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Abstract

In this paper, we present an effective computational strategy to design high-performance decentralized controllers with

partial local-state information for vibration control of large building structures. In the proposed approach, the overall

building model is first decomposed into a set of approximate low-dimensional decoupled subsystems subject to the

action of generalized disturbances, which include the effect of external physical disturbances, modeling approximation

errors and mechanical subsystem interactions. Next, using the approximate decoupled subsystems, an overall structured

state-feedback controller is obtained by designing a proper set of independent local controllers. The proposed compu-

tational strategy is applied to obtain two structured control systems for the seismic protection of a 35-story building:

(i) a fully decentralized velocity-feedback controller with 35 interstory actuators that can be passively implemented by

a set of viscous dampers, and (ii) a decentralized velocity-feedback controller with 15 interstory actuators, which can

be implemented with a reduced set of collocated sensors and a system of five independent short-range communication

networks. To assess the performance of the obtained structured controllers, the corresponding frequency and time re-

sponses are investigated and compared with the responses produced by optimal full-state H∞ controllers. Moreover, to

evaluate the effectiveness of the computational procedure, structured and full-state controllers are designed for a proper

set of buildings with different number of stories and the corresponding computation times are recorded and compared.

The obtained results show that the computational cost of the proposed design methodology is remarkably low and also

indicate that, despite the severe information constraints, the synthesized structured controllers are practically optimal.
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1. Introduction

For vibration control of large structures, the idea of using a distributed control system formed by a large number of

smart control devices that work jointly to mitigate the overall vibration response is certainly an appealing concept [1–

5]. Considering the current technological means, designing smart control devices that integrate actuation mechanisms,

sensors, communication units and computational capabilities is a clearly solvable issue [6, 7]. In contrast, designing

suitable controllers to drive a large number of such devices is still a challenging and complex open problem, which
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is characterized by three fundamental elements: large dimensionality, high computational cost and severe information

constraints [8–15]. For this kind of problems, design strategies based on linear matrix inequality (LMI) formulations

make it possible to compute advanced controllers [16–18]. However, these strategies are only computationally effective

in problems of moderate dimension. Moreover, the centralized design of decentralized controllers by setting a particular

zero-nonzero pattern on the LMI variables frequently leads to infeasibility issues [19, 20].

In this paper, we present a novel controller design methodology for vibration control of large buildings equipped

with a distributed system of smart control devices. The main objective is to provide an effective computational strat-

egy to design high-performance decentralized controllers that can operate with partial local-state information. The

underlying idea consists in decomposing the overall building model into a set of approximate low-dimensional de-

coupled subsystems subject to the action of generalized disturbances, which include the effect of physical external

excitations, modeling approximation errors and mechanical subsystem interactions. Then, an overall state-feedback

structured controller with partial local-state information can be efficiently computed by designing a proper set of in-

dependent local state-feedback controllers for the approximate subsystems. To demonstrate the effectiveness of the

proposed design methodology, two different structured control systems with partial state information are designed for

the seismic protection of a 35-story building: (i) a fully decentralized velocity-feedback controller with a complete

set of 35 interstory actuators, and (ii) a partially decentralized velocity-feedback controller with an incomplete set of

15 interstory actuation devices implemented at the building bottom levels. The fully decentralized controller admits a

passive implementation by means of viscous dampers. This is a simple, robust and reliable solution that can operate

without sensors, no communication network and null power consumption [21, 22]. The decentralized controller re-

quires an active or semi-active implementation and can operate with a reduced set of 15 interstory-velocity collocated

sensors and a system of five independent short-range communication networks. In both cases, local sate-feedback

H∞ controllers are designed for the approximate decoupled subsystems and the performance of the overall structured

controllers is evaluated by considering the frequency and time-response characteristics, taking as a reference the corre-

sponding active full-sate H∞ controllers. Also, to assess the computational effectiveness of the proposed methodology,

the same controller designs are carried out for a set of several building models with different numbers of stories and

the corresponding computation times are recorded and compared. The obtained results indicate that, despite the severe

information constraints, the proposed structured controllers present a practically optimal behavior when compared with

the active full-state H∞ controllers. Moreover, the computation times required by the decentralized design procedure

are remarkably small and present a well-balanced and stable increment pattern as the dimension increases. Finally, it

is worth mentioning that a major effort has been made to avoid the common approach of subsystem decomposition by

means of summations, and a complete matrix formulation of the computational procedure has been provided. This is

certainly an important feature that facilitates a more practical and effective computational implementation.

The rest of the paper is organized as follows: In Section 2, the n-story building dynamical model for different

actuation schemes is provided. In Section 3, the derivation of the decoupled subsystems is presented. In Section 4, the

structured controllers with partial state information and the reference full-state H∞ controllers are designed, and the

corresponding frequency responses are compared. In Section 5, the seismic time-responses are presented and discussed.
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Figure 1: Multi-story building structure equipped with a system of 4 interstory force-actuation devices. Incomplete actuation scheme corresponding

to the location list L = [1, 2, 4, 7].

Finally, some brief conclusions are provided in Section 6.

2. Building model

Let us consider the lateral displacement of an n-story building described by the second-order model

M q̈(t) + Cd q̇(t) + K q(t) = fu(t) + fw(t) (1)

where q(t) =
[
q1(t), . . . , qn(t)

]T is the vector of story displacements with respect to the ground, M, Cd and K are the

mass, damping and stiffness matrices, respectively, fu(t) is the vector of structural control forces and fw(t) is the vector

of external disturbances. The mass matrix has the diagonal form M = diag(m1, . . . ,mn) and the stiffness matrix has the

following tridiagonal structure:

K=



k1 + k2 −k2

−k2 k2 + k3 −k3

· · · · · · · · ·

· · · · · · · · ·

−kn−1 kn−1 + kn −kn

−kn kn


, (2)
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where mi and ki are the mass and stiffness of the ith story, respectively. If the story damping coefficients ci are known, a

tridiagonal damping matrix can be obtained by substituting the stiffness coefficients ki in Eq. (2) by the corresponding

values ci. Frequently, however, the values ci are unknown, and the damping matrix Cd is computed from M and K by

setting a proper damping ratio on the building modes [23]. For seismically excited buildings, the vector of external

disturbances can be written in the form fw(t) = −M [1]n×1w(t), where w(t) is the ground acceleration input and [1]n×1

denotes a vector of dimension n with all its entries equal to 1. Finally, the vector of structural control forces has the

form fu(t) = TL
u u(t), where u(t) = [u1(t), . . . , unu (t)]T is the vector of actuation forces and TL

u is the control input matrix,

which models the effect of the actuation forces on the structure. In this work, we assume that the n-story building is

equipped with a system of nu ≤ n interstory force-actuation devices implemented at different levels of the building. An

actuation scheme is determined by a list of locations L = [`1, . . . , `nu ], where the location `i indicates that the actuation

scheme contains an interstory actuator ai implemented between the stories s`i−1 and s`i , which exerts a pair of opposite

structural forces of magnitude |ui(t)| upon these stories. An incomplete actuation scheme, defined by the location list

L = [1, 2, 4, 7], and the corresponding structural control forces are schematically depicted in Fig. 1. As it can be seen

in the figure, the location `4 = 7 indicates that the actuation scheme contains an actuator a4, implemented between the

stories s6 and s7, that exerts a pair of opposite structural forces of magnitude |u4(t)|. For a complete actuation scheme,

as the one displayed in Fig. 3(a), the location list is [1, 2, . . . , n] and the corresponding control input matrix is a square

matrix of dimension n that we denote by Tu and has the following upper-diagonal band structure:

Tu =



1 −1

1 −1

· · · · · ·

· · · · · ·

1 −1

1


. (3)

For an incomplete actuation scheme defined by the location list L = [`1, `2, . . . , `nu ], nu < n, the control input matrix

TL
u is a rectangular matrix that contains the columns of Tu indicated in L. Using the submatrix notations discussed in

Appendix A, we can write TL
u = Tu(1, 2, . . . , n; `1, `2, . . . , `nu ). The interstory drift ri(t) is the relative displacement of

the adjacent stories si−1 and si, more precisely:
r1(t) = q1(t)

ri(t) = qi(t) − qi−1(t) for i = 2, . . . , n.
(4)

By considering the state vector

x(t) = [r1(t), ṙ1(t), . . . , rn(t), ṙn(t)]T (5)

that presents, in increasing order, the interstory drifts and interstory velocities grouped by building levels, we obtain

the state-space model:

ẋ(t) = A x(t) + B u(t) + E w(t), (6)
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with

A = P Â P−1, B = P B̂, E = P Ê, (7)

Â =

 [0]n×n In

−M−1K −M−1Cd

 , B̂ =

 [0]n×nu

M−1TL
u

 , Ê =

 [0]n×1

−[1]n×1

 , (8)

where P is the change-of-basis matrix corresponding to the state transformation

x(t) = P

 q(t)

q̇(t)

 , (9)

[0]n×m is a zero-matrix of the indicated dimensions and In represents the identity matrix of order n. Assuming that

the controller design objective is to reduce the building vibrational response by means of moderate control actions, we

consider a vector of controlled outputs

z(t) = Czx(t) + Dzu(t) (10)

with

Cz =

 I2n

[0]nu×2n

 , Dz = α

 [0]2n×nu

Inu

 , (11)

where α is a scaling factor that compensates the different magnitude of the control forces and the state variables and

can be used to adjust the intensity of the control action.

3. Decoupled substructure models

Let us consider the substructure B(k) schematically depicted in Fig. 2, which includes nk actuators located at the

building locations Lk =
[
`k

1, . . . , `
k
nk

]
, and a set of collocated sensors that provide the information corresponding to mk

components of the state vector specified by the list of positions Jk =
[
j k
1 , . . . , j k

mk

]
. The first objective is to formulate an

approximate local model

ẋ(k)(t) = A(k) x(k)(t) + B(k) u(k)(t) + E(k) w(k)(t), (12)

where the state vector x(k)(t) includes the locally measurable state information, and the control vector u(k)(t) contains

the control actions corresponding to the actuation devices implemented in the substructure. The local disturbance

vector w(k)(t) is a generalized disturbance that includes the effect of external physical excitations, local modeling errors

and mechanical interactions with neighboring substructures. We also want to define a suitable local controlled-output

vector

z(k)(t) = C(k)
z x(k)(t) + D(k)

z u(k)(t) + F(k)
z w(k)(t), (13)

and design a local controller u(k)(t) = G(k)x(k)(t), with G(k) ∈ Rnk×mk , that uses the partial local state information to

compute the control action of the local actuators. By considering a proper set of substructures B(k), k = 1, . . . , ns,

determined by the corresponding lists of actuator locations Lk and measured state positions Jk, we can design a system

of local controllers that make up an overall structured controller u(t) = Ĝx(t) with a state-feedback gain matrix Ĝ ∈

Rnu×2n defined as follows :

ĜJk
ψLk

= G(k), ĜJk
ψLk

= [0]nk×(2n−mk), k = 1, . . . , ns, (14)
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Figure 2: Decoupled substructure model and local generalized disturbance w(k)(t), which includes the effect of external physical disturbances, local

modeling errors and mechanical interactions with neighboring substructures.

where ĜJk
ψLk

is the submatrix of Ĝ corresponding to the rows and columns specified in ψLk and Jk, respectively, Jk

denotes the complement list of Jk with respect to [1, . . . , 2n], and ψLk indicates the positions corresponding to the

elements of the sublist Lk in the overall actuation list L (see Appendix A). To obtain the approximate local model in

Eq. (12), we consider the global model in Eq. (6) and extract the rows corresponding to the local-state components

indicated in Jk:

ẋJk (t) = [Ax(t)]Jk
+ [Bu(t)]Jk

+ [Ew(t)]Jk
. (15)

By applying the decomposition property given in Eq. (A.1), we have

ẋJk (t) = AJk
Jk

xJk (t) + AJk
Jk

x Jk
(t) + BψLk

Jk
uψLk (t) + BψLk

Jk
uψLk

(t) + EJk w(t), (16)

where ψLk denotes the complement of ψLk with respect to the list [1, . . . , nu]. Next, we define the local state and control

vectors

x(k)(t) = xJk (t), u(k)(t) = uψLk (t), (17)

and the scaled local disturbance vector

w(k)(t) =



[
Sx

] Jk

Jk
xJk

(t)[
Su

]ψLk

ψLk
uψLk

(t)

Sw w(t)


, (18)
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(a) Complete actuation scheme (b) Incomplete actuation scheme

Figure 3: Actuation schemes. (a) Complete actuation scheme with interstory actuation devices implemented at all building levels. (b) Incomplete

actuation scheme with a reduced set of interstory actuation devices implemented at the building bottom levels.

where Sx ∈ R2n×2n, Su ∈ Rnu×nu and S w ∈ R are scaling factors that compensate the different order of magnitude of the

disturbance components. Finally, by considering the matrices

A(k) = AJk
Jk
, B(k) = BψLk

Jk
, (19)

E(k) =

[
AJk

Jk

([
Sx

] Jk

Jk

)−1
BψLk

Jk

([
Su

]ψLk

ψLk

)−1
EJk S

−1
w

]
, (20)

we obtain the approximate local model given in Eq. (12).

To define the local controlled-output in Eq.(13), we consider a new list of indexes Pk =
[
pk

1, . . . , pk
m̃k

]
, which

allows selecting those components of the overall controlled-output vector z(t) that are relevant in the design of the

local controller. From the controlled-output vector in Eq. (10), we select the rows indicted in the index list Pk and, by

applying the property in Eq. (A.1), we obtain the following decomposition:

zPk (t) =
[
Cz

]Jk
Pk

xJk (t) +
[
Cz

]Jk
Pk

x Jk
(t) +

[
Dz

]ψLk
Pk

uψLk (t) +
[
Dz

]ψLk
Pk

uψLk
(t). (21)

Next, by defining z(k)(t) = zPk (t) and considering the local state and control vectors in Eq. (17), and the local scaled

disturbance in Eq. (18), we obtain the following local controlled-output matrices:

C(k)
z =

[
Cz

]Jk
Pk
, D(k)

z =
[
Dz

]ψLk
Pk
, (22)

F(k)
z =

[[
Cz

]Jk
Pk

([
Sx

] Jk

Jk

)−1 [
Dz

]ψLk
Pk

([
Su

]ψLk

ψLk

)−1
[0]m̃k×1

]
. (23)

For the building model presented in Section 2, the different elements of the proposed general decomposition procedure

have the following particular characteristics:

Actuator locations. The actuation devices are located at the building positions indicated in the list L = [`1, . . . , `nu ].
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The subsystems actuation lists Lk, k = 1, . . . , ns, are a partition of L, that is, they cover the whole list L and have no

common elements.

Measured states. In the proposed building model, we assume that the actuation devices have an associated sensing unit

that allows measuring the corresponding interstory drift and/or interstory velocity. In Fig. 2, these collocated sensors

are schematically represented by small red boxes attached to associated interstory actuators. Considering the structure

of the state vector in Eq. (5), the sensing unit associated to the actuation device ai, and implemented in the building

position `i, can provide the state components x2`i−1(t) = r`i (t) and/or x2`i (t) = ṙ`i (t). Hence, the list Jd
k = 2Lk − 1

provides the positions of the local interstory drifts in the global state vector. Analogously, the global-state position

list of the local interstory velocities is Jv
k = 2Lk. We can indicate that the local feedback information includes all the

locally available interstory drifts and velocities by choosing the list of state components Jk = Jd
k ∪ Jv

k . For a local

velocity-feedback controller, the list of measured-state components is Jk = Jv
k .

Controlled-output components. To define the local controlled-output vector z(k)(t), we select the components of the

global controlled-output vector z(t) indicated in the list of positions Pk. In this case, a natural choice consists in

including the controlled-output components corresponding to the local state and the local control actions. According

to Eq. (10), the global controlled-output vector has the following structure:

z(t) = [r1(t), ṙ1(t), . . . , rn(t), ṙn(t), αu1(t), . . . , αunu (t)]T . (24)

Hence, we can select the list of controlled-outputs:

Pk =
[
2Lk − 1

]
∪

[
2Lk

]
∪

[
ψLk + 2n

]
. (25)

Scaling factors. The definition of the scaled local disturbance w(k)(t) in Eq. (18) involves three scaling factors Sx ∈

R2n×2n, Su ∈ Rnu×nu , and S w ∈ R, which can be taken with the following form:

Sx = diag(βd, βv, . . . , βd, βv), Su = βuIm, S w = βw. (26)

Interstory drifts in the order of 10−2m, interstory velocities in the order of 10−1m/s, control forces in the order of

106N and ground accelerations in the order of 100m/s2 are common in structural vibration control problems of large

buildings. Accordingly, the following values of the scaling coefficients can be selected:

βd = 100, βv = 10, βu = 10−6, βw = 1. (27)

4. Controllers designs

To illustrate the flexibility and effectiveness of the proposed computational design strategy, we consider a 35-story

building model equipped with two different control configurations: (i) a complete actuation scheme, with a full set of

interstory actuators implemented at all building levels, and (ii) an incomplete actuation scheme, with a reduced set

of interstory actuators implemented at the first 15 levels of the building. For the complete actuation scheme, a high-

performance passive control system is designed by computing a fully decentralized velocity-feedback controller. For

the incomplete actuation scheme, a decentralized active controller with partial state information is designed. In both

cases, an ideal state-feedback H∞ active controller with full state information is taken as the performance reference.

8



Table 1: Parameter values for the 35-story building model. (Taken from Lei Y, Wu DT, Lin SZ. Integration of decentralized structural control and

the identification of unknown inputs for tall shear building models under unknown earthquake excitation, Eng Struct 2013;52:306–16).

story 1 2–10 11–18 19–23 24 25–27 28–33 34–35

mass (×105 Kg) 3.256 2.346 2.346 2.346 2.941 2.346 2.346 2.346

stiffness (×108N/m) 1.88 1.88 1.79 1.74 1.74 1.74 1.28 0.85

relative damping 2%
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Figure 4: Frequency response corresponding to the full-state controllers defined by the control gain matrices G1 and G2. Maximum singular values

of the closed-loop transfer function TG1 , z1 (ω) (blue solid line), the closed-loop transfer function TG2 , z2 (ω) (red dashed line) and the open-loop

transfer function T0, z1 (ω) (black dash-dotted line).

4.1. Passive controller with complete actuation

Let us consider the state-space model in Eq. (6) corresponding to the building parameters presented in Table 1, and

the complete actuation layout schematically displayed in Fig. 3(a). In this case, the control input matrix is a square

matrix of dimension n = 35 with the upper-diagonal band structure indicated in Eq. (3). To compute a state-feedback

H∞ controller u(t) = G1 x(t) for this configuration, we consider the controlled-output vector z1(t) obtained in Eqs. (10)

and (11) for the dimensions n = 35, nu = 35 and the scaling factor α1 = 10−6.9. By solving the LMI optimization

problem P0 described in Appendix B, we obtain an optimal state-feedback gain matrix G1 ∈ R35×70 with the associated

H∞-norm γ1 = 3.1102. The frequency response characteristics of this full-state controller are displayed in Fig. 4,

where the blue solid line corresponds to the closed-loop transfer function TG1, z1 (ω) (defined in Eq. (B.7)) and the black

dash-dotted line represents the frequency response of the uncontrolled building described by the open-loop transfer

9



Table 2: Design of the passive controller for the complete actuation scheme. Exponents of the controlled-output scaling coefficients αpas = 10−σ

and associated H∞-norm values with respect to the controlled-output vector z1(t).

σ 6.10 6.15 6.20 6.25 6.30 6.35

γpas 3.2722 3.1792 3.1323 3.1241 3.1445 3.1830

function

T0, z1 (ω) = Cz1 (2πω j I2n − A)−1E, (28)

which can be obtained by setting a null control gain matrix in Eq. (B.7). The plots in the figure indicate that the

proposed H∞ controller is effective in reducing the building vibrational response for the main and secondaries resonant

peaks. However, it should be observed that this is a centralized controller that requires the complete knowledge of the

state vector to compute the control actions.

Next, for the same control setup, we design a fully decentralized controller that only uses the local interstory

velocities to compute the local control actions. To build the approximate state-space local models, we select the lists

of actuator locations Lk = [k], k = 1, . . . , 35, the lists of measured states Jk = [2k], k = 1, . . . , 35, and the scaling

factors proposed in Eqs. (26) and (27). Additionally, to derive the local controlled-output vectors z(k)(t), we define

a global controlled-output vector zpas(t) by setting the dimensions n = 35, nu = 35 and a scaling coefficient αpas in

Eq. (11), and consider the lists of controlled-output components given in Eq. (25), which in this particular case are

Pk = [2k − 1, 2k, k + 70], k = 1, . . . , 35. Finally, by applying the formulas in Eqs. (19), (20), (22) and (23), we obtain a

set of ns = 35 approximate local models with the following form:

S(k) :


ẋ(k)(t) = A(k) x(k)(t) + B(k) u(k)(t) + E(k) w(k)(t),

z(k)(t) = C(k)
z x(k)(t) + D(k)

z u(k)(t) + F(k)
z w(k)(t).

(29)

By solving the LMI optimization problem P presented in Appendix B for the local system S(k), we obtain a local

controller of the form uk(t) = G(k)ṙk(t), where G(k) is a scalar gain, uk(t) is the control action of the k-th actuation

device and ṙk(t) is the associated interstory velocity. As indicated in [22], if the scalar gain G(k) is negative, then this

local controller can be implemented by means of a viscous damper with damping constant bk = −G(k). Overall, a set

of negative gains G(k), k = 1, . . . , 35, provides a particular tuning configuration for a complete system of interstory

viscous dampers. The performance level of this passive control system can be evaluated by computing the correspond-

ing H∞-norm value γpas with respect to the controlled-output z1(t) used in the design of the full-state H∞ controller.

More precisely, according to Eq. (14), the local velocity-feedback gains G(k) define an overall state-feedback structured

controller u(t) = Gpasx(t) with the following control gain matrix:
[Gpas]2k

k = G(k), k = 1, . . . , 35,

[Gpas]
j
i = 0, otherwise.

(30)
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Figure 5: Frequency response corresponding to the controllers with complete actuation scheme defined by the control gain matrices G1 and Gpas.

Maximum singular values of the closed-loop transfer function TG1 , z1 (ω) (blue solid line), the closed-loop transfer function TGpas , z1 (ω) (red dashed

line) and the open-loop transfer function T0, z1 (ω) (black dash-dotted line).

As indicated in Appendix B, the H∞-norm of this controller with respect to the controlled-output z1(t) can be computed

by solving the optimization problem

γpas = sup
ω

σmax

[
TGpas, z1 (ω)

]
, (31)

where TGpas, z1 (ω) is the closed-loop transfer function defined in Eq. (B.7). In order to design a high-performance passive

control system, we can compare the values γpas corresponding to different scaling coefficients αpas. Considering the

values presented in Table 2, we have selected the scaling coefficient αpas = 10−6.25, which produces a fully decentralized

control system with the local velocity-feedback gains collected in Table 3 and the H∞-norm γpas = 3.1241. This γ-value

represents an increment of only 0.45% with respect to the optimal value γ1 = 3.1102 attained by the full-state controller

and it indicates that, from the H∞ design perspective, the computed passive controller is practically optimal. A more

complete view of the passive controller behavior can be obtained from the frequency response plots displayed in Fig. 5,

where the red dashed line corresponds to the closed-loop transfer function TGpas, z1 (ω), the blue solid line represents

the reference closed-loop transfer function TG1, z1 (ω) and the black dash-dotted line pertains to the open-loop transfer

function T0, z1 (ω). Although the H∞ controller design is only focused on minimizing the main frequency peak-value,

the plots in the figure show that the proposed passive controller and the reference full-state active controller attain a

similar level of performance over the complete frequency range.

4.2. Decentralized controller with incomplete actuation

In this section, we assume that the 35-story building has been equipped with an incomplete actuation system

formed by nu = 15 interstory actuation devices implemented at the building bottom levels, as schematically depicted in

Fig. 3(b). In this case, we have the actuator location list L = [1, 2, . . . , 15], and the corresponding control input matrix

TL
u is a rectangular matrix of dimension 35 × 15 formed by the first 15 columns of the complete control input matrix

11



Table 3: Local velocity-feedback gains (×107Ns/m) for the fully decentralized controller of the complete actuation scheme.

k G(k) k G(k) k G(k) k G(k)

1 −1.1734 10 −1.8676 19 −1.9451 28 −2.2902

2 −1.7752 11 −1.9133 20 −1.9439 29 −2.2693

3 −1.8922 12 −1.9175 21 −1.9437 30 −2.2650

4 −1.8797 13 −1.9162 22 −1.9441 31 −2.2618

5 −1.8755 14 −1.9159 23 −1.9461 32 −2.2556

6 −1.8735 15 −1.9157 24 −1.8376 33 −2.2253

7 −1.8734 16 −1.9155 25 −1.8368 34 −2.7750

8 −1.8717 17 −1.9151 26 −1.9432 35 −2.6137

9 −1.8708 18 −1.9114 27 −1.9235

Table 4: Design of the decentralized controller for the incomplete actuation scheme. Exponents of the controlled-output scaling coefficients αdec =

10−σ and associated H∞-norm values with respect to the controlled-output z2(t).

σ 6.20 6.25 6.30 6.35 6.40 6.45

γdec 3.8374 3.7111 3.6307 3.5996 3.6119 3.6519

in Eq. (3). Using the building parameters presented in Table 1 and the matrix TL
u , we can compute the overall state-

space model in Eq. (6) corresponding to the new actuation scheme. To design a reference state-feedback H∞ controller

u(t) = G2 x(t) for this new configuration, we consider the controlled-output vector z2(t) obtained in Eqs. (10) and (11)

with the dimensions n = 35 and nu = 15, and the scaling factor α2 = 10−6.9. Next, by solving the corresponding LMI

optimization problem P0, we obtain an optimal state-feedback gain matrix G2 ∈ R15×70 with the associated H∞-norm

γ2 = 3.5545. The frequency response characteristics of this full-state controller are displayed in Fig. 4, where the

red dashed line corresponds to the closed-loop transfer function TG2, z2 (ω) and the black dash-dotted line represents

the frequency response of the uncontrolled building. The plots in the figure indicate that this second state-feedback

controller provides a significant level of reduction in the building vibrational response. It can also be appreciated a

moderate loss of performance with respect to the optimal state-feedback controller with complete actuation scheme

(blue solid line), which can be explained by the reduced number of actuation devices.

From a practical perspective, the controller defined by the state-gain matrix G2 presents the serious drawback

of requiring the complete building state information to compute the corresponding control actions. To illustrate the

effectiveness and flexibility of the proposed design strategy, we next decompose the actuated part of the building into a

system of five decoupled three-story substructures B(k) (as the one schematically displayed in Fig. 2) and design a set

of local velocity-feedback controllers that can compute the actions of the local actuators from the interstory velocities

12
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Figure 6: Frequency response corresponding to the controllers with incomplete actuation scheme defined by the control gain matrices G2 and Gdec.

Maximum singular values of the closed-loop transfer function TG2 , z2 (ω) (blue solid line), the closed-loop transfer function TGdec , z2 (ω) (red dashed

line) and the open-loop transfer function T0, z2 (ω) (black dash-dotted line).

provided by the associated local sensors. To build the approximate state-space local models, we select the lists of

actuator locations Lk = [3k − 2, 3k − 1, 3k], k = 1, . . . , 5, the lists of measured states Jk = 2Lk , k = 1, . . . , 5, and

the scaling matrices proposed in Eqs. (26) and (27). We also define a global controlled-output vector zdec(t) by setting

the dimensions n = 35, nu = 15 and a scaling coefficient αdec in Eq. (11), and consider the lists of controlled-output

components Pk = [2Lk − 1] ∪ [2Lk] ∪ [ψLk + 70], k = 1, . . . , 5, to derive the local controlled-output vectors z(k)(t).

Finally, by applying the formulas in Eqs. (19), (20), (22) and (23), we obtain a system of decoupled approximate local

models S(k), k = 1, . . . , 5, with the form given in Eq. (29).

By solving the LMI optimization problem P corresponding to the local system S(k), we can obtain a local controller

of the form u(k)(t) = G(k)x(k)(t), where G(k) is a gain matrix of dimensions 3 × 3, u(k)(t) is a vector of dimension 3 with

the control actions corresponding to the actuators in the building positions Lk, and x(k)(t) is a vector that contains

the interstory velocities corresponding to the building levels Lk. As it happened in the previous section, the control

gain matrices G(k), k = 1, . . . , 5, define a global state-feedback structured controller u(t) = Gdecx(t), and the design

procedure can be adjusted by setting a proper value of the parameter αdec, which can be obtained by considering the

H∞-norm of the overall structured controller with respect to the controlled-output vector z2(t):

γdec = sup
ω

σmax
[
TGdec, z2 (ω)

]
. (32)

Looking at the values presented in Table 4, we select the scaling coefficient αdec = 10−6.35 and design the following set

of local control matrices:

G(1) = 106 ×


−6.3015 −2.0113 −1.2502

−2.9154 −6.1421 −1.4619

−3.7483 −3.0797 −5.8210

 , (33)
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G(2) = 106 ×


−8.8139 −5.6369 −4.1763

−3.8322 −9.3853 −3.8275

−4.1665 −5.6173 −8.7939

 , (34)

G(3) = 106 ×


−8.7435 −5.5453 −4.1102

−3.7673 −9.3189 −3.7658

−4.1079 −5.5400 −8.7385

 , (35)

G(4) = 106 ×


−9.2187 −6.0036 −4.3778

−3.8557 −9.2980 −3.7554

−4.0797 −5.4092 −8.5267

 , (36)

G(5) = 106 ×


−9.4322 −6.1221 −4.4215

−3.9465 −9.4943 −3.7301

−3.9326 −5.1522 −8.4039

 . (37)

The frequency response of the global structured controller defined by the local control matrices G(k), k = 1, . . . , 5,

is displayed in Fig. 6, where the red dashed line corresponds to the closed-loop transfer function TGdec, z2 (ω), the blue

solid line represents the reference closed-loop transfer function TG2, z2 (ω) and the black dash-dotted line presents the

uncontrolled response. In the zoomed region, it can be appreciated a small difference (of about 1.3%) in the main

peak-values γdec = 3.5996 and γ2 = 3.5545 attained by the proposed structured controller and the reference full-

state feedback controller, respectively. For all the other frequencies, the response of both control configurations are

practically equal.

Remark 1. The value α = 10−6.9 used in the computation of the full-state control gain matrices G1 and G2 has been

selected based on the frequency-response plots in Fig. 4 and the time-response peak-values presented in Section 5.

To provide a meaningful performance evaluation, the structured controllers defined by the overall gain matrices Gpas

and Gdec have been designed taking the full-state γ-values as a reference. However, from a practical point of view, it

should be observed that computing a reference full-state controller is not a necessary step in the design of the proposed

structured controllers, which can be independently computed based on their own frequency and time responses.

Remark 2. To obtain a meaningful comparison of two closed-loop frequency responses, the same controlled-output

vector must be used in the corresponding transfer functions. For the plots in Fig. 4, however, it should be noted that the

open-loop transfer functions T0, z1 (ω) and T0, z2 (ω) only differ in a number of null rows and, consequently, they have

the same positive singular values for all the frequencies. Considering this fact, the frequency response of the reference

full-state controllers can be indirectly compared by using the transfer functions TG1, z1 (ω), TG2, z2 (ω) and the common

open-loop frequency response.

Remark 3. For the actuation schemes considered in this section, the actuator building locations and their correspond-

ing positions in the overall actuation list L = [`1, . . . , `nu ] are coincident. That its, for an actuator device implemented

at the k-th building level, we have the value `k = k in the actuation list. Hence, in this case, the local actuation lists

14



Table 5: Total computation time (in seconds) corresponding to the design of full-state controllers and passive controllers for an n-story building with

a complete actuation scheme.

n 15 20 25 30 35

full state 29.58 609.83 1018.92 2578.95 6711.24

passive 1.03 3.44 7.04 16.71 27.32

Table 6: Total computation time (in seconds) corresponding to the design of full-state controllers and decentralized controllers for an n-story building

with an actuation scheme of 15 actuators implemented at the building bottom levels.

n 15 20 25 30 35

full state 16.41 111.18 1719.77 1200.29 11227.67

decentralized 0.64 0.97 1.61 2.21 2.79

satisfy ψLk = Lk. However, it should be observed that, in general, the actuator building location and its position in the

overall actuation list L can take different values and, consequently, the case ψLk , Lk must be considered in the general

formulation.

4.3. Computational cost

To evaluate the computational effectiveness of the proposed design methodology, we have recorded the compu-

tation times corresponding to the design of full-state and structured controllers for a proper set of n-story buildings.

More precisely, for n = 15, 20, 25, 30 and 35, we have considered the building models corresponding to the first n

stories of the 35-story building used in the previous sections. For these n-story building models, we have computed

full-state and passive controllers with a complete actuation scheme, as those designed in Section 4.1, obtaining the

computation times collected in Table 5. Next, we have assumed that the n-story buildings are equipped with a system

of 15 interstory actuators implemented at the building bottom levels and, for this actuation scheme, we have designed

full-state controllers and decentralized controllers with the same structure considered in Section 4.2. The computation

times corresponding to this second control configuration are presented in Table 6. The obtained data clearly show the

uncontrolled growth of the computational time corresponding to the full-state designs. Also, the data in Table 6 seem

to indicate that the LMI solver has encountered additional difficulties in the case of the full-state controllers with in-

complete actuation scheme. In contrast, the computational times observed in the passive and decentralized controller

designs are remarkably low and maintain a stable and well-balanced growth pattern. To gain a clearer insight into the

computational effectiveness of the proposed approximate design strategy, it can be observed that obtaining the full-state

gain matrix G2 has required a computation time of about 3.12 hours, while the set of six structured controllers com-

puted in Table 4 to obtain a suitable α-value for the decentralized controller design has required an overall computation

time inferior to 18 seconds.
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Figure 7: North-South component of the El Centro 1940 seismic record scaled to an acceleration peak of 1m/s2.
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Figure 8: North-South component of the Kobe 1995 seismic record scaled to an acceleration peak of 1m/s2.

Remark 4. All the computations in this paper have been performed using Matlab c© R2016b on a regular laptop with

an Intel c© CoreTM i7-5500U processor at 2.40 GHz. The LMI optimization problems corresponding to the different

controller designs have been solved with the function mincx() included in the Robust Control ToolboxTM, and a

relative accuracy of 10−5 has been set in the LMI solver options.

5. Seismic response

To demonstrate the behavior of the proposed structured controllers, in this section we carry out a set of numerical

simulations of the 35-story building seismic response using two different seismic records as ground acceleration input:

the North-South El Centro 1940 (see Fig. 7) and the North-South Kobe 1995 (see Fig. 8). To facilitate a meaningful

comparison of the results, both seismic records have been scaled to an acceleration peak-value of 1m/s2. The peak-

values of the interstory drifts, story absolute accelerations and control efforts corresponding to the complete actuation

scheme and the El Centro seismic disturbance are displayed in Fig. 9. In this figure, the red dashed lines with asterisks

present the seismic response of the structured control system defined by the overall control matrix Gpas, the blue solid

lines with circles show the response of the reference full-state controller defined by the control gain matrix G1, and

the black solid lines with squares present the uncontrolled building response. The plots in Fig. 9(a) and Fig. 9(b) show

that both controllers achieve a good and similar level of reduction in the interstory drift and absolute acceleration peak-

values with respect of the uncontrolled response. The plots in Fig. 9(c) also indicate that slightly larger control-effort

peak-values are produced by the passive controller. However, it should be noted that this controller can be imple-

mented by means of viscous passive dampers and, consequently, the control forces can be generated in this case with
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Figure 9: Seismic response of the 35-story building with complete actuation scheme corresponding to the uncontrolled configuration (black line with

rectangles), the full-state controller u(t) = G1 x(t) (blue line with circles), and the passive controller u(t) = Gpasx(t) (red dashed line with asterisks).

(a) Interstory drift peak-values. (b) Story absolute-acceleration peak-values. (c) Control effort peak-values. The scaled North-South El Centro 1940

seismic record has been used as ground acceleration disturbance.

null power consumption. For both controllers, the interstory-velocity and control-force time histories corresponding to

the building 15th level are displayed in Fig. 10, where it can be clearly appreciated the passive character of the control

actions generated by the structured controller. The seismic response of the 35-story building with incomplete actuation

scheme is presented in Fig. 11. In this case, the scaled Kobe 1995 seismic record has been used as input disturbance,

the red dashed lines with asterisks show the response of the structured control system defined by the overall control

matrix Gdec, the blue solid lines with circles display the response of the reference full-state controller with control gain

matrix G2, and the black solid lines with squares represent the uncontrolled building response. Looking at the plots

in Fig. 11(a) and Fig. 11(b), it can be appreciated that both controllers attain an appreciable reduction of the building

response and that slightly larger interstory-drift and absolute-acceleration peak-values are produced by the structured

controller, which is consistent with the reduced control effort peak-values observed in Fig. 11(c). It should be noted

that, in this case, the practical implementation of both controllers will demand the usage of active actuation devices.

However, the required sensing and communication systems are very different. The full-state controller requires a

complete instrumentation of the building, with a full set of interstory-drift and interstory-velocity sensors and a wide

communication system that must cover the complete building. In contrast, the proposed structured controller can op-

erate with a reduced set of 15 interstory-velocity sensors and a system of five independent short-range communication

networks (as those ones schematically represented by the red lines in Fig. 2). For this second set of controllers, the
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Figure 10: Complete actuation scheme. Time history of the interstory velocity and control force obtained in the building 15th level for the scaled El

Centro 1940 seismic disturbance. (a) Full-state controller with control gain matrix G1. (b) Passive controller with overall control gain matrix Gpas.

interstory-velocity and control-force time history records corresponding to the building 15th level can be observed in

Fig. 12.

6. Conclusions and future directions

In this paper, a novel computational design strategy for vibration control of large buildings has been presented.

Following the proposed methodology, the overall building model can be decomposed into a set of approximate low-

dimensional decoupled subsystems subject to generalized disturbances, and high performance structured controllers

with partial local-state information can be designed with a remarkably low computational cost. The obtained re-

sults indicate that the proposed computational strategy can be an effective tool to cope with some relevant issues

commonly encountered in vibration control designs for large-scale structures, such as parameter uncertainties, hard

time-constraints, sensor and actuator failures, and random communication delays. Certainly, there exists a wide va-

riety of solutions to this kind of issues but, in most cases, the direct application of these design methodologies to

large-dimension problems is totally ineffective due to the huge increase in the computational cost.
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Appendix A. Lists and partitioned matrices

In this appendix, we present in detail some non-standard definitions and notations for lists and partitioned matrices

that are extensively used in the paper. Let us consider a matrix M ∈ Rnr×nc, a list of row indexes R =
[
i1, . . . , imr

]
and a list of column indexes C =

[
j1, . . . , jmc

]
. To avoid trivialities, we assume that the lists are non-empty, and

that the indexes in a list are distinct and arranged in increasing order. The submatrix of M obtained by selecting the

rows and columns with the indexes indicated in the lists R and C, respectively, is represented by MC
R = M(i1, . . . , imr ;

j1, . . . , jmc ). If the list of row indexes is complete, that is, R = [1, 2, . . . , nr], we use the simplified notation MC =

18



0 0.25 0.5 0.75 1
max. abs. interstory drift (cm)

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35
st

or
y

(a) interstory drift peak-values

0 0.2 0.4 0.6

 max. abs. force (# 106 N)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

ac
tu

at
io

n 
de

vi
ce

(c) control effort peak-values

0 0.5 1 1.5 2

max. abs. acceleration (m/s2)

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

st
or

y

(b) abs. accel. peak-values

uncontrolled
full state
decentralized

Figure 11: Seismic response of the 35-story building with incomplete actuation scheme corresponding to the uncontrolled configuration (black line

with rectangles), the full-state controller u(t) = G2 x(t) (blue line with circles), and the decentralized controller u(t) = Gdecx(t) (red dashed line with

asterisks). (a) Interstory drift peak-values. (b) Story absolute-acceleration peak-values. (c) Control effort peak-values. The scaled North-South Kobe

1995 seismic record has been used as ground acceleration disturbance.

M(1, . . . , nr ; j1, . . . , jmc ). Analogously, the simplified notation MR = M(i1, . . . , imr ; 1, . . . , nc) is used when the list of

column indexes is complete. For a vector v = [v1, . . . , vnv ]
T and a list of element indexes E = [i1, . . . , ime ], we set

vE =
[
vi1 , . . . , vime

]T . Given a matrix M ∈ Rnr×nc , a list of rows R, a list of columns C and a vector v ∈ Rnc , the

following useful decomposition of the product Mv can be performed:

[
Mv

]
R = MR v = MC

R vC + MC
R vC , (A.1)

where C denotes the complement of C with respect to the complete list of column indexes [1, . . . , nc]. For a given list

of indexes L = [`1, . . . , `n], a sublist S = [s1, . . . , sm] can be obtained by selecting m elements from L. In this case,

we use the notation ψ(si) to indicate the position of the sublist element si in the main list L. We also use the notation

ψS = [ψ(s1), . . . , ψ(sm)] for the complete list of positions corresponding to all the sublist elements si in the list L. Thus,

for example, from the main list L = [3, 5, 6, 8, 10], we can extract the sublist S = [3, 8, 10]. The sublist element s2 = 8

has the position ψ(s2) = 4 in the main list L and, for the complete sublist, we have ψS = [1, 4, 5]. The complement of

S with respect to L is S = [5, 6]. Finally, for a, b ∈ N and L = [`1, . . . , `n], we set aL + b = [a · `1 + b, . . . , a · `n + b].
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Figure 12: Incomplete actuation scheme. Time history record of the interstory velocity and control force obtained in the building 15th level for the

scaled Kobe 1995 seismic disturbance. (a) Full-state controller with control gain matrix G2. (b) Decentralized controller with overall control gain

matrix Gdec.

Appendix B. H∞ controller design

This appendix provides a brief summary of the state-feedback H∞ controller design methodology. Let us consider

a linear system in the form: 
ẋ(t) = A x(t) + B u(t) + E w(t),

z(t) = Cz x(t) + Dz u(t) + Fzw(t),
(B.1)

where x(t) is the state, u(t) is the control action, w(t) is the external disturbance, z(t) is the controlled output, and A, B,

E, Cz, Dz and Fz are constant matrices of appropriate dimensions. A state-feedback controller u(t) = Gx(t) defines the

closed-loop system 
ẋ(t) = AG x(t) + E w(t),

z(t) = CG x(t) + Fzw(t),
(B.2)

with AG = A + BG and CG = Cz + DzG. The design objective is to obtain an optimal controller u(t) = G̃x(t) that

produces an asymptotically stable closed-loop matrix AG̃ and, simultaneously, minimizes the H∞ norm of the system

γG = sup
‖w‖2,0

‖z‖2
‖w‖2

, (B.3)

where ‖f‖2 =
[∫ ∞

0 fT(t) f(t) dt
]1/2

is the usual continuous 2-norm. Using an LMI formulation, the optimal H∞ controller

can be obtained by solving the following convex optimization problem [16]:

P :


minimize γ

subject to X > 0, γ > 0, and the LMI in Eq. (B.4)


AX + XAT + BY + YT BT ∗ ∗

ET −γI ∗

CzX + DzY Fz −γI

 < 0, (B.4)

where ∗ denotes the transpose of the symmetric entry and X = XT , Y are the optimization variables. If an optimal value

γ̃ is attained in P for the pair
(
X̃, Ỹ

)
, then the state-feedback gain matrix G̃ = ỸX̃−1 defines an optimal H∞ controller
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with associated γ-value γ
G̃

= γ̃. In the particular case that Fz = 0, the optimal state-feedback H∞ controller can also be

computed by solving the following simplified optimization problem:

P0 :


maximize η

subject to X > 0, η > 0, and the LMI in Eq. (B.5)

AX + XAT + BY + YT BT + ηEET ∗

CzX + DzY −I

 < 0. (B.5)

In this case, if an optimal value η̃ is attained for the pair
(
X̃, Ỹ

)
, then the state-feedback gain matrix G̃ = ỸX̃−1 defines

an optimal H∞ controller with associated γ-value γ
G̃

=
(̃
η
)−1/2. For a given state-feedback gain matrix G, the H∞-norm

value of the associated controller with respect to the controlled output vector z(t) can be computed by solving the

optimization problem

γG = sup
ω

σmax
[
TG, z(ω)

]
, (B.6)

with

TG, z (ω) =
(
Cz + DzG

)(
2πω jI − A − BG

)−1E + Fz, (B.7)

where j =
√
−1, ω is the frequency in hertz, and σmax[ · ] denotes the maximum singular value.
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