Grid,
OurGrid, Triana and Xeerkat. We briefly describe them next.

JXTA-Overlay2 [28] project is an effort to use JXTA tech-
nology for building an overlay on top of JXTA offering a set
of basic primitives that are most commonly needed in P2P
applications. It comprises primitives for peer discovery, peer
resources discovery, resource allocation, task submission
and execution, file/data sharing, discovery and transmission,
instant communication, peer group functionalities (rooms
etc.) and monitoring of peers, groups, tasks etc. This set of
basic functionalities is intended to be as complete as possible
regarding the needs of P2P applications, which can be built
on top of the overlay. One of the characteristics of the prim-
itives offered by the JXTA-Overlay is their genericity and
independence from the applications that will be using them,
yet allowing to keep the intrinsic decentralized nature of
Grid/P2P systems. Regarding the architecture of the JXTA-
Overlay, it is based on a broker-client model, implemented
as a broker layer and a client layer, respectively.

Several economic-like models have been implemented for
selecting peers in job executions. JXTA-Overlay has been
tested through different types of applications. We distinguish
here two of them. The first is a distributed application that
process large log data files in regularly sequenced data for-
mat. The second one is to create a group-ware environment
for students of a virtual university. Both applications showed
the feasibility of the overlay approach.

P3 [21] (which stands for Personal Power Plant) is
another middleware using JXTA library aimed at supporting
common requirements of P2P software as well as large scale
distributed computing. P3 consists of a job management sub-
system, a job monitor, and parallel programming libraries.
P3 creates a JXTA-supported peer group called a job group
for each job that is a submitted by a parallel application. The
experimental evaluation of this library as reported in [21]
showed a certain amount of overhead on the middleware in
terms of communication performance even though a cluster
on Gigabit Ethernet LAN was used as infrastructure.

Jalapeno [25] is intended for supporting task execution
in a desktop Grid. It consists of manager, worker and task
submitter hosts. Jalapeno is appropriate as a framework
for solving embarrassingly parallel applications in which
the problem is split into smaller independent sub-problems.
JNGI [26] is another JXTA-based framework for job execu-
tions using computational peers in the P2P network. Jobs are
split and distributed among several peers. It is claimed that
by providing redundancy within peer groups, it is ensured
that failures do not affect job completion. Xeerkat3 is a
JXTA based framework that uses a worker/hiring analogy to
establish computational Grids. It uses an agent computing
model where an agent runs a number of available services.

2https://jxta-overlay.dev.java.net/
3Xeerkat http://code.google.com/p/xeerkat/

412

XtremWeb: XtremWeb [5] is a Java-based software
for the development and deployment of light-weight Grids,
namely Grids based on desktop PCs. It is mainly addressed
for developing Grid and P2P-enabled scientific applica-
tions, especially embarrassingly parallel applications (para-
metric model). The computing resources are provided in
a volunteer-basis. XtremWeb architecture is made up of
Client, Coordinator and Workers and uses a pull model in
which Workers initiate communications to request jobs from
Server. Worker’s results are sent to the Coordinator (result
collector). In a P2P scenario, XtremWeb can be used to
build centralized P2P Systems in which a Worker behaves
as a Client. Jobs submitted by Client are registered on the
Server and scheduled on Workers. Communications between
different parts of XtremWeb include remote procedure call
(RPC) messages and data transfers.

P2P-MPI: P2P-MPI [11] is a middleware for de-
veloping embarrassingly parallel applications by grouping
computing resources of desktop Grids. Typically, a user can
request P2P-MPI to transparently find a given number of
processors for running a Java application, using the P2P-
MPI message passing library, which in turn conforms to
MPJ.

III. GRID AND P2P-ENABLED E-SCIENCE APPLICATIONS

Grid computing has shown its usefulness for a family of
applications arising in science and engineering. Simulation-
driven or experiment-driven applications such as parametric
modeling, parameter sweep applications, monte-carlo simu-
lations are examples of successful e-Science applications.
Presently, e-Science applications span domains such as
chemistry and physics, medical and life sciences, engineer-
ing and design, mathematics, economics, business and fi-
nance, environmental science, earth sciences and astronomy.

In [20] the authors provide a classification of different ap-
proaches for e-Science Grid infrastructures in solving com-
plex problems. The multi-disciplinary nature of e-Science
applications as well as the cross-domain collaboration of re-
searchers in the context of virtual laboratories/organizations,
make Grid technologies a promising approach for solving
complex problems. On the other hand, P2P paradigm has
also started to be considered in combinatorial optimization
(e.g. for branch&bound algorithms [23], [24] and evolution-
ary algorithms [16]).

IV. INTEGRATED APPROACHES TO GRID AND P2P
SYSTEMS

As can be seen, Grid and P2P systems have followed
different trajectories motivated by different needs and users’
interest and supported by rather different developing and re-
search communities. Fortunately, both paradigms are evolv-
ing towards sharing more common characteristics. Grid
and P2P systems have common intrinsic features of large

distributed systems and both of them are concerned with
harnessing and sharing of computationally resources.

Grid and P2P systems can benefit from each other char-
acteristics. Grid systems can benefit from P2P techniques
of resource discovery, decentralization techniques, repli-
cation techniques, and scalability, which are extensively
addressed in the P2P literature. In this sense, P2P systems
can provide more flexibility to Grid infrastructures. For
instance, resource and service discovery approach in Grid
systems is centric or hierarchic-based, while P2P systems
use advanced presence mechanisms of peer nodes. On the
other side, P2P systems can benefit from resource allocation,
scheduling, load balancing techniques, security techniques,
etc., developed for Grid systems.

Currently there are no P2P-Grid middleware that would
support best features of both systems, however, there are
attempts to develop integrated approaches for Grid and
P2P systems for parallel and distributed computing. OGSA
model is one such example, in which Grid, P2P and Web
Service concepts are merged. Also, efforts are being done
at infrastructure level, such as mixing clusters and desktop
machines for P2P-based computational Grids (e.g. [7], [10])
or the PlanetLab platform [19] as a testbed for Grid-P2P
applications.

V. CONCLUSIONS

Grid computing originated in the scientific community
in response to the need for harnessing more processing
power for the development of large-scale scientific and
engineering applications. P2P paradigm only recently has
started to be used for large scale distributed computing
systems. Harnessing the power of networked PCs, through
CPU scavenging and volunteer computing is enabling P2P
systems to leverage high rates of throughput.

In this paper we have described and evaluated recent
developments in Grid and P2P middleware with respect to
scientific and engineering applications. The analysis of the
existing Grid middleware, programming tools and languages
shows that they do not fully support the effective program-
ming and development of Grid applications. In particular, the
lack of simple, standard programming interfaces that hide
complexities of Grid systems makes difficult and tedious
the programming task in Grid systems. Nonetheless, Grid
computing has shown to be more successful for parallel
and distributing computing than P2P systems so far. Despite
of the recent advances, there are still many issues such
as scalability, standardization, efficiency and security that
prevent P2P from being fully exploited and widely used as
paradigm for efficient parallel processing.

Finally, there is a clear need for integrated frameworks
for Grid and P2P, namely a middleware that would support
best features of both systems. Models such as OGSA, which
merges Grid, P2P and Web Service concepts, are showing
their usefulness in this regard.

413

ACKNOWLEDGEMENTS

Fatos Xhafas research work completed at Birkbeck, Uni-
versity of London, on Leave from Technical University of
Catalonia (Barcelona, Spain). His research is supported by
a grant from the General Secretariat of Universities of the
Ministry of Education, Spain.

REFERENCES

[1] D.P. Anderson and G. Fedak. The Computational and Storage
Potential of Volunteer Computing. In Proceedings of the Sixth
IEEE international Symposium on Cluster Computing and the
Grid, IEEE Computer Society, pp. 73-80, 2006.

[2] D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M. Miller,
K. Seymour, K. Sagi, Z. Shi and S. Vadhiyar. Users’ Guide to
NetSolve V1.4.1, University of Tennessee, Technical Report,
ICL-UT-02-05, 2002.

[3] M. Baker, B. Carpenter and A. Shafi. MPJ Express: Towards
Thread Safe Java HPC. The IEEE International Conference on
Cluster Computing, pp. 1-10, 2006.

[4] M.A. Brune, G.E. Fagg and M. Resch. Message-Passing En-
vironments for Meta-computing. Future Generation Computer
Systems 15 (5-6) (1999), pp. 699-712.

[5] F. Cappello, S. Djilali, G. Fedak, T. Herault, F. Magniette,
V. Neri and O. Lodygensky. Computing on Large Scale
Distributed Systems: XtremWeb Architecture, Programming
Models, Security, Tests and Convergence with Grid. Future
Generation Comp. Syst. 21(3) (2005), pp. 417-437.

[6] H. Casanova and J. Dongarra. Netsolve: Network enabled
solvers. IEEE Computational Science and Engineering 5(3)
(1998), pp. 57-67.

[7] A. Chazapis and A. Zissimos. A P2P Replica Management
Service for High-Throughput Grids. In Proceedings of the
2005 international Conference on Parallel Processing. IEEE
CS (2005), pp. 443-451.

[8] Ch. Ching Lian, F. Tang, P. Issac and A. Krishnan. GEL:
Grid execution language. Journal of Parallel and Distributed
Computing 65(7), pp. 857-869, 2005.

[9] I. Foster and C. Kesselman. The Grid - Blueprint for a New
Computing Infrastructure. Morgan Kaufmann, 1998.

[10] G. Fox, Sh. Pallickara and X. Rao. Towards Enabling Peer to
Peer Grids. Journal of Concurrency and Computation: Practice
& Experience 17(7-8) (2008), pp. 1109-1131.

[11] S. Genaud and Ch. Rattanapoka: P2P-MPI: A P2P Framework
for Robust Execution of Message Passing Parallel Programs on
Grids. Journal of Grid Computing 5(1) (2007), pp. 27-42.

[12] Globus: http://www.globus.org/

[13] N. Karonis, B. Toonen, and I. Foster. MPICH-G2: A Grid-
Enabled Implementation of the Message Passing Interface.
Journal of Parallel and Distributed Computing 63(5) (2003),
pp. 551-563.

[14] J. Maassen, Th. Kielmann and H.E. Bal. Parallel Application
Experience with Replicated Method Invocation. Concurrency
and Computation: Practice and Experience 13(8-9) (2001),
pp. 681-712.

[15] D. Laforenza. Grid programming: some indications where we
are headed. Parallel Computing 28(12) (2002), pp. 1733-1752.

[16] J.L. Laredo, A.E. Eiben, M. Steen, P.A. Castillo, A.M. Mora,
and J.J. Merelo. P2P Evolutionary Algorithms: A Suitable
Approach for Tackling Large Instances in Hard Optimization
Problems. In Proceedings of the 14th Euro-Par Conference on
Parallel Processing. LNCS 5168 (2008), 622-631.

[17] C. Lee, S. Matsuoka, D. Talia, A. Sussman, N. Karonis, G.
Allen and J. Saltz. A Grid Programming Primer. Global Grid
Forum, Advanced Programming Models Working Group, 2001.

[18] S. Oaks, B. Traversat, and L. Gong. JXTA in a Nutshell.
O’Reilly, 2003.

[19] Planet Lab. http://planet-lab.org/.

[20] M. Riedel, A. Streit, F. Wolf, Th. Lippert and D. Kranzlmller.
Classification of Different Approaches for e-Science Applica-
tions in Next Generation Computing Infrastructures. In IEEE
4th International Conference on e-Science (2008), pp. 198-205.

[21] K. Shudo, Y. Tanaka and S. Sekiguchi. P3: P2P-based mid-
dleware enabling transfer and aggregation of computational
resources. Fifth IEEE International Symposium on Cluster
Computing and the Grid (CCGrid’05) (2005), pp. 259-266.

[22] H. De Sterck, R.S. Markel, T. Phol and U. Rde. A lightweight
Java taskspaces framework for scientific computing on com-
putational grids. In Proceedings of the 2003 ACM Symposium
on Applied Computing (2003), pp. 1024-1030.

[23] S. Tagashira, M. Mito and S. Fujita. Towards generic solver of
combinatorial optimization problems with autonomous agents
in P2P networks. Proc. ISHPC 2005 IEICE - Trans. Inf. Syst.
E89-D, 6 (2005), pp. 1940-1947.

[24] E-G. Talbi, A. Bendjoudi and N. Melab. A parallel peer to
peer branch and bound algorithm for computational Grids.
Proc. of the Intl. Workshop on Peer to Peer, Parallel, Grid
and Internet Computing (3PGIC-2007) (2007), pp. 271-278.

[25] N. Therning and L. Bengtsson Jalapeno: decentralized grid
computing using P2P technology. In Proceedings of the 2nd
Conference on Computing Frontiers (2005), pp. 59-65.

[26] J. Verbeke, N. Nadgir, G. Ruetsch, and I. Sharapov. Frame-
work for P2P distributed computing in a heterogeneous, de-
centralized environment. LNCS 2536 (2002), pp. 1-12.

[27] X. Wang, L. Xiao, W. Li, H. Yu and Zh. Xu. Abacus: a
service-oriented programming language for grid applications.
IEEE International Conference on Services Computing (2005),
pp. 225-232.

[28] F. Xhafa, L. Barolli, Th. Daradoumis, R. Fernandez and S. Ca-
ballé, Jxta-Overlay: An interface for efficient peer selection in
P2P JXTA-based systems. Computer Standards & Interfaces,
Available online March 2008

414

