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Abstract—An information-theoretic approach is described to
estimate the determinant of the covariance matrix of a random
vector sequence (a common task in a wide range of estimation
and detection problems in signal processing for communications).
The method is based on a prior entropy-based processing of the
data using kernels and offers robustness against small-entropy
contamination. The trade-off between optimality, accuracy and
robustness is analyzed, along with the impact of the relative
kernel bandwidth and data size.

Index Terms—Rényi entropy, Information Potential, U-
Statistics, Hadamard Ratio, Kernel Methods, Cramér-Rao Bound
(CRB), Spectrum Sensing, Cognitive Radio.

I. INTRODUCTION

The need for robust signal processing arises in those ap-
plications where the distributional assumptions on the data
do not hold in practice [1]. The goal is to develop methods
capable of trading-off some efficiency at the nominal model to
gain resistance against the effects of deviations. In particular,
robust estimation of the covariance matrix of a vector sequence
has been a research topic for decades. In the specific context
of communications, efficient spectrum sensing algorithms for
cognitive radio systems should be robust against impulsive
mad-made noises that are present in practical communications
systems (see [2] and references therein). A possible way to ad-
dress this issue is to assume that the underlying distribution is
some heavy-tailed elliptical distribution (see [3] and the semi-
nal works [4] and [5]). In some situations, only the determinant
of the covariance matrix is needed. For example, the Hadamard
ratio, i.e. the determinant of the sample covariance matrix
over the product of its diagonal elements, is the Generalized
Likelihood Ratio Test (GLRT) of whether or not a composite
covariance matrix is block diagonal in the case of Gaussian
data [6]. For spectrum sensing using uncalibrated multiantenna
secondary receivers in the context of cognitive radio, detecting
the block-diagonal structure of a covariance matrix becomes
a crucial task. Moreover, the Hadamard ratio is the core of
the generalized coherence [7], a natural generalization of the
magnitude-squared coherence (MSC) statistic that is widely
used for non-parametric detection of a common signal on two
noisy communications channels.

In a different research direction, the estimation of entropy,
mutual information and divergence (jointly with their many
different variants), have found numerous applications [8] apart
from their prominent role in information theory. For example,
information theory descriptors can be used in machine learning
as non-parametric cost functions for the design of adaptive
systems [9]. In this context, universal estimates, i.e. those
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which do not assume knowledge of the statistical properties
of the observed data, are usually required. Most of these
estimates are based on non-parametric density estimates. In
particular, Parzen density estimation (see [9] and references
therein) clearly links information theory with kernel methods,
which have become established techniques in the last fifteen
years to perform nonlinear signal processing. This link is
evident in the case of estimating Rényi second-order entropy
(a generalized notion of Shannon differential entropy that
still satisfies important properties of the former) from Parzen
density estimates.

In this paper, kernel methods are proposed as a tool for
robust estimation. The main motivation is that the entropy
depends mainly on the probabilities of the events and not on
the magnitude of them. The focus is on those cases where
the observed random signal is contaminated by other signal
showing much less entropy than the former although probably
a higher variance. This is typical in practice in those applica-
tions where large-valued impulsive outliers or abrupt changes
on the mean could be observed. The main novelty with respect
to other robust methods for estimating the covariance matrix
is that here the interest is to estimate its determinant and not
the overall matrix, opening the possibility of estimating the
determinant from the entropy, extracted directly from the data.

II. INFORMATION POTENTIAL ESTIMATION

The Information Potential (IP) [9] (the argument of the
log in the second order Rényi entropy) of a continuous
M -dimensional random vector x with Probability Density
Function (p.d.f.) f(x) is defined as

V =

∫
f2(x)dx (1)

In the case that the samples are distributed as CN (0,Σ)
(referred to as nominal conditions) it can be easily shown that

V = (2π)−M |Σ|−1 (2)

i.e. the IP is inversely proportional to the determinant |Σ| of
the covariance matrix and insensitive to the mean (a property
inherent to any entropy measure).

If a Parzen density estimator with Gaussian kernel function
is used to estimate the p.d.f. from N i.i.d. samples of x
({xi}1≤i≤N ) the resulting IP estimator becomes:

V̂ =
1

N2

∑

1≤i≤N

∑

1≤j≤N
kW (xi − xj) =

1

N
+

Û

(2π)
M |W|
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where k(z) = e−z
HW−1z is a Gaussian kernel with W a

diagonal (possibly data-dependent) kernel matrix, and

Û =
2

N(N − 1)

∑

1≤i<j≤N
k (xi − xj) (3)

is a U-statistics [10] [11] (i.e. an unbiased estimate of
E[k (xi − xj)]) computed from the data, very similar to the
kernelized energy detection proposed in [2] in the context of
cognitive radio. Although a direct computation of Û would
imply a complexity of O(N2), well-known techniques such
as the incomplete Cholesky decomposition [12][9], which
exploits the reduced Gram matrix band structure, can be used
to achieve a computation complexity of O(N), just the same
as the sample covariance.

The following result (see Appendix VII-1) will be used for
the analysis of Û : if u∼ CN (ū,C), v ∼ CN (v̄,C), and
E
[
uvH

]
= γC, then

E [k(u)] = |W| |W + C|−1 (4)

E [k(u)k(v)] =
|W|2

|W + (1− |γ|) C| |W + (1 + |γ|) C| (5)

Defining z = xi − xj ∼ CN (0, 2Σ), we have from (4)

Ū = E
[
Û
]

= E [k(z)] = |W| |W + 2Σ|−1 (6)

and (see Appendix VII-2):

σ2
Û

=
aN(N − 1)(N − 2) + bN(N − 1)/2

(N(N − 1)/2)
2 (7)

with

a =
|W|2

|W + Σ| |W + 3Σ| −
|W|2

|W + 2Σ|2
(8)

b =
|W|2

|W| |W + 4Σ| −
|W|2

|W + 2Σ|2
(9)

Note that, for any finite value of a and b, Û will be consistent
given the impact of b in (7) becomes asymptotically negligible.
However, b cannot be neglected (as proposed in [9]) to
characterize σ2

Û
because it tends to zero more slowly than

a for |W| → 0, as seen in (9), and small bandwidth values
will precisely be more adequate to gain robustness against
contamination.

III. COVARIANCE DETERMINANT ESTIMATION

The direct approach would be estimating the covariance
matrix as the Σ̂S = 1

N−1

∑N
i=1 (xi − x̄) (xi − x̄)

H
, where

x̄ = 1
N

∑N
i=1 xi is the sample mean. The U-statistics [11]

version of it is

Σ̂S =
2

N(N − 1)

∑

1≤i<j≤N

1

2
(xi − xj) (xi − xj)

H , (10)

which has the advantage of avoiding any explicit estimation
of the sample mean, and highlighting the link with (3). The
determinant would be finally estimated as D̂K =

∣∣∣Σ̂S

∣∣∣.
Alternatively, a second possibility is proposed: estimat-

ing first Û and then estimating the determinant directly as
D̂K = gW(Û), where gW(.) is a kernel-dependent monotonic

decreasing function. Using this rationale, and focusing to the
univariate case for clarity and space reasons, we obtain from
(6) the following monotonic relationship between Ū and the
variance Σ:

Ū = (W/Σ) (W/Σ + 2)
−1 (11)

from which, assuming that a sample moment Û has been
obtained from the U-statistics in Eq. (3), we can apply the
method of moments to estimate Σ̂ as

Σ̂ = gW

(
Û
)

=
(
Û−1 − 1

)
W/2. (12)

IV. PERFORMANCE ANALYSIS

Using Jensen’s inequality in Eq. (12):

E
[
Σ̂
]
− Σ ≥

(
Ū−1 − 1

)
W/2− Σ = 0, (13)

which means that the bias of Σ̂ is strictly positive. However,
as Û is consistent and unbiased, it converges in probability to
Ū , which implies that Σ̂ converges in probability to Σ, i.e., Σ̂
is asymptotically unbiased.

Defining the relative bandwidth as w = W/Σ, the relative
variance can be written as (see Appendix VII-3):

σ̄2
Σ̂

= σ2
Σ̂
/Σ2 ≈ σ2

Û
w−2(w + 2)4

(
1 + 3Ū−2σ2

Û

)
/4 (14)

where σ2
Û

is defined in (7) with constants a and b in (8)&(9)
given by:

a = w2
(
(w + 1)−1(w + 3)−1 − (w + 2)−2

)
(15)

b = w2
(
w−1(w + 4)−1 − (w + 2)−2

)
. (16)

Note that when w → 0 the variance of the proposed estimator
tends to infinity, irrespective of the fact that a→ 0 and b→ 0.
The reason is that b goes to zero as O(w) (instead of O(w2))
and this is why we didn’t neglect it in (7).

A. Asymptotic performance and CRB

For any w > 0, we have from (7) that limN→∞Nσ2
Û

= 4a.
Therefore, using (14), (15) and (16), we can state that

1 ≤ limN→∞Nσ̄
2
Σ̂

=
(w + 2)2

(w + 1)(w + 3)
≤ 4

3
(17)

with lower and upper-bounds achieved for w → 0 and
w → ∞, respectively. The previous equation quantifies the
asymptotic penalty on the estimator variance as a function of
the kernel bandwidth. Note that the sample mean estimator
of variance (Σ̂S) in the nominal conditions is efficient and
fulfills that limN→∞Nσ̄2

Σ̂S
= 1. Therefore, the previous

equation shows in particular that the proposed estimator is
asymptotically efficient as the kernel size tends to infinity
(w → ∞). As w decreases, the asymptotic variance of the
proposed estimator is increased with respect to the CRB, but
never more than 4/3 (the maximum asymptotic penalty).
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B. Threshold effect

From (7) it is clear that the asymptotic analysis assumes
that:

bN(N − 1)/2 < aN(N − 1)(N − 2)/L (18)

where L � 1. Using Eqs. (15) and (16), (18) can be easily
stated as:

N > 2

(
L

(w + 1)(w + 3)

w(w + 4)
+ 1

)
, (19)

which establishes the condition for the asymptotic analysis to
be valid. The previous equation shows the interplay between N
and w. In particular, the lower is the relative kernel bandwidth
w, the higher should be the value of N to guarantee that
the estimator reaches the asymptotic regime. For small values
of w violating the condition, the estimator variance will be
highly amplified. The condition is also useful to determine
the minimum value of w that can be used as a function of N .
If we fix, for example, L = 10 and assume very small w, we
obtain that a rough value of the minimum allowable relative
kernel size is

wmin ≈ 15/N (20)

We can then assure that for w > 15/N the estimator vari-
ance in nominal conditions will not be more amplified than
(roughly) a factor of 4/3 with respect to the CRB1.

C. Robustness

Let us assume an ε-contaminated additive model [13] given
by

xεi = xi + ziyi. (21)

The contamination rate is determined by the zero-one process
zi, defined by P (zi = 1) = ε, yi is a white contamination
process (independent of xi) representing the outlier, and
P (yi = Yk) = pk with k = 1, . . . ,K. It is noted that this
model, which embraces also the continuous case as K →∞,
is assumed only for concreteness and for providing insights
later on. In essence, we are modeling a contamination charac-
terized with a heavy-tailed distributions, which are those most
susceptible to have a huge impact on the sample covariance.

The sample variance is biased as follows (see Appendix
VII-4 for details)

E
[
Σ̂S

]
= E

[
|xεi − xεj |2

]
/2 = Σ + ε

(
σ2
y + µ2

y (1− ε)
)

(22)
where µy and σ2

y are the mean and variance of yi, respectively.
The variance is therefore overestimated with an additive bias
term proportional to the mean, variance and rate of the
contamination process.

However, the p.d.f. of the contaminated data can be written
as a weighted sum of shifted replicas of the original one:

fε(x) = (1− ε)f(x) + ε
K∑

k=1

pkf(x− Yk). (23)

1It is worth noting that, in the real data case, wmin turns out to be
inversely proportional to N2 (the proof is omitted), thus improving the
efficiency/robustness trade-off and giving more tolerance in fixing w.
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Û [q]
� 1

!
W [q]

2
Eqs.(17)&(18)

� = ⌃̂[q]� ⌃̂[q � 1] /⌃̂[q]

q  q + 1

end

1

⌃̂[0] = ⌃̂S ; � = 1; q = 1; 0 < ⌧ 1

while �>

W [q] = 15⌃̂[q]/N Eq.(27)
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end

1

⌃̂[0] = ⌃̂S ; � = 1; q = 1; 0 < ⌧ 1

while �>

W [q] = 15⌃̂[q]/N Eq.(27)

Û [q] = 2
N(N�1)

P
1i<jN kW [q] (xi � xj) Eq.(2)

⌃̂[q] =
1

Û [q]
� 1

!
W [q]

2
Eqs.(17)&(18)

� = ⌃̂[q]� ⌃̂[q � 1] /⌃̂[q]

q  q + 1

end

1

Fig. 1. Iterative procedure for determining the kernel bandwidth, W .

Using (1), we obtain the following lower and upper bound
for the IP (see Appendix VII-5):

V Col (zy) ≤ Vε ≤ V (24)

where
Vε =

∫
f2
ε (x)dx (25)

is the IP of the contaminated data and

Col (zy) = (1− ε)2 + ε2
K∑

k=1

p2
k ≤ 1 (26)

is the collision probability [14] of the additive contamination.
The IP is therefore underestimated, which leads to overesti-
mating as well the resulting variance. However, the impact
of the contamination is now much smaller. Note that the IP
of the contaminated data is lower-bounded in a multiplicative
manner by the collision probability Col (zy) (see the left hand
inequality in (24)). This probability depends solely on the
contamination rate ε and on the probabilities pk associated to
the additive outlier values. Remarkably, the values Yk of the
contamination process have now no impact on the IP. The main
advantage is then that the impact on the estimation is governed
solely by the collision probability of the outliers values, and
not by how large the outliers values are. This proves why small
kernel bandwidths are interesting to achieve robustness.

D. Kernel bandwidth determination

Kernel bandwidth W operates as an scale parameter that de-
pends on the data dynamic range. As the variance is precisely
the parameter we want to estimate, the possibility of using
an iterative method to estimate the bandwidth from the data
arises naturally, as summarized in Fig. 1. The sample variance
is first estimated, which is known to be optimal in nominal
conditions but inflated in the presence of contamination. This
value is used to fix the bandwidth W to a conservative value
as a function of the available number of samples. Using this
value, we estimate the entropy-based variance which is used
to fix the relative kernel bandwidth for the next iteration, and
this procedure is repeated until no significant relative change
(δ) of the estimated variance value is observed.

V. NUMERICAL RESULTS

Fig. 2 shows the normalized variance of Û in nominal con-
ditions a function of w for increasing values of N , analytical
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where L � 1. Using Eqs. (22) and (23), Eq. (25) can be easily
stated as:

N > 2

✓
L

(w + 1)(w + 3)

w(w + 4)
+ 1

◆
(26)

The previous equation shows the interplay between N and
w. In particular, the lower is the relative kernel bandwidth
w, the higher should be the value of N to guarantee that the
estimator reaches the asymptotic variance. For small values
of w violating the condition, the estimator variance will be
highly amplified. The condition is also useful to determine the
minimum value of w that can be used as a function of N . For
that purpose, we can white a simplified condition assuming a
very small w as:

w >
3L

2N
(27)

If we fix, for example, L = 10 in the original condition in Eq.
(25), we obtain that a rough value of the minimum allowable
relative kernel size is

wmin ⇡ 15

N
. (28)

As seen in the asymptotic analysis, we can then assure that
for w > 15/N , the estimator variance in nominal conditions
will not be more amplified than (roughly) a factor of 4/3 with
respect to the CRB. This issue will be confirmed later on with
computer simulations.

C. Robustness

To quantify the sensitivity of the estimator to outliers, we
focus on an "-contaminated additive model [11]:

x✏i = xi + ziyi (29)

The contamination rate is determined by the zero-one process
zi, defined by P (zi = 1) = ", and yi is a white contam-
ination process (independent of xi) representing the outlier.
For simplicity, we will assume that yi is discrete, such that
P (yi = Yk) = pk with k = 1, . . . , K.

First consider the sample variance estimator. The mean of
the resulting variance estimate can be easily computed (see
Appendix VI-D for details) from its U-statistic expression in
Eq. (2), and it is given by:

E
h
⌃̂S

i
=

1

2
E
h
|x"i � x"j |2

i
= ⌃ + "

�
�2

y + µ2
y (1 � ")

�

(30)
where µy and �2

y are the mean and variance of yi, respectively.
The key observation is that the variance is overestimated with
an additive bias term which is proportional to the contamina-
tion rate, as well as proportional to both mean and variance
of the contamination process.

Next, we analyze the impact of the contamination model on
the kernel-based estimator, with the intention of highlighting
the root of its robust behaviour. The p.d.f. of the contaminated
data can be written as a weighted sum of shifted replicas of
the original one:

f"(x) = (1 � ")f(x) + "
KX

k=1

pkf(x � Yk) (31)

To get insights, let us first analyze the impact of contamination
to the IP by inserting the previous expression into Eq. (7). By
doing so (see Appendix VI-E) we obtain the following two
inequalities:

V v"  V"  V (32)

where
V" =

ˆ

f2
" (x)dx (33)

v" = (1 � ")2 + "2
KX

k=1

p2
k  1 (34)

The meaning is that contamination causes the IP to decrease
(see the right hand inequality in (32)) and, as a consequence
of the inverse proportionality given in Eq. (9), the contam-
ination results in a positive bias on the variance estimate
inferred from it. The IP of the contaminated data is lower-
bounded in a multiplicative manner by v" (see the left hand
inequality in (32)). This quantity is just the (discrete) IP of
the contamination and it depends solely on the contamination
rate " and on the probabilities pk associated to the additive
outlier values. Remarkably, the values Yk of the contamination
process have no impact on the IP, contrarily to the behavior of
the sample-variance estimator as seen in Eq. (30). This is the
key property that justifies the IP as an adequate prior entropy-
based processing of the data for the purpose of achieving
robustness: the impact on the estimation is governed solely by
the probabilities of the outlier values, and not by how large
the outlier values are.

A final remark on the kernel bandwidth size is in order. The
kernel-based variance estimator proposed in Eq. (19) is based
on the scaled and shifted IP estimate given in Eq. (10). It is
well-known ([6]) that the kernel-based IP estimate converges
in mean to the IP when the kernel bandwidth tends to zero,
and converges to the sample variance (ignoring shifting and
scaling) when the bandwidth tends to infinity. In that sense, the
previous analysis of the IP explains why we are interested on
small relative kernel bandwidths for the purpose of robustness.

D. Kernel bandwidth determination

In general, determining the kernel bandwidth is a crucial
problem in density and IP estimation. It is clearly seen in Eq.
(18) that W operates as an scale parameter that needs to be
selected according to the data dynamic range. In the specific
problem of variance estimation we have shown in which
manner the bandwidth determines a trade-off between the
estimator efficiency, which measures the estimator accuracy in
nominal conditions (also affected by the number of samples),
and the robustness in the presence of contamination. We have
seen that these quantities are opposed in nature. Moreover, as
the variance is precisely the parameter we want to estimate,
the possibility of using an iterative method to estimate the
bandwidth from the data arises naturally, as that summarized in
Fig. 2. Basically, the sample variance is first estimated, which
is known to be optimal in nominal conditions but inflated in
the presence of contamination. This value is used to fix the
bandwidth W to a conservative value as a function of the
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Û
w

ill
be

co
ns

is
te

nt
(i

.e
.

Û
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Ū
as

:

⌃̂
=

D̂
K

=

✓
1 Û
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mptotic

analy
sis

develo
ped

befo
re

ass
umes

that
N

is
lar

ge enough
such

that
the val

ue

of b
in

Eq. (14) has
no sig

nifican
t eff

ect
on the var

ian
ce

of

the MIP.
From

Eq. (14) it is
cle

ar
that

the asy
mptotic

analy
sis

ass
umes

that:

bN
(N

� 1)
/2

<

1
L
aN

(N
� 1)

(N
� 2)

(25)

where
L
�

1.
Usin

g Eqs. (22) and (23), Eq. (25) can
be eas

ily

sta
ted

as: N
>

2

✓
L
(w

+
1)

(w
+

3)

w(w
+

4)

+
1

◆

(26)

The prev
ious equati

on
show

s the inter
play

betw
een

N
and

w. In
part

icu
lar

, the low
er

is
the rel

ati
ve kern

el
bandwidth

w, the higher
should

be the val
ue of N

to
guara

ntee
that

the

est
im

ato
r rea

ches
the asy

mptotic
var

ian
ce.

For sm
all

val
ues

of w
violat

ing the conditio
n, the est

im
ato

r var
ian

ce
will

be

highly
am

plifi
ed. The conditio

n is als
o usef

ul to
dete

rm
ine the

minim
um

val
ue of w

that
can

be used
as

a functi
on of N

. For

that
purpose,

we can
white

a sim
plifi

ed
conditio

n ass
uming a

very
sm

all
w

as:
w

>

3L

2N

(27)

If
we fix, for exam

ple,
L

=
10

in
the orig

inal
conditio

n in
Eq.

(25), we obtai
n that

a rough val
ue of the minim

um
all

ow
able

rel
ati

ve kern
el

siz
e is

wm
in
⇡
15

N
.

(28)

As see
n in

the asy
mptotic

analy
sis

, we can
then

ass
ure

that

for w
>

15/N
, the est

im
ato

r var
ian

ce
in

nominal
conditio

ns

will
not be more

am
plifi

ed
than

(ro
ughly) a fac

tor of 4/
3

with

res
pect

to
the CRB. This

iss
ue will

be confirm
ed

lat
er

on with

computer
sim

ulat
ions.

C. Robustn
ess

To quantify
the sen

siti
vity

of the est
im

ato
r to

outlie
rs,

we

focus on an
"-c

ontam
inate

d additiv
e model

[11]:

x ✏i
=

x i
+

z iy
i

(29)

The contam
inati

on rat
e is

dete
rm

ined
by the zer

o-one proces
s

z i,
defi

ned
by

P (z i
=

1)
=

",
and

y i
is

a white
contam

-

inati
on proces

s (in
dependent of x i)

rep
res

entin
g the outlie

r.

For sim
plic

ity
, we will

ass
ume that

y i
is

disc
ret

e,
such

that

P (y i
=

Yk
) =

pk
with

k
=

1,
. .

. ,
K

.

Firs
t consid

er
the sam

ple
var

ian
ce

est
im

ato
r. The mean

of

the res
ultin

g var
ian

ce
est

im
ate

can
be eas

ily
computed

(se
e

Appendix
VI-D

for deta
ils)

fro
m

its
U-st

ati
stic

expres
sio

n in

Eq. (2), and it is
given

by:

E

h
⌃̂S

i =

1
2
E

h |x "i
� x "j

|2
i =

⌃
+
"
� �

2
y
+

µ
2
y
(1
� ")
�

(30)

where
µy

and �
2
y
are

the mean
and var

ian
ce

of y i,
res

pect
ively

.

The key
obser

vat
ion is

that
the var

ian
ce

is
overe

stim
ate

d with

an
additiv

e bias
ter

m
which

is
proportio

nal
to

the contam
ina-

tio
n rat

e,
as

well
as

proportio
nal

to
both

mean
and var

ian
ce

of the contam
inati

on proces
s.

Next, we analy
ze

the im
pact

of the contam
inati

on model
on

the kern
el-

base
d est

im
ato

r, with
the inten

tio
n of highlig

htin
g

the root of its
robust behaviour. The p.d.f.

of the contam
inate

d

data
can

be writt
en

as
a weig

hted
sum

of shifte
d rep

lic
as

of

the orig
inal

one:

f "
(x

) =
(1
� ")

f(
x)

+
"

KX
k=

1

pk
f(

x
� Yk

)

(31)

To get
insig

hts,
let

us first
analy

ze
the im

pact
of contam

inati
on

to
the IP

by inser
tin

g the prev
ious expres

sio
n into

Eq. (7). By

doing so
(se

e Appendix
VI-E

) we obtai
n the follo

wing tw
o

inequali
tie

s:

V
v "
 V "

 V

(32)

where

V "
=

ˆ f
2
"
(x

)d
x

(33)

v "
=

(1
� ")

2 +
"
2

KX
k=

1

p
2
k
 1

(34)

The mean
ing is

that
contam

inati
on cau

ses
the IP

to
decr

eas
e

(se
e the rig

ht hand inequali
ty

in
(32))

and, as
a conseq

uence

of the inv
ers

e proportio
nali

ty
given

in
Eq. (9),

the contam
-

inati
on

res
ults

in
a

positi
ve

bias
on

the
var

ian
ce

est
im

ate

infer
red

fro
m

it.
The IP

of the contam
inate

d data
is

low
er-

bounded
in

a multip
lic

ati
ve manner

by v "
(se

e the lef
t hand

inequali
ty

in
(32)).

This
quantity

is
just

the (disc
ret

e)
IP

of

the contam
inati

on and it depends solel
y on the contam

inati
on

rat
e "

and on the probabilit
ies

pk
ass

ocia
ted

to
the additiv

e

outlie
r val

ues.
Rem

ark
ably,

the val
ues

Yk
of the contam

inati
on

proces
s have no im

pact
on the IP,

contra
rily

to
the behavior of

the sam
ple-

var
ian

ce
est

im
ato

r as
see

n in
Eq. (30). This

is
the

key
propert

y that
justifi

es
the IP

as
an

adequate
prio

r entro
py-

base
d

proces
sin

g
of the

data
for the

purpose
of ach

iev
ing

robustn
ess

: the im
pact

on the est
im

ati
on is

govern
ed

solel
y by

4

logari
thm

of an
sca

led
and bias

ed
vers

ion of the sam
ple

var
i-

ance
(se

e [6], propert
y 2.8). As w

decr
eas

es,
the asy

mptotic

var
ian

ce
of the proposed

est
im

ato
r is

incre
ase

d with
res

pect

to
the CRB, but never

more
than

4/
3,

which
rep

res
ents

the

maxim
um

asy
mptotic

penalt
y.

As will
be

show
n

lat
er

on,

sm
all

kern
el

bandwidths are
inter

est
ing

for the purpose
of

robustn
ess

and, in
that

sen
se,

Eq. (24) is
usef

ul to
unders

tan
d

the tra
de-o

ff
betw

een
robustn

ess
in

the pres
ence

of outlie
rs

and perf
orm

ance
in

nominal
conditio

ns.
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2) Thres
hold

eff
ect

:
The

asy
mptotic

analy
sis

develo
ped

befo
re

ass
umes

that
N

is
lar

ge enough such
that

the val
ue

of b
in

Eq. (14) has
no sig

nifican
t eff

ect
on the var

ian
ce

of

the MIP.
From

Eq. (14) it is cle
ar

that
the asy

mptotic
analy

sis

ass
umes

that:

bN
(N

� 1)
/2

<

1
L
aN

(N
� 1)

(N
� 2)

(25)

where
L
�

1.
Usin

g Eqs. (22) and (23), Eq. (25) can
be eas

ily

sta
ted

as: N
>

2

✓
L
(w

+
1)

(w
+

3)

w(w
+

4)

+
1

◆
(26)

The prev
ious equati

on show
s the inter

play
betw

een
N

and

w. In
part

icu
lar

, the low
er

is
the rel

ativ
e kern

el
bandwidth

w, the higher
should

be the val
ue of N

to
guara

ntee
that

the

est
im

ato
r rea

ches
the asy

mptotic
var

ian
ce.

For sm
all

val
ues

of w
violat

ing the conditio
n, the est

im
ato

r var
ian

ce
will

be

highly
am

plifi
ed. The conditio

n is als
o usef

ul to
dete

rm
ine the

minim
um

val
ue of w

that
can

be used
as

a functi
on of N

. For

that
purpose,

we can
white

a sim
plifi

ed
conditio

n ass
uming a

very
sm

all
w

as:
w

>

3L

2N

(27)

If we fix, for exam
ple,

L
=

10
in

the orig
inal

conditio
n in

Eq.

(25), we obtai
n that

a rough val
ue of the minim

um
all

ow
able

rel
ativ

e kern
el

siz
e is

wm
in
⇡
15

N
.

(28)

As see
n in

the asy
mptotic

analy
sis

, we can
then

ass
ure

that

for w
>

15/N
, the est

im
ato

r var
ian

ce
in

nominal
conditio

ns

will
not be more

am
plifi

ed
than

(ro
ughly) a fac

tor of 4/
3 with

res
pect

to
the CRB. This iss

ue will
be confirm

ed
lat

er
on with

computer
sim

ulat
ions.

C. Robustn
ess

To quantify
the sen

siti
vity

of the est
im

ato
r to

outlie
rs,

we

focus on an
"-c

ontam
inate

d additiv
e model

[11]:

x ✏i
=

x i
+

z iy
i

(29)

The contam
inati

on rat
e is

dete
rm

ined
by the zer

o-one proces
s

z i,
defi

ned
by P (z i

=
1)

=
",

and y i
is

a white
contam

-

inati
on proces

s (in
dependent of x i)

rep
res

entin
g the outlie

r.

For sim
plic

ity
, we will

ass
ume that

y i
is

disc
ret

e,
such

that

P (y i
=

Yk
) =

pk
with

k
=

1,
. .

. ,
K

.

Firs
t consid

er
the sam

ple
var

ian
ce

est
im

ato
r. The mean

of

the res
ultin

g var
ian

ce
est

im
ate

can
be eas

ily
computed

(se
e

Appendix
VI-D

for deta
ils)

fro
m

its
U-st

ati
stic

expres
sio

n in

Eq. (2), and it is
given

by:

E

h
⌃̂S

i =

1
2
E

h |x "i
� x "j

|2
i =

⌃
+
"
� �

2
y
+

µ
2
y
(1
� ")
�

(30)

where
µy

and �
2
y
are

the mean
and var

ian
ce

of y i,
res

pect
ively

.

The key
obser

vat
ion is that

the var
ian

ce
is overe

stim
ate

d with

an
additiv

e bias
ter

m
which

is
proportio

nal
to

the contam
ina-

tio
n rat

e,
as

well
as

proportio
nal

to
both

mean
and var

ian
ce

of the contam
inati

on proces
s.

Next, we analy
ze

the im
pact

of the contam
inati

on model
on

the kern
el-

base
d est

im
ato

r, with
the inten

tio
n of highlig

htin
g

the root of its
robust behaviour. The p.d.f.

of the contam
inate

d

data
can

be writt
en

as
a weig

hted
sum

of shifte
d rep

lic
as

of

the orig
inal

one:

f "
(x

) =
(1
� ")

f(
x)

+
"

KX
k=

1

pk
f(

x�
Yk

)

(31)

To get insig
hts,

let
us first

analy
ze

the im
pact

of contam
inati

on

to
the IP

by inser
tin

g the prev
ious expres

sio
n into

Eq. (7). By

doing so
(se

e Appendix
VI-E

) we obtai
n the follo

wing tw
o

inequali
tie

s:

V v "
 V "

 V

(32)

where

V "
=

ˆ f
2
"
(x

)d
x

(33)

v "
=

(1
� ")

2 +
"
2

KX
k=

1

p
2
k
 1

(34)

The mean
ing is

that
contam

inati
on cau

ses
the IP

to
decr

eas
e

(se
e the rig

ht hand inequali
ty

in
(32))

and, as
a conseq

uence

of the inv
ers

e proportio
nali

ty
given

in
Eq. (9),

the contam
-

inati
on

res
ults

in
a

positi
ve

bias
on

the
var

ian
ce

est
im

ate

infer
red

fro
m

it.
The IP

of the contam
inate

d data
is

low
er-

bounded
in

a multip
lic

ativ
e manner

by v "
(se

e the lef
t hand

inequali
ty

in
(32)).

This
quantity

is
just

the (disc
ret

e)
IP

of

the contam
inati

on and it depends solel
y on the contam

inati
on

rat
e "

and on the probabilit
ies

pk
ass

ocia
ted

to
the additiv

e

outlie
r val

ues.
Rem

ark
ably,

the val
ues

Yk
of the contam

inati
on

proces
s have no im

pact
on the IP,

contra
rily

to
the behavior of

the sam
ple-

var
ian

ce
est

im
ato

r as
see

n in
Eq. (30). This

is
the

key
propert

y that
justifi

es
the IP

as
an

adequate
prio

r entro
py-

base
d

proces
sin

g
of the data

for the purpose
of ach

iev
ing

robustn
ess

: the im
pact

on the est
im

ati
on is govern

ed
solel

y by

4

logari
thm

of an
sca

led
and bias

ed
vers

ion of the sam
ple

vari
-

ance
(se

e [6], propert
y 2.8). As w

decr
eas

es,
the asy

mptotic

vari
ance

of the proposed
est

im
ato

r is
incre

ase
d with

res
pect

to
the CRB, but never

more
than

4/
3, which

rep
res

ents
the

maxim
um

asy
mptotic

penalt
y.

As will
be

shown
lat

er
on,

sm
all

kern
el

bandwidths are
inter

est
ing

for the purpose
of

robustn
ess

and, in
that

sen
se,

Eq. (24) is
usef

ul to
unders

tan
d

the tra
de-o

ff
betw

een
robustn

ess
in

the pres
ence

of outlie
rs

and perf
orm

ance
in

nominal
conditio

ns.
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2) Thres
hold

eff
ect

:
The

asy
mptotic

analy
sis

develo
ped

befo
re

ass
umes

that
N

is
lar

ge enough such
that

the valu
e

of b
in

Eq. (14) has
no sig

nifican
t eff

ect
on the vari

ance
of

the MIP.
From

Eq. (14) it is cle
ar

that
the asy

mptotic
analy

sis

ass
umes

that:

bN
(N

� 1)
/2

<

1
L
aN

(N
� 1)

(N
� 2)

(25)

where
L
�

1. Usin
g Eqs. (22) and (23), Eq. (25) can

be eas
ily

sta
ted

as: N
>

2

✓
L
(w

+
1)

(w
+

3)

w(w
+

4)

+
1

◆
(26)

The prev
ious equati

on shows the inter
play

betw
een

N
and

w. In
part

icu
lar

, the lower
is

the rel
ativ

e kern
el

bandwidth

w, the higher
should

be the valu
e of N

to
guara

ntee
that

the

est
im

ato
r rea

ches
the asy

mptotic
vari

ance.
For sm

all
valu

es

of w
violat

ing the conditio
n, the est

im
ato

r vari
ance

will
be

highly
am

plifi
ed. The conditio

n is als
o usef

ul to
dete

rm
ine the

minim
um

valu
e of w

that
can

be used
as

a functi
on of N

. For

that
purpose,

we can
white

a sim
plifi

ed
conditio

n ass
uming a

very
sm

all
w

as:
w

>

3L

2N

(27)

If we fix, for exam
ple,

L
=

10
in

the orig
inal

conditio
n in

Eq.

(25), we obtai
n that

a rough valu
e of the minim

um
all

owable

rel
ativ

e kern
el

siz
e is

wm
in
⇡
15

N
.

(28)

As see
n in

the asy
mptotic

analy
sis

, we can
then

ass
ure

that

for w
>

15/N
, the est

im
ato

r vari
ance

in
nominal

conditio
ns

will
not be more

am
plifi

ed
than

(ro
ughly) a fac

tor of 4/
3 with

res
pect

to
the CRB. This iss

ue will
be confirm

ed
lat

er
on with

computer
sim

ulat
ions.

C. Robustn
ess

To quantify
the sen

siti
vity

of the est
im

ato
r to

outlie
rs,

we

focus on an
"-c

ontam
inate

d additiv
e model

[11]:

x ✏i
=

x i
+

z iy
i

(29)

The contam
inati

on rat
e is dete

rm
ined

by the zer
o-one proces

s

z i,
defi

ned
by P (z i

=
1)

=
",

and y i
is

a white
contam

-

inati
on proces

s (in
dependent of x i)

rep
res

entin
g the outlie

r.

For sim
plic

ity
, we will

ass
ume that

y i
is

disc
ret

e,
such

that

P (y i
=

Yk
) =

pk
with

k
=

1,
. .

. ,
K

.

Firs
t consid

er
the sam

ple
vari

ance
est

im
ato

r. The mean
of

the res
ultin

g vari
ance

est
im

ate
can

be eas
ily

computed
(se

e

Appendix
VI-D

for deta
ils)

fro
m

its
U-st

ati
stic

expres
sio

n in

Eq. (2), and it is
given

by:

E

h
⌃̂S

i =

1
2
E

h |x"i
� x"j

|2
i =

⌃
+
"
� �

2
y
+

µ
2
y
(1
� ")
�

(30)

where
µy

and �
2
y
are

the mean
and vari

ance
of y i,

res
pect

ively
.

The key
obser

vati
on is that

the vari
ance

is overe
stim

ate
d with

an
additiv

e bias
ter

m
which

is
proportio

nal
to

the contam
ina-

tio
n rat

e,
as

well
as

proportio
nal

to
both

mean
and vari

ance

of the contam
inati

on proces
s.

Next, we analy
ze

the im
pact

of the contam
inati

on model
on

the kern
el-

base
d est

im
ato

r, with
the inten

tio
n of highlig

htin
g

the root of its
robust behaviour. The p.d.f.

of the contam
inate

d

data
can

be writt
en

as
a weig

hted
sum

of shifte
d rep

lic
as

of

the orig
inal

one:

f"
(x

) =
(1
� ")

f(
x)

+
"

KX
k=

1

pk
f(

x�
Yk

)

(31)

To get insig
hts,

let
us first

analy
ze

the im
pact

of contam
inati

on

to
the IP

by inser
tin

g the prev
ious expres

sio
n into

Eq. (7). By

doing so
(se

e Appendix
VI-E

) we obtai
n the follo

wing tw
o

inequali
tie

s:

V v"
 V"

 V

(32)

where

V"
=

ˆ f
2
"
(x

)d
x

(33)

v"
=

(1
� ")

2 +
"
2

KX
k=

1

p
2
k
 1

(34)

The mean
ing is

that
contam

inati
on cau

ses
the IP

to
decr

eas
e

(se
e the rig

ht hand inequali
ty

in
(32))

and, as
a conseq

uence

of the inv
ers

e proportio
nali

ty
given

in
Eq. (9),

the contam
-

inati
on

res
ults

in
a

positi
ve

bias
on

the
vari

ance
est

im
ate

infer
red

fro
m

it.
The IP

of the contam
inate

d data
is

lower-

bounded
in

a multip
lic

ativ
e manner

by v"
(se

e the lef
t hand

inequali
ty

in
(32)).

This
quantity

is
just

the (disc
ret

e)
IP

of

the contam
inati

on and it depends solel
y on the contam

inati
on

rat
e "

and on the probabilit
ies

pk
ass

ocia
ted

to
the additiv

e

outlie
r valu

es.
Rem

ark
ably,

the valu
es

Yk
of the contam

inati
on

proces
s have no im

pact
on the IP,

contra
rily

to
the behavior of

the sam
ple-

vari
ance

est
im

ato
r as

see
n in

Eq. (30). This
is

the

key
propert

y that
justifi

es
the IP

as
an

adequate
prio

r entro
py-

base
d

proces
sin

g
of the data

for the purpose
of ach

iev
ing

robustn
ess

: the im
pact

on the est
im

ati
on is govern

ed
solel

y by

4

logari
thm

of an
sca

led
and bias

ed
vers

ion of the sam
ple

vari
-

ance
(se

e [6], propert
y 2.8). As w

decr
eas

es,
the asy

mptotic

vari
ance

of the proposed
est

im
ato

r is
incre

ase
d with

res
pect

to
the CRB, but never

more
than

4/
3, which

rep
res

ents
the

maxim
um

asy
mptotic

penalty
. As will

be shown
late

r on,

sm
all

kern
el

bandwidths are
inter

est
ing for the purpose

of

robustn
ess

and, in
that

sen
se,

Eq. (24) is usef
ul to

unders
tan

d

the tra
de-o

ff
betw

een
robustn

ess
in

the pres
ence

of outlie
rs

and perf
orm

ance
in

nominal
conditio

ns.

(N
� 1)

�̄
2
⌃̂

10

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10

10

2) Thres
hold

effe
ct:

The
asy

mptotic
analy

sis
develo

ped

befo
re

ass
umes

that
N

is
lar

ge enough such
that

the valu
e

of b in
Eq. (14) has

no sig
nifican

t eff
ect

on the vari
ance

of

the MIP.
From

Eq. (14) it is cle
ar

that the asy
mptotic

analy
sis

ass
umes

that:

bN
(N

� 1)
/2

<

1
L
aN

(N
� 1)

(N
� 2)

(25)

where
L
� 1. Usin

g Eqs. (22) and (23), Eq. (25) can
be eas

ily

sta
ted

as: N
>

2

✓
L
(w

+
1)

(w
+

3)

w(w
+

4)

+
1

◆
(26)

The prev
ious equatio

n shows the inter
play

betw
een

N
and

w. In
part

icu
lar,

the lower
is

the rel
ativ

e kern
el

bandwidth

w, the higher
should

be the valu
e of N

to
guara

ntee
that

the

est
im

ato
r rea

ches
the asy

mptotic
vari

ance.
For sm

all
valu

es

of w
violati

ng the conditio
n, the est

im
ato

r vari
ance

will
be

highly
am

plifi
ed. The conditio

n is als
o usef

ul to
dete

rm
ine the

minim
um

valu
e of w

that can
be used

as
a functio

n of N
. For

that
purpose,

we can
white

a sim
plifi

ed
conditio

n ass
uming a

very
sm

all
w

as:
w

>

3L

2N

(27)

If we fix, for exam
ple,

L
=

10
in

the orig
inal conditio

n in
Eq.

(25), we obtain
that

a rough valu
e of the minim

um
allo

wable

rel
ativ

e kern
el

siz
e is

wm
in
⇡
15

N
.

(28)

As see
n in

the asy
mptotic

analy
sis

, we can
then

ass
ure

that

for w
>

15/N
, the est

im
ato

r vari
ance

in
nominal

conditio
ns

will
not be more

am
plifi

ed
than

(ro
ughly) a fac

tor of 4/
3 with

res
pect

to
the CRB. This iss

ue will
be confirm

ed
late

r on with

computer
sim

ulati
ons.

C. Robustn
ess

To quantify
the sen

siti
vity

of the est
im

ato
r to

outlie
rs,

we

focus on an
"-c

ontam
inate

d additiv
e model

[11]:

x ✏i
=

x i
+

z iy i

(29)

The contam
inatio

n rat
e is dete

rm
ined

by the zer
o-one proces

s

z i,
defined

by P (z i
=

1)
=

",
and y i

is
a white

contam
-

inatio
n proces

s (in
dependent of x i)

rep
res

entin
g the outlie

r.

For sim
plici

ty,
we will

ass
ume that

y i
is

disc
ret

e,
such

that

P (y i
=

Yk
) =

pk
with

k =
1,

. .
. ,

K
.

First
consid

er
the sam

ple
vari

ance
est

im
ato

r. The mean
of

the res
ultin

g vari
ance

est
im

ate
can

be eas
ily

computed
(se

e

Appendix
VI-D

for deta
ils)

fro
m

its
U-sta

tist
ic

expres
sio

n in

Eq. (2), and it is given
by:

E

h
⌃̂S

i =
1

2
E

h |x "i
� x "j

|2
i =

⌃
+
"
� �

2
y
+

µ
2
y
(1
� ")
�

(30)

where
µy

and �
2
y
are

the mean
and vari

ance
of y i,

res
pect

ively
.

The key
obser

vatio
n is that

the vari
ance

is overe
stim

ate
d with

an
additiv

e bias
ter

m
which

is proportio
nal

to
the contam

ina-

tio
n rat

e,
as

well
as

proportio
nal

to
both

mean
and vari

ance

of the contam
inatio

n proces
s.

Next, we analy
ze

the im
pact

of the contam
inatio

n model on

the kern
el-

base
d est

im
ato

r, with
the inten

tio
n of highlig

htin
g

the root of its
robust behaviour. The p.d.f.

of the contam
inate

d

data
can

be writt
en

as
a weig

hted
sum

of shifte
d rep

lica
s of

the orig
inal

one:

f "
(x

) =
(1
� ")f

(x
) +

"

KX
k=

1

pk
f(

x�
Yk

)

(31)

To get insig
hts,

let
us first

analy
ze

the im
pact

of contam
inatio

n

to
the IP

by inser
tin

g the prev
ious expres

sio
n into

Eq. (7). By

doing so
(se

e Appendix
VI-E

) we obtain
the following two

inequalit
ies

:

V v "
 V "

 V

(32)

where

V "
=

ˆ f
2
"
(x

)d
x

(33)

v "
=

(1
� ")

2 +
"
2

KX
k=

1

p
2
k
 1

(34)

The mean
ing is

that
contam

inatio
n cau

ses
the IP

to
decr

eas
e

(se
e the rig

ht hand inequalit
y in

(32))
and, as

a conseq
uence

of the inv
ers

e proportio
nalit

y given
in

Eq. (9),
the contam

-

inatio
n

res
ults

in
a positi

ve bias
on

the vari
ance

est
im

ate

infer
red

fro
m

it.
The IP

of the contam
inate

d data
is

lower-

bounded
in

a multip
lica

tive manner
by v "

(se
e the lef

t hand

inequalit
y in

(32)).
This

quantity
is

just
the (disc

ret
e)

IP
of

the contam
inatio

n and it depends solely
on the contam

inatio
n

rat
e "

and on the probabilit
ies

pk
ass

ocia
ted

to
the additiv

e

outlie
r valu

es.
Rem

ark
ably,

the valu
es

Yk
of the contam

inatio
n

proces
s have no im

pact
on the IP,

contra
rily

to
the behavior of

the sam
ple-

vari
ance

est
im

ato
r as

see
n in

Eq. (30). This is the

key
propert

y that justifi
es

the IP
as

an
adequate

prio
r entro

py-

base
d proces

sin
g of the data

for the purpose
of ach

iev
ing

robustn
ess

: the im
pact

on the est
im

atio
n is govern

ed
solely

by

4

logari
thm

of an
sca

led
an

d bias
ed

ve
rsi

on of the sam
ple

var
i-

an
ce

(se
e [6],

propert
y 2.8).

As w
decr

eas
es,

the asy
mptotic

var
ian

ce
of the proposed

est
im

ato
r is

incre
ase

d with
res

pect

to
the CRB, bu

t neve
r more

than
4/

3,
which

rep
res

en
ts

the

max
im

um
asy

mptotic
pen

alt
y.

As
will

be
show

n
lat

er
on,

sm
all

kern
el

ban
dwidths are

inter
est

ing
for the

purpose
of

robu
stn

ess
an

d, in
that

sen
se,

Eq. (24) is
usef

ul to
unders

tan
d

the tra
de-o

ff
betw

een
robu

stn
ess

in
the pres

en
ce

of outlie
rs

an
d perf

orm
an

ce
in

nominal
co

nditio
ns.

(N
� 1)

�̄
2
⌃̂

10

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10

10

2) Thres
hold

eff
ect

:
The

asy
mptotic

an
aly

sis
deve

loped

befo
re

ass
umes

that
N

is
lar

ge en
ough

such
that

the val
ue

of b
in

Eq. (14) has
no sig

nifican
t eff

ect
on the var

ian
ce

of

the MIP.
From

Eq. (14) it is
cle

ar
that

the asy
mptotic

an
aly

sis

ass
umes

that:

bN
(N

� 1)
/2

<

1
L
aN

(N
� 1)

(N
� 2)

(25)

where
L
�

1.
Usin

g Eqs. (22) an
d (23), Eq. (25) can

be eas
ily

sta
ted

as: N
>

2

✓
L
(w

+
1)

(w
+

3)

w(w
+

4)

+
1

◆

(26)

The
prev

ious eq
uati

on
show

s the
inter

play
betw

een
N

an
d

w. In
part

icu
lar

, the
low

er
is

the
rel

ati
ve

kern
el

ban
dwidth

w, the higher
should

be the val
ue of N

to
guara

ntee
that

the

est
im

ato
r rea

ch
es

the asy
mptotic

var
ian

ce.
For sm

all
val

ues

of w
violat

ing
the co

nditio
n, the est

im
ato

r var
ian

ce
will

be

highly
am

plifi
ed

. The co
nditio

n is
als

o usef
ul to

dete
rm

ine the

minim
um

val
ue of w

that
can

be used
as

a functi
on of N

. For

that
purpose,

we can
white

a sim
plifi

ed
co

nditio
n ass

uming a

ve
ry

sm
all

w
as:

w
>

3L

2N

(27)

If
we fix, for ex

am
ple,

L
=

10
in

the orig
inal

co
nditio

n in
Eq.

(25),
we obtai

n that
a rough val

ue of the minim
um

all
ow

ab
le

rel
ati

ve
kern

el
siz

e is
wm

in
⇡
15

N
.

(28)

As see
n in

the asy
mptotic

an
aly

sis
, we can

then
ass

ure
that

for w
>

15/
N

, the est
im

ato
r var

ian
ce

in
nominal

co
nditio

ns

will
not be more

am
plifi

ed
than

(ro
ughly) a fac

tor of 4/
3

with

res
pect

to
the CRB. This

iss
ue will

be co
nfirm

ed
lat

er
on with

co
mputer

sim
ulat

ions.

C. Robu
stn

ess

To quan
tify

the sen
sit

ivity
of the est

im
ato

r to
outlie

rs,
we

focu
s on an

"-c
ontam

inate
d ad

ditiv
e model

[11]:

x ✏i
=

x i
+

z iy
i

(29)

The co
ntam

inati
on rat

e is
dete

rm
ined

by the zer
o-one proces

s

z i,
defi

ned
by

P
(z i

=
1)

=
",

an
d

y i
is

a white
co

ntam
-

inati
on

proces
s (in

dep
en

den
t of x i)

rep
res

en
tin

g
the outlie

r.

For sim
plic

ity
, we will

ass
ume that

y i
is

disc
ret

e,
such

that

P
(y i

=
Yk

) =
pk

with
k
=

1,
. .

. ,
K

.

Firs
t co

nsid
er

the sam
ple

var
ian

ce
est

im
ato

r. The mean
of

the res
ultin

g
var

ian
ce

est
im

ate
can

be eas
ily

co
mputed

(se
e

Appen
dix

VI-D
for deta

ils
) fro

m
its

U-st
ati

sti
c ex

pres
sio

n in

Eq. (2),
an

d it is
give

n by:

E

h
⌃̂S

i =

1
2
E

h |x "i
� x "j

|2
i =

⌃
+
"
� �

2
y
+

µ
2
y
(1
� ")
�

(30)

where
µ y

an
d �

2
y
are

the mean
an

d var
ian

ce
of y i,

res
pect

ive
ly.

The key
obser

vat
ion is

that
the var

ian
ce

is
ov

ere
sti

mate
d with

an
ad

ditiv
e bias

ter
m

which
is

proportio
nal

to
the co

ntam
ina-

tio
n rat

e,
as

well
as

proportio
nal

to
both

mean
an

d var
ian

ce

of the co
ntam

inati
on proces

s.

Nex
t, we an

aly
ze

the im
pact

of the co
ntam

inati
on model

on

the kern
el-

base
d est

im
ato

r,
with

the inten
tio

n of highlig
htin

g

the root of its
robu

st
beh

av
iour. The p.d.f.

of the co
ntam

inate
d

data
can

be writt
en

as
a weig

hted
sum

of shifte
d rep

lic
as

of

the orig
inal

one:

f "
(x

) =
(1
� ")

f(
x)

+
"

KX
k=

1

pk
f(

x
� Yk

)

(31)

To get
insig

hts,
let

us first
an

aly
ze

the im
pact

of co
ntam

inati
on

to
the IP

by inser
tin

g the prev
ious ex

pres
sio

n into
Eq. (7). By

doing
so

(se
e Appen

dix
VI-E

) we obtai
n

the follo
wing

tw
o

ineq
uali

tie
s:

V
v "
 V "

 V

(32)

where

V "
=

ˆ f
2
"
(x

)d
x

(33)

v "
=

(1
� ")

2 +
"
2

KX
k=

1

p
2
k
 1

(34)

The mean
ing is

that
co

ntam
inati

on cau
ses

the IP
to

decr
eas

e

(se
e the rig

ht han
d ineq

uali
ty

in
(32))

an
d, as

a co
nseq

uen
ce

of the inv
ers

e proportio
nali

ty
give

n
in

Eq. (9),
the co

ntam
-

inati
on

res
ults

in
a

posit
ive

bias
on

the
var

ian
ce

est
im

ate

infer
red

fro
m

it.
The IP

of the co
ntam

inate
d

data
is

low
er-

bounded
in

a multip
lic

ati
ve

man
ner

by v "
(se

e the lef
t han

d

ineq
uali

ty
in

(32)).
This

quan
tity

is
just

the (disc
ret

e)
IP

of

the co
ntam

inati
on an

d it dep
en

ds solel
y on the co

ntam
inati

on

rat
e "

an
d

on
the probab

ilit
ies

pk
ass

ocia
ted

to
the ad

ditiv
e

outlie
r val

ues.
Rem

ark
ab

ly,
the val

ues
Yk

of the co
ntam

inati
on

proces
s have

no im
pact

on the IP,
co

ntra
rily

to
the beh

av
ior of

the sam
ple-

var
ian

ce
est

im
ato

r as
see

n in
Eq. (30).

This
is

the

key
propert

y that
justi

fies
the IP

as
an

ad
eq

uate
prio

r en
tro

py-

base
d

proces
sin

g
of the

data
for the

purpose
of ach

iev
ing

robu
stn

ess
: the im

pact
on the est

im
ati

on is
gov

ern
ed

solel
y by

4

logari
thm

of an
sca

led
and bias

ed
ver

sio
n of the sam

ple
var

i-

ance
(se

e [6],
propert

y 2.8).
As w

decr
eas

es,
the asy

mptotic

var
ian

ce
of the proposed

est
im

ato
r is

incre
ase

d with
res

pect

to
the CRB, bu

t neve
r more

than
4/

3,
which

rep
res

ents
the

maxim
um

asy
mptotic

penalt
y.

As will
be

show
n

lat
er

on,

sm
all

kern
el

bandwidths are
inter

est
ing

for the purpose
of

robu
stn

ess
and, in

that
sen

se,
Eq. (24) is

usef
ul to

unders
tan

d

the tra
de-o

ff
betw

een
robu

stn
ess

in
the pres

ence
of outlie

rs

and perf
orm

ance
in

nominal
conditio

ns.

(N
� 1)

�̄
2
⌃̂

10

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10

10

2) Thres
hold

eff
ect

:
The

asy
mptotic

analy
sis

deve
loped

befo
re

ass
umes

that
N

is
lar

ge enough such
that

the val
ue

of b
in

Eq. (14) has
no sig

nifican
t eff

ect
on the var

ian
ce

of

the MIP.
From

Eq. (14) it is
cle

ar
that

the asy
mptotic

analy
sis

ass
umes

that:

bN
(N

� 1)
/2

<

1
L
aN

(N
� 1)

(N
� 2)

(25)

where
L
�

1.
Usin

g Eqs. (22) and (23), Eq. (25) can
be eas

ily

sta
ted

as: N
>

2

✓
L
(w

+
1)

(w
+

3)

w(w
+

4)

+
1

◆

(26)

The prev
ious equati

on
show

s the inter
play

betw
een

N
and

w. In
part

icu
lar

, the low
er

is
the rel

ati
ve

kern
el

bandwidth

w, the higher
should

be the val
ue of N

to
guara

ntee
that

the

est
im

ato
r rea

ches
the asy

mptotic
var

ian
ce.

For sm
all

val
ues

of w
violat

ing the conditio
n, the est

im
ato

r var
ian

ce
will

be

highly
am

plifi
ed. The conditio

n is als
o usef

ul to
dete

rm
ine the

minim
um

val
ue of w

that
can

be used
as

a functi
on of N

. For

that
purpose,

we can
white

a sim
plifi

ed
conditio

n ass
uming a

ver
y sm

all
w

as:
w

>

3L

2N

(27)

If we fix, for exam
ple,

L
=

10
in

the orig
inal

conditio
n in

Eq.

(25), we obtai
n that

a rough val
ue of the minim

um
all

ow
able

rel
ati

ve
kern

el
siz

e is
wm

in
⇡
15

N
.

(28)

As see
n in

the asy
mptotic

analy
sis

, we can
then

ass
ure

that

for w
>

15/N
, the est

im
ato

r var
ian

ce
in

nominal
conditio

ns

will
not be more

am
plifi

ed
than

(ro
ughly) a fac

tor of 4/
3 with

res
pect

to
the CRB. This iss

ue will
be confirm

ed
lat

er
on with

computer
sim

ulat
ions.

C. Robu
stn

ess

To quantify
the sen

siti
vity

of the est
im

ato
r to

outlie
rs,

we

focus on an
"-c

ontam
inate

d additiv
e model

[11]:

x ✏i
=

x i
+

z iy
i

(29)

The contam
inati

on rat
e is

dete
rm

ined
by the zer

o-one proces
s

z i,
defi

ned
by

P (z i
=

1)
=
",

and
y i

is
a white

contam
-

inati
on proces

s (in
dependent of x i)

rep
res

entin
g the outlie

r.

For sim
plic

ity
, we will

ass
ume that

y i
is

disc
ret

e,
such

that

P (y i
=

Y k
) =

p k
with

k
=

1,
. .

. ,
K

.

Firs
t consid

er
the sam

ple
var

ian
ce

est
im

ato
r. The mean

of

the res
ultin

g var
ian

ce
est

im
ate

can
be eas

ily
computed

(se
e

Appendix
VI-D

for deta
ils)

fro
m

its
U-st

ati
stic

expres
sio

n in

Eq. (2), and it is
give

n by:

E

h
⌃̂S

i =

1
2
E

h |x "i
� x "j

|2
i =

⌃
+
"
� �

2
y
+

µ
2
y
(1
� ")
�

(30)

where
µ y

and �
2
y
are

the mean
and var

ian
ce

of y i,
res

pect
ive

ly.

The key
obser

vat
ion is

that
the var

ian
ce

is
ov

ere
stim

ate
d with

an
additiv

e bias
ter

m
which

is
proportio

nal
to

the contam
ina-

tio
n rat

e,
as

well
as

proportio
nal

to
both

mean
and var

ian
ce

of the contam
inati

on proces
s.

Next, we analy
ze

the im
pact

of the contam
inati

on model
on

the kern
el-

base
d est

im
ato

r, with
the inten

tio
n of highlig

htin
g

the root of its
robu

st behaviour. The p.d.f.
of the contam

inate
d

data
can

be writt
en

as
a weig

hted
sum

of shifte
d rep

lic
as

of

the orig
inal

one:

f "
(x

) =
(1
� ")

f(
x)

+
"

KX
k=

1

p k
f(

x�
Y k

)

(31)

To get
insig

hts,
let

us first
analy

ze
the im

pact
of contam

inati
on

to
the IP

by inser
tin

g the prev
ious expres

sio
n into

Eq. (7). By

doing so
(se

e Appendix
VI-E

) we obtai
n the follo

wing tw
o

inequali
tie

s:

V
v "
 V "

 V

(32)

where

V "
=

ˆ f
2
"
(x

)d
x

(33)

v "
=

(1
� ")

2 +
"
2

KX
k=

1

p
2
k
 1

(34)

The mean
ing is

that
contam

inati
on cau

ses
the IP

to
decr

eas
e

(se
e the rig

ht hand inequali
ty

in
(32))

and, as
a conseq

uence

of the inv
ers

e proportio
nali

ty
give

n in
Eq. (9),

the contam
-

inati
on

res
ults

in
a

positi
ve

bias
on

the
var

ian
ce

est
im

ate

infer
red

fro
m

it.
The IP

of the contam
inate

d data
is

low
er-

bounded
in

a multip
lic

ati
ve

manner
by v "

(se
e the lef

t hand

inequali
ty

in
(32)).

This
quantity

is
just

the (disc
ret

e)
IP

of

the contam
inati

on and it depends solel
y on the contam

inati
on

rat
e "

and on the probabilit
ies

p k
ass

ocia
ted

to
the additiv

e

outlie
r val

ues.
Rem

ark
ably,

the val
ues

Y k
of the contam

inati
on

proces
s have

no im
pact

on the IP,
contra

rily
to

the behavior of

the sam
ple-

var
ian

ce
est

im
ato

r as
see

n in
Eq. (30). This

is
the

key
propert

y that
justifi

es
the IP

as
an

adequate
prio

r entro
py-

base
d

proces
sin

g
of the

data
for the

purpose
of ach

iev
ing

robu
stn

ess
: the im

pact
on the est

im
ati

on is gov
ern

ed
solel

y by

3

Pr
oo

f:
Se

e
App

en
di

x
VII-

A.

Lem
m

a
2.

If
u

, v
⇠

C
N

(0
,C

)
an

d
E
⇥ u
v

H
⇤ =
�C

, t
he

n

E
[k
W

(u
)k

W
(v

)]
=

|W
|2

� � �
⇣ 1
�

|�|
M
⌘ C

+
W

� � �
� � �
⇣ 1
+

|�|
M
⌘ C

+
W

� � �
(1

2)

whe
re

M
is

th
e

di
men

sio
na

lit
y

of
u

an
d
v

.

Pr
oo

f:
Se

e
App

en
di

x
VII-

B.

Usin
g

Le
m

m
a

1,
an

d
tak

in
g

in
to

ac
co

un
t th

at
th

e
se

co
nd

ter
m

in
Eq

. 1
0

is
a

U-st
ati

sti
cs

(i.
e.

un
bi

as
ed

) fo
r es

tim
ati

ng

E
[k

(z
)]

with
z

=
x i

�
x j

⇠
C
N

(0
, 2
⌃

),
th

e
m

ea
n

of

es
tim

ato
r Û
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Û
in

ste
ad

of
V̂

an
d

do
es

no
t

m
ak

e
th

e
as

su
m

pt
io

n
of

lar
ge

da
ta

siz
e.

Th
e

ter
m

th
at

is
ig

no
re

d
in

[6
]

is
m

ain
tai

ne
d

he
re

as
it

will
pr

ov
e

to
do

m
in

ate
th

e
va

ria
nc

e
va

lu
e

of
th

e

re
su

lti
ng

es
tim

ato
r fo

r th
e

ca
se

of
ve

ry
sm

all
ke

rn
el

ba
nd

with
va

lu
es

, w
hi

ch

ar
e

pr
ec

ise
ly

th
e

on
es

we
ar

e
in

ter
es

ted
on

fo
r th

e
pu

rp
os

e
of

ro
bu

stn
es

s.

As
a

co
ns

eq
ue

nc
e,

we
ca

n
de

sig
n

a
co

m
po

sit
e

co
ns

ist
en

t

es
tim

ato
r of

va
ria

nc
e

fro
m

an
un

bi
as

ed
es

tim
ate

of
Ū
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Fig. 2. Normalized variance of Û as a function of the relative kernel
bandwidth w for different values of the data size, N .

(Eqs. (7), (15) and (16)) and numerical. The influence of b
in (7) is manifested as a variance penalty with respect to the
asymptotic case (N →∞), and this occurs for moderate and
small w.

Fig. 3 shows the variance of the estimator in nominal
conditions as a function of w for increasing values of N ,
analytical (Eqs. (14), (15) and (16)) and numerical. According
to (17), as N is increased, the maximum penalty with respect
to the CRB tends to 4/3 when using moderately small relative
kernel bandwidths. The larger is N , the larger is the margin for
the use of small kernel bandwidths, which are those interesting
for achieving robustness without trading-off too much the esti-
mator accuracy in nominal conditions. Moreover, the existence
of this margin for large N is what provides insensitivity to the
used outlier model assumptions. Therefore, the larger is N , the
less critical is to fix the adequate kernel bandwidth in order
to achieve sufficiently high accuracy in nominal conditions.
The threshold phenomenon is confirmed (indicated by dashed
vertical arrows). For example, for N = 105, w can be as
small as wmin = 1.5 × 10−4 for the purpose of improving
robustness, without scarifying significantly the performance
in nominal conditions.

Fig. 4 shows the robustness of the proposed entropy-based
variance estimator in the presence of outliers. The relative bias
of the variance estimate is shown as a function of the variance
of a zero-mean binary outlier process, for two different values
of the contamination rate, ε. At each point, the average number
of iterations required by the algorithm is shown. While for
small contamination a pair of iterations roughly suffices, more
iterations are needed in the case of large-valued outliers and
contaminations, specially for moderate N where the determi-
nation of the kernel bandwidth at every iteration becomes
more critical. While the sample variance exhibits a non-
robust behavior with an unbounded relative bias as the outlier
variance increases, the proposed estimator exhibits a floor. The
asymptotic value obtained from an analytic computation of the
IP is indicated as dashed (red) horizontal lines, whose floor
for large outliers is given by 1/vε (see (26)).
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where L � 1. Using Eqs. (22) and (23), Eq. (25) can be easily
stated as:

N > 2

✓
L

(w + 1)(w + 3)

w(w + 4)
+ 1

◆
(26)

The previous equation shows the interplay between N and
w. In particular, the lower is the relative kernel bandwidth
w, the higher should be the value of N to guarantee that the
estimator reaches the asymptotic variance. For small values
of w violating the condition, the estimator variance will be
highly amplified. The condition is also useful to determine the
minimum value of w that can be used as a function of N . For
that purpose, we can white a simplified condition assuming a
very small w as:

w >
3L

2N
(27)

If we fix, for example, L = 10 in the original condition in Eq.
(25), we obtain that a rough value of the minimum allowable
relative kernel size is

wmin ⇡ 15

N
. (28)

As seen in the asymptotic analysis, we can then assure that
for w > 15/N , the estimator variance in nominal conditions
will not be more amplified than (roughly) a factor of 4/3 with
respect to the CRB. This issue will be confirmed later on with
computer simulations.

C. Robustness

To quantify the sensitivity of the estimator to outliers, we
focus on an "-contaminated additive model [11]:

x✏i = xi + ziyi (29)

The contamination rate is determined by the zero-one process
zi, defined by P (zi = 1) = ", and yi is a white contam-
ination process (independent of xi) representing the outlier.
For simplicity, we will assume that yi is discrete, such that
P (yi = Yk) = pk with k = 1, . . . , K.

First consider the sample variance estimator. The mean of
the resulting variance estimate can be easily computed (see
Appendix VI-D for details) from its U-statistic expression in
Eq. (2), and it is given by:

E
h
⌃̂S

i
=

1

2
E
h
|x"i � x"j |2

i
= ⌃ + "

�
�2

y + µ2
y (1 � ")

�

(30)
where µy and �2

y are the mean and variance of yi, respectively.
The key observation is that the variance is overestimated with
an additive bias term which is proportional to the contamina-
tion rate, as well as proportional to both mean and variance
of the contamination process.

Next, we analyze the impact of the contamination model on
the kernel-based estimator, with the intention of highlighting
the root of its robust behaviour. The p.d.f. of the contaminated
data can be written as a weighted sum of shifted replicas of
the original one:

f"(x) = (1 � ")f(x) + "

KX

k=1

pkf(x � Yk) (31)

To get insights, let us first analyze the impact of contamination
to the IP by inserting the previous expression into Eq. (7). By
doing so (see Appendix VI-E) we obtain the following two
inequalities:

V v"  V"  V (32)

where
V" =

ˆ

f2
" (x)dx (33)

v" = (1 � ")2 + "2
KX

k=1

p2
k  1 (34)

The meaning is that contamination causes the IP to decrease
(see the right hand inequality in (32)) and, as a consequence
of the inverse proportionality given in Eq. (9), the contam-
ination results in a positive bias on the variance estimate
inferred from it. The IP of the contaminated data is lower-
bounded in a multiplicative manner by v" (see the left hand
inequality in (32)). This quantity is just the (discrete) IP of
the contamination and it depends solely on the contamination
rate " and on the probabilities pk associated to the additive
outlier values. Remarkably, the values Yk of the contamination
process have no impact on the IP, contrarily to the behavior of
the sample-variance estimator as seen in Eq. (30). This is the
key property that justifies the IP as an adequate prior entropy-
based processing of the data for the purpose of achieving
robustness: the impact on the estimation is governed solely by
the probabilities of the outlier values, and not by how large
the outlier values are.

A final remark on the kernel bandwidth size is in order. The
kernel-based variance estimator proposed in Eq. (19) is based
on the scaled and shifted IP estimate given in Eq. (10). It is
well-known ([6]) that the kernel-based IP estimate converges
in mean to the IP when the kernel bandwidth tends to zero,
and converges to the sample variance (ignoring shifting and
scaling) when the bandwidth tends to infinity. In that sense, the
previous analysis of the IP explains why we are interested on
small relative kernel bandwidths for the purpose of robustness.

D. Kernel bandwidth determination

In general, determining the kernel bandwidth is a crucial
problem in density and IP estimation. It is clearly seen in Eq.
(18) that W operates as an scale parameter that needs to be
selected according to the data dynamic range. In the specific
problem of variance estimation we have shown in which
manner the bandwidth determines a trade-off between the
estimator efficiency, which measures the estimator accuracy in
nominal conditions (also affected by the number of samples),
and the robustness in the presence of contamination. We have
seen that these quantities are opposed in nature. Moreover, as
the variance is precisely the parameter we want to estimate,
the possibility of using an iterative method to estimate the
bandwidth from the data arises naturally, as that summarized in
Fig. 2. Basically, the sample variance is first estimated, which
is known to be optimal in nominal conditions but inflated in
the presence of contamination. This value is used to fix the
bandwidth W to a conservative value as a function of the
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logarithm of an scaled and biased version of the sample vari-
ance (see [6], property 2.8). As w decreases, the asymptotic
variance of the proposed estimator is increased with respect
to the CRB, but never more than 4/3, which represents the
maximum asymptotic penalty. As will be shown later on,
small kernel bandwidths are interesting for the purpose of
robustness and, in that sense, Eq. (24) is useful to understand
the trade-off between robustness in the presence of outliers
and performance in nominal conditions.
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2) Threshold effect: The asymptotic analysis developed
before assumes that N is large enough such that the value
of b in Eq. (14) has no significant effect on the variance of
the MIP. From Eq. (14) it is clear that the asymptotic analysis
assumes that:

bN(N � 1)/2 <
1

L
aN(N � 1)(N � 2) (25)

where L � 1. Using Eqs. (22) and (23), Eq. (25) can be easily
stated as:

N > 2

✓
L

(w + 1)(w + 3)

w(w + 4)
+ 1

◆
(26)

The previous equation shows the interplay between N and
w. In particular, the lower is the relative kernel bandwidth
w, the higher should be the value of N to guarantee that the
estimator reaches the asymptotic variance. For small values
of w violating the condition, the estimator variance will be
highly amplified. The condition is also useful to determine the
minimum value of w that can be used as a function of N . For
that purpose, we can white a simplified condition assuming a
very small w as:

w >
3L

2N
(27)

If we fix, for example, L = 10 in the original condition in Eq.
(25), we obtain that a rough value of the minimum allowable
relative kernel size is

wmin ⇡ 15

N
. (28)

As seen in the asymptotic analysis, we can then assure that
for w > 15/N , the estimator variance in nominal conditions
will not be more amplified than (roughly) a factor of 4/3 with
respect to the CRB. This issue will be confirmed later on with
computer simulations.

C. Robustness

To quantify the sensitivity of the estimator to outliers, we
focus on an "-contaminated additive model [11]:

x✏i = xi + ziyi (29)

The contamination rate is determined by the zero-one process
zi, defined by P (zi = 1) = ", and yi is a white contam-
ination process (independent of xi) representing the outlier.
For simplicity, we will assume that yi is discrete, such that
P (yi = Yk) = pk with k = 1, . . . , K.

First consider the sample variance estimator. The mean of
the resulting variance estimate can be easily computed (see
Appendix VI-D for details) from its U-statistic expression in
Eq. (2), and it is given by:

E
h
⌃̂S

i
=

1

2
E
h
|x"i � x"j |2

i
= ⌃ + "

�
�2

y + µ2
y (1 � ")

�

(30)
where µy and �2

y are the mean and variance of yi, respectively.
The key observation is that the variance is overestimated with
an additive bias term which is proportional to the contamina-
tion rate, as well as proportional to both mean and variance
of the contamination process.

Next, we analyze the impact of the contamination model on
the kernel-based estimator, with the intention of highlighting
the root of its robust behaviour. The p.d.f. of the contaminated
data can be written as a weighted sum of shifted replicas of
the original one:

f"(x) = (1 � ")f(x) + "
KX

k=1

pkf(x � Yk) (31)

To get insights, let us first analyze the impact of contamination
to the IP by inserting the previous expression into Eq. (7). By
doing so (see Appendix VI-E) we obtain the following two
inequalities:

V v"  V"  V (32)

where
V" =

ˆ

f2
" (x)dx (33)

v" = (1 � ")2 + "2
KX

k=1

p2
k  1 (34)

The meaning is that contamination causes the IP to decrease
(see the right hand inequality in (32)) and, as a consequence
of the inverse proportionality given in Eq. (9), the contam-
ination results in a positive bias on the variance estimate
inferred from it. The IP of the contaminated data is lower-
bounded in a multiplicative manner by v" (see the left hand
inequality in (32)). This quantity is just the (discrete) IP of
the contamination and it depends solely on the contamination
rate " and on the probabilities pk associated to the additive
outlier values. Remarkably, the values Yk of the contamination
process have no impact on the IP, contrarily to the behavior of
the sample-variance estimator as seen in Eq. (30). This is the
key property that justifies the IP as an adequate prior entropy-
based processing of the data for the purpose of achieving
robustness: the impact on the estimation is governed solely by

4

logarithm of an scaled and biased version of the sample vari-
ance (see [6], property 2.8). As w decreases, the asymptotic
variance of the proposed estimator is increased with respect
to the CRB, but never more than 4/3, which represents the
maximum asymptotic penalty. As will be shown later on,
small kernel bandwidths are interesting for the purpose of
robustness and, in that sense, Eq. (24) is useful to understand
the trade-off between robustness in the presence of outliers
and performance in nominal conditions.
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2) Threshold effect: The asymptotic analysis developed
before assumes that N is large enough such that the value
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the MIP. From Eq. (14) it is clear that the asymptotic analysis
assumes that:
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where L � 1. Using Eqs. (22) and (23), Eq. (25) can be easily
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The previous equation shows the interplay between N and
w. In particular, the lower is the relative kernel bandwidth
w, the higher should be the value of N to guarantee that the
estimator reaches the asymptotic variance. For small values
of w violating the condition, the estimator variance will be
highly amplified. The condition is also useful to determine the
minimum value of w that can be used as a function of N . For
that purpose, we can white a simplified condition assuming a
very small w as:

w >
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2N
(27)

If we fix, for example, L = 10 in the original condition in Eq.
(25), we obtain that a rough value of the minimum allowable
relative kernel size is

wmin ⇡ 15

N
. (28)

As seen in the asymptotic analysis, we can then assure that
for w > 15/N , the estimator variance in nominal conditions
will not be more amplified than (roughly) a factor of 4/3 with
respect to the CRB. This issue will be confirmed later on with
computer simulations.

C. Robustness

To quantify the sensitivity of the estimator to outliers, we
focus on an "-contaminated additive model [11]:

x✏i = xi + ziyi (29)

The contamination rate is determined by the zero-one process
zi, defined by P (zi = 1) = ", and yi is a white contam-
ination process (independent of xi) representing the outlier.
For simplicity, we will assume that yi is discrete, such that
P (yi = Yk) = pk with k = 1, . . . , K.

First consider the sample variance estimator. The mean of
the resulting variance estimate can be easily computed (see
Appendix VI-D for details) from its U-statistic expression in
Eq. (2), and it is given by:
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The key observation is that the variance is overestimated with
an additive bias term which is proportional to the contamina-
tion rate, as well as proportional to both mean and variance
of the contamination process.

Next, we analyze the impact of the contamination model on
the kernel-based estimator, with the intention of highlighting
the root of its robust behaviour. The p.d.f. of the contaminated
data can be written as a weighted sum of shifted replicas of
the original one:
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(see the right hand inequality in (32)) and, as a consequence
of the inverse proportionality given in Eq. (9), the contam-
ination results in a positive bias on the variance estimate
inferred from it. The IP of the contaminated data is lower-
bounded in a multiplicative manner by v" (see the left hand
inequality in (32)). This quantity is just the (discrete) IP of
the contamination and it depends solely on the contamination
rate " and on the probabilities pk associated to the additive
outlier values. Remarkably, the values Yk of the contamination
process have no impact on the IP, contrarily to the behavior of
the sample-variance estimator as seen in Eq. (30). This is the
key property that justifies the IP as an adequate prior entropy-
based processing of the data for the purpose of achieving
robustness: the impact on the estimation is governed solely by
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variance of the proposed estimator is increased with respect
to the CRB, but never more than 4/3, which represents the
maximum asymptotic penalty. As will be shown later on,
small kernel bandwidths are interesting for the purpose of
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before assumes that N is large enough such that the value
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The previous equation shows the interplay between N and
w. In particular, the lower is the relative kernel bandwidth
w, the higher should be the value of N to guarantee that the
estimator reaches the asymptotic variance. For small values
of w violating the condition, the estimator variance will be
highly amplified. The condition is also useful to determine the
minimum value of w that can be used as a function of N . For
that purpose, we can white a simplified condition assuming a
very small w as:

w >
3L

2N
(27)

If we fix, for example, L = 10 in the original condition in Eq.
(25), we obtain that a rough value of the minimum allowable
relative kernel size is

wmin ⇡ 15

N
. (28)

As seen in the asymptotic analysis, we can then assure that
for w > 15/N , the estimator variance in nominal conditions
will not be more amplified than (roughly) a factor of 4/3 with
respect to the CRB. This issue will be confirmed later on with
computer simulations.
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To quantify the sensitivity of the estimator to outliers, we
focus on an "-contaminated additive model [11]:

x✏i = xi + ziyi (29)

The contamination rate is determined by the zero-one process
zi, defined by P (zi = 1) = ", and yi is a white contam-
ination process (independent of xi) representing the outlier.
For simplicity, we will assume that yi is discrete, such that
P (yi = Yk) = pk with k = 1, . . . , K.

First consider the sample variance estimator. The mean of
the resulting variance estimate can be easily computed (see
Appendix VI-D for details) from its U-statistic expression in
Eq. (2), and it is given by:
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an additive bias term which is proportional to the contamina-
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of the contamination process.
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the root of its robust behaviour. The p.d.f. of the contaminated
data can be written as a weighted sum of shifted replicas of
the original one:
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to the IP by inserting the previous expression into Eq. (7). By
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(see the right hand inequality in (32)) and, as a consequence
of the inverse proportionality given in Eq. (9), the contam-
ination results in a positive bias on the variance estimate
inferred from it. The IP of the contaminated data is lower-
bounded in a multiplicative manner by v" (see the left hand
inequality in (32)). This quantity is just the (discrete) IP of
the contamination and it depends solely on the contamination
rate " and on the probabilities pk associated to the additive
outlier values. Remarkably, the values Yk of the contamination
process have no impact on the IP, contrarily to the behavior of
the sample-variance estimator as seen in Eq. (30). This is the
key property that justifies the IP as an adequate prior entropy-
based processing of the data for the purpose of achieving
robustness: the impact on the estimation is governed solely by
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logarithm of an scaled and biased version of the sample vari-
ance (see [6], property 2.8). As w decreases, the asymptotic
variance of the proposed estimator is increased with respect
to the CRB, but never more than 4/3, which represents the
maximum asymptotic penalty. As will be shown later on,
small kernel bandwidths are interesting for the purpose of
robustness and, in that sense, Eq. (24) is useful to understand
the trade-off between robustness in the presence of outliers
and performance in nominal conditions.
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2) Threshold effect: The asymptotic analysis developed
before assumes that N is large enough such that the value
of b in Eq. (14) has no significant effect on the variance of
the MIP. From Eq. (14) it is clear that the asymptotic analysis
assumes that:

bN(N � 1)/2 <
1

L
aN(N � 1)(N � 2) (25)

where L � 1. Using Eqs. (22) and (23), Eq. (25) can be easily
stated as:

N > 2

✓
L

(w + 1)(w + 3)

w(w + 4)
+ 1

◆
(26)

The previous equation shows the interplay between N and
w. In particular, the lower is the relative kernel bandwidth
w, the higher should be the value of N to guarantee that the
estimator reaches the asymptotic variance. For small values
of w violating the condition, the estimator variance will be
highly amplified. The condition is also useful to determine the
minimum value of w that can be used as a function of N . For
that purpose, we can white a simplified condition assuming a
very small w as:

w >
3L

2N
(27)

If we fix, for example, L = 10 in the original condition in Eq.
(25), we obtain that a rough value of the minimum allowable
relative kernel size is

wmin ⇡ 15

N
. (28)

As seen in the asymptotic analysis, we can then assure that
for w > 15/N , the estimator variance in nominal conditions
will not be more amplified than (roughly) a factor of 4/3 with
respect to the CRB. This issue will be confirmed later on with
computer simulations.

C. Robustness

To quantify the sensitivity of the estimator to outliers, we
focus on an "-contaminated additive model [11]:

x✏i = xi + ziyi (29)

The contamination rate is determined by the zero-one process
zi, defined by P (zi = 1) = ", and yi is a white contam-
ination process (independent of xi) representing the outlier.
For simplicity, we will assume that yi is discrete, such that
P (yi = Yk) = pk with k = 1, . . . , K.

First consider the sample variance estimator. The mean of
the resulting variance estimate can be easily computed (see
Appendix VI-D for details) from its U-statistic expression in
Eq. (2), and it is given by:
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y (1 � ")

�

(30)
where µy and �2

y are the mean and variance of yi, respectively.
The key observation is that the variance is overestimated with
an additive bias term which is proportional to the contamina-
tion rate, as well as proportional to both mean and variance
of the contamination process.

Next, we analyze the impact of the contamination model on
the kernel-based estimator, with the intention of highlighting
the root of its robust behaviour. The p.d.f. of the contaminated
data can be written as a weighted sum of shifted replicas of
the original one:

f"(x) = (1 � ")f(x) + "

KX

k=1

pkf(x � Yk) (31)

To get insights, let us first analyze the impact of contamination
to the IP by inserting the previous expression into Eq. (7). By
doing so (see Appendix VI-E) we obtain the following two
inequalities:

V v"  V"  V (32)

where
V" =

ˆ

f2
" (x)dx (33)

v" = (1 � ")2 + "2
KX

k=1

p2
k  1 (34)

The meaning is that contamination causes the IP to decrease
(see the right hand inequality in (32)) and, as a consequence
of the inverse proportionality given in Eq. (9), the contam-
ination results in a positive bias on the variance estimate
inferred from it. The IP of the contaminated data is lower-
bounded in a multiplicative manner by v" (see the left hand
inequality in (32)). This quantity is just the (discrete) IP of
the contamination and it depends solely on the contamination
rate " and on the probabilities pk associated to the additive
outlier values. Remarkably, the values Yk of the contamination
process have no impact on the IP, contrarily to the behavior of
the sample-variance estimator as seen in Eq. (30). This is the
key property that justifies the IP as an adequate prior entropy-
based processing of the data for the purpose of achieving
robustness: the impact on the estimation is governed solely by

4

logarithm of an scaled and biased version of the sample vari-
ance (see [6], property 2.8). As w decreases, the asymptotic
variance of the proposed estimator is increased with respect
to the CRB, but never more than 4/3, which represents the
maximum asymptotic penalty. As will be shown later on,
small kernel bandwidths are interesting for the purpose of
robustness and, in that sense, Eq. (24) is useful to understand
the trade-off between robustness in the presence of outliers
and performance in nominal conditions.
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2) Threshold effect: The asymptotic analysis developed
before assumes that N is large enough such that the value
of b in Eq. (14) has no significant effect on the variance of
the MIP. From Eq. (14) it is clear that the asymptotic analysis
assumes that:

bN(N � 1)/2 <
1

L
aN(N � 1)(N � 2) (25)

where L � 1. Using Eqs. (22) and (23), Eq. (25) can be easily
stated as:

N > 2
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The previous equation shows the interplay between N and
w. In particular, the lower is the relative kernel bandwidth
w, the higher should be the value of N to guarantee that the
estimator reaches the asymptotic variance. For small values
of w violating the condition, the estimator variance will be
highly amplified. The condition is also useful to determine the
minimum value of w that can be used as a function of N . For
that purpose, we can white a simplified condition assuming a
very small w as:

w >
3L

2N
(27)

If we fix, for example, L = 10 in the original condition in Eq.
(25), we obtain that a rough value of the minimum allowable
relative kernel size is

wmin ⇡ 15

N
. (28)

As seen in the asymptotic analysis, we can then assure that
for w > 15/N , the estimator variance in nominal conditions
will not be more amplified than (roughly) a factor of 4/3 with
respect to the CRB. This issue will be confirmed later on with
computer simulations.

C. Robustness

To quantify the sensitivity of the estimator to outliers, we
focus on an "-contaminated additive model [11]:

x✏i = xi + ziyi (29)

The contamination rate is determined by the zero-one process
zi, defined by P (zi = 1) = ", and yi is a white contam-
ination process (independent of xi) representing the outlier.
For simplicity, we will assume that yi is discrete, such that
P (yi = Yk) = pk with k = 1, . . . , K.

First consider the sample variance estimator. The mean of
the resulting variance estimate can be easily computed (see
Appendix VI-D for details) from its U-statistic expression in
Eq. (2), and it is given by:
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where µy and �2

y are the mean and variance of yi, respectively.
The key observation is that the variance is overestimated with
an additive bias term which is proportional to the contamina-
tion rate, as well as proportional to both mean and variance
of the contamination process.

Next, we analyze the impact of the contamination model on
the kernel-based estimator, with the intention of highlighting
the root of its robust behaviour. The p.d.f. of the contaminated
data can be written as a weighted sum of shifted replicas of
the original one:

f"(x) = (1 � ")f(x) + "

KX

k=1

pkf(x � Yk) (31)

To get insights, let us first analyze the impact of contamination
to the IP by inserting the previous expression into Eq. (7). By
doing so (see Appendix VI-E) we obtain the following two
inequalities:

V v"  V"  V (32)

where
V" =

ˆ

f2
" (x)dx (33)

v" = (1 � ")2 + "2
KX

k=1

p2
k  1 (34)

The meaning is that contamination causes the IP to decrease
(see the right hand inequality in (32)) and, as a consequence
of the inverse proportionality given in Eq. (9), the contam-
ination results in a positive bias on the variance estimate
inferred from it. The IP of the contaminated data is lower-
bounded in a multiplicative manner by v" (see the left hand
inequality in (32)). This quantity is just the (discrete) IP of
the contamination and it depends solely on the contamination
rate " and on the probabilities pk associated to the additive
outlier values. Remarkably, the values Yk of the contamination
process have no impact on the IP, contrarily to the behavior of
the sample-variance estimator as seen in Eq. (30). This is the
key property that justifies the IP as an adequate prior entropy-
based processing of the data for the purpose of achieving
robustness: the impact on the estimation is governed solely by

4

logarithm of an scaled and biased version of the sample vari-
ance (see [6], property 2.8). As w decreases, the asymptotic
variance of the proposed estimator is increased with respect
to the CRB, but never more than 4/3, which represents the
maximum asymptotic penalty. As will be shown later on,
small kernel bandwidths are interesting for the purpose of
robustness and, in that sense, Eq. (24) is useful to understand
the trade-off between robustness in the presence of outliers
and performance in nominal conditions.
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2) Threshold effect: The asymptotic analysis developed
before assumes that N is large enough such that the value
of b in Eq. (14) has no significant effect on the variance of
the MIP. From Eq. (14) it is clear that the asymptotic analysis
assumes that:

bN(N � 1)/2 <
1

L
aN(N � 1)(N � 2) (25)

where L � 1. Using Eqs. (22) and (23), Eq. (25) can be easily
stated as:
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The previous equation shows the interplay between N and
w. In particular, the lower is the relative kernel bandwidth
w, the higher should be the value of N to guarantee that the
estimator reaches the asymptotic variance. For small values
of w violating the condition, the estimator variance will be
highly amplified. The condition is also useful to determine the
minimum value of w that can be used as a function of N . For
that purpose, we can white a simplified condition assuming a
very small w as:

w >
3L

2N
(27)

If we fix, for example, L = 10 in the original condition in Eq.
(25), we obtain that a rough value of the minimum allowable
relative kernel size is

wmin ⇡ 15

N
. (28)

As seen in the asymptotic analysis, we can then assure that
for w > 15/N , the estimator variance in nominal conditions
will not be more amplified than (roughly) a factor of 4/3 with
respect to the CRB. This issue will be confirmed later on with
computer simulations.

C. Robustness

To quantify the sensitivity of the estimator to outliers, we
focus on an "-contaminated additive model [11]:

x✏i = xi + ziyi (29)

The contamination rate is determined by the zero-one process
zi, defined by P (zi = 1) = ", and yi is a white contam-
ination process (independent of xi) representing the outlier.
For simplicity, we will assume that yi is discrete, such that
P (yi = Yk) = pk with k = 1, . . . , K.

First consider the sample variance estimator. The mean of
the resulting variance estimate can be easily computed (see
Appendix VI-D for details) from its U-statistic expression in
Eq. (2), and it is given by:
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where µy and �2

y are the mean and variance of yi, respectively.
The key observation is that the variance is overestimated with
an additive bias term which is proportional to the contamina-
tion rate, as well as proportional to both mean and variance
of the contamination process.

Next, we analyze the impact of the contamination model on
the kernel-based estimator, with the intention of highlighting
the root of its robust behaviour. The p.d.f. of the contaminated
data can be written as a weighted sum of shifted replicas of
the original one:

f"(x) = (1 � ")f(x) + "

KX

k=1

pkf(x � Yk) (31)

To get insights, let us first analyze the impact of contamination
to the IP by inserting the previous expression into Eq. (7). By
doing so (see Appendix VI-E) we obtain the following two
inequalities:

V v"  V"  V (32)

where
V" =

ˆ

f2
" (x)dx (33)

v" = (1 � ")2 + "2
KX

k=1

p2
k  1 (34)

The meaning is that contamination causes the IP to decrease
(see the right hand inequality in (32)) and, as a consequence
of the inverse proportionality given in Eq. (9), the contam-
ination results in a positive bias on the variance estimate
inferred from it. The IP of the contaminated data is lower-
bounded in a multiplicative manner by v" (see the left hand
inequality in (32)). This quantity is just the (discrete) IP of
the contamination and it depends solely on the contamination
rate " and on the probabilities pk associated to the additive
outlier values. Remarkably, the values Yk of the contamination
process have no impact on the IP, contrarily to the behavior of
the sample-variance estimator as seen in Eq. (30). This is the
key property that justifies the IP as an adequate prior entropy-
based processing of the data for the purpose of achieving
robustness: the impact on the estimation is governed solely by

4

logarithm of an scaled and biased version of the sample vari-
ance (see [6], property 2.8). As w decreases, the asymptotic
variance of the proposed estimator is increased with respect
to the CRB, but never more than 4/3, which represents the
maximum asymptotic penalty. As will be shown later on,
small kernel bandwidths are interesting for the purpose of
robustness and, in that sense, Eq. (24) is useful to understand
the trade-off between robustness in the presence of outliers
and performance in nominal conditions.
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2) Threshold effect: The asymptotic analysis developed
before assumes that N is large enough such that the value
of b in Eq. (14) has no significant effect on the variance of
the MIP. From Eq. (14) it is clear that the asymptotic analysis
assumes that:

bN(N � 1)/2 <
1

L
aN(N � 1)(N � 2) (25)

where L � 1. Using Eqs. (22) and (23), Eq. (25) can be easily
stated as:

N > 2
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(w + 1)(w + 3)

w(w + 4)
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(26)

The previous equation shows the interplay between N and
w. In particular, the lower is the relative kernel bandwidth
w, the higher should be the value of N to guarantee that the
estimator reaches the asymptotic variance. For small values
of w violating the condition, the estimator variance will be
highly amplified. The condition is also useful to determine the
minimum value of w that can be used as a function of N . For
that purpose, we can white a simplified condition assuming a
very small w as:

w >
3L

2N
(27)

If we fix, for example, L = 10 in the original condition in Eq.
(25), we obtain that a rough value of the minimum allowable
relative kernel size is

wmin ⇡ 15

N
. (28)

As seen in the asymptotic analysis, we can then assure that
for w > 15/N , the estimator variance in nominal conditions
will not be more amplified than (roughly) a factor of 4/3 with
respect to the CRB. This issue will be confirmed later on with
computer simulations.

C. Robustness

To quantify the sensitivity of the estimator to outliers, we
focus on an "-contaminated additive model [11]:

x✏i = xi + ziyi (29)

The contamination rate is determined by the zero-one process
zi, defined by P (zi = 1) = ", and yi is a white contam-
ination process (independent of xi) representing the outlier.
For simplicity, we will assume that yi is discrete, such that
P (yi = Yk) = pk with k = 1, . . . , K.

First consider the sample variance estimator. The mean of
the resulting variance estimate can be easily computed (see
Appendix VI-D for details) from its U-statistic expression in
Eq. (2), and it is given by:
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where µy and �2

y are the mean and variance of yi, respectively.
The key observation is that the variance is overestimated with
an additive bias term which is proportional to the contamina-
tion rate, as well as proportional to both mean and variance
of the contamination process.

Next, we analyze the impact of the contamination model on
the kernel-based estimator, with the intention of highlighting
the root of its robust behaviour. The p.d.f. of the contaminated
data can be written as a weighted sum of shifted replicas of
the original one:

f"(x) = (1 � ")f(x) + "

KX

k=1

pkf(x � Yk) (31)

To get insights, let us first analyze the impact of contamination
to the IP by inserting the previous expression into Eq. (7). By
doing so (see Appendix VI-E) we obtain the following two
inequalities:

V v"  V"  V (32)

where
V" =

ˆ

f2
" (x)dx (33)

v" = (1 � ")2 + "2
KX

k=1

p2
k  1 (34)

The meaning is that contamination causes the IP to decrease
(see the right hand inequality in (32)) and, as a consequence
of the inverse proportionality given in Eq. (9), the contam-
ination results in a positive bias on the variance estimate
inferred from it. The IP of the contaminated data is lower-
bounded in a multiplicative manner by v" (see the left hand
inequality in (32)). This quantity is just the (discrete) IP of
the contamination and it depends solely on the contamination
rate " and on the probabilities pk associated to the additive
outlier values. Remarkably, the values Yk of the contamination
process have no impact on the IP, contrarily to the behavior of
the sample-variance estimator as seen in Eq. (30). This is the
key property that justifies the IP as an adequate prior entropy-
based processing of the data for the purpose of achieving
robustness: the impact on the estimation is governed solely by
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|W|2���
⇣
1 � |�|M

⌘
C + W

���
���
⇣
1 + |�|M

⌘
C + W

���
(12)

where M is the dimensionality of u and v.

Proof: See Appendix VI-B.
Using Lemma 1, and taking into account that the second

term in Eq. 10 is a U-statistics (i.e. unbiased) for estimating
E [k(z)] with z = xi � xj ⇠ CN (0, 2⌃), the mean of
estimator Û is given by

Ū =
|W|

|2⌃ + W| (13)

Using Eq. (10), and following an analysis similar to [6]2, the
variance of Û can be expressed as:

�2
Û

= E
h
Û2
i
� Ū2 =

aN(N � 1)(N � 2) + bN(N � 1)/2

(N(N � 1)/2)
2

(14)
where

a =

|W|2
|2 (1 � 2�M )⌃ + W| |2 (1 + 2�M )⌃ + W| �

|W|2

|2⌃ + W|2
(15)

b =
|W|2

|W| |4⌃ + W| �
|W|2

|2⌃ + W|2
(16)

whose derivation is detailed in Appendix VI-B0a. Note that,
for any finite value of a and b, Û will be consistent (i.e.
Û ! Ū in probability) and in particular its variance will
decrease inversely proportional to N as N ! 1 ([6]),
because the impact of the value of b in Eq. (14) becomes
asymptotically negligible. However, the term b cannot be
neglected to characterize the variance of the MIP because it
goes to zero more slowly than a as |W| goes to zero. This
issue will be better clarified in the next section.

III. KERNEL-BASED VARIANCE ESTIMATION

We focus here on the univariate case, M = 1, which
provides clarity and insights into the core idea. From Eq. (13)
we obtain the following monotonic relationship between the
MIP and the variance:

Ū =
w

w + 2
(17)

where the relative badwidth is defined as

w =
W

⌃
. (18)

As a consequence, we can design a composite consistent
estimator of variance from an unbiased estimate of Ū as:

⌃̂ = D̂K =

✓
1

Û
� 1

◆
W

2
(19)

2With respect to [6], our analysis refers to Û instead of V̂ and does not
make the assumption of large data size. The term that is ignored in [6]
is maintained here as it will prove to dominate the variance value of the
resulting estimator for the case of very small kernel bandwith values, which
are precisely the ones we are interested on for the purpose of robustness.

Note that Eq. (19) is an special case of Eq. (5), where
now function gW (x) = (x�1 � 1)W/2. In the sequel, the
bias and variance of the estimator proposed in Eq. (19) is
analyzed under nominal conditions, paying special attention to
the interplay between N , W and estimator efficiency. Finally,
we will pay the attention to its robustness to outliers.

A. Bias

In virtue of the Jensen’s inequality and the concavity of
function 1/x for x > 0, the expectation of the variance
estimator in Eq. (19) can be written as:

⌃̄ = E
h
⌃̂
i
�
✓

1

Ū
� 1

◆
W

2
= ⌃ (20)

which means that the bias of ⌃̂ (given by E[⌃̂]�⌃) is strictly
positive. However, as Û is consistent, if fulfills that Û ! Ū in
probability, which means that ⌃̄ ! ⌃ in probability as well.
i.e., ⌃̂ is asymptotically unbiased.

B. Variance

The variance of estimator ⌃̂ in Eq. (19) can be character-
ized from the variance of Û following an small perturbation
analysis (see Appendix VI-C). The relative variance can be
writen as:

�̄2
⌃̂

=
�2
⌃̂

⌃2
⇡

�2
Û

4

(w + 2)4

w2

 
1 + 3

✓
w + 2

w

◆2

�2
Û

!
(21)

where the variance of the MIP is given in Eq. (14) with
constants a and b in Eq. (16) given by:

a = w2

✓
1

(w + 1)(w + 3)
� 1

(w + 2)2

◆
(22)

b = w2

✓
1

w(w + 4)
� 1

(w + 2)2

◆
(23)

It is noted from the previous equations that, when w ! 0, the
variance of the proposed estimator tends to infinity, irrespec-
tive of the fact that a ! 0 and b ! 0. The reason for this is
that b goes to zero as O(w) (instead of O(w2)) and this why
we didn’t neglect it in Eq. (14).

1) Asymptotic analysis: To get insights into the previous
results, let us consider the case of large data size N . For any
w > 0, we have from Eq. (14) that limN!1N�2

Û
= 4a.

Therefore, using Eqs. (21), (22) and (23), we can state that

4

3
� limN!1N �̄2

⌃̂
=

(w + 2)2

(w + 1)(w + 3)
� 1 (24)

with the maximum and minimum values achieved for w ! 0
and w ! 1, respectively. The previous equation quantifies
the asymptotic penalty on the estimator variance as a function
of the kernel bandwidth. It is noted that the sample mean es-
timator of variance (⌃̂S) in the nominal conditions is efficient
(it reaches the CRB) and fulfills that limN!1N �̄2

⌃̂S
= 1.

Therefore, the previous equation shows in particular that the
proposed estimator is asymptotically efficient as the kernel size
tends to infinity. This is a consequence of the fact that, for large
bandwidths, the quadratic entropy estimator approaches the
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Fig. 2. Iterative procedure for determining the kernel bandwidth.

in mean to the IP when the kernel bandwidth tends to zero,
and converges to the sample variance (ignoring shifting and
scaling) when the bandwidth tends to infinity. In that sense, the
previous analysis of the IP explains why we are interested on
small relative kernel bandwidths for the purpose of robustness.

D. Kernel bandwidth determination

In general, determining the kernel bandwidth is a crucial
problem in density and IP estimation. It is clearly seen in Eq.
(18) that W operates as an scale parameter that needs to be
selected according to the data dynamic range. In the specific
problem of variance estimation we have shown in which
manner the bandwidth determines a trade-off between the
estimator efficiency, which measures the estimator accuracy in
nominal conditions (also affected by the number of samples),
and the robustness in the presence of contamination. We have
seen that these quantities are opposed in nature. Moreover, as
the variance is precisely the parameter we want to estimate,
the possibility of using an iterative method to estimate the
bandwidth from the data arises naturally, as that summarized in
Fig. 2. Basically, the sample variance is first estimated, which
is known to be optimal in nominal conditions but inflated in
the presence of contamination. This value is used to fix the
bandwidth W to a conservative value as a function of the
available number of samples according to Eq. (28). Using this
value, we estimate the kernel-based variance which is used to
fix the next relative kernel bandwidth, and this procedure is
repeated Q times.

IV. MAGNITUDE SQUARED COHERENCE ESTIMATION

Next, we extend the main idea by focusing on the bivariate
case, M = 2. Let us consider a composite vector sequence of
the form xi = [x1i, x2i]

T with covariance matrix

⌃ =

✓
⌃1 ⇢

p
⌃1⌃2

⇢⇤
p
⌃1⌃2 ⌃2

◆

The determinant of this matrix, which will be estimated
after the prior entropy-based processing already described, is
given by|⌃| = ⌃1⌃2

�
1 � |⇢|2

�
, where |⇢|2 is the magnitude

squared coherence (MSC) parameter to be estimated. For the
problem of estimating |⇢|2, we will assume for simplicity that
the marginal variances ⌃1 and ⌃2 are known. Otherwise, they
can be estimated by the procedure exposed in the previous
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where L � 1. Using Eqs. (22) and (23), Eq. (25) can be easily
stated as:

N > 2

✓
L

(w + 1)(w + 3)

w(w + 4)
+ 1

◆
(26)

The previous equation shows the interplay between N and
w. In particular, the lower is the relative kernel bandwidth
w, the higher should be the value of N to guarantee that the
estimator reaches the asymptotic variance. For small values
of w violating the condition, the estimator variance will be
highly amplified. The condition is also useful to determine the
minimum value of w that can be used as a function of N . For
that purpose, we can white a simplified condition assuming a
very small w as:

w >
3L

2N
(27)

If we fix, for example, L = 10 in the original condition in Eq.
(25), we obtain that a rough value of the minimum allowable
relative kernel size is

wmin ⇡ 15

N
. (28)

As seen in the asymptotic analysis, we can then assure that
for w > 15/N , the estimator variance in nominal conditions
will not be more amplified than (roughly) a factor of 4/3 with
respect to the CRB. This issue will be confirmed later on with
computer simulations.

C. Robustness

To quantify the sensitivity of the estimator to outliers, we
focus on an "-contaminated additive model [11]:

x✏i = xi + ziyi (29)

The contamination rate is determined by the zero-one process
zi, defined by P (zi = 1) = ", and yi is a white contam-
ination process (independent of xi) representing the outlier.
For simplicity, we will assume that yi is discrete, such that
P (yi = Yk) = pk with k = 1, . . . , K.

First consider the sample variance estimator. The mean of
the resulting variance estimate can be easily computed (see
Appendix VI-D for details) from its U-statistic expression in
Eq. (2), and it is given by:

E
h
⌃̂S

i
=

1

2
E
h
|x"i � x"j |2

i
= ⌃ + "

�
�2

y + µ2
y (1 � ")

�

(30)
where µy and �2

y are the mean and variance of yi, respectively.
The key observation is that the variance is overestimated with
an additive bias term which is proportional to the contamina-
tion rate, as well as proportional to both mean and variance
of the contamination process.

Next, we analyze the impact of the contamination model on
the kernel-based estimator, with the intention of highlighting
the root of its robust behaviour. The p.d.f. of the contaminated
data can be written as a weighted sum of shifted replicas of
the original one:

f"(x) = (1 � ")f(x) + "

KX

k=1

pkf(x � Yk) (31)

To get insights, let us first analyze the impact of contamination
to the IP by inserting the previous expression into Eq. (7). By
doing so (see Appendix VI-E) we obtain the following two
inequalities:

V v"  V"  V (32)

where
V" =

ˆ

f2
" (x)dx (33)

v" = (1 � ")2 + "2
KX

k=1

p2
k  1 (34)

The meaning is that contamination causes the IP to decrease
(see the right hand inequality in (32)) and, as a consequence
of the inverse proportionality given in Eq. (9), the contam-
ination results in a positive bias on the variance estimate
inferred from it. The IP of the contaminated data is lower-
bounded in a multiplicative manner by v" (see the left hand
inequality in (32)). This quantity is just the (discrete) IP of
the contamination and it depends solely on the contamination
rate " and on the probabilities pk associated to the additive
outlier values. Remarkably, the values Yk of the contamination
process have no impact on the IP, contrarily to the behavior of
the sample-variance estimator as seen in Eq. (30). This is the
key property that justifies the IP as an adequate prior entropy-
based processing of the data for the purpose of achieving
robustness: the impact on the estimation is governed solely by
the probabilities of the outlier values, and not by how large
the outlier values are.

A final remark on the kernel bandwidth size is in order. The
kernel-based variance estimator proposed in Eq. (19) is based
on the scaled and shifted IP estimate given in Eq. (10). It is
well-known ([6]) that the kernel-based IP estimate converges
in mean to the IP when the kernel bandwidth tends to zero,
and converges to the sample variance (ignoring shifting and
scaling) when the bandwidth tends to infinity. In that sense, the
previous analysis of the IP explains why we are interested on
small relative kernel bandwidths for the purpose of robustness.

D. Kernel bandwidth determination

In general, determining the kernel bandwidth is a crucial
problem in density and IP estimation. It is clearly seen in Eq.
(18) that W operates as an scale parameter that needs to be
selected according to the data dynamic range. In the specific
problem of variance estimation we have shown in which
manner the bandwidth determines a trade-off between the
estimator efficiency, which measures the estimator accuracy in
nominal conditions (also affected by the number of samples),
and the robustness in the presence of contamination. We have
seen that these quantities are opposed in nature. Moreover, as
the variance is precisely the parameter we want to estimate,
the possibility of using an iterative method to estimate the
bandwidth from the data arises naturally, as that summarized in
Fig. 2. Basically, the sample variance is first estimated, which
is known to be optimal in nominal conditions but inflated in
the presence of contamination. This value is used to fix the
bandwidth W to a conservative value as a function of the
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logari
thm

of an
sca

led
and bias

ed
vers

ion of the sam
ple

var
i-

ance
(se

e [6],
propert

y 2.8).
As w

decr
eas

es,
the asy

mptotic

var
ian

ce
of the proposed

est
im

ato
r is

incre
ase

d with
res

pect

to
the CRB, bu

t never
more

than
4/

3,
which

rep
res

ents
the

maxim
um

asy
mptotic

penalt
y.

As will
be

show
n

lat
er

on,

sm
all

kern
el

bandwidths are
inter

est
ing

for the
purpose

of

robu
stn

ess
and, in

that
sen

se,
Eq. (24) is

usef
ul to

unders
tan

d

the tra
de-o

ff
betw
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robu

stn
ess

in
the pres

ence
of outlie
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and perf
orm
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in

nominal
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2) Thres
hold

eff
ect

:
The

asy
mptotic

analy
sis

develo
ped

befo
re

ass
umes

that
N

is
lar

ge enough
such

that
the val

ue

of b
in

Eq. (14) has
no sig

nifican
t eff

ect
on the var

ian
ce

of

the MIP.
From

Eq. (14) it is
cle

ar
that

the asy
mptotic

analy
sis

ass
umes

that:
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/2

<

1
L
aN

(N
� 1)

(N
� 2)
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where
L
�

1.
Usin

g Eqs. (22) and (23), Eq. (25) can
be eas
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sta
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>

2
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The prev
ious equati

on
show

s the inter
play

betw
een

N
and

w. In
part

icu
lar

, the low
er

is
the rel

ati
ve kern

el
bandwidth

w, the higher
should

be the val
ue of N

to
guara
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that

the

est
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ches
the asy

mptotic
var
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ce.
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r var
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am
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ed. The conditio

n is
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ul to

dete
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val
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that
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be used
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on of N

. For

that
purpose,
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white

a sim
plifi
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sm
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as:
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3L
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(27)

If
we fix, for exam

ple,
L

=
10

in
the orig

inal
conditio

n in
Eq.

(25), we obtai
n that

a rough val
ue of the minim

um
all

ow
able

rel
ati

ve kern
el

siz
e is

wm
in
⇡
15

N
.

(28)

As see
n in

the asy
mptotic

analy
sis

, we can
then

ass
ure

that

for w
>

15/N
, the est

im
ato

r var
ian

ce
in

nominal
conditio

ns

will
not be more

am
plifi

ed
than

(ro
ughly) a fac

tor of 4/
3

with

res
pect

to
the CRB. This

iss
ue will

be confirm
ed

lat
er

on with

computer
sim

ulat
ions.

C. Robu
stn

ess

To quantify
the sen

sit
ivity

of the est
im

ato
r to

outlie
rs,

we

focus on an
"-c

ontam
inate

d additiv
e model

[11]:

x ✏i
=

x i
+

z iy
i

(29)

The contam
inati

on rat
e is

dete
rm

ined
by the zer

o-one proces
s

z i,
defi

ned
by

P (z i
=

1)
=
",

and
y i

is
a white

contam
-

inati
on

proces
s (in

dependent of x i)
rep

res
entin

g
the outlie

r.

For sim
plic

ity
, we will

ass
ume that

y i
is

disc
ret

e,
such

that

P (y i
=

Yk
) =

pk
with

k
=

1,
. .

. ,
K

.

Firs
t consid

er
the sam

ple
var

ian
ce

est
im

ato
r. The mean

of

the res
ultin

g
var

ian
ce

est
im

ate
can

be eas
ily

computed
(se

e

Appendix
VI-D

for deta
ils

) fro
m

its
U-st

ati
sti

c expres
sio

n in

Eq. (2), and it is
given

by:
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�

(30)

where
µy

and �
2
y
are

the mean
and var

ian
ce

of y i,
res

pect
ively

.

The key
obser

vat
ion is

that
the var

ian
ce

is
overe

sti
mate

d with

an
additiv

e bias
ter

m
which

is
proportio

nal
to

the contam
ina-

tio
n rat

e,
as

well
as

proportio
nal

to
both

mean
and var

ian
ce

of the contam
inati

on proces
s.

Next, we analy
ze

the im
pact

of the contam
inati

on model
on

the kern
el-

base
d est

im
ato

r, with
the inten

tio
n of highlig

htin
g

the root of its
robu

st
behaviour. The p.d.f.

of the contam
inate

d

data
can

be writt
en

as
a weig

hted
sum

of shifte
d rep

lic
as

of

the orig
inal

one:

f "
(x

) =
(1
� ")

f(
x)

+
"

KX
k=

1

pk
f(

x
� Yk

)

(31)

To get
insig

hts,
let

us first
analy

ze
the im

pact
of contam

inati
on

to
the IP

by inser
tin

g the prev
ious expres

sio
n into

Eq. (7). By

doing so
(se

e Appendix
VI-E

) we obtai
n the follo

wing tw
o

inequali
tie

s:

V
v "
 V "

 V

(32)

where

V "
=

ˆ f
2
"
(x

)d
x

(33)

v "
=

(1
� ")

2 +
"
2

KX
k=

1

p
2
k
 1

(34)

The mean
ing is

that
contam

inati
on cau

ses
the IP

to
decr

eas
e

(se
e the rig

ht hand inequali
ty

in
(32))

and, as
a conseq

uence

of the inv
ers

e proportio
nali

ty
given

in
Eq. (9),

the contam
-

inati
on

res
ults

in
a

posit
ive

bias
on

the
var

ian
ce

est
im

ate

infer
red

fro
m

it.
The IP

of the contam
inate

d
data

is
low

er-

bounded
in

a multip
lic

ati
ve manner

by v "
(se

e the lef
t hand

inequali
ty

in
(32)).

This
quantity

is
just

the (disc
ret

e)
IP

of

the contam
inati

on and it depends solel
y on the contam

inati
on

rat
e "

and on the probabilit
ies

pk
ass

ocia
ted

to
the additiv

e

outlie
r val

ues.
Rem

ark
ably,

the val
ues

Yk
of the contam

inati
on

proces
s have no im

pact
on the IP,

contra
rily

to
the behavior of

the sam
ple-

var
ian

ce
est

im
ato

r as
see

n in
Eq. (30). This

is
the

key
propert

y that
justi

fies
the IP

as
an

adequate
prio

r entro
py-

base
d

proces
sin

g
of the

data
for the

purpose
of ach

iev
ing

robu
stn

ess
: the im

pact
on the est

im
ati

on is
govern

ed
solel

y by

4

logari
thm

of an
sca

led
and bias

ed
vers

ion of the sam
ple

var
i-

ance
(se

e [6],
propert

y 2.8).
As w

decr
eas

es,
the asy

mptotic

var
ian

ce
of the proposed

est
im

ato
r is

incre
ase

d with
res

pect

to
the CRB, bu

t never
more

than
4/

3,
which

rep
res

ents
the

maxim
um

asy
mptotic

penalt
y.

As will
be

show
n

lat
er

on,

sm
all

kern
el

bandwidths are
inter

est
ing

for the purpose
of

robu
stn

ess
and, in

that
sen

se,
Eq. (24) is

usef
ul to

unders
tan

d

the tra
de-o

ff
betw

een
robu

stn
ess

in
the pres

ence
of outlie

rs

and perf
orm

ance
in

nominal
conditio

ns.

(N
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�̄
2
⌃̂
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10
7
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2) Thres
hold

eff
ect

:
The

asy
mptotic

analy
sis

develo
ped

befo
re

ass
umes

that
N

is
lar

ge enough such
that

the val
ue

of b
in

Eq. (14) has
no sig

nifican
t eff

ect
on the var

ian
ce

of

the MIP.
From

Eq. (14) it is cle
ar

that
the asy

mptotic
analy

sis

ass
umes

that:

bN
(N

� 1)
/2

<

1
L
aN

(N
� 1)

(N
� 2)

(25)

where
L
�

1.
Usin

g Eqs. (22) and (23), Eq. (25) can
be eas

ily

sta
ted

as: N
>

2

✓
L
(w

+
1)

(w
+

3)

w(w
+

4)

+
1

◆
(26)

The prev
ious equati

on
show

s the inter
play

betw
een

N
and

w. In
part

icu
lar

, the low
er

is
the rel

ati
ve kern

el
bandwidth

w, the higher
should

be the val
ue of N

to
guara

ntee
that

the

est
im

ato
r rea

ches
the asy

mptotic
var

ian
ce.

For sm
all

val
ues

of w
violat

ing the conditio
n, the est

im
ato

r var
ian

ce
will

be

highly
am

plifi
ed. The conditio

n is als
o usef

ul to
dete

rm
ine the

minim
um

val
ue of w

that
can

be used
as

a functi
on of N

. For

that
purpose,

we can
white

a sim
plifi

ed
conditio

n ass
uming a

very
sm

all
w

as:
w

>

3L

2N

(27)

If we fix, for exam
ple,

L
=

10
in

the orig
inal

conditio
n in

Eq.

(25), we obtai
n that

a rough val
ue of the minim

um
all

ow
able

rel
ati

ve kern
el

siz
e is

wm
in
⇡
15

N
.

(28)

As see
n in

the asy
mptotic

analy
sis

, we can
then

ass
ure

that

for w
>

15/N
, the est

im
ato

r var
ian

ce
in

nominal
conditio

ns

will
not be more

am
plifi

ed
than

(ro
ughly) a fac

tor of 4/
3 with

res
pect

to
the CRB. This iss

ue will
be confirm

ed
lat

er
on with

computer
sim

ulat
ions.

C. Robu
stn

ess

To quantify
the sen

siti
vity

of the est
im

ato
r to

outlie
rs,

we

focus on an
"-c

ontam
inate

d additiv
e model

[11]:

x ✏i
=

x i
+

z iy
i

(29)

The contam
inati

on rat
e is

dete
rm

ined
by the zer

o-one proces
s

z i,
defi

ned
by P (z i

=
1)

=
",

and y i
is

a white
contam

-

inati
on proces

s (in
dependent of x i)

rep
res

entin
g the outlie

r.

For sim
plic

ity
, we will

ass
ume that

y i
is

disc
ret

e,
such

that

P (y i
=

Yk
) =

pk
with

k
=

1,
. .

. ,
K

.

Firs
t consid

er
the sam

ple
var

ian
ce

est
im

ato
r. The mean

of

the res
ultin

g var
ian

ce
est

im
ate

can
be eas

ily
computed

(se
e

Appendix
VI-D

for deta
ils)

fro
m

its
U-st

ati
stic

expres
sio

n in

Eq. (2), and it is
given

by:

E

h
⌃̂S

i =

1
2
E

h |x "i
� x "j

|2
i =

⌃
+
"
� �

2
y
+

µ
2
y
(1
� ")
�

(30)

where
µy

and �
2
y
are

the mean
and var

ian
ce

of y i,
res

pect
ively

.

The key
obser

vat
ion is

that
the var

ian
ce

is
overe

stim
ate

d with

an
additiv

e bias
ter

m
which

is
proportio

nal
to

the contam
ina-

tio
n rat

e,
as

well
as

proportio
nal

to
both

mean
and var

ian
ce

of the contam
inati

on proces
s.

Next, we analy
ze

the im
pact

of the contam
inati

on model
on

the kern
el-

base
d est

im
ato

r, with
the inten

tio
n of highlig

htin
g

the root of its
robu

st behaviour. The p.d.f.
of the contam

inate
d

data
can

be writt
en

as
a weig

hted
sum

of shifte
d rep

lic
as

of

the orig
inal

one:

f "
(x

) =
(1
� ")

f(
x)

+
"

KX
k=

1

pk
f(

x�
Yk

)

(31)

To get
insig

hts,
let

us first
analy

ze
the im

pact
of contam

inati
on

to
the IP

by inser
tin

g the prev
ious expres

sio
n into

Eq. (7). By

doing so
(se

e Appendix
VI-E

) we obtai
n the follo

wing tw
o

inequali
tie

s:

V v "
 V "

 V

(32)

where

V "
=

ˆ f
2
"
(x

)d
x

(33)

v "
=

(1
� ")

2 +
"
2

KX
k=

1

p
2
k
 1

(34)

The mean
ing is

that
contam

inati
on cau

ses
the IP

to
decr

eas
e

(se
e the rig

ht hand inequali
ty

in
(32))

and, as
a conseq

uence

of the inv
ers

e proportio
nali

ty
given

in
Eq. (9),

the contam
-

inati
on

res
ults

in
a

positi
ve

bias
on

the
var

ian
ce

est
im

ate

infer
red

fro
m

it.
The IP

of the contam
inate

d data
is

low
er-

bounded
in

a multip
lic

ati
ve manner

by v "
(se

e the lef
t hand

inequali
ty

in
(32)).

This
quantity

is
just

the (disc
ret

e)
IP

of

the contam
inati

on and it depends solel
y on the contam

inati
on

rat
e "

and on the probabilit
ies

pk
ass

ocia
ted

to
the additiv

e

outlie
r val

ues.
Rem

ark
ably,

the val
ues

Yk
of the contam

inati
on

proces
s have no im

pact
on the IP,

contra
rily

to
the behavior of

the sam
ple-

var
ian

ce
est

im
ato

r as
see

n in
Eq. (30). This

is
the

key
propert

y that
justifi

es
the IP

as
an

adequate
prio

r entro
py-

base
d

proces
sin

g
of the data

for the purpose
of ach

iev
ing

robu
stn

ess
: the im

pact
on the est

im
ati

on is govern
ed

solel
y by

4

logari
thm

of an
sca

led
and bias

ed
vers

ion of the sam
ple

vari
-

ance
(se

e [6],
propert

y 2.8).
As w

decr
eas

es,
the asy

mptotic

vari
ance

of the proposed
est

im
ato

r is
incre

ase
d with

res
pect

to
the CRB, but never

more
than

4/
3, which

rep
res

ents
the

maxim
um

asy
mptotic

penalt
y.

As will
be

shown
lat

er
on,

sm
all

kern
el

bandwidths are
inter

est
ing

for the purpose
of

robustn
ess

and, in
that

sen
se,

Eq. (24) is
usef

ul to
unders

tan
d

the tra
de-o

ff
betw

een
robustn

ess
in

the pres
ence

of outlie
rs

and perf
orm

ance
in

nominal
conditio

ns.

(N
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2
⌃̂
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10
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2) Thres
hold

eff
ect

:
The

asy
mptotic

analy
sis

develo
ped

befo
re

ass
umes

that
N

is
lar

ge enough such
that

the valu
e

of b
in

Eq. (14) has
no sig

nifican
t eff

ect
on the vari

ance
of

the MIP.
From

Eq. (14) it is cle
ar

that
the asy

mptotic
analy

sis

ass
umes

that:

bN
(N

� 1)
/2

<

1
L
aN

(N
� 1)

(N
� 2)

(25)

where
L
�

1. Usin
g Eqs. (22) and (23), Eq. (25) can

be eas
ily

sta
ted

as: N
>

2

✓
L
(w

+
1)

(w
+

3)

w(w
+

4)

+
1

◆
(26)

The prev
ious equati

on
shows the inter

play
betw

een
N

and

w. In
part

icu
lar

, the lower
is

the rel
ativ

e kern
el

bandwidth

w, the higher
should

be the valu
e of N

to
guara

ntee
that

the

est
im

ato
r rea

ches
the asy

mptotic
vari

ance.
For sm

all
valu

es

of w
violat

ing the conditio
n, the est

im
ato

r vari
ance

will
be

highly
am

plifi
ed. The conditio

n is als
o usef

ul to
dete

rm
ine the

minim
um

valu
e of w

that
can

be used
as

a functi
on of N

. For

that
purpose,

we can
white

a sim
plifi

ed
conditio

n ass
uming a

very
sm

all
w

as:
w

>

3L

2N

(27)

If we fix, for exam
ple,

L
=

10
in

the orig
inal

conditio
n in

Eq.

(25), we obtai
n that

a rough valu
e of the minim

um
all

owable

rel
ativ

e kern
el

siz
e is

wm
in
⇡
15

N
.

(28)

As see
n in

the asy
mptotic

analy
sis

, we can
then

ass
ure

that

for w
>

15/N
, the est

im
ato

r vari
ance

in
nominal

conditio
ns

will
not be more

am
plifi

ed
than

(ro
ughly) a fac

tor of 4/
3 with

res
pect

to
the CRB. This iss

ue will
be confirm

ed
lat

er
on with

computer
sim

ulat
ions.

C. Robustn
ess

To quantify
the sen

siti
vity

of the est
im

ato
r to

outlie
rs,

we

focus on an
"-c

ontam
inate

d additiv
e model

[11]:

x ✏i
=

x i
+

z iy
i

(29)

The contam
inati

on rat
e is

dete
rm

ined
by the zer

o-one proces
s

z i,
defi

ned
by P (z i

=
1)

=
",

and y i
is

a white
contam

-

inati
on proces

s (in
dependent of x i)

rep
res

entin
g the outlie

r.

For sim
plic

ity
, we will

ass
ume that

y i
is

disc
ret

e,
such

that

P (y i
=

Yk
) =

pk
with

k
=

1,
. .

. ,
K

.

Firs
t consid

er
the sam

ple
vari

ance
est

im
ato

r. The mean
of

the res
ultin

g vari
ance

est
im

ate
can

be eas
ily

computed
(se

e

Appendix
VI-D

for deta
ils)

fro
m

its
U-st

ati
stic

expres
sio

n in

Eq. (2), and it is
given

by:

E

h
⌃̂S

i =

1
2
E

h |x"i
� x"j

|2
i =

⌃
+
"
� �

2
y
+

µ
2
y
(1
� ")
�

(30)

where
µy

and �
2
y
are

the mean
and vari

ance
of y i,

res
pect

ively
.

The key
obser

vati
on is

that
the vari

ance
is overe

stim
ate

d with

an
additiv

e bias
ter

m
which

is
proportio

nal
to

the contam
ina-

tio
n rat

e,
as

well
as

proportio
nal

to
both

mean
and vari

ance

of the contam
inati

on proces
s.

Next, we analy
ze

the im
pact

of the contam
inati

on model
on

the kern
el-

base
d est

im
ato

r, with
the inten

tio
n of highlig

htin
g

the root of its
robust behaviour. The p.d.f.

of the contam
inate

d

data
can

be writt
en

as
a weig

hted
sum

of shifte
d rep

lic
as

of

the orig
inal

one:

f"
(x

) =
(1
� ")

f(
x)

+
"

KX
k=

1

pk
f(

x�
Yk

)

(31)

To get
insig

hts,
let

us first
analy

ze
the im

pact
of contam

inati
on

to
the IP

by inser
tin

g the prev
ious expres

sio
n into

Eq. (7). By

doing so
(se

e Appendix
VI-E

) we obtai
n the follo

wing tw
o

inequali
tie

s:

V v"
 V"

 V

(32)

where

V"
=

ˆ f
2
"
(x

)d
x

(33)

v"
=

(1
� ")

2 +
"
2

KX
k=

1

p
2
k
 1

(34)

The mean
ing is

that
contam

inati
on cau

ses
the IP

to
decr

eas
e

(se
e the rig

ht hand inequali
ty

in
(32))

and, as
a conseq

uence

of the inv
ers

e proportio
nali

ty
given

in
Eq. (9),

the contam
-

inati
on

res
ults

in
a

positi
ve

bias
on

the
vari

ance
est

im
ate

infer
red

fro
m

it.
The IP

of the contam
inate

d data
is

lower-

bounded
in

a multip
lic

ativ
e manner

by v"
(se

e the lef
t hand

inequali
ty

in
(32)).

This
quantity

is
just

the (disc
ret

e)
IP

of

the contam
inati

on and it depends solel
y on the contam

inati
on

rat
e "

and on the probabilit
ies

pk
ass

ocia
ted

to
the additiv

e

outlie
r valu

es.
Rem

ark
ably,

the valu
es

Yk
of the contam

inati
on

proces
s have no im

pact
on the IP,

contra
rily

to
the behavior of

the sam
ple-

vari
ance

est
im

ato
r as

see
n in

Eq. (30). This
is

the

key
propert

y that
justifi

es
the IP

as
an

adequate
prio

r entro
py-

base
d

proces
sin

g
of the data

for the purpose
of ach

iev
ing

robustn
ess

: the im
pact

on the est
im

ati
on is govern

ed
solel

y by

4

logari
thm

of an
sca

led
and bias

ed
vers

ion of the sam
ple

vari
-

ance
(se

e [6], propert
y 2.8). As w

decr
eas

es,
the asy

mptotic

vari
ance

of the proposed
est

im
ato

r is
incre

ase
d with

res
pect

to
the CRB, but never

more
than

4/
3, which

rep
res

ents
the

maxim
um

asy
mptotic

penalty
. As will

be shown
late

r on,

sm
all

kern
el

bandwidths are
inter

est
ing for the purpose

of

robustn
ess

and, in
that

sen
se,

Eq. (24) is usef
ul to

unders
tan

d

the tra
de-o

ff
betw

een
robustn

ess
in

the pres
ence

of outlie
rs

and perf
orm

ance
in

nominal
conditio

ns.
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2) Thres
hold

effe
ct:

The
asy

mptotic
analy

sis
develo

ped

befo
re

ass
umes

that
N

is
lar

ge enough such
that

the valu
e

of b in
Eq. (14) has

no sig
nifican

t eff
ect

on the vari
ance

of

the MIP.
From

Eq. (14) it is cle
ar

that
the asy

mptotic
analy

sis

ass
umes

that:

bN
(N

� 1)
/2

<

1
L
aN

(N
� 1)

(N
� 2)

(25)

where
L
� 1. Usin

g Eqs. (22) and (23), Eq. (25) can
be eas

ily

sta
ted

as: N
>

2

✓
L
(w

+
1)

(w
+

3)

w(w
+

4)

+
1

◆
(26)

The prev
ious equatio

n shows the inter
play

betw
een

N
and

w. In
part

icu
lar,

the lower
is

the rel
ativ

e kern
el

bandwidth

w, the higher
should

be the valu
e of N

to
guara

ntee
that

the

est
im

ato
r rea

ches
the asy

mptotic
vari

ance.
For sm

all
valu

es

of w
violati

ng the conditio
n, the est

im
ato

r vari
ance

will
be

highly
am

plifi
ed. The conditio

n is als
o usef

ul to
dete

rm
ine the

minim
um

valu
e of w

that
can

be used
as

a functio
n of N

. For

that
purpose,

we can
white

a sim
plifi

ed
conditio

n ass
uming a

very
sm

all
w

as:
w

>

3L

2N

(27)

If we fix, for exam
ple,

L
=

10
in

the orig
inal conditio

n in
Eq.

(25), we obtain
that

a rough valu
e of the minim

um
allo

wable

rel
ativ

e kern
el

siz
e is

wm
in
⇡
15

N
.

(28)

As see
n in

the asy
mptotic

analy
sis

, we can
then

ass
ure

that

for w
>

15/N
, the est

im
ato

r vari
ance

in
nominal

conditio
ns

will
not be more

am
plifi

ed
than

(ro
ughly) a fac

tor of 4/
3 with

res
pect

to
the CRB. This iss

ue will
be confirm

ed
late

r on with

computer
sim

ulati
ons.

C. Robustn
ess

To quantify
the sen

siti
vity

of the est
im

ato
r to

outlie
rs,

we

focus on an
"-c

ontam
inate

d additiv
e model

[11]:

x ✏i
=

x i
+

z iy i

(29)

The contam
inatio

n rat
e is dete

rm
ined

by the zer
o-one proces

s

z i,
defined

by P (z i
=

1)
=

",
and y i

is
a white

contam
-

inatio
n proces

s (in
dependent of x i)

rep
res

entin
g the outlie

r.

For sim
plici

ty,
we will

ass
ume that

y i
is

disc
ret

e,
such

that

P (y i
=

Yk
) =

pk
with

k =
1,

. .
. ,

K
.

First
consid

er
the sam

ple
vari

ance
est

im
ato

r. The mean
of

the res
ultin

g vari
ance

est
im

ate
can

be eas
ily

computed
(se

e

Appendix
VI-D

for deta
ils)

fro
m

its
U-sta

tist
ic

expres
sio

n in

Eq. (2), and it is given
by:

E

h
⌃̂S

i =
1

2
E

h |x "i
� x "j

|2
i =

⌃
+
"
� �

2
y
+

µ
2
y
(1
� ")
�

(30)

where
µy

and �
2
y
are

the mean
and vari

ance
of y i,

res
pect

ively
.

The key
obser

vatio
n is that

the vari
ance

is overe
stim

ate
d with

an
additiv

e bias
ter

m
which

is proportio
nal

to
the contam

ina-

tio
n rat

e,
as

well
as

proportio
nal

to
both

mean
and vari

ance

of the contam
inatio

n proces
s.

Next, we analy
ze

the im
pact

of the contam
inatio

n model on

the kern
el-

base
d est

im
ato

r, with
the inten

tio
n of highlig

htin
g

the root of its
robust behaviour. The p.d.f.

of the contam
inate

d

data
can

be writt
en

as
a weig

hted
sum

of shifte
d rep

lica
s of

the orig
inal

one:

f "
(x

) =
(1
� ")

f(
x)

+
"

KX
k=

1

pk
f(

x�
Yk

)

(31)

To get insig
hts,

let
us first

analy
ze

the im
pact

of contam
inatio

n

to
the IP

by inser
tin

g the prev
ious expres

sio
n into

Eq. (7). By

doing so
(se

e Appendix
VI-E

) we obtain
the follo

wing two

inequalit
ies

:

V v "
 V "

 V

(32)

where

V "
=

ˆ f
2
"
(x

)d
x

(33)

v "
=

(1
� ")

2 +
"
2

KX
k=

1

p
2
k
 1

(34)

The mean
ing is

that
contam

inatio
n cau

ses
the IP

to
decr

eas
e

(se
e the rig

ht hand inequalit
y in

(32))
and, as

a conseq
uence

of the inv
ers

e proportio
nalit

y given
in

Eq. (9),
the contam

-

inatio
n

res
ults

in
a positi

ve bias
on

the vari
ance

est
im

ate

infer
red

fro
m

it.
The IP

of the contam
inate

d data
is

lower-

bounded
in

a multip
lica

tive manner
by v "

(se
e the lef

t hand

inequalit
y in

(32)).
This

quantity
is

just
the (disc

ret
e)

IP
of

the contam
inatio

n and it depends solely
on the contam

inatio
n

rat
e "

and on the probabilit
ies

pk
ass

ocia
ted

to
the additiv

e

outlie
r valu

es.
Rem

ark
ably,

the valu
es

Yk
of the contam

inatio
n

proces
s have no im

pact
on the IP,

contra
rily

to
the behavior of

the sam
ple-

vari
ance

est
im

ato
r as

see
n in

Eq. (30). This is the

key
propert

y that
justifi

es
the IP

as
an

adequate
prio

r entro
py-

base
d proces

sin
g of the data

for the purpose
of ach

iev
ing

robustn
ess

: the im
pact

on the est
im

atio
n is govern

ed
solely

by

4

logari
thm

of an
sca

led
an

d bias
ed

ve
rsi

on of the sam
ple

va
ri-

an
ce

(se
e [6],

propert
y 2.8).

As w
decr

eas
es,

the asy
mptotic

va
ria

nce
of the proposed

est
im

ato
r is

incre
ase

d
with

res
pect

to
the CRB, bu

t neve
r more

than
4/

3,
which

rep
res

en
ts

the

max
im

um
asy

mptotic
pen

alt
y.

As
will

be
show

n
lat

er
on,

sm
all

ke
rnel

ban
dwidths are

inter
est

ing
for the

purpose
of

robu
stn

ess
an

d, in
that

sen
se,

Eq. (24) is
usef

ul to
unders

tan
d

the tra
de-o

ff
betw

een
robu

stn
ess

in
the pres

en
ce

of outlie
rs

an
d perf

orm
an

ce
in

nominal
co

nditio
ns.

(N
� 1)

�̄
2
⌃̂

10

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10

10

2) Thres
hold

eff
ect

:
The

asy
mptotic

an
aly

sis
deve

loped

befo
re

ass
umes

that
N

is
lar

ge en
ough

such
that

the va
lue

of b
in

Eq. (14) has
no

sig
nifican

t eff
ect

on
the va

ria
nce

of

the MIP.
From

Eq. (14) it is
cle

ar
that

the asy
mptotic

an
aly

sis

ass
umes

that:

bN
(N

� 1)
/2

<

1
L
aN

(N
� 1)

(N
� 2)

(25)

where
L
�

1.
Usin

g Eqs. (22) an
d (23), Eq. (25) can

be eas
ily

sta
ted

as: N
>

2

✓
L
(w

+
1)

(w
+

3)

w(w
+

4)

+
1

◆

(26)

The
prev

ious eq
uati

on
show

s the
inter

play
betw

een
N

an
d

w. In
part

icu
lar

, the
low

er
is

the
rel

ati
ve

ke
rnel

ban
dwidth

w, the higher
should

be the va
lue of N

to
guara

ntee
that

the

est
im

ato
r rea

ch
es

the asy
mptotic

va
ria

nce.
For sm

all
va

lues

of w
violat

ing
the co

nditio
n, the est

im
ato

r va
ria

nce
will

be

highly
am

plifi
ed

. The co
nditio

n is
als

o usef
ul to

dete
rm

ine the

minim
um

va
lue of w

that
can

be used
as

a functi
on of N

. For

that
purpose,

we can
white

a sim
plifi

ed
co

nditio
n ass

uming a

ve
ry

sm
all

w
as:

w
>

3L

2N

(27)

If
we fix, for ex

am
ple,

L
=

10
in

the orig
inal

co
nditio

n in
Eq.

(25),
we obtai

n that
a rough va

lue of the minim
um

all
ow

ab
le

rel
ati

ve
ke

rnel
siz

e is
wm

in
⇡
15

N
.

(28)

As see
n

in
the asy

mptotic
an

aly
sis

, we can
then

ass
ure

that

for w
>

15/
N

, the est
im

ato
r va

ria
nce

in
nominal

co
nditio

ns

will
not be more

am
plifi

ed
than

(ro
ughly) a fac

tor of 4
/3

with

res
pect

to
the CRB. This

iss
ue will

be co
nfirm

ed
lat

er
on with

co
mputer

sim
ulat

ions.

C. Robu
stn

ess

To quan
tify

the sen
sit

ivity
of the est

im
ato

r to
outlie

rs,
we

focu
s on an

"-c
ontam

inate
d ad

ditiv
e model

[11]:

x ✏i
=

x i
+

z iy
i

(29)

The co
ntam

inati
on rat

e is
dete

rm
ined

by the zer
o-one proces

s

z i,
defi

ned
by

P
(z i

=
1)

=
",

an
d

y i
is

a white
co

ntam
-

inati
on

proces
s (in

dep
en

den
t of x i)

rep
res

en
tin

g
the outlie

r.

For sim
plic

ity
, we will

ass
ume that

y i
is

disc
ret

e,
such

that

P
(y i

=
Yk

) =
pk

with
k
=

1,
. .

. ,
K

.

Firs
t co

nsid
er

the sam
ple

va
ria

nce
est

im
ato

r.
The mean

of

the res
ultin

g
va

ria
nce

est
im

ate
can

be eas
ily

co
mputed

(se
e

Appen
dix

VI-D
for deta

ils
) fro

m
its

U-st
ati

sti
c ex

pres
sio

n in

Eq. (2),
an

d it is
give

n by:

E

h
⌃̂S

i =

1
2
E

h |x "i
� x "j

|2
i =

⌃
+
"
� �

2
y
+

µ
2
y
(1
� ")
�

(30)

where
µ y

an
d �

2
y
are

the mean
an

d va
ria

nce
of y i,

res
pect

ive
ly.

The ke
y obser

va
tio

n is
that

the va
ria

nce
is

ov
ere

sti
mate

d with

an
ad

ditiv
e bias

ter
m

which
is

proportio
nal

to
the co

ntam
ina-

tio
n rat

e,
as

well
as

proportio
nal

to
both

mean
an

d va
ria

nce

of the co
ntam

inati
on proces

s.

Nex
t, we an

aly
ze

the im
pact

of the co
ntam

inati
on model

on

the ke
rnel-

base
d est

im
ato

r,
with

the inten
tio

n of highlig
htin

g

the root of its
robu

st
beh

av
iour. The p.d.f.

of the co
ntam

inate
d

data
can

be writt
en

as
a weig

hted
sum

of shifte
d rep

lic
as

of

the orig
inal

one:

f "
(x

) =
(1
� ")

f(
x)

+
"

KX
k=

1

pk
f(

x
� Yk

)

(31)

To get
insig

hts,
let

us first
an

aly
ze

the im
pact

of co
ntam

inati
on

to
the IP

by inser
tin

g the prev
ious ex

pres
sio

n into
Eq. (7). By

doing
so

(se
e Appen

dix
VI-E

) we obtai
n

the follo
wing

tw
o

ineq
uali

tie
s:

V
v "
 V "

 V

(32)

where

V "
=

ˆ f
2
"
(x

)d
x

(33)

v "
=

(1
� ")

2 +
"
2

KX
k=

1

p
2
k
 1

(34)

The mean
ing is

that
co

ntam
inati

on cau
ses

the IP
to

decr
eas

e

(se
e the rig

ht han
d ineq

uali
ty

in
(32))

an
d, as

a co
nseq

uen
ce

of the inv
ers

e proportio
nali

ty
give

n
in

Eq. (9),
the co

ntam
-

inati
on

res
ults

in
a

posit
ive

bias
on

the
va

ria
nce

est
im

ate

infer
red

fro
m

it.
The IP

of the co
ntam

inate
d

data
is

low
er-

bounded
in

a multip
lic

ati
ve

man
ner

by v "
(se

e the lef
t han

d

ineq
uali

ty
in

(32)).
This

quan
tity

is
just

the (disc
ret

e)
IP

of

the co
ntam

inati
on an

d it dep
en

ds solel
y on the co

ntam
inati

on

rat
e "

an
d

on
the probab

ilit
ies

pk
ass

ocia
ted

to
the ad

ditiv
e

outlie
r va

lues.
Rem

ark
ab

ly,
the va

lues
Yk

of the co
ntam

inati
on

proces
s have

no im
pact

on the IP,
co

ntra
rily

to
the beh

av
ior of

the sam
ple-

va
ria

nce
est

im
ato

r as
see

n in
Eq. (30).

This
is

the

ke
y propert

y that
justi

fies
the IP

as
an

ad
eq

uate
prio

r en
tro

py
-

base
d

proces
sin

g
of the

data
for the

purpose
of ach

iev
ing

robu
stn

ess
: the im

pact
on the est

im
ati

on is
gov

ern
ed

solel
y by

4

logari
thm

of an
sca

led
and bias

ed
ver

sio
n of the sam

ple
var

i-

ance
(se

e [6],
propert

y 2.8).
As w

decr
eas

es,
the asy

mptotic

var
ian

ce
of the proposed

est
im

ato
r is

incre
ase

d with
res

pect

to
the CRB, bu

t neve
r more

than
4/

3,
which

rep
res

ents
the

maxim
um

asy
mptotic

penalt
y.

As will
be

show
n

lat
er

on,

sm
all

ker
nel

bandwidths are
inter

est
ing

for the
purpose

of

robu
stn

ess
and, in

that
sen

se,
Eq. (24) is

usef
ul to

unders
tan

d

the tra
de-o

ff
betw

een
robu

stn
ess

in
the pres

ence
of outlie

rs

and perf
orm

ance
in

nominal
conditio

ns.

(N
� 1)

�̄
2
⌃̂

10

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10

10

2) Thres
hold

eff
ect

:
The

asy
mptotic

analy
sis

deve
loped

befo
re

ass
umes

that
N

is
lar

ge enough
such

that
the val

ue

of b
in

Eq. (14) has
no sig

nifican
t eff

ect
on the var

ian
ce

of

the MIP.
From

Eq. (14) it is
cle

ar
that

the asy
mptotic

analy
sis

ass
umes

that:

bN
(N

� 1)
/2

<

1
L
aN

(N
� 1)

(N
� 2)

(25)

where
L
�

1.
Usin

g Eqs. (22) and (23), Eq. (25) can
be eas

ily

sta
ted

as: N
>

2

✓
L
(w

+
1)

(w
+

3)

w(w
+

4)

+
1

◆

(26)

The prev
ious equati

on
show

s the inter
play

betw
een

N
and

w. In
part

icu
lar

, the low
er

is
the rel

ati
ve

ker
nel

bandwidth

w, the higher
should

be the val
ue of N

to
guara

ntee
that

the

est
im

ato
r rea

ches
the asy

mptotic
var

ian
ce.

For sm
all

val
ues

of w
violat

ing the conditio
n, the est

im
ato

r var
ian

ce
will

be

highly
am

plifi
ed. The conditio

n is als
o usef

ul to
dete

rm
ine the

minim
um

val
ue of w

that
can

be used
as

a functi
on of N

. For

that
purpose,

we can
white

a sim
plifi

ed
conditio

n ass
uming a

ver
y sm

all
w

as:
w

>

3L

2N

(27)

If
we fix, for exam

ple,
L

=
10

in
the orig

inal
conditio

n in
Eq.

(25), we obtai
n that

a rough val
ue of the minim

um
all

ow
able

rel
ati

ve
ker

nel
siz

e is
wm

in
⇡
15

N
.

(28)

As see
n in

the asy
mptotic

analy
sis

, we can
then

ass
ure

that

for w
>

15/N
, the est

im
ato

r var
ian

ce
in

nominal
conditio

ns

will
not be more

am
plifi

ed
than

(ro
ughly) a fac

tor of 4
/3

with

res
pect

to
the CRB. This

iss
ue will

be confirm
ed

lat
er

on with

computer
sim

ulat
ions.

C. Robu
stn

ess

To quantify
the sen

siti
vity

of the est
im

ato
r to

outlie
rs,

we

focus on an
"-c

ontam
inate

d additiv
e model

[11]:

x ✏i
=

x i
+

z iy
i

(29)

The contam
inati

on rat
e is

dete
rm

ined
by the zer

o-one proces
s

z i,
defi

ned
by

P (z i
=

1)
=
",

and
y i

is
a white

contam
-

inati
on proces

s (in
dependent of x i)

rep
res

entin
g the outlie

r.

For sim
plic

ity
, we will

ass
ume that

y i
is

disc
ret

e,
such

that

P (y i
=

Y k
) =

p k
with

k
=

1,
. .

. ,
K

.

Firs
t consid

er
the sam

ple
var

ian
ce

est
im

ato
r. The mean

of

the res
ultin

g var
ian

ce
est

im
ate

can
be eas

ily
computed

(se
e

Appendix
VI-D

for deta
ils)

fro
m

its
U-st

ati
stic

expres
sio

n in

Eq. (2), and it is
give

n by:

E

h
⌃̂S

i =

1
2
E

h |x "i
� x "j

|2
i =

⌃
+
"
� �

2
y
+

µ
2
y
(1
� ")
�

(30)

where
µ y

and �
2
y
are

the mean
and var

ian
ce

of y i,
res

pect
ive

ly.

The key
obser

vat
ion is

that
the var

ian
ce

is
ov

ere
stim

ate
d with

an
additiv

e bias
ter

m
which

is
proportio

nal
to

the contam
ina-

tio
n rat

e,
as

well
as

proportio
nal

to
both

mean
and var

ian
ce

of the contam
inati

on proces
s.

Next, we analy
ze

the im
pact

of the contam
inati

on model
on

the ker
nel-

base
d est

im
ato

r, with
the inten

tio
n of highlig

htin
g

the root of its
robu

st behaviour. The p.d.f.
of the contam

inate
d

data
can

be writt
en

as
a weig

hted
sum

of shifte
d rep

lic
as

of

the orig
inal

one:

f "
(x

) =
(1
� ")

f(
x)

+
"

KX
k=

1

p k
f(

x
� Y k

)

(31)

To get
insig

hts,
let

us first
analy

ze
the im

pact
of contam

inati
on

to
the IP

by inser
tin

g the prev
ious expres

sio
n into

Eq. (7). By

doing so
(se

e Appendix
VI-E

) we obtai
n the follo

wing tw
o

inequali
tie

s:

V
v "
 V "

 V

(32)

where

V "
=

ˆ f
2
"
(x

)d
x

(33)

v "
=

(1
� ")

2 +
"
2

KX
k=

1

p
2
k
 1

(34)

The mean
ing is

that
contam

inati
on cau

ses
the IP

to
decr

eas
e

(se
e the rig

ht hand inequali
ty

in
(32))

and, as
a conseq

uence

of the inv
ers

e proportio
nali

ty
give

n in
Eq. (9),

the contam
-

inati
on

res
ults

in
a

positi
ve

bias
on

the
var

ian
ce

est
im

ate

infer
red

fro
m

it.
The IP

of the contam
inate

d data
is

low
er-

bounded
in

a multip
lic

ati
ve

manner
by v "

(se
e the lef

t hand

inequali
ty

in
(32)).

This
quantity

is
just

the (disc
ret

e)
IP

of

the contam
inati

on and it depends solel
y on the contam

inati
on

rat
e "

and on the probabilit
ies

p k
ass

ocia
ted

to
the additiv

e

outlie
r val

ues.
Rem

ark
ably,

the val
ues

Y k
of the contam

inati
on

proces
s have

no im
pact

on the IP,
contra

rily
to

the behavior of

the sam
ple-

var
ian

ce
est

im
ato

r as
see

n in
Eq. (30). This

is
the

key
propert

y that
justifi

es
the IP

as
an

adequate
prio

r entro
py

-

base
d

proces
sin

g
of the

data
for the

purpose
of ach

iev
ing

robu
stn

ess
: the im

pact
on the est

im
ati

on is
gov

ern
ed

solel
y by

3

Pro
of:

Se
e App

en
dix

VII-
A.

Lem
ma

2.
If
u, v

⇠
C
N

(0
,C

)
an

d
E
⇥ uv

H
⇤ =
�C

, the
n

E
[k
W

(u
)k
W

(v
)]

=

|W
|2

� � �
⇣ 1
� |�|

M
⌘ C
+
W

� � �
� � �
⇣ 1
+

|�|
M
⌘ C
+
W

� � �
(1

2)

whe
re

M
is

the
dim

en
sio

na
lit

y
of

u
an

d
v.

Pro
of:

Se
e App

en
dix

VII-
B.

Usin
g

Lem
ma

1,
an

d
tak

ing
int

o
ac

co
un

t tha
t the

se
co

nd

ter
m

in
Eq.

10
is

a
U-st

ati
sti

cs
(i.

e.
un

bia
se

d)
fo

r es
tim

ati
ng

E
[k
(z

)]
with

z
=

x i
�

x j
⇠

C
N

(0
, 2
⌃
),

the
mea

n
of

es
tim

ato
r Û

is
giv

en
by

Ū
=

|W
|

|2⌃
+
W

|

(1
3)

Usin
g

Eq.
(1

0)
, an

d
fo

llo
wing

an
an

aly
sis

sim
ila

r to
[6

]2 , the

va
ria

nc
e of

Û
ca

n
be

ex
pr

es
se

d
as

:

N
�

2
Û

=
E
h Û
2
i �Ū

2 =
aN

(N
� 1)

(N
� 2)

+
bN

(N
� 1)

/2

(N
(N

� 1)
/2

)
2

(1
4)

whe
re

a
=

|W
|2

|2 (
1
� 2

�M
)⌃

+
W

| |2
(1

+
2
�M

)⌃
+
W

|
�

|W
|2

|2⌃
+
W

|2
(1

5)

b
=

|W
|2

|W
| |4
⌃

+
W

|
�

|W
|2

|2⌃
+
W

|2

(1
6)

who
se

de
riv

ati
on

is
de

tai
led

in
App

en
dix

VII-
B0a

. Note
tha

t,

fo
r

an
y

fin
ite

va
lue

of
a

an
d

b,
Û

will
be

co
ns

ist
en

t (i.
e.

Û
!

Ū
in

pr
ob

ab
ili

ty)
an

d
in

pa
rti

cu
lar

its
va

ria
nc

e
will

de
cre

as
e

inv
ers

ely
pr

op
or

tio
na

l
to

N
as

N
!

1
([6

]),

be
ca

us
e

the
im

pa
ct

of
the

va
lue

of
b

in
Eq.

(1
4)

be
co

mes

as
ym

pto
tic

all
y

ne
gli

gib
le.

How
ev

er,
the

ter
m

b
ca

nn
ot

be

ne
gle

cte
d

to
ch

ara
cte

riz
e

the
va

ria
nc

e
of

the
M

IP
be

ca
us

e
it

go
es

to
ze

ro
mor

e
slo

wly
tha

n
a

as
|W

| go
es

to
ze

ro
. This

iss
ue

will
be

be
tte

r cla
rifi

ed
in

the
ne

xt
se

cti
on

.

III
.

KERNEL-
BASED

VARIA
NCE

ESTIM
ATIO

N

W
e

fo
cu

s
he

re
on

the
un

iva
ria

te
ca

se
,
M

=
1,

whic
h

pr
ov

ide
s cla

rit
y

an
d

ins
igh

ts
int

o
the

co
re

ide
a.

Fr
om

Eq.
(1

3)

we
ob

tai
n

the
fo

llo
wing

mon
oto

nic
rel

ati
on

sh
ip

be
tw

ee
n

the

M
IP

an
d

the
va

ria
nc

e: Ū
=

w
w

+
2

(1
7)

whe
re

the
rel

ati
ve

ba
nd

widt
h

is
de

fin
ed

as

w
=

W
⌃

.

(1
8)

2 W
ith

res
pe

ct
to

[6
],

ou
r an

aly
sis

ref
ers

to
Û

ins
tea

d
of

V̂
an

d
do

es
no

t

mak
e

the
as

su
mpti

on
of

lar
ge

da
ta

siz
e.

The
ter

m
tha

t is
ign

or
ed

in
[6

]

is
main

tai
ne

d
he

re
as

it
will

pr
ov

e
to

do
mina

te
the

va
ria

nc
e

va
lue

of
the

res
ult

ing
es

tim
ato

r fo
r the

ca
se

of
ve

ry
sm

all
ke

rn
el

ba
nd

with
va

lue
s,

whic
h

are
pr

ec
ise

ly
the

on
es

we are
int

ere
ste

d
on

fo
r the

pu
rp

os
e of

ro
bu

stn
es

s.

As
a

co
ns

eq
ue

nc
e,

we
ca

n
de

sig
n

a
co

mpo
sit

e
co

ns
ist

en
t

es
tim

ato
r of

va
ria

nc
e fro

m
an

un
bia

se
d

es
tim

ate
of

Ū
as

:

⌃̂
=

D̂
K

=
✓ 1

Û
� 1

◆ W
2

(1
9)

Note
tha

t
Eq.

(1
9)

is
an

sp
ec

ial
ca

se
of

Eq.
(5

),
whe

re

no
w

fu
nc

tio
n

gW
(x

)
=

(x
�1
�

1)
W

/2
. In

the
se

qu
el,

the

bia
s

an
d

va
ria

nc
e

of
the

es
tim

ato
r

pr
op

os
ed

in
Eq.

(1
9)

is

an
aly

ze
d un

de
r no

mina
l c

on
dit

ion
s,

pa
yin

g sp
ec

ial
att

en
tio

n to

the
int

erp
lay

be
tw

ee
n
N

, W
an

d
es

tim
ato

r effi
cie

nc
y.

Fi
na

lly
,

we will
pa

y
the

att
en

tio
n

to
its

ro
bu

stn
es

s to
ou

tli
ers

.

A. Bias
In

vir
tue

of
the

Je
ns

en
’s

ine
qu

ali
ty

an
d

the
co

nc
av

ity
of

fu
nc

tio
n

1/
x

fo
r

x
>

0,
the

ex
pe

cta
tio

n
of

the
va

ria
nc

e

es
tim

ato
r in

Eq.
(1

9)
ca

n
be

writ
ten

as
:

⌃̄
=

E
h ⌃̂
i �
✓ 1

Ū
� 1

◆ W
2

=
⌃

(2
0)

whic
h mea

ns
tha

t t
he

bia
s of

⌃̂
(g

ive
n by

E
[⌃̂

]�
⌃

) is
str

ict
ly

po
sit

ive
. H

ow
ev

er,
as

Û
is

co
ns

ist
en

t,
if

fu
lfi

lls
tha

t Û
!

Ū
in

pr
ob

ab
ili

ty,
whic

h
mea

ns
tha

t ⌃̄
!

⌃
in

pr
ob

ab
ili

ty
as

well
.

i.e
.,
⌃̂

is
as

ym
pto

tic
all

y
un

bia
se

d.

B. Va
ria

nc
e

The
va

ria
nc

e
of

es
tim

ato
r ⌃̂

in
Eq.

(1
9)

ca
n

be
ch

ara
cte

r-

ize
d

fro
m

the
va

ria
nc

e
of

Û
fo

llo
wing

an
sm

all
pe

rtu
rb

ati
on

an
aly

sis
(se

e
App

en
dix

VII-
C).

The
rel

ati
ve

va
ria

nc
e

ca
n

be

writ
en

as
:

�̄
2

⌃̂
=

�
2

⌃̂
⌃

2
⇡

�
2

Û
4

(w
+

2)
4

w
2

 
1
+

3
✓ w

+
2

w
◆ 2 �

2
Û

! (2
1)

whe
re

the
va

ria
nc

e
of

the
M

IP
is

giv
en

in
Eq.

(1
4)

with

co
ns

tan
ts

a
an

d
b

in
Eq.

(1
6)

giv
en

by
:

a
=

w
2
✓

1
(w

+
1)

(w
+

3)
�

1
(w

+
2)

2

◆

(2
2)

b
=

w
2
✓

1
w
(w

+
4)

�
1

(w
+

2)
2

◆

(2
3)

It
is

no
ted

fro
m

the
pr

ev
iou

s eq
ua

tio
ns

tha
t,

whe
n
w
!

0,
the

va
ria

nc
e

of
the

pr
op

os
ed

es
tim

ato
r ten

ds
to

infi
nit

y,
irr

es
pe

c-

tiv
e

of
the

fac
t tha

t a
!

0
an

d
b
!

0.
The

rea
so

n
fo

r thi
s is

tha
t b

go
es

to
ze

ro
as

O
(w

)
(in

ste
ad

of
O
(w

2 ))
an

d
thi

s why

we did
n’

t ne
gle

ct
it

in
Eq.

(1
4)

.

1)
Asy

mpto
tic

an
aly

sis
:

To
ge

t ins
igh

ts
int

o
the

pr
ev

iou
s

res
ult

s,
let

us
co

ns
ide

r the
ca

se
of

lar
ge

da
ta

siz
e N

. Fo
r an

y

w
>

0,
we

ha
ve

fro
m

Eq.
(1

4)
tha

t li
m

N
!
1

N
�

2
Û

=
4a

.

The
ref

or
e,

us
ing

Eqs
. (2

1)
, (2

2)
an

d
(2

3)
, we ca

n
sta

te
tha

t

4
3

�
li
m

N
!
1

N
�̄

2
⌃̂

=
(w

+
2)

2

(w
+

1)
(w

+
3)

�
1

(2
4)

with
the

max
im

um
an

d
mini

mum
va

lue
s ac

hie
ve

d
fo

r w
!

0

an
d

w
!

1, res
pe

cti
ve

ly.
The

pr
ev

iou
s

eq
ua

tio
n

qu
an

tifi
es

the
as

ym
pto

tic
pe

na
lty

on
the

es
tim

ato
r va

ria
nc

e as
a fu

nc
tio

n

of
the

ke
rn

el
ba

nd
widt

h.
It

is
no

ted
tha

t the
sa

mple
mea

n
es

-

tim
ato

r of
va

ria
nc

e (⌃̂
S

) in
the

no
mina

l co
nd

iti
on

s is
effi

cie
nt

4

log
ari

thm
of

an
sc

ale
d

an
d

bia
se

d
ve

rsi
on

of
the

sa
mple

va
ri-

an
ce

(se
e

[6
],

pr
op

ert
y

2.8
).

As w
de

cre
as

es
, the

as
ym

pto
tic

va
ria

nc
e

of
the

pr
op

os
ed

es
tim

ato
r is

inc
rea

se
d

with
res

pe
ct

to
the

CRB, bu
t ne

ve
r mor

e
tha

n
4/

3,
whic

h
rep

res
en

ts
the

max
im

um
as

ym
pto

tic
pe

na
lty

.
As

will
be

sh
ow

n
lat

er
on

,

sm
all

ke
rn

el
ba

nd
widt

hs
are

int
ere

sti
ng

fo
r

the
pu

rp
os

e
of

ro
bu

stn
es

s an
d,

in
tha

t se
ns

e,
Eq.

(2
4)

is
us

efu
l to

un
de

rst
an

d

the
tra

de
-o

ff
be

tw
ee

n
ro

bu
stn

es
s

in
the

pr
es

en
ce

of
ou

tli
ers

an
d

pe
rfo

rm
an

ce
in

no
mina

l co
nd

iti
on

s.

(N
� 1)

�̄
2

⌃̂

10
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

10
2)

Th
re

sh
old

eff
ec

t:
The

as
ym

pto
tic

an
aly

sis
de

ve
lop

ed

be
fo

re
as

su
mes

tha
t N

is
lar

ge
en

ou
gh

su
ch

tha
t the

va
lue

of
b

in
Eq.

(1
4)

ha
s

no
sig

nifi
ca

nt
eff

ec
t on

the
va

ria
nc

e
of

the
M

IP.
Fr

om
Eq.

(1
4)

it
is

cle
ar

tha
t the

as
ym

pto
tic

an
aly

sis

as
su

mes
tha

t:
bN

(N
� 1)

/2
<

1
L

aN
(N

� 1)
(N

� 2)

(2
5)

whe
re

L
�

1.
Usin

g Eqs
. (

22
) an

d (2
3)

, E
q.

(2
5)

ca
n be

ea
sil

y

sta
ted

as
: N

>
2
✓ L
(w

+
1)
(w

+
3)

w
(w

+
4)

+
1
◆

(2
6)

The
pr

ev
iou

s
eq

ua
tio

n
sh

ow
s

the
int

erp
lay

be
tw

ee
n

N
an

d

w
. In

pa
rti

cu
lar

, the
low

er
is

the
rel

ati
ve

ke
rn

el
ba

nd
widt

h

w
, the

hig
he

r sh
ou

ld
be

the
va

lue
of

N
to

gu
ara

nte
e

tha
t the

es
tim

ato
r rea

ch
es

the
as

ym
pto

tic
va

ria
nc

e.
Fo

r sm
all

va
lue

s

of
w

vio
lat

ing
the

co
nd

iti
on

, the
es

tim
ato

r va
ria

nc
e

will
be

hig
hly

am
pli

fie
d.

The
co

nd
iti

on
is

als
o us

efu
l to

de
ter

mine
the

mini
mum

va
lue

of
w

tha
t ca

n
be

us
ed

as
a fu

nc
tio

n
of

N
. F

or

tha
t pu

rp
os

e,
we ca

n
whit

e a sim
pli

fie
d

co
nd

iti
on

as
su

ming
a

ve
ry

sm
all

w
as

:

w
>

3L
2N

(2
7)

If
we fix

, f
or

ex
am

ple
, L

=
10

in
the

or
igi

na
l co

nd
iti

on
in

Eq.

(2
5)

, we ob
tai

n
tha

t a ro
ug

h
va

lue
of

the
mini

mum
all

ow
ab

le

rel
ati

ve
ke

rn
el

siz
e is wm

in
⇡

15
N

.

(2
8)

As
se

en
in

the
as

ym
pto

tic
an

aly
sis

, we
ca

n
the

n
as

su
re

tha
t

fo
r w

>
15

/N
, the

es
tim

ato
r va

ria
nc

e
in

no
mina

l co
nd

iti
on

s

will
no

t be
mor

e am
pli

fie
d tha

n (ro
ug

hly
) a fac

tor
of

4/
3

with

res
pe

ct
to

the
CRB. T

his
iss

ue
will

be
co

nfi
rm

ed
lat

er
on

with

co
mpu

ter
sim

ula
tio

ns
.

C. Rob
us

tne
ss

To
qu

an
tif

y
the

se
ns

iti
vit

y
of

the
es

tim
ato

r to
ou

tli
ers

, we

fo
cu

s on
an
"-

co
nta

mina
ted

ad
dit

ive
mod

el
[1

1]
:

x ✏
i
=

x i
+

z i
y i

(2
9)

The
co

nta
mina

tio
n

rat
e is

de
ter

mine
d

by
the

ze
ro

-o
ne

pr
oc

es
s

z i
, de

fin
ed

by
P
(z

i
=

1)
=
",

an
d

y i
is

a
whit

e
co

nta
m-

ina
tio

n
pr

oc
es

s
(in

de
pe

nd
en

t of
x i

) rep
res

en
tin

g
the

ou
tli

er.

Fo
r sim

pli
cit

y,
we

will
as

su
me

tha
t y

i
is

dis
cre

te,
su

ch
tha

t

P
(y

i
=

Y k
)
=

p k
with

k
=

1,
. .
. ,
K

.

Fi
rst

co
ns

ide
r the

sa
mple

va
ria

nc
e

es
tim

ato
r.

The
mea

n
of

the
res

ult
ing

va
ria

nc
e

es
tim

ate
ca

n
be

ea
sil

y
co

mpu
ted

(se
e

App
en

dix
VI-D

fo
r de

tai
ls)

fro
m

its
U-st

ati
sti

c
ex

pr
es

sio
n

in

Eq.
(2

),
an

d
it

is
giv

en
by

:

E
h ⌃̂ S
i =

1
2

E
h |x "
i
� x "

j
|2
i =
⌃

+
"
� �
2

y
+

µ
2

y
(1
� "

)
�

(3
0)

whe
re

µ y
an

d �
2

y
are

the
mea

n an
d va

ria
nc

e of
y i

, r
es

pe
cti

ve
ly.

The
ke

y
ob

se
rv

ati
on

is
tha

t the
va

ria
nc

e is
ov

ere
sti

mate
d

with

an
ad

dit
ive

bia
s ter

m
whic

h
is

pr
op

or
tio

na
l to

the
co

nta
mina

-

tio
n

rat
e,

as
well

as
pr

op
or

tio
na

l to
bo

th
mea

n
an

d
va

ria
nc

e

of
the

co
nta

mina
tio

n
pr

oc
es

s.

Nex
t,

we an
aly

ze
the

im
pa

ct
of

the
co

nta
mina

tio
n mod

el
on

the
ke

rn
el-

ba
se

d
es

tim
ato

r,
with

the
int

en
tio

n
of

hig
hli

gh
tin

g

the
ro

ot
of

its
ro

bu
st

be
ha

vio
ur.

The
p.d

.f.
of

the
co

nta
mina

ted

da
ta

ca
n

be
writ

ten
as

a
weig

hte
d

su
m

of
sh

ift
ed

rep
lic

as
of

the
or

igi
na

l on
e:

f "
(x

)
=

(1
� "

)f
(x

) +
"

KX
k=

1
p k

f(
x
� Y k

)

(3
1)

To
ge

t i
ns

igh
ts,

let
us

fir
st

an
aly

ze
the

im
pa

ct
of

co
nta

mina
tio

n

to
the

IP
by

ins
ert

ing
the

pr
ev

iou
s ex

pr
es

sio
n

int
o

Eq.
(7

).
By

do
ing

so
(se

e
App

en
dix

VI-E
) we

ob
tai

n
the

fo
llo

wing
tw

o

ine
qu

ali
tie

s:

V
v "


V "


V

(3
2)

whe
re

V "
=

ˆ f
2

"
(x

)d
x

(3
3)

v "
=

(1
� "

)
2 +
"

2
KX

k=
1

p
2

k


1

(3
4)

The
mea

nin
g

is
tha

t co
nta

mina
tio

n
ca

us
es

the
IP

to
de

cre
as

e

(se
e

the
rig

ht
ha

nd
ine

qu
ali

ty
in

(3
2)

) an
d,

as
a

co
ns

eq
ue

nc
e

of
the

inv
ers

e
pr

op
or

tio
na

lit
y

giv
en

in
Eq.

(9
),

the
co

nta
m-

ina
tio

n
res

ult
s

in
a

po
sit

ive
bia

s
on

the
va

ria
nc

e
es

tim
ate

inf
err

ed
fro

m
it.

The
IP

of
the

co
nta

mina
ted

da
ta

is
low

er-

bo
un

de
d

in
a

mult
ipl

ica
tiv

e
man

ne
r by

v "
(se

e
the

lef
t ha

nd

ine
qu

ali
ty

in
(3

2)
).

This
qu

an
tit

y
is

jus
t the

(d
isc

ret
e)

IP
of

the
co

nta
mina

tio
n

an
d

it
de

pe
nd

s so
lel

y
on

the
co

nta
mina

tio
n

rat
e
"

an
d

on
the

pr
ob

ab
ili

tie
s
p k

as
so

cia
ted

to
the

ad
dit

ive

ou
tli

er
va

lue
s.

Rem
ark

ab
ly,

the
va

lue
s Y

k
of

the
co

nta
mina

tio
n

pr
oc

es
s ha

ve
no

im
pa

ct
on

the
IP,

co
ntr

ari
ly

to
the

be
ha

vio
r of

the
sa

mple
-v

ari
an

ce
es

tim
ato

r as
se

en
in

Eq.
(3

0)
. This

is
the

ke
y

pr
op

ert
y

tha
t jus

tifi
es

the
IP

as
an

ad
eq

ua
te

pr
ior

en
tro

py
-

ba
se

d
pr

oc
es

sin
g

of
the

da
ta

fo
r

the
pu

rp
os

e
of

ac
hie

vin
g

ro
bu

stn
es

s:
the

im
pa

ct
on

the
es

tim
ati

on
is

go
ve

rn
ed

so
lel

y by

Fig. 3. Normalized variance of the Modified IP as a function of the relative
kernel bandwidth w for different values of the data size, N .

section. From Eq. (13) we obtain the following monotonic
relationship between the MIP and the MSC:

Ū =
w1w2

(w1 + 2) (w2 + 2) � |⇢|2 (35)

As a consequence, we can design a composite consistent
estimator of MSC from an unbiased estimate of Ū as:

|⇢| =

s✓
1 � 1

Û

◆
w1w2 + 2 (w1 + w2) + 1 (36)

The bias and variance of ĉ can be analyzed using a similar
procedure as exposed in the previous section. On the one hand,
in virtue of the Jensen inequality and the consistency of Û , ĉ
has a negative bias although it is asympttically unbiased. On
the other hand, the varaince of ĉ can be characterized by an
small perturbation analysis (see Appendix):

�2
ĉ ⇡

�2
Û

(w1 + 2)4(w2 + 2)4

w2
1w

2
2

 
1 + 3

✓
(w1 + 2) (w2 + 2)

w1w2

◆2

�2
Û

!

(37)
where the variance of the MIP is given in Eq. (14) with
constants a and b in Eq. (16) given by:

a = w2

✓
1

(w + 1)(w + 3)
� 1

(w + 2)2

◆
(38)

b = w2

✓
1

w(w + 4)
� 1

(w + 2)2

◆
(39)

V. GENERALIZED COHERENCE ESTIMATION

VI. NUMERICAL RESULTS

Fig. 3 shows the normalized variance of the modified IP
as a function of w for increasing values of N , verifying the
analytical result in Eqs. (14), (22) and (23). It is seen that the
influence of b in Eq. (14) is manifested for moderate and small
values of N and moderate and small values of w, respectively.

Fig. 4 shows the variance of the estimator in nominal
conditions as a function of w for increasing values of N .

Fig. 3. Variance amplification with respect to the CRB as a function of the
relative kernel bandwidth w for different values of the data size, N .

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
100

N = 102

N = 103

N = 104

N�2
ĉ
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ĉ

c = 0

c = 0.97

1

ε ='0.2'

ε ='0.5'

(kernel0based)'
1.8$

2$

1.6$

2$

2.3$

3.2$

2.6$

4$

3$

4.1$

3.2$

2$
2.1$

2$

2.8$

2.1$

3$

2.3$

3.2$

2.6$

(mean'number'of'itera*ons)'

3

Proof: See Appendix VII-A.

Lemma 2. If u, v ⇠ CN(0,C) and E
⇥
uvH

⇤
= �C, then

E [kW(u)kW(v)] =

|W|2
���
⇣
1 � |�|M

⌘
C + W

���
���
⇣
1 + |�|M

⌘
C + W

���
(12)

where M is the dimensionality of u and v.

Proof: See Appendix VII-B.
Using Lemma 1, and taking into account that the second

term in Eq. 10 is a U-statistics (i.e. unbiased) for estimating

E [k(z)] with z = xi � xj ⇠ CN (0, 2⌃), the mean of

estimator Û is given by

Ū =
|W|

|2⌃ + W|
(13)

Using Eq. (10), and following an analysis similar to [6]2, the

variance of Û can be expressed as:

N�2
Û

= E
h
Û2
i
�Ū2 =

aN(N � 1)(N � 2) + bN(N � 1)/2

(N(N � 1)/2)
2

(14)

where
a =

|W|2

|2 (1 � 2�M )⌃ + W| |2 (1 + 2�M )⌃ + W| �
|W|2

|2⌃ + W|2
(15)

b =
|W|2

|W| |4⌃ + W| �
|W|2

|2⌃ + W|2
(16)

whose derivation is detailed in Appendix VII-B0a. Note that,

for any finite value of a and b, Û will be consistent (i.e.

Û ! Ū in probability) and in particular its variance will

decrease inversely proportional to N as N ! 1 ([6]),

because the impact of the value of b in Eq. (14) becomes

asymptotically negligible. However, the term b cannot be

neglected to characterize the variance of the MIP because it

goes to zero more slowly than a as |W| goes to zero. This

issue will be better clarified in the next section.

III. KERNEL-BASED VARIANCE ESTIMATION

We focus here on the univariate case, M = 1, which

provides clarity and insights into the core idea. From Eq. (13)

we obtain the following monotonic relationship between the

MIP and the variance:

Ū =
w

w + 2
(17)

where the relative bandwidth is defined as

w =
W

⌃
. (18)

2With respect to [6], our analysis refers to Û instead of V̂ and does not

make the assumption of large data size. The term that is ignored in [6]

is maintained here as it will prove to dominate the variance value of the

resulting estimator for the case of very small kernel bandwith values, which

are precisely the ones we are interested on for the purpose of robustness.

As a consequence, we can design a composite consistent

estimator of variance from an unbiased estimate of Ū as:

⌃̂ = D̂K =

✓
1

Û
� 1

◆
W

2
(19)

Note that Eq. (19) is an special case of Eq. (5), where

now function gW (x) = (x�1 � 1)W/2. In the sequel, the

bias and variance of the estimator proposed in Eq. (19) is

analyzed under nominal conditions, paying special attention to

the interplay between N , W and estimator efficiency. Finally,

we will pay the attention to its robustness to outliers.

A. Bias

In virtue of the Jensen’s inequality and the concavity of

function 1/x for x > 0, the expectation of the variance

estimator in Eq. (19) can be written as:

⌃̄ = E
h
⌃̂
i
�
✓

1

Ū
� 1

◆
W

2
= ⌃ (20)

which means that the bias of ⌃̂ (given by E[⌃̂]�⌃) is strictly

positive. However, as Û is consistent, if fulfills that Û ! Ū in

probability, which means that ⌃̄ ! ⌃ in probability as well.

i.e., ⌃̂ is asymptotically unbiased.

B. Variance

The variance of estimator ⌃̂ in Eq. (19) can be character-

ized from the variance of Û following an small perturbation

analysis (see Appendix VII-C). The relative variance can be

writen as:

�̄2
⌃̂

=
�2
⌃̂

⌃2
⇡

�2
Û

4

(w + 2)4

w2
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w + 2

w
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�2
Û

!
(21)

where the variance of the MIP is given in Eq. (14) with

constants a and b in Eq. (16) given by:

a = w2

✓
1

(w + 1)(w + 3)
� 1

(w + 2)2

◆
(22)

b = w2

✓
1

w(w + 4)
� 1

(w + 2)2

◆
(23)

It is noted from the previous equations that, when w ! 0, the

variance of the proposed estimator tends to infinity, irrespec-

tive of the fact that a ! 0 and b ! 0. The reason for this is

that b goes to zero as O(w) (instead of O(w2)) and this why

we didn’t neglect it in Eq. (14).
1) Asymptotic analysis: To get insights into the previous

results, let us consider the case of large data size N . For any

w > 0, we have from Eq. (14) that limN!1N�2
Û

= 4a.

Therefore, using Eqs. (21), (22) and (23), we can state that

4

3
� limN!1N �̄2

⌃̂
=

(w + 2)2

(w + 1)(w + 3)
� 1 (24)

with the maximum and minimum values achieved for w ! 0

and w ! 1, respectively. The previous equation quantifies

the asymptotic penalty on the estimator variance as a function

of the kernel bandwidth. It is noted that the sample mean es-

timator of variance (⌃̂S) in the nominal conditions is efficient

4

logarithm of an scaled and biased version of the sample vari-
ance (see [6], property 2.8). As w decreases, the asymptotic
variance of the proposed estimator is increased with respect
to the CRB, but never more than 4/3, which represents the
maximum asymptotic penalty. As will be shown later on,
small kernel bandwidths are interesting for the purpose of
robustness and, in that sense, Eq. (24) is useful to understand
the trade-off between robustness in the presence of outliers
and performance in nominal conditions.
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2) Threshold effect: The asymptotic analysis developed
before assumes that N is large enough such that the value
of b in Eq. (14) has no significant effect on the variance of
the MIP. From Eq. (14) it is clear that the asymptotic analysis
assumes that:

bN(N � 1)/2 <
1

L
aN(N � 1)(N � 2) (25)

where L � 1. Using Eqs. (22) and (23), Eq. (25) can be easily
stated as:

N > 2

✓
L

(w + 1)(w + 3)

w(w + 4)
+ 1

◆
(26)

The previous equation shows the interplay between N and
w. In particular, the lower is the relative kernel bandwidth
w, the higher should be the value of N to guarantee that the
estimator reaches the asymptotic variance. For small values
of w violating the condition, the estimator variance will be
highly amplified. The condition is also useful to determine the
minimum value of w that can be used as a function of N . For
that purpose, we can white a simplified condition assuming a
very small w as:

w >
3L

2N
(27)

If we fix, for example, L = 10 in the original condition in Eq.
(25), we obtain that a rough value of the minimum allowable
relative kernel size is

wmin ⇡ 15

N
. (28)

As seen in the asymptotic analysis, we can then assure that
for w > 15/N , the estimator variance in nominal conditions
will not be more amplified than (roughly) a factor of 4/3 with
respect to the CRB. This issue will be confirmed later on with
computer simulations.

C. Robustness

To quantify the sensitivity of the estimator to outliers, we
focus on an "-contaminated additive model [11]:

x✏i = xi + ziyi (29)

The contamination rate is determined by the zero-one process
zi, defined by P (zi = 1) = ", and yi is a white contam-
ination process (independent of xi) representing the outlier.
For simplicity, we will assume that yi is discrete, such that
P (yi = Yk) = pk with k = 1, . . . , K.

First consider the sample variance estimator. The mean of
the resulting variance estimate can be easily computed (see
Appendix VI-D for details) from its U-statistic expression in
Eq. (2), and it is given by:

E
h
⌃̂S

i
=

1

2
E
h
|x"i � x"j |2

i
= ⌃ + "

�
�2

y + µ2
y (1 � ")

�

(30)
where µy and �2

y are the mean and variance of yi, respectively.
The key observation is that the variance is overestimated with
an additive bias term which is proportional to the contamina-
tion rate, as well as proportional to both mean and variance
of the contamination process.

Next, we analyze the impact of the contamination model on
the kernel-based estimator, with the intention of highlighting
the root of its robust behaviour. The p.d.f. of the contaminated
data can be written as a weighted sum of shifted replicas of
the original one:

f"(x) = (1 � ")f(x) + "
KX

k=1

pkf(x � Yk) (31)

To get insights, let us first analyze the impact of contamination
to the IP by inserting the previous expression into Eq. (7). By
doing so (see Appendix VI-E) we obtain the following two
inequalities:

V v"  V"  V (32)

where
V" =

ˆ

f2
" (x)dx (33)

v" = (1 � ")2 + "2
KX

k=1

p2
k  1 (34)

The meaning is that contamination causes the IP to decrease
(see the right hand inequality in (32)) and, as a consequence
of the inverse proportionality given in Eq. (9), the contam-
ination results in a positive bias on the variance estimate
inferred from it. The IP of the contaminated data is lower-
bounded in a multiplicative manner by v" (see the left hand
inequality in (32)). This quantity is just the (discrete) IP of
the contamination and it depends solely on the contamination
rate " and on the probabilities pk associated to the additive
outlier values. Remarkably, the values Yk of the contamination
process have no impact on the IP, contrarily to the behavior of
the sample-variance estimator as seen in Eq. (30). This is the
key property that justifies the IP as an adequate prior entropy-
based processing of the data for the purpose of achieving
robustness: the impact on the estimation is governed solely by

='

3

Proof: See Appendix VII-A.

Lemma 2. If u, v ⇠ CN(0,C) and E
⇥
uvH

⇤
= �C, then

E [kW(u)kW(v)] =

|W|2
���
⇣
1 � |�|M

⌘
C + W

���
���
⇣
1 + |�|M

⌘
C + W

���
(12)

where M is the dimensionality of u and v.

Proof: See Appendix VII-B.
Using Lemma 1, and taking into account that the second

term in Eq. 10 is a U-statistics (i.e. unbiased) for estimating

E [k(z)] with z = xi � xj ⇠ CN (0, 2⌃), the mean of

estimator Û is given by

Ū =
|W|

|2⌃ + W|
(13)

Using Eq. (10), and following an analysis similar to [6]2, the

variance of Û can be expressed as:

N�2
Û

= E
h
Û2
i
�Ū2 =

aN(N � 1)(N � 2) + bN(N � 1)/2

(N(N � 1)/2)
2

(14)

where
a =

|W|2

|2 (1 � 2�M )⌃ + W| |2 (1 + 2�M )⌃ + W| �
|W|2

|2⌃ + W|2
(15)

b =
|W|2

|W| |4⌃ + W| �
|W|2

|2⌃ + W|2
(16)

whose derivation is detailed in Appendix VII-B0a. Note that,

for any finite value of a and b, Û will be consistent (i.e.

Û ! Ū in probability) and in particular its variance will

decrease inversely proportional to N as N ! 1 ([6]),

because the impact of the value of b in Eq. (14) becomes

asymptotically negligible. However, the term b cannot be

neglected to characterize the variance of the MIP because it

goes to zero more slowly than a as |W| goes to zero. This

issue will be better clarified in the next section.

III. KERNEL-BASED VARIANCE ESTIMATION

We focus here on the univariate case, M = 1, which

provides clarity and insights into the core idea. From Eq. (13)

we obtain the following monotonic relationship between the

MIP and the variance:

Ū =
w

w + 2
(17)

where the relative bandwidth is defined as

w =
W

⌃
. (18)

2With respect to [6], our analysis refers to Û instead of V̂ and does not

make the assumption of large data size. The term that is ignored in [6]

is maintained here as it will prove to dominate the variance value of the

resulting estimator for the case of very small kernel bandwith values, which

are precisely the ones we are interested on for the purpose of robustness.

As a consequence, we can design a composite consistent

estimator of variance from an unbiased estimate of Ū as:

⌃̂ = D̂K =

✓
1

Û
� 1

◆
W

2
(19)

Note that Eq. (19) is an special case of Eq. (5), where

now function gW (x) = (x�1 � 1)W/2. In the sequel, the

bias and variance of the estimator proposed in Eq. (19) is

analyzed under nominal conditions, paying special attention to

the interplay between N , W and estimator efficiency. Finally,

we will pay the attention to its robustness to outliers.

A. Bias

In virtue of the Jensen’s inequality and the concavity of

function 1/x for x > 0, the expectation of the variance

estimator in Eq. (19) can be written as:

⌃̄ = E
h
⌃̂
i
�
✓

1

Ū
� 1

◆
W

2
= ⌃ (20)

which means that the bias of ⌃̂ (given by E[⌃̂]�⌃) is strictly

positive. However, as Û is consistent, if fulfills that Û ! Ū in

probability, which means that ⌃̄ ! ⌃ in probability as well.

i.e., ⌃̂ is asymptotically unbiased.

B. Variance

The variance of estimator ⌃̂ in Eq. (19) can be character-

ized from the variance of Û following an small perturbation

analysis (see Appendix VII-C). The relative variance can be

writen as:
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=
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where the variance of the MIP is given in Eq. (14) with

constants a and b in Eq. (16) given by:

a = w2

✓
1

(w + 1)(w + 3)
� 1

(w + 2)2

◆
(22)

b = w2

✓
1

w(w + 4)
� 1

(w + 2)2

◆
(23)

It is noted from the previous equations that, when w ! 0, the

variance of the proposed estimator tends to infinity, irrespec-

tive of the fact that a ! 0 and b ! 0. The reason for this is

that b goes to zero as O(w) (instead of O(w2)) and this why

we didn’t neglect it in Eq. (14).
1) Asymptotic analysis: To get insights into the previous

results, let us consider the case of large data size N . For any

w > 0, we have from Eq. (14) that limN!1N�2
Û

= 4a.

Therefore, using Eqs. (21), (22) and (23), we can state that

4

3
� limN!1N �̄2

⌃̂
=

(w + 2)2

(w + 1)(w + 3)
� 1 (24)

with the maximum and minimum values achieved for w ! 0

and w ! 1, respectively. The previous equation quantifies

the asymptotic penalty on the estimator variance as a function

of the kernel bandwidth. It is noted that the sample mean es-

timator of variance (⌃̂S) in the nominal conditions is efficient

4

logarithm of an scaled and biased version of the sample vari-
ance (see [6], property 2.8). As w decreases, the asymptotic
variance of the proposed estimator is increased with respect
to the CRB, but never more than 4/3, which represents the
maximum asymptotic penalty. As will be shown later on,
small kernel bandwidths are interesting for the purpose of
robustness and, in that sense, Eq. (24) is useful to understand
the trade-off between robustness in the presence of outliers
and performance in nominal conditions.
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2) Threshold effect: The asymptotic analysis developed
before assumes that N is large enough such that the value
of b in Eq. (14) has no significant effect on the variance of
the MIP. From Eq. (14) it is clear that the asymptotic analysis
assumes that:

bN(N � 1)/2 <
1

L
aN(N � 1)(N � 2) (25)

where L � 1. Using Eqs. (22) and (23), Eq. (25) can be easily
stated as:

N > 2

✓
L

(w + 1)(w + 3)

w(w + 4)
+ 1

◆
(26)

The previous equation shows the interplay between N and
w. In particular, the lower is the relative kernel bandwidth
w, the higher should be the value of N to guarantee that the
estimator reaches the asymptotic variance. For small values
of w violating the condition, the estimator variance will be
highly amplified. The condition is also useful to determine the
minimum value of w that can be used as a function of N . For
that purpose, we can white a simplified condition assuming a
very small w as:

w >
3L

2N
(27)

If we fix, for example, L = 10 in the original condition in Eq.
(25), we obtain that a rough value of the minimum allowable
relative kernel size is

wmin ⇡ 15

N
. (28)

As seen in the asymptotic analysis, we can then assure that
for w > 15/N , the estimator variance in nominal conditions
will not be more amplified than (roughly) a factor of 4/3 with
respect to the CRB. This issue will be confirmed later on with
computer simulations.

C. Robustness

To quantify the sensitivity of the estimator to outliers, we
focus on an "-contaminated additive model [11]:

x✏i = xi + ziyi (29)

The contamination rate is determined by the zero-one process
zi, defined by P (zi = 1) = ", and yi is a white contam-
ination process (independent of xi) representing the outlier.
For simplicity, we will assume that yi is discrete, such that
P (yi = Yk) = pk with k = 1, . . . , K.

First consider the sample variance estimator. The mean of
the resulting variance estimate can be easily computed (see
Appendix VI-D for details) from its U-statistic expression in
Eq. (2), and it is given by:

E
h
⌃̂S

i
=

1

2
E
h
|x"i � x"j |2

i
= ⌃ + "

�
�2

y + µ2
y (1 � ")

�

(30)
where µy and �2

y are the mean and variance of yi, respectively.
The key observation is that the variance is overestimated with
an additive bias term which is proportional to the contamina-
tion rate, as well as proportional to both mean and variance
of the contamination process.

Next, we analyze the impact of the contamination model on
the kernel-based estimator, with the intention of highlighting
the root of its robust behaviour. The p.d.f. of the contaminated
data can be written as a weighted sum of shifted replicas of
the original one:

f"(x) = (1 � ")f(x) + "
KX

k=1

pkf(x � Yk) (31)

To get insights, let us first analyze the impact of contamination
to the IP by inserting the previous expression into Eq. (7). By
doing so (see Appendix VI-E) we obtain the following two
inequalities:

V v"  V"  V (32)

where
V" =

ˆ

f2
" (x)dx (33)

v" = (1 � ")2 + "2
KX

k=1

p2
k  1 (34)

The meaning is that contamination causes the IP to decrease
(see the right hand inequality in (32)) and, as a consequence
of the inverse proportionality given in Eq. (9), the contam-
ination results in a positive bias on the variance estimate
inferred from it. The IP of the contaminated data is lower-
bounded in a multiplicative manner by v" (see the left hand
inequality in (32)). This quantity is just the (discrete) IP of
the contamination and it depends solely on the contamination
rate " and on the probabilities pk associated to the additive
outlier values. Remarkably, the values Yk of the contamination
process have no impact on the IP, contrarily to the behavior of
the sample-variance estimator as seen in Eq. (30). This is the
key property that justifies the IP as an adequate prior entropy-
based processing of the data for the purpose of achieving
robustness: the impact on the estimation is governed solely by
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Fig. 4. Relative bias of the variance estimators vs. relative outlier variance,
for different contamination rates, ε, and data sizes, N .

VI. CONCLUSIONS

We considered the problem of estimating the determinant
of the covariance matrix without explicitly estimating that
matrix. We have shown that by first estimating an entropy-
based measure and applying the Gaussian assumption in a
second stage, we get robustness to the overall estimate in the
presence of outliers typically associated to man-made noise in
communications systems. The resulting estimator is affected
by the collision probability of the contamination (insensitive
to their values), instead of its variance. A procedure for
estimating the kernel bandwidth from the data has been
provided, understanding its interplay with the data size and
the department from optimality. An open research line is the
extension to robust generalized coherence estimation.

VII. APPENDICES

1) Proof of (4) & (5):

E [kW(u)] = π−M |C|−1
∫
e−u

HW−1ue−u
HC−1udu



= π−M |C|−1
∫
e−u

H(W−1+C−1)udu

= |C|−1 ∣∣(W−1 + C−1)
∣∣−1

= |W| |W + C|−1

Defining z = [uT ,vT ]T , we have E [kW(u)kW(v)] =
E
[
kW̃(z)

]
, with W̃ = IM ⊗W, which yields (5).

2) a and b in (7): Defining di,j = xi−xj , the variance of
Û in (3) can be expressed as:

σ2
Û

= E
[
Û2
]
− Ū2 = (N(N − 1)/2)

−2×
∑

i,j,i′,j′

(
E [kW (di,j) kW (di′,j′)]− (E [kW (di,j)])

2
)

with i < j and i′ < j′. In the summation we have:
• N(N − 1)/2 terms with i = i′ and j = j′, all equal to
b = E

[
k2
W (u)

]
− (E [kW (u)])

2 with Cu = 2Σ. For
E
[
k2
W (u)

]
, use (5) with γ = 1, which yields the first

term of (9). For the term E [kW (u)] we use use (4) to
obtain the second term of (9);

• (N(N − 1)/2) (N − 2) terms with i = i′ and j 6= j′;
• (N(N − 1)/2) (N − 2) terms with j = j′ and i 6= i′.

Therefore, we have N(N − 1)(N − 2) terms all equal to a =
E [kW (u) kW (v)] − (E [kW (u)])

2 with Cu = Cv = 2Σ
and Cuv = Σ. For E [kW (u) kW (v)] use (5) with γ =
1/2, which yields the first term of (8). The second term has
been proved before. The remaining terms are such that i 6= i′

and j 6= j′ and there are zero as kW (u) and kW (v) are
independent.

3) Small perturbation analysis for σ2
Σ̂

: Defining dU = Û−
Ū (with |dU | � Ū ) and assuming normality,

Σ̂ =
((
Ū + dU

)−1 − 1
)
W/2

Σ̂ ≈
((
Ū−1 − 1

)
− Ū−2dU + Ū−3dU2

)
W/2 ≈ Σ̄ + dΣ

σ2
Σ̂
≈
(
Ū−4σ2

Û
+ 3Ū−6σ4

Û

)
W 2/4

4) Impact of contamination to sample variance:

Σ̂S =
2

N(N − 1)

∑

1≤i<j≤N
|xεi − xεj |2 /2

E
[
Σ̂S

]
= E

[
|xεi − xεj |2

]
/2

E
[
Σ̂S

]
=
(
E
[
|xi − xj |2

]
+ E

[
|ziyi − zjyj |2

])
/2

= Σ + E
[
|zi|2

]
E
[
|yi|2

]
− |E [zi]|2 |E [yi]|2

= Σ + ε
(
σ2
y + µ2

y

)
− ε2µ2

y = Σ + ε
(
σ2
y + µ2

y (1− ε)
)

5) Impact of contamination to IP: Let us define

fε(x) =
K∑

k=0

p̃kf(x− Yk)

with p̃k = 1− ε for k = 0 and p̃k = εpk for 1 ≤ k ≤ K. For
the upper-bound:

fε(x) =

K∑

k=0

(√
p̃k

)(√
p̃kf(x− Yk)

)

fε(x) ≤

√√√√
K∑

k=0

(√
p̃k

)2 K∑

k=0

(√
p̃kf(x− Yk)

)2

=

√√√√
K∑

k=0

p̃kf2(x− Yk)

Vε ≤
∫ ( K∑

k=0

p̃kf
2(x− Yk)

)
dx

=
K∑

k=0

p̃k

(∫
f2(x− Yk)dx

)
=

(
K∑

k=0

p̃k

)
V = V

For the lower-bound:

Vε =
K∑

k=0

K∑

k′=0

p̃kp̃k′g(Yk′ − Yk)

0 ≤ g(z) =

∫
f(x+ τ)f(x)dx ≤ g(0) = V

Vε ≥
K∑

k=0

p̃2
kg(0) =

(
K∑

k=0

p̃2
k

)
V
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