
Clean Architecture with PHP

Treball de Final de Grau
–

Memory

Author:
Ferran Mart́ın Sànchez

Degree:
Grau en Enginyeria Informàtica
Enginyeria del Software

Director:
Gemma Casamajó

Company:
l’Apòstrof SCCL

Tutor:
Ernest Teniente

Department:
Enginyeria de Serveis i Sistemes

d’Informació (ESSI)

October 26, 2017

Acknowledgments
I want to start this document by thanking all those who have participated
in this project or who have been interested in some way, especially to:

People at ”l’Apòstrof”, to give me this oportunity and to trust me to
carry out this project, and especially to Gemma and Mart́ı, who have formed
the Comissió Intranet and all together we have been tracking and organizing
this project.

To my tutor Ernest Teniente, for all the help and advice that he has
given me, not only during this project, but during the entire university path.

To my family, for all the support given, and especially to Mariona, my
partner, without their support and help it would not have been possible to
carry out this project.

1

Abstract
It has always been important to keep track of processes in companies. Start-
ing with the Information Systems boom it has become even more obvious that
it’s a key factor in having competitive advantages. Today, most large com-
panies already have some type of software to control their internal processes,
therefore, it is not an advantage but a requirement to stay competitive.

The paradigm changes with small and medium-sized businesses, which
often do not have the resources to access these software. Therefore, being
able to implement a software to control their processes can in fact mean
a competitive edge with respect to the others. In addition, if we focus on
companies in the third sector and cooperativism, it is almost impossible to
find some software that reflects how to understand their business economics
and its role in relationship to their sector and society.

That is why the objective of this paper is to create a first version of a
work management software for the cooperative ”l’Apòstrof SCCL” that also
includes concepts of human and social scope. The project has the vision of
offering the tool to cooperatives and companies of the third sector.

2

Resum
Des de sempre ha sigut important portar un control dels processos en les
empreses. I a partir de l’auge dels Sistemes d’Informació es va fer més
evident que era un factor clau per aconseguir avantatges competitius. Avui
en dia totes (o quasi totes) les grans empreses ja tenen algun tipus de software
per controlar els seus processos interns, per tant el fet de tenir-ho ja no aporta
un avantatge competitiu respecte als altres, sinó que és un requisit.

Però això canvia amb les mitjanes i petites empreses, les quals molts
cops no tenen els recursos necessaris per accedir a aquests softwares. Per tant
arribar a aconseguir implantar un software per controlar els seus processos,
śı que pot significar un avantatge respecte als altres. A més, si ens centrem
en empreses del tercer sector i del cooperativisme, es fa quasi impossible
trobar algun software que reflecteixi la forma d’entendre l’economia, i el paper
d’aquesta i de les empreses dins la societat.

És per això que l’objectiu del present treball és el de crear una primera
versió d’un software de gestió de feines per a la cooperativa ”l’Apòstrof SCCL”
que també inclogui conceptes d’àmbit humà i social. El projecte té la visió
d’oferir l’eina a cooperatives i empreses del tercer sector.

3

Resumen
Desde siempre ha sido importante tener un control de los procesos internos
en las empresas. Y a partir del auge de los Sistemas de Información se hizo
más evidente que era un factor clave para conseguir ventajas competitivas.
Hoy en d́ıa todas (o casi todas) las grandes empresas ya tienen algún tipo de
software para llevar el control de sus procesos internos, por lo que el echo de
tener este software ya no aporta una ventaja, sino que se ha convertido en
un requisito.

Pero esto cambia con la medianas y pequeñas empresas, que muchas
veces no tienen los recursos necesarios para acceder a estos softwares. Por
lo que conseguir implantar un software para llevar el control de sus procesos
śı que puede significar tener una ventaja competitiva respeto a los demás. A
parte, si nos centramos en empresas del tercer sector y del cooperativismo,
se hace casi imposible encontrar un software que refleje la forma de entender
la economı́a, y el papel de ésta y las empresas dentro la sociedad.

Es por esto que el objetivo del presente trabajo es el de crear una primera
versión de un software de gestión de trabajo para la cooperativa ”l’Apòstrof
SCCL” que también inclúıa conceptos de ámbito humano y social. El proyecto
tiene la visión de ofrecer la herramienta a otras cooperativas y empresas del
tercer sector.

4

Contents
1 Context 8

1.1 Contextualization . 8
1.1.1 Personal motivation . 8

1.2 Actors . 9

2 Problem formulation 11
2.1 Current Intranet . 11
2.2 New features . 14
2.3 Goals . 14
2.4 Possible obstacles . 15

2.4.1 Obstacles with the implementation of Clean architecture 15
2.4.2 Time barriers . 15

2.5 Scope . 16

3 State of the art 17
3.1 Existing solutions . 17
3.2 Clean Architecture . 18

4 Methodology and rigor 22
4.1 Work methodologies . 22

4.1.1 Final method . 22
4.2 Tracking tools . 23
4.3 Validation methods . 24

4.3.1 Manual validation methods 24
4.3.2 Automatic validation methods 24

5 Requirements Analysis 25
5.1 Functional requirements . 25

5.1.1 System: . 25
5.1.2 System administration: 25
5.1.3 Projects managment: 26
5.1.4 Billing: . 27

5.2 Non-functional requirements 28

6 Specification 29

5

6.1 Actors . 29
6.2 Use cases . 30

6.2.1 System: . 30
6.2.2 System administration: 32

6.2.2.1 Users . 33
6.2.2.2 Workers . 37
6.2.2.3 Areas . 41
6.2.2.4 Expenses types 45
6.2.2.5 Clients . 49
6.2.2.6 Providers . 53

6.2.3 Projects administration: 57
6.2.3.1 Projects . 57
6.2.3.2 Projects batches 62
6.2.3.3 Expenses . 65
6.2.3.4 Worked hours 68

6.2.4 Invoicing: . 71
6.3 Conceptual model . 76

6.3.1 Conceptual scheme . 77
6.3.2 Integrity constraints 78
6.3.3 Description . 79

7 Design 82
7.1 Physical architecture . 82
7.2 Logical architecture . 83

7.2.1 Clean architecture . 83
7.2.1.1 Basic rules 83
7.2.1.2 Interactors, Entities, and Boundaries 86
7.2.1.3 Delivery mechanism 89
7.2.1.4 Persistence mechanism 91
7.2.1.5 Summary . 93

8 Implementation 96
8.1 Layers . 97

8.1.1 Entities and UsesCases 97
8.1.2 Services . 97
8.1.3 Presentation . 97
8.1.4 Infrastructure . 98

8.2 Testing . 99

6

8.3 Architecture improvements . 103
8.4 Used technologies . 103

9 Resources 105
9.1 Human Resources . 105
9.2 Material resources . 105
9.3 Software resources . 106

10 Planning 107
10.1 Calendar . 107
10.2 Initial planning . 107
10.3 Project iterations . 108
10.4 Finalization . 111
10.5 Gantt . 112

11 Alternatives and action plan 114
11.1 Bad planning . 114
11.2 Unforeseen events . 114

12 Deviations 115
12.1 Modifications . 116

12.1.1 Validation methods . 116

13 Budget 117
13.1 Identification of costs . 117
13.2 Cost estimates . 117

13.2.1 Human resources . 117
13.2.2 Hardware . 119

13.3 Management control . 120
13.4 Total budget . 120

14 Sustainability 121
14.1 Economic dimension . 121
14.2 Social dimension . 121
14.3 Environmental dimension . 122

15 Conclusions 123
15.1 Future work . 124

7

1. Context

1.1 Contextualization

This project has been done within an agreement of educational cooperation
with the company ”l’Apòstrof”. ”l’Apòstrof” is a communication coopera-
tive where work journalists, linguists, designers, teachers and developers, all
together working with multidisciplinary teams to promote creativity. We can
see the internal organization of ”l’Apòstrof” in two different ways; the first
way is to see that the company has two levels, the partners and the work-
ers. The second way is to see that the company works through work teams
that can be formed by one to many areas (commercial, comunication, design
and development). In the end, this ways to organize the company prioritizes
horizontality. Each project is assigned to a responsible (partner or worker)
and the important decisions that affect the whole company are taken in an
assembly formed by the partners.

The present project arises from the need to update and improve the
current intranet used in ”l’Apòstrof”. This intranet it’s not a generic one,
was custom made 10 year ago, but now it has become obsolete. It’s a fact that
the current intranet was not made using any development quality standard,
or thinking on maintainability and extansability at a medium or long term.
It’s also a fact that the changes done this last years has been done quickly as
soon the needs has arrived without any previsions and organization. With all
of that, the current state of the software is that is not reliable, nither stable,
and has so many bugs. So, now the company needs to renew this tool in
order to create one that can be reliable, stable, maintainable and extensible.

1.1.1 Personal motivation

During my last work experience, before at ”l’Apòstrof”, I had the opportu-
nity to work on a project to create and maintain a large and complex iOS
app. At the start of the project we had a buggy app (in fact it was a long
term prototype), and we decided to do it again using a Clean Architecture
implementation. The result was a very stable and reliable app (with 800

8

daily active users we only have 0.1% of error rate), and easily maintained
and extended.

Having seen the result of implementing a Clean architecture in an iOS
app, I wanted to test whether an implementation of this architecture in a
PHP web project would give the same results and if it would be worth it.

1.2 Actors

1. L’Apòstrof
L’Apòstrof (partners and workers) are the main Stakeholder of the
project since they will be the direct beneficiaries.
In order to streamline decision-making, in this project has created an
internal commission of two people formed by Gemma Casamajó (coor-
dinator of the ”l’Apòstrof” and director of the present TFG) and Mart́ı
Làzaro (designer and partner of ”l’Apòstrof”), who will play the role
of Product Owner 1.
The rest of the workers and partners will regularly try the new intranet
to be able to give feedback as soon as possible.

2. Development Team
It is made up of two people, Asier Illarramendi (developer and worker of
l’Apòstrof) and I, Ferran Martin (developer and worker of l’Apòstrof).
Even so, the intranet project will be developed mainly by myself, since
Asier will have to continue carrying out projects for company’s clients.
Therefore, Asier’s functions in this project will mainly be to program
some parts of the project, participate in technical decision making,
and do Code Reviews2 (technique to ensure the quality of the code,
explained later).

3. L’Apòstrof’s Clients
Customers are also an important Stakeholder, but indirectly, because
even though they will not use the intranet, clients will see some benefits

1Product Ower: https://www.mountaingoatsoftware.com/agile/scrum/roles/

product-owner
2Code Reviews: http://blogs.atlassian.com/2009/11/code_review_in_agile_

teams_part_i/

9

https://www.mountaingoatsoftware.com/agile/scrum/roles/product-owner
https://www.mountaingoatsoftware.com/agile/scrum/roles/product-owner
http://blogs.atlassian.com/2009/11/code_review_in_agile_teams_part_i/
http://blogs.atlassian.com/2009/11/code_review_in_agile_teams_part_i/

if the company improves their internal processes.

4. Other cooperatives
L’Apòstrof is located within a group of cooperatives (ECOS Group).
Within this group, intercooperativity is enhanced. L’Apòstrof is one
of the only cooperatives in the group that currently has a customized
intranet that responds to many of its needs (despite having the short-
comings already mentioned). From the moment it was known that
L’Apòstrof wanted to renew and improve his intranet, other coopera-
tives of the group already demonstrated their interest in being able to
use them as well. This is very far from the scope of this project (as we
will see later), but we must keep it in mind when designing the intranet.
That’s why the other cooperatives have been included as Stakeholders.

5. Tutor
The speaker of the project is Ernest Lieutenant Lopez, who belongs to
the specialty of Software Engineering and is a FIB professor. His role
will be to verify that the goals set are met at the end of each phase.

10

2. Problem formulation
Although we have seen in the previous section the current intranet is not
reliable and it would be very difficult to modify and extend it, we will use it
to analyze the functionalities it currently has.

Then we will describe the functionalities which will remain the same
and the ones which will have to be improved or changed. Also, we will
describe the new functionalities which need to be implemented. There are
some current functionalities that are not needed anymore, so, at the same
time we will clean/delete them. These functionalities are not described in
this document since they have no impact on this project.

2.1 Current Intranet

The current intranet is organized by areas grouped by certain functionalities.
The following is the description of these areas.

1. Administration Area
This area includes all the functionality required for the administration
of the intranet.

• Workers: It allows you to create, edit and delete workers.

• Users: It allows you to create, edit and delete users who have
access to the intranet and with which permissions. They may or
may not be linked to a worker.

• Notifications: It allows you to create notifications with a mes-
sage and recipient users. These notices will be shown to recipients
when they enter the intranet.

We should also improve a lot the functionality of Hourly Basis. This
allows the creation and edition of the employee’s bases, which is cur-
rently very rudimentary.

2. Business area
This area contains functionalities that allows defining how the work of

11

the company’s staff is organized.

• Areas: It allows you to define in which areas ”l’Apòstrof” is or-
ganized. Currently are communication, text, design, solidarity
economy, teaching, and development.

• Abilities: It allows you to define a list of skills that users can
mark when they enter hours.

3. Work management area
Here is where all the daily needed functionalities by company’s staff
are.

• Clients: It allows you to manage all the information about clients.

• Productive Projects: It allows you to manage all the informa-
tion about the clients’ projects. Projects can be associated with
expenses.

• Reproductive Projects: It allows you to manage all the infor-
mation about the tasks/projects that are carried out internally
and do not provide a direct benefit to the company. For the com-
pany being able to analyze data of these jobs is just as important
as that of the productive ones.

• Hours: It allows workers to enter their worked hours. Both,
hours of Reproductive work and Productive work, can be entered.
In the case of Productive projects, the skills used to perform the
task must be also indicated.

• Invoices: With this feature, you can create invoices for the work
done.

The functionality of Productive Projects is intended to be expanded
and introduce the concept of Project Batch, which will allow you to
define several batches for each project, and associate these batches to
a company’s area. The expenses would also be associated with the
project batches. With all this, better-organized data could be ex-
tracted.

Another current functionality that we want to improve is Reproduc-
tive Projects. As explained above, reproductive work is the internal

12

workings of the company which do not provide a direct economic ben-
efit to the company. Currently, these jobs only have an identifier, a
name, and a description. And although workers can enter hours asso-
ciated to them, they can not define which skill and/or areas they refer
to. With the new intranet, we want to incorporate functionality to be
able to manage reproductive work as if it was productive work; that
is, associating expenses, giving an estimated invoicing, entering hours
with details, etc.

4. Networking area
All functionalities to manage the company’s networking are located in
this area. Basically, it will be where all the data of the providers
are managed. Currently there is also the functionality of collaborators,
but it has been decided to unify both functionalities in one (providers),
since, in fact, they were exactly the same.

5. Reports area
Here you can find all the reports that are used to see the status of the
company. Many of these reports have to be rethought, as they do not
offer useful data, or they are not generated correctly.

• Billing: reports on net and total turnover per years, billing be-
tween months and billing for clients.

• Expenses: reports about closed projects’ expenses, and forecasts
on open expenses.

• Productivity: reports with productivity data; different sum-
maries of hours according to some parameters. It is important
to clarify that although the name of these reports is productivity,
reproductive work is also analyzed in them.

• Profitability: estimated and real hourly price calculations.

Reports in general needs to be improved a lot, and in particular there
are a series of reports that are now being generated manually (with
excel) that are wanted to be automated. An important improvement
we want to do is to be able to better analyze reproductive work.

13

2.2 New features

Apart from the functionalities that the intranet already has, we want to add
some more. These new features include the ability to rectify invoices, add
the concept of ”batches” to projects, add a comment system for projects,
and a management system for user profiles (they are now predefined and can
not be modified).

We are also thinking of developing new and larger features that will only
be done if the previous ones are finished. These are:

• project management functionality in order to improve it within the
company and better control the workload of the workers.

• prepare the intranet to be able to be offered as a service to other co-
operatives.

2.3 Goals

As you can see in the previous sections, the software that we want to develop
is an Intranet with many functionalities that will allow the ”l’Apòstrof” to
control the internal work processes and will help to make decisions through
the generated reports.

So, the main goal of this project is to develop a first version of this soft-
ware. This first version must have implemented the minimum functionalities
necessary to stop using the current Intranet, and the rest of the features will
be left for later versions.

Below are the minimum functionalities needed to reach this main objec-
tive.

• Basic system’s functionalities such as login, logout, and user manage-
ment.

• Be able to create projects and introduce hours associated with these
projects and workers.

• Be able to create invoices for projects to be sent to customers.

14

2.4 Possible obstacles

As you can see, it’s intended to create an intranet with a lots of function-
alities, therefore we can consider it a very large and wide project. Being a
project of these characteristics, it will be easy for there to be many obstacles
during its development. Therefore it is difficult to foresee all of them. How-
ever, we can say that the main problems in achieving the project’s goals will
probably be due to a lack of knowledge and experience in the subject, to a
tight deadline, and to changes in the requirements of the system’s function-
alities.

2.4.1 Obstacles with the implementation of Clean ar-
chitecture

As the name of this project indicates, and as explained above, we want to
create this intranet using an implementation of a Clean architecture. There-
fore we can find that we dedicate more hours than expected to think and
decide about it, since it is not a typical architecture that has been studied
in the university.

2.4.2 Time barriers

For different reasons, we may need more time than we initially think. For
example, all the system requirements are not entirely clear, and we want to
be able to make modifications during the development of these. We can also
find time problems due to the fact that for economic reasons the company has
to spend more hours on other projects. In any case, as will be explained later,
an agile methodology has been chosen, in order to minimize these obstacles.
And the extra hours needed to reach the minimum goals will also be done.

15

2.5 Scope

Once we have defined the goals we want to achieve within this project, it is
clear that the scope of the project is delimited to met these objectives.

On the other hand, it is beyond the scope of the project to develop
more functionalities than the minimums described. Due to the fact that
”l’Apòstrof” is a company where people looks closely at the detail of graphic
designs, it has also been explicitly agreed that it is beyond the scope of this
project to achieve a hight level of visual design. Even so, it will be necessary
to make the system easy to use.

Also, because we are going to develop a first version of a software that
will continue evolving, it is implicit that this software must be able to be
maintained and extended.

16

3. State of the art
On the Problem formulation chapter, we have already analyzed the function-
alities of the current Intranet, but it is also important to make an analysis
of other existing systems to see if there is one that already meet these needs
or not.

Since the architecture that we want to use is quite new, it is a good
idea to analyze what documentation we can use to carry out the project.
As a documentation, we are referring to all the bibliography written in the
theoretical field and also look for if there are already examples of projects
that put this architecture into practice in a similar context (a PHP web
application).

3.1 Existing solutions

It is clear that there are already many work management tools in the mar-
ket, since it is one of the first problems that began to be computerized in
companies. But it is also true that until a few years ago these systems have
only been available to large companies, and it has not been until the boom of
web applications and services that these systems haven’t arrived to medium
and small businesses. In addition, in general all the solutions already created
focus solely on the economic and productivity aspects, leaving aside other
aspects such as human and social aspects.

Although it seems obvious that it is difficult to find an existing solution
that addresses all the aspects that are desired, it is still important to analyze
these solutions. Below are some of these systems:

• Billage (https: // www. billage. es/ es/) Billage is a multiplatform
service (web, Android and iOS) for companies and freelancers that
facilitates management in the fields of business, project management
and billing. As strengths have several things; To begin, it offers many
integrations with other widely used systems such as Google services
(Gmail, Calendar and Drive), Mailchimp and Typeform, which can
facilitate many things to companies with few resources. And in the

17

https://www.billage.es/es/

project management section, we should emphasize the features of man-
aging tasks with a Kanban table and an interface very well achieved to
introduce hours that greatly facilitates this task.

• Anfix (https: // anfix. com) Another cross platform service (web,
Android and iOS) focused mainly on economic management (expenses
and invoices). It also incorporates a small project management to be
able to organize these expenses and invoices in projects. One feature
that should be highlighted is the fact of customizing the invoice through
editable templates.

• Teamleader https: // www. teamleader. es Teamleader is a web plat-
form that offers functionalities for managing different areas of a com-
pany, including project management and billing. As remarkable func-
tionality it has the fact of being able to give access to the projects to
the clients, and thus to facilitate the communication.

As has already been said, in the market there are many other solutions
already made, the ones previously mentioned have been highlighted, since
they offer some outstanding functionality that could take on an example for
the future.

The main problem that makes it very difficult to find a system that
could be used is the fact that none allow the management and analysis of
internal tasks that do not provide a direct benefit (which is not billed), and
this is a very point important for ”l’Apòstrof”.

3.2 Clean Architecture

As the title of this project indicates, we want to create this intranet using
an implementation of a Clean architecture1with PHP.

The concept of Clean Architecure1 was introduced by Robert C. Martin2

in August 2012 in an entry at his blog. Previously he had already written

1Clean Architecture: https://8thlight.com/blog/uncle-bob/2012/08/13/

the-clean-architecture.html
2Robert C. Martin: https://en.wikipedia.org/wiki/Robert_Cecil_Martin

18

https://anfix.com
https://www.teamleader.es
https://8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html
https://8thlight.com/blog/uncle-bob/2012/08/13/the-clean-architecture.html
https://en.wikipedia.org/wiki/Robert_Cecil_Martin

another post where he began to draw one of the differentiating concepts of
this architecture; the concept of Screaming Architecture3.

Apart from the two previous blog posts mentioned, there has been no
more bibliography written on this subject in the theoretical field. Conference
videos can be found where Robert C. Martin speaks and exemplifies some-
thing more about this architecture. But it was not until 017 that a book was
published. The book Clean Architecture: A Craftsman’s Guide to Software
Structure and Design4 was published in September 2017. This book could
not be used as a reference for this project, since it was not possible to get a
copy.

If we look at how to implement this architecture in a PHP web service
we can find some references. The most significant is the book The Clean
Architecture in PHP5. There are also some blog posts explaining a bit more
about how to make an implementation with PHP, but they do not go deep.

Although it seems that until recently there has not been much written
literature on this subject, and that therefore we could say that it does not
generate much interest, this is not true. To begin, this architecture is strongly
linked to the concepts Clean Code6 (which has been relevant in the sector for
more time and has a lot of written bibliography) and SOLID principles7. It
is also easy to observe how more and more articles, conferences and talks that
address these issues can be found. And lastly, the interest in this architecture
has been demonstrated by the fact that the new book published in 2017 by
Robert C. Martin had already achieved the “best seller” category on Amazon
before release.

So, why this

new architecture can generate this interest? Surely for the bene-
fits it seeks to provide and from where it comes from, since it is
not a “new” architecture by itself, it is an attempt to unify and

3Screaming Architecture: https://8thlight.com/blog/uncle-bob/2011/09/30/

Screaming-Architecture.html
4Clean Architecture: A Craftsman’s Guide to Software Structure and Design: https:

//www.amazon.es/dp/0134494164/
5The Clean Architecture in PHP: https://leanpub.com/cleanphp
6Clean Code: https://www.amazon.com/Clean-Code-Handbook-Software-Craftsmanship/

dp/0132350882
7SOLID: https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)

19

https://8thlight.com/blog/uncle-bob/2011/09/30/Screaming-Architecture.html
https://8thlight.com/blog/uncle-bob/2011/09/30/Screaming-Architecture.html
https://www.amazon.es/dp/0134494164/
https://www.amazon.es/dp/0134494164/
https://leanpub.com/cleanphp
https://www.amazon.com/Clean-Code-Handbook-Software-Craftsmanship/dp/0132350882
https://www.amazon.com/Clean-Code-Handbook-Software-Craftsmanship/dp/0132350882
https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)

align other types of architectures, keeping the best of each one.

These architectures are; Hexagonal architecture8, Onion archi-
tecture9, Screaming architecture10, Lean architecture11 and the
concept of Use Case Driven Approach12.

According to the author, as a result an architecture that provides
the following benefits is achieved:

1. Frameworks13 independence: Many systems are built
using frameworks, since frameworks facilitate the work of
the developers. The problem arrives when the coupling
level with these frameworks is high and for some reason,
the framework must be changed or updated. This will not
be an easy task. So, it is important to maintain the level of
attachment with the frameworks or tools to the minimum
possible.

2. UI independence: It is usual for the UI to change con-
stantly, without really altering the rest of the system. There-
fore it is important that the system’s core (business rules14)
is not coupled to the UI.

3. Database independence: In the same way that with the
UI, it is important to maintain a low level of coupling with
the system used to store the data.

4. Testable: It is important to be able to test the systems to
verify that they work correctly, and especially the central
parts. Therefore, thanks to the fact that we can easily dis-
connect the system core from all the external details (such

8Hexagonal architecture: http://alistair.cockburn.us/Hexagonal+architecture
9Onion architecture: http://jeffreypalermo.com/blog/

the-onion-architecture-part-1/
10Screaming architecture: https://8thlight.com/blog/uncle-bob/2011/09/30/

Screaming-Architecture.html
11Lean architecture: http://www.leansoftwarearchitecture.com/
12Use Case Driven Approach: http://www.interface.ru/rational/rup51/manuals/

intro/im_feat2.htm
13Framework: https://en.wikipedia.org/wiki/Software_framework
14Business rules: https://en.wikipedia.org/wiki/Business_rule

20

http://alistair.cockburn.us/Hexagonal+architecture
http://jeffreypalermo.com/blog/the-onion-architecture-part-1/
http://jeffreypalermo.com/blog/the-onion-architecture-part-1/
https://8thlight.com/blog/uncle-bob/2011/09/30/Screaming-Architecture.html
https://8thlight.com/blog/uncle-bob/2011/09/30/Screaming-Architecture.html
http://www.leansoftwarearchitecture.com/
http://www.interface.ru/rational/rup51/manuals/intro/im_feat2.htm
http://www.interface.ru/rational/rup51/manuals/intro/im_feat2.htm
https://en.wikipedia.org/wiki/Software_framework
https://en.wikipedia.org/wiki/Business_rule

as the UI and Databases) it is much easier to test these
important parts.

21

4. Methodology and rigor

4.1 Work methodologies

Since this project will be carried out mainly only for me, no
popular methodology will be used in itself. However, we will
look at methodologies that can be useful to us and we will adapt
them to the needs of the team and project.

Since this is a project where the requirements are not perfectly
defined, we want to be able to make changes during the devel-
opment and we want to be able to test the results as soon as
possible to be able to decide these changes. So, it is a perfect
environment to use agile methodologies.

The two well-known methodologies are Kanban1 and Scrum2. In
one hand, with Kanban, we try to have more precise control of
work over time, while on the other side, with Scrum, above all,
we try to be able to provide flexibility to work with changing
requirements. Therefore it has been decided to use the Scrum
methodology.

4.1.1 Final method

The process that has been decided will be as follows:

• An Comissió Intranet will be created, composed of two mem-
bers of ””l’Apòstrof””, who will perform the role of Product
Owner 3 and will be in charge of deciding the system’s re-
quirements and the priorities of the project.

1Kanban: https://es.wikipedia.org/wiki/Kanban_(desarrollo)
2Scrum: https://proyectosagiles.org/que-es-scrum/
3Product Owner: https://www.mountaingoatsoftware.com/agile/scrum/roles/

product-owner

22

https://es.wikipedia.org/wiki/Kanban_(desarrollo)
https://proyectosagiles.org/que-es-scrum/
https://www.mountaingoatsoftware.com/agile/scrum/roles/product-owner
https://www.mountaingoatsoftware.com/agile/scrum/roles/product-owner

• At the beginning of the project, an initial BackLog4 will be
created with all the User Stories5 that we may think. These
User Stories must be as small as possible and independent
of each other.

• Work will be carried out on incremental iterations (defined
later). Thus, step by step, functionalities will be added to
the system, and at the end of each iteration there will be a
functional system.

• These iterations will be two weeks long. At the beginning
of each iteration, there will be a meeting with the Comissió
Intranet to decide which stories to implement. And at the
end of the iterations, it will be checked which ones have been
implemented and which ones not.

• Occasionally we will do some testing days with other people
to check everything developed so far and provide feedback.

4.2 Tracking tools

Trello6 will be used as a software to help to plan these iterations
and track them. In order to control versions of the project, a git7

repository hosted on GitHub8 will be used. This will also monitor
the changes that occur during the development.

4BackLog: https://www.mountaingoatsoftware.com/agile/scrum/scrum-tools/

product-backlog
5User Stories: https://www.mountaingoatsoftware.com/agile/user-stories
6Trello: https://trello.com/
7Git: https://git-scm.com/
8 GitHub: https://github.com/

23

https://www.mountaingoatsoftware.com/agile/scrum/scrum-tools/product-backlog
https://www.mountaingoatsoftware.com/agile/scrum/scrum-tools/product-backlog
https://www.mountaingoatsoftware.com/agile/user-stories
https://trello.com/
https://git-scm.com/
https://github.com/

4.3 Validation methods

4.3.1 Manual validation methods

As explained during the ”Work Methodologies” chapter, meetings
will be held at the end of each iteration with Comissió Intranet
(Product Owner) to verify that the functionalities implemented
work well and do everything they need to do. In addition, there
will also be a trial version of the Intranet available to workers so
they can try it whenever they want. And we will mark test dates
on certain iterations so the workers can test the entire system
implemented so far.

In order to ensure the quality of the project, Code Reviews will
also be made by two project’s developers. To do this, for each
functionality that is implemented, a branch will be created in the
git repository and once completed, a Pull Request will be created.
This will make all changes that involve functionality easy.

Code Review will also be made between the two project develop-
ers, in order to ensure the quality of the project. To do this, for
each functionality that is implemented, a branch will be created
in the git repository and once completed, a Pull Request will be
created towards the main branch. So it will be easy to review all
the changes that involve each functionality.

4.3.2 Automatic validation methods

The main part of automatic validation methods will be Unit
Tests, which will be carried out in all possible classes/parts of
the code. To implement all these tests, TDD practice will be the
used. Integration Tests will also be created to verify that the
entire system works correctly.

24

5. Requirements Analysis

5.1 Functional requirements

As mentioned in Goals section, a minimum number of function-
alities must be implemented in order to stop using the current
Intranet and achieve the main goal of this project.

In this section we will describe all the functional requirements
necessary to achieve these functionalities.

We can say that the main features are those directly related
to work management, especially to be able to associate worked
hours, expenses, and invoices to the projects. This last section
of invoices (or billing) is also quite broad. Therefore, we can
group these features into 4 large groups; a first group related
to all the basic functionalities necessary to interact with the sys-
tem, a second group with features referring to basic system’s data
management, a third group that includes the functionalities for
the management of the tasks by themselves, and a fourth group
where all the billing features are implemented.

5.1.1 System:

This group basically includes two very basic features, the login
and logout of users.

5.1.2 System administration:

Since you have to log in to use the system, it is obvious that the
first feature of this group should be a users managment system;
In particular, the system will allow to create, edit, delete, and
list users of the system.

25

As we have said, project will have worked hours associated, there-
fore, it should also be possible to create, edit, delete and list
workers, which will be associated to the hours spent on projects.
The workers can only be erased in case they do not have any asso-
ciated worked hour. Otherwise they will not be able to be deleted,
but they will be deactivated. You can also associate a worker
to a user, so this user can enter worked hours of the worker.

Projects will be organized in batches, which at the same time will
be related to an area of the company. Therefore the system will
have to allow the management of these areas, in particular, to
create, edit and list areas of the company.

Expenses will also be associated with projects’ batches. These
expenses will have to be classified, so another requirement will be
to able to create, edit, delete and list the different types
of expenses. These expenses will also be associated to collabo-
rators or suppliers in order to be able to analyze this data in the
future. Therefore, it is obvious that the functional requirements
of creating, editing, deleting and listing providers are also
necessary.

To end the functionalities of this group, each project will be car-
ried out for a client, therefore we also want to be able to create,
edit, delete and list clients of the company, to be able to
associate them with the projects and invoices.

5.1.3 Projects managment:

All the functionalities described above are necessary to be able to
finally perform the functionalities described below in this group.

Obviously, the most important features will be view, create,
edit, delete, and list projects. As mentioned above, projects
will be organized in batches, so, we should also be able to create,
edit, delete and list the projects’ batches, and for each
batch, there must be the ability to create, edit, delete, and
list expenses.

26

Finally, in order to have list of worked hours, users can enter
hours associated to a project’s batches and a worker, they
should also be able list and delete these hours.

5.1.4 Billing:

This last group contains all the features related to the billing of
projects. Basically for each project we want to be able to control
the invoices that are sent to clients.

Apart from the invoices’s data (client’s data, amounts, lines, etc.),
invoices can have a total of 4 states:

1. The first state will be requested. This will mean that the
invoice has been entered to the system with the basic data,
but it is necessary to review it and to send it to the client.

2. Next status will be accepted. An invoice will pass to this
state once it is reviewed and sent to the client.

3. Then, an invoice will go to the paid status when the client
pays it.

4. The last possible state will be rectified. This will happen
when you want to edit an invoice, but it is no longer possi-
ble to do it since it has already been submitted to Finance
Ministry. In this case the invoice will be marked as rectified
and another identical invoice will be created to “rectify” the
previous one.

The invoices will have to be numbered following an incremental
series for each year, and the rectified invoices will have to follow
a parallel series for each year.

As we can see, the invoices’ “life” are a bit complex, therefore
in this case more features will be necessary to facilitate their
management. In particular a user must be able to request an
invoice (to create it), edit and print an invoice (to review
and send it), and rectify an invoice. In addition, it is obvious
that should also be able to list and delete invoices.

27

5.2 Non-functional requirements

Apart from the functional requirements described above, the sys-
tem will also have to achieve with a series of non-functional re-
quirements to guarantee the correct operation of itself.

1. Availability: The server must always be available so that
users can use the Intranet and control the cooperative’s
projects.

2. Response time: The response time of the server when the
application makes a request should be less than 3 seconds.

3. Usability: The intranet UI should be simple and easy to
use for any user level. It should also have a quick learning
curve, so users can learn to use it quickly.

4. Robustness: The data entered by the users can not corrupt
the system and it will have to be indicated to them when
they introduce incorrect data in the best and fastest way
possible.

5. Testability: System’s tests must be able to easily create,
so that we can maintain and apply modifications.

28

6. Specification

6.1 Actors

As we seen in the Problem formulation section, the current In-
tranet has several types of users (unidentified users, administra-
tors, employees, and partners), but for this first version only there
will be two basic types.
The different actors that will interact with the system will be the
following:

Unidentified user: Anyone who accesses the system, but has
not yet identified, and therefore the only thing they can do is
identify themselves.

Identified user: The identified users will be the ones who will
use Intranet every day. They will be in charge of introducing
all necessary data to the system in order to be able to use the
Intranet and take control of the cooperative’s work. In general,
people responsible for each project will be the ones that will han-
dle the data of the projects.

29

6.2 Use cases

This section shows all the necessary use cases to be able to achieve
with all the functional requirements that system must have. In
particular, diagrams of all the use cases and an explanation in
detail of each one of them are shown.

6.2.1 System:

Figure 6.1: System use cases

Use case 1 - Login

The user enters the email and the password in order to
access and use the system as a user.

Actor: Unidentified user
Trigger: An unidentified user wants to identify himself to
enter the system.
Preconditions:

1. The user is registered to the system.
Main thread:

1. The user opens the web for the first time.
2. The system displays the form to enter the credentials

(email and password).
3. The user fills in the form and sends the data.
4. The system validates the data and shows the main

page.
Extensions:
4.1. Incorrect credentials

30

(a) The system shows the form to enter the creden-
tials, but with an error indicating what the prob-
lem is.

(b) Return to step 3.

Use case 2 - Logout

The user clicks the logout button to stop using the system.

Actor: Identified user
Trigger: An identified user wants to end the session in a
browser.
Preconditions:

1. The user is identified.
2. The user has the web open on any page.

Main thread:
1. The user clicks on the logout button.
2. The system ends the user’s session and shows the form

to enter the credentials.

31

6.2.2 System administration:

Figure 6.2: System administration use cases

As we can see in the previous graph, in this section there are
many use cases. It can easily be seen that we can group use cases
with 6 subgroups; those related to users, workers, areas, types of
expenses, customers and providers.
Therefore, they will be defined according to this grouping logic.

32

6.2.2.1 Users

Figure 6.3: Users administration use cases

Use case 3 - Users list

See a list of all the company’s users in order to have access
to all necessary information.

Actor: Identified user
Trigger: An identified user wants to see a list of all users
registered in the system.
Preconditions:

1. The user is identified.
Main thread:

1. The user goes to the users list page.
2. The system shows the list of all users registered in

the system.

Use case 4 - Create user

Register a user, so the information is in the system and can
be consulted, and the user can log in.

Actor: Identified user
Trigger: An identified user wants to register another user.

33

Preconditions:
1. The user is identified.
2. The user is viewing the users list page.

Main thread:
1. The user clicks on “create user” link.
2. The system displays the user registration form (email

and password).
3. The user fills in the form and sends the data.
4. The server processes the data and registers the new

user.
5. The server shows the updated user list.

Extensions:
4.1. There is already a registered user with the same email

(a) The system displays the user registration form,
but showing a message that explains the error.

(b) Return to step 3.
4.2. The password is not valid

(a) The system displays the user registration form,
but showing a message that explains the error.

(b) Return to step 3.

Use case 5 - Edit user

Edit a user’s information in order to expand or correct it.

Actor: Identified user
Trigger: An identified user wants to edit the information
of another user.
Preconditions:

1. The user is identified.
2. The user is viewing the users list page.

Main thread:
1. The user clicks on “edit user” link of a row in the list.
2. The system displays the user form (email and pass-

word).
3. The user fills in the form and sends the data.
4. The server processes the data and updates the user

34

information.
5. The server shows the updated user list.

Extensions:
4.1. There is already a registered user with the same email

(a) The system displays the user registration form,
but showing a message that explains the error.

(b) Return to step 3.
4.2. The password is not valid

(a) The system displays the user registration form,
but showing a message that explains the error.

(b) Return to step 3.

Use case 6 - Associate user with a worker

Associate some user with a worker, so when a person identi-
fied with this user enters hours, they will be done on behalf
of the associated worker.

Actor: Identified user
Trigger: A user wants to associate a worker with some
user.
Preconditions:

1. The user is identified.
2. The user is viewing the users list page.

Main thread:
1. The user clicks on “associate worker” link of a row in

the list.
2. The server displays a list of active and not yet asso-

ciated employees.
3. The user selects a worker and sends the data.
4. The server updates the user information.
5. The server shows the updated user list.

Use case 7 - Delete user

Delete a user in order to delete information about the sys-

35

tem.

Actor: Identified user
Trigger: Un usuari identificat vol esborrar un altre usuari.
Preconditions:

1. The user is identified.
2. The user is viewing the users list page.

Main thread:
1. The user clicks on “delete user” link of a row in the

list.
2. The server deletes the user.
3. The server shows the updated user list.

Extensions:
3.1 User erase their own user.

(a) The system closes the user’s session and displays
the Login form.

36

6.2.2.2 Workers

Figure 6.4: Workers administration use cases

Use case 8 - Workers list

See a list of all the workers in the cooperative in order to
have access to all the necessary information.

Actor: Identified user
Trigger: An identified user wants to see a list of all the
workers registered in the system.
Preconditions:

1. The user is identified.
Main thread:

1. The user goes to the workers list page.
2. The system shows the list of all workers registered in

the system.

Use case 9 - Create worker

Register a worker, so her information can be consulted, and
users can enter hours on his behalf.

Actor: Identified user
Trigger: An identified user wants to register a new worker.

37

Preconditions:
1. The user is identified.
2. The user is viewing the workers list page.

Main thread:
1. The user clicks on “create worker” link.
2. The system displays the worker registration form

(name and surnames).
3. The user fills in the form and sends the data.
4. The server processes the data and registers the new

worker with active status.
5. The server shows the updated workers list.

Extensions:
4.1. Empty data

(a) The system displays the worker registration
form, but showing a message that explains the
error.

(b) Return to step 3.

Use case 10 - See worker

See the file of a worker in order to be able to check all the
information on it.

Actor: Identified user
Trigger: An identified user wants to check a worker’s file.
Preconditions:

1. The user is identified.
2. The user is viewing the workers list page.

Main thread:
1. The user clicks on “see worker” link of a row in the

list.
2. The system shows the worker’s file with all the infor-

mation.

Use case 11 - Edit worker

38

Edit worker’s information in order to expand or correct it.

Actor: Identified user
Trigger: An identified user wants to edit a worker’s infor-
mation.
Preconditions:

1. The user is identified.
2. The user is viewing the workers list page.

Main thread:
1. The user clicks on “edit worker” link of a row in the

list.
2. The system displays the worker edit form (name, sur-

names, and active/inactive).
3. The user fills in the form and sends the data.
4. The server processes the data and updates the

worker’s data.
5. The server shows the updated workers list.

Extensions:
4.1. Empty data

(a) The system displays the worker registration
form, but showing a message that explains the
error.

(b) Return to step 3.

Use case 12 - Delete worker

Delete a worker in order to delete his information.

Actor: Identified user
Trigger: An identified user wants to erase a worker from
the system.
Preconditions:

1. The user is identified.
2. The user is viewing the workers list page.

Main thread:
1. The user clicks on “delete worker” link of a row in

39

the list.
2. The server deletes the worker.
3. The server shows the updated workers list.

Extensions:
2.1 The worker already has assigned hours

(a) The server does not remove the worker.
(b) The server shows the updated workers list, but

indicating that the worker can not be deleted.

40

6.2.2.3 Areas

Figure 6.5: Areas administration use cases

Use case 13 - Areas list

See a list of the areas in order to have access to all the
necessary information.

Actor: Identified user
Trigger: An identified user wants to see a list of all areas.
Preconditions:

1. The user is identified.
Main thread:

1. The user goes to the areas list page.
2. The system shows the list of all areas.

Use case 14 - Create area

Register an area so that its information is in the system
and can be associated with projects’ batches.

Actor: Identified user
Trigger: An identified user wants to create a new area.
Preconditions:

1. The user is identified.

41

2. The user is viewing the areas list page.
Main thread:

1. The user clicks on “create area” link.
2. The system displays the area registration form (name

and description).
3. The user fills in the form and sends the data.
4. The server processes the data and registers the new

area with active status.
5. The server shows the updated areas list.

Extensions:
4.1. Empty data

(a) The system displays the area registration form,
but showing a message that explains the error.

(b) Return to step 3.
4.1. Duplicated name

(a) The system displays the area registration form,
but showing a message that explains the error.

(b) Return to step 3.

Use case 15 - See area

See the file of an area to know its information.

Actor: Identified user
Trigger: An identified user wants to check the file of an
area.
Preconditions:

1. The user is identified.
2. The user is viewing the areas list page.

Main thread:
1. The user clicks on “see area” link of a row in the list.
2. The system display the area’s file with all the infor-

mation.

Use case 16 - Edit area

42

Edit area’s information to expand or correct it.

Actor: Identified user
Trigger: An identified user wants to edit the information
in an area.
Preconditions:

1. The user is identified.
2. The user is viewing the areas list page.

Main thread:
1. The user clicks on “edit area” link of a row in the list.
2. The system displays the area form (name, description

and active/inactive).
3. The user fills in the form and sends the data.
4. The server processes the data and updates the area’s

data.
5. The server shows the updated areas list.

Extensions:
4.1. Empty data

(a) The system displays the area registration form,
but showing a message that explains the error.

(b) Return to step 3.
4.1. Duplicated name

(a) The system displays the area registration form,
but showing a message that explains the error.

(b) Return to step 3.

Use case 17 - Delete area

Delete an area to eliminate its information.

Actor: Identified user
Trigger: An identified user wants to delete an area from
the system.
Preconditions:

1. The user is identified.
2. The user is viewing the areas list page.

Main thread:

43

1. The user clicks on “delete area” link of a row in the
list.

2. The server deletes the area.
3. The server shows the updated areas list.

Extensions:
2.1 The area already has associated project batches

(a) The server does not remove the area.
(b) The server shows the updated area list, but in-

dicating that the area can not be deleted.

44

6.2.2.4 Expenses types

Figure 6.6: Expenses types administration use case

Use case 18 - Expenses types list

See a list of all expenses types that are used in the company
in order to be able to access all the necessary information.

Actor: Identified user
Trigger: An identified user wants to see a list of all ex-
penses types.
Preconditions:

1. The user is identified.
Main thread:

1. The user goes to the expenses types list page.
2. The system shows the list of all expenses types.

Use case 19 - Create expense type

Register an expense type so its information is in the system
and a project’s expenses can be associated with it.

Actor: Identified user
Trigger: An identified user wants to register a new expense

45

type.
Preconditions:

1. The user is identified.
2. The user is viewing the expenses types list page.

Main thread:
1. The user clicks on “create expense type” link.
2. The system displays the expense type registration

form (name).
3. The user fills in the form and sends the data.
4. The server processes the data and registers the new

expense type with active status.
5. The server shows the updated expenses types list.

Extensions:
4.1. Empty name

(a) The system displays the expense type registra-
tion form, but showing a message that explains
the error.

(b) Return to step 3.
4.1. Duplicated name

(a) The system displays the expense type registra-
tion form, but showing a message that explains
the error.

(b) Return to step 3.

Use case 20 - See expense type

See the file of an expense type to be able to consult all its
information.

Actor: Identified user
Trigger: An identified user wants to check an expense
type.
Preconditions:

1. The user is identified.
2. The user is viewing the expenses types list page.

Main thread:
1. The user clicks on “see expense type” link of a row

46

in the list.
2. The system display the expense type file with all the

information.

Use case 21 - Edit expense type

Edit expense type’s information to expand or correct it.

Actor: Identified user
Trigger: An identified user wants to edit an expense type.
Preconditions:

1. The user is identified.
2. The user is viewing the expenses types list page.

Main thread:
1. The user clicks on “edit expense type” link of a row

in the list.
2. The system displays the expense type form (name

and active/inactive).
3. The user fills in the form and sends the data.
4. The server processes the data and updates the ex-

pense type’s data.
5. The server shows the updated expenses types list.

Extensions:
4.1. Empty data

(a) The system displays the expense type registra-
tion form, but showing a message that explains
the error.

(b) Return to step 3.
4.1. Duplicated name

(a) The system displays the expense type registra-
tion form, but showing a message that explains
the error.

(b) Return to step 3.

Use case 22 - Delete expense type

47

Delete an expense type to delete its information.

Actor: Identified user
Trigger: An identified user wants to delete an expense
type from the system.
Preconditions:

1. The user is identified.
2. The user is viewing the expenses types list page.

Main thread:
1. The user clicks on “delete expense type” link of a row

in the list.
2. The server deletes the expense type.
3. The server shows the updated expenses types list.

Extensions:
2.1 The expense type already has associated some ex-

pense
(a) The server does not remove the expense type.
(b) The server shows the updated expense type list,

but indicating that the expense type can not be
deleted.

48

6.2.2.5 Clients

Figure 6.7: Clients administration use cases

Use case 23 - Clients list

See a list of all clients that are used in the company in order
to be able to access all the necessary information.

Actor: Identified user
Trigger: An identified user wants to see a list of all clients.
Preconditions:

1. The user is identified.
Main thread:

1. The user goes to the clients list page.
2. The system shows the list of all clients.

Use case 24 - Create client

Register some client, so its information is in the system and
projects and invoices can be associated with it.

Actor: Identified user
Trigger: An identified user wants to register a new client.
Preconditions:

1. The user is identified.

49

2. The user is viewing the clients list page.
Main thread:

1. The user clicks on “create client” link.
2. The system displays the client registration form

(name, cif, address, zip code, and city).
3. The user fills in the form and sends the data.
4. The server processes the data and registers the new

client with active status.
5. The server shows the updated clients list.

Extensions:
4.1. Empty name

(a) The system displays the client registration form,
but showing a message that explains the error.

(b) Return to step 3.

Use case 25 - See client

See the file of a client to be able to check all its information.

Actor: Identified user
Trigger: An identified user wants to check a client.
Preconditions:

1. The user is identified.
2. The user is viewing the clients list page.

Main thread:
1. The user clicks on “see client” link of a row in the

list.
2. The system display the client file with all the infor-

mation.

Use case 26 - Edit client

Edit client’s information to expand or correct it.

Actor: Identified user

50

Trigger: An identified user wants to edit a client.
Preconditions:

1. The user is identified.
2. The user is viewing the clients list page.

Main thread:
1. The user clicks on “edit client” link of a row in the

list.
2. The system displays the client form (name, cif, ad-

dress, zip code, city, and active/inactive).
3. The user fills in the form and sends the data.
4. The server processes the data and updates the client’s

data.
5. The server shows the updated clients list.

Extensions:
4.1. Empty name

(a) The system displays the client registration form,
but showing a message that explains the error.

(b) Return to step 3.

Use case 27 - Delete client

Delete a client to delete its information.

Actor: Identified user
Trigger: An identified user wants to delete a client from
the system.
Preconditions:

1. The user is identified.
2. The user is viewing the clients list page.

Main thread:
1. The user clicks on “delete client” link of a row in the

list.
2. The server deletes the client.
3. The server shows the updated clients list.

Extensions:
2.1 The client already has associated some projects or

invoices

51

(a) The server does not remove the client.
(b) The server shows the updated client list, but in-

dicating that the client can not be deleted.

52

6.2.2.6 Providers

Figure 6.8: Providers administration uses cases

Use case 28 - Providers list

See a list of all providers that are used in the company in
order to be able to access all the necessary information.

Actor: Identified user
Trigger: An identified user wants to see a list of all
providers.
Preconditions:

1. The user is identified.
Main thread:

1. The user goes to the providers list page.
2. The system shows the list of all providers.

Use case 29 - Create provider

Register some provider, so its information is in the system
and projects and invoices can be associated with expenses.

Actor: Identified user
Trigger: An identified user wants to register a new

53

provider.
Preconditions:

1. The user is identified.
2. The user is viewing the providers list page.

Main thread:
1. The user clicks on “create provider” link.
2. The system displays the provider registration form

(name).
3. The user fills in the form and sends the data.
4. The server processes the data and registers the new

provider with active status.
5. The server shows the updated providers list.

Extensions:
4.1. Empty name

(a) The system displays the provider registration
form, but showing a message that explains the
error.

(b) Return to step 3.
4.1. Duplicated name

(a) The system displays the provider registration
form, but showing a message that explains the
error.

(b) Return to step 3.

Use case 30 - See provider

See the file of a provider to be able to check all its infor-
mation.

Actor: Identified user
Trigger: An identified user wants to check a provider.
Preconditions:

1. The user is identified.
2. The user is viewing the providers list page.

Main thread:
1. The user clicks on “see provider” link of a row in the

list.

54

2. The system display the provider file with all the in-
formation.

Use case 31 - Edit provider

Edit provider’s information to expand or correct it.

Actor: Identified user
Trigger: An identified user wants to edit a provider.
Preconditions:

1. The user is identified.
2. The user is viewing the providers list page.

Main thread:
1. The user clicks on “edit provider” link of a row in the

list.
2. The system displays the provider form (name and ac-

tive/inactive).
3. The user fills in the form and sends the data.
4. The server processes the data and updates the

provider’s data.
5. The server shows the updated providers list.

Extensions:
4.1. Empty name

(a) The system displays the provider registration
form, but showing a message that explains the
error.

(b) Return to step 3.

Use case 32 - Delete provider

Delete a provider to delete its information.

Actor: Identified user
Trigger: An identified user wants to delete a provider from
the system.

55

Preconditions:
1. The user is identified.
2. The user is viewing the providers list page.

Main thread:
1. The user clicks on “delete provider” link of a row in

the list.
2. The server deletes the provider.
3. The server shows the updated providers list.

Extensions:
2.1 The provider already has associated some expenses

(a) The server does not remove the provider.
(b) The server shows the updated provider list, but

indicating that the provider can not be deleted.

56

6.2.3 Projects administration:

Figure 6.9: Use cases about projects (and related data) administra-
tion

As you can see in the Figure 6.9, in this section there are also
many use cases. You can also easily see that we can group these
with 4 subgroups; those related to projects, projects’s batches,
expenses and worked hours.
Therefore, they will be defined according to this order.

6.2.3.1 Projects

57

Figure 6.10: Projects administration use cases

Use case 33 - Projects list

See a list of all projects that are used in the company in
order to be able to access all the necessary information.

Actor: Identified user
Trigger: An identified user wants to see a list of all
projects.
Preconditions:

1. The user is identified.
Main thread:

1. The user goes to the projects list page.
2. The system shows the list of all projects.

Use case 34 - Create project

Register some project, so its information is in the system
and can be managed.

Actor: Identified user
Trigger: An identified user wants to register a new project.
Preconditions:

1. The user is identified.
2. The user is viewing the projects list page.

Main thread:
1. The user clicks on “create project” link.
2. The system displays the project registration form

(name, description, client, responsible, project
batch’s name, area and budget).

3. The user fills in the form and sends the data.
4. The server processes the data and registers a new

project associated with the client and responsible pro-

58

vided. An hourly price of 32eand an entry date of the
current day are setted. It also creates a project batch
with the name, area and budget given, and associates
it with the project.

5. The server shows the updated projects list.
Extensions:
4.1. Name, client, responsible or project batch data are

invalid
(a) The system displays the project form, but show-

ing a message that explains the error.
(b) Return to step 3.

Use case 35 - See project

See a project’s file to be able to check all its information.

Actor: Identified user
Trigger: An identified user wants to check a project.
Preconditions:

1. The user is identified.
2. The user is viewing the projects list page.

Main thread:
1. The user clicks on “see project” link of a row in the

list.
2. The system display the project file with all the infor-

mation.

Use case 36 - Edit project

Edit project’s information to expand or correct it.

Actor: Identified user
Trigger: An identified user wants to edit a project.
Preconditions:

1. The user is identified.

59

2. The user is viewing the projects list page.
Main thread:

1. The user clicks on “edit project” link of a row in the
list.

2. The system displays the project form (name, descrip-
tion, status, hourly price, client, responsible, entry
date, finish date, project observations, client obser-
vations, and observations for the administrator).

3. The user fills in the form and sends the data.
4. The server processes the data and updates the

project’s data.
5. The server shows the updated projects list.

Extensions:
4.1. Some mandatory information is empty (name, client,

responsible, hourly price, entry date or state)
(a) The system displays the project form, but show-

ing a message that explains the error.
(b) Return to step 3.

4.1. Finish date before than entry date
(a) The system displays the project form, but show-

ing a message that explains the error.
(b) Return to step 3.

Use case 37 - Delete project

Delete a project to delete its information.

Actor: Identified user
Trigger: An identified user wants to delete a project from
the system.
Preconditions:

1. The user is identified.
2. The user is viewing the projects list page.

Main thread:
1. The user clicks on “delete project” link of a row in

the list.

60

2. The server deletes the project.
3. The server shows the updated projects list.

Extensions:
2.1 The project already has associated some expenses,

invoices, or worked hours
(a) The server does not remove the project.
(b) The server shows the updated project list, but

indicating that the project can not be deleted.

61

6.2.3.2 Projects batches

Figure 6.11: Projects batches administration use cases

Use case 38 - Projects batches list

See a list of all projects batches that are assosiated to a
project in order to be able to access all the necessary infor-
mation.

Actor: Identified user
Trigger: An identified user wants to see a list of all
projects batches.
Preconditions:

1. The user is identified.
2. The user is at the project’s file page.

Main thread:
1. The system displays a list with all projects batches

associated to the current project.

Use case 39 - Create project batch

Create a project batch, so its information is in the system
and can be associated with expenses.

Actor: Identified user
Trigger: An identified user wants to register a new project

62

batch.
Preconditions:

1. The user is identified.
2. The user is viewing the project file page.

Main thread:
1. The user clicks on “create project batch” link.
2. The system displays the project batch registration

form (name, area, and budget).
3. The user fills in the form and sends the data.
4. The server processes the data and registers the new

project batch associated to the project.
5. The server shows the updated project file.

Extensions:
4.1. Empty name, area or budget

(a) The system displays the project batch registra-
tion form, but showing a message that explains
the error.

(b) Return to step 3.

Use case 40 - Edit project batch

Edit project batch’s information to correct it.

Actor: Identified user
Trigger: An identified user wants to edit a project batch.
Preconditions:

1. The user is identified.
2. The user is viewing the project file page.

Main thread:
1. The user clicks on “edit project batch” link of a row

in the projects batches list.
2. The system displays the project batch form (name,

area, and budget).
3. The user fills in the form and sends the data.
4. The server processes the data and updates the project

batch’s data.
5. The server shows the updated project file.

63

Extensions:
4.1. Empty name, area or budget

(a) The system displays the project batch registra-
tion form, but showing a message that explains
the error.

(b) Return to step 3.

Use case 41 - Delete project batch

Delete a project batch to delete its information.

Actor: Identified user
Trigger: An identified user wants to delete a project batch
from the system.
Preconditions:

1. The user is identified.
2. The user is viewing the project file page.

Main thread:
1. The user clicks on “delete project batch” link of a row

in the projects batches list.
2. The server deletes the project batch.
3. The server shows the updated project file.

Extensions:
2.1 The project batch already has associated some ex-

pense or worked hour
(a) The server does not remove the project batch.
(b) The server shows the updated project file, but

indicating that the project batch can not be
deleted.

64

6.2.3.3 Expenses

Figure 6.12: Expenses administration expenses

Use case 42 - Expenses list

See a list of all expenses that are assosiated to a project in
order to be able to access all the necessary information.

Actor: Identified user
Trigger: An identified user wants to see a list of all ex-
penses.
Preconditions:

1. The user is identified.
2. The user is at the project’s file page.

Main thread:
1. The system displays a list with all expenses associated

to the current project.

Use case 43 - Create expense

Create an expense, so its information is in the system and
can be associated with a provider and to a project batch.

Actor: Identified user
Trigger: An identified user wants to register a new ex-
pense.

65

Preconditions:
1. The user is identified.
2. The user is viewing the project file page.

Main thread:
1. The user clicks on “create expense” link.
2. The system displays the expense registration form

(project batch, expense type, provider, estimated
budget, real budget, and profit margin).

3. The user fills in the form and sends the data.
4. The server processes the data and registers the new

expense associated to the project batch and provider.
5. The server shows the updated project file.

Extensions:
4.1. Empty project batch, expense type, provider, esti-

mated budget, real budget, or profit margin
(a) The system displays the expense registration

form, but showing a message that explains the
error.

(b) Return to step 3.

Use case 44 - Edit expense

Edit expense’s information to expand or correct it.

Actor: Identified user
Trigger: An identified user wants to edit an expense.
Preconditions:

1. The user is identified.
2. The user is viewing the project file page.

Main thread:
1. The user clicks on “edit expense” link of a row in the

expenses list.
2. The system displays the expense form (project batch,

expense type, provider, estimated budget, real bud-
get, and profit margin).

3. The user fills in the form and sends the data.
4. The server processes the data and updates the ex-

66

pense’s data.
5. The server shows the updated project file.

Extensions:
4.1. Empty project batch, expense type, provider, esti-

mated budget, real budget, or profit margin
(a) The system displays the expense registration

form, but showing a message that explains the
error.

(b) Return to step 3.

Use case 45 - Delete expense

Delete an expense to delete its information.

Actor: Identified user
Trigger: An identified user wants to delete an expense
from the system.
Preconditions:

1. The user is identified.
2. The user is viewing the project file page.

Main thread:
1. The user clicks on “delete expense” link of a row in

the expenses list.
2. The server deletes the expense.
3. The server shows the updated project file.

67

6.2.3.4 Worked hours

Figure 6.13: Worked hours administration use cases

Use case 46 - Worked hours list

See a list of all worked hours for a day and a worker.

Actor: Identified user
Trigger: An identified user wants to see all the worker’s
worked hours list for a day.
Preconditions:

1. The user is identified.
Main thread:

1. The user goes to the worked hours list page.
2. The system shows the list of all worked hours for a

day (current day by default) and a worker (worker
associated to the current user by default).

Extensions:
2.1. The current user ha no worker associated

(a) The system shows an empty list.

Use case 47 - Enter worked hour

Register a worker’s worked hour for a day and a project
batch.

Actor: Identified user
Trigger: An identified user wants to enter a worked hour

68

on behalf of the worker’s associated to him.
Preconditions:

1. The user is identified.
2. The user is viewing the worked hours list page.

Main thread:
1. The system shows a form at the end of the worked

hours list to enter a new hour (day, project batch,
and worked minutes).

2. The user fills in the form and sends the data.
3. The system introduces an hour on the selected date,

for the worker that is associated to the current user,
for the selected project batch and with a total of a
given minutes.

4. The server shows the updated worked hours list.
Extensions:
3.1. Empty date, project batch, or minutes

(a) The system displays the worked hours registra-
tion form, but showing a message that explains
the error.

(b) Return to step 2.
1.1. The current user has worker associated

(a) The system doesn’t show any form to enter
hours.

Use case 48 - Delete worked hour

Delete worker’s worked hour at a day and project.

Actor: Identified user
Trigger: An identified user wants to delete a worked hour
on behalf of the worker associated to himself.
Preconditions:

1. The user is identified.
2. The user is viewing the worked hours list page.

Main thread:
1. The user clicks on “delete worked hour” link of a row

in the list.

69

2. The server deletes the worked hour.
3. The server shows the updated worked hours list.

70

6.2.4 Invoicing:

Figure 6.14: Invoices administration use cases

Use case 49 - Invoices list

See a list of all invoices that are associated to some project
to check all the necessary information.

Actor: Identified user
Trigger: An identified user wants to see the list of invoices
of some project.
Preconditions:

1. The user is identified.
2. The user is viewing the projects list page.

Main thread:
1. The system shows the project’s invoices list.

Use case 50 - Request invoice

Register an invoice so it information is in the system.

Trigger: An identified user wants to register a new invoice

71

for a project.
Preconditions:

1. The user is identified.
2. The user is viewing a projects file page.

Main thread:
1. The user clicks on “create invoice” link.
2. The system displays the invoice registration form

(date and amount by project batch).
3. The user fills in the form and sends the data.
4. The server processes the data and registers the new

invoice associated with the project and with the same
client that already has this project. The invoice will
have the status of requested and IVA and IRPF setted
with the default values. It will also create an invoice
number following the annual seriee.

5. The server displays the updated project file.
Extensions:
4.1. The date or some project batch’s amoutn are empty

(a) The system displays the project form, but show-
ing a message that explains the error.

(b) Return to step 3.

Use case 51 - Edit invoice

Edit an invoice to expand or correct its information.

Actor: Identified user
Trigger: An identified user wants to review a project’s
invoice to send it to the customer or modify it.
Preconditions:

1. The user is identified.
2. The user is viewing a projects file page.

Main thread:
1. The user clicks on “edit invoice” link in a row from

the list of invoices.
2. The system displays the invoice form (date, IVA,

72

IRPF, client, amount by project batch, and state).
3. The user fills in the form and sends the data.
4. The server processes the data and updates the invoice

information.
5. The server displays the updated project file.

Extensions:
4.1. Date, IVA, IRPF, client, or some project batch are

empty.
(a) The system displays the project form, but show-

ing a message that explains the error.
(b) Return to step 3.

5.1. Year of the date changed.
(a) The system will generate a new invoice number

following the series of the new year.
(b) Return to step 6.

Use case 52 - Delete invoice

Delete an invoice in order to eliminate its information from
the system.

Actor: Identified user
Trigger: An identified user wants to delete a project’s
invoice.
Preconditions:

1. The user is identified.
2. The user is viewing a projects file page.

Main thread:
1. The user clicks on “delete invoice” link in a row from

the list of invoices..
2. The system deletes the invoice.
3. The server displays the updated project file.

Extensions:
2.1. The invoice is at accepted, paid, or rectified status

(a) The system does not eliminate the invoice.
(b) The server shows the project file showing a mes-

sage that explains the error.

73

Use case 53 - Rectify invoice

Rectify an invoice in order to correct it once it has been
already sent to Finance Ministry (and can not be edited).

Actor: Identified user
Trigger: An identified user wants to rectify a project’s
invoice.
Preconditions:

1. The user is identified.
2. The user is viewing a projects file page.

Main thread:
1. The user clicks on “rectify invoice” link in a row from

the list of invoices.
2. The system marks the invoice as a rectified.
3. The system creates an identical invoice to the origi-

nal. This new invoice has another number that will
follow the parallel series for the rectified invoices.

4. The server displays the updated project file.
Extensions:
2.1. Invoice is not sent or paid.

(a) The system does not rectify the invoice.
(b) The server shows the project file showing a mes-

sage that explains the error.

Use case 54 - Print invoice

Print an invoice to send it to the customer.

Actor: Identified user
Trigger: An identified user wants to print a project’s in-
voice.
Preconditions:

1. The user is identified.
2. The user is viewing a projects file page.

Main thread:

74

1. The user clicks on “print invoice” link in a row from
the list of invoices.

2. The system displays a window with all the invoice
information prepared to be printed.

3. The user selects the browser option to print the page.

75

6.3 Conceptual model

Conceptual models describe the data structures and restrictions
that a system has. Using a conceptual model we can see which
elements are involved in the system and the relationships between
them.

The general conceptual model for the new Intranet will be shown
below with its textual restrictions. A more detailed description
of each part of the model will also be made to clarify all relation-
ships.

76

6.3.1 Conceptual scheme

Figure 6.15: Conceptual scheme

77

6.3.2 Integrity constraints

1. The dataEntrada of a Feina must be prior to dataSortida.

2. The concepte of a Factura is an string made up of numero
and nom of the Feina, plus the sum of the quantitats of the
DistribucionsImports.

3. For each Factura there are as many DistribucionsIm-
ports as Partides in the corresponding Feina.

4. The total of a Factura is the aggregate of quantitats of the
DistribucionsImports.

5. The total of a Feina is the aggregate of pressuposts of related
Partides.

78

6.3.3 Description

As we can see, in the system,
the Usuaris and Treballadors
are separated. In general each
Usuari will have an associated
Treballador, but this is not
a must. Easily we can see a
Usuari without an associated
Treballador, so this user will
not be able to enter worked
hours. Also, we can found a sit-
uation where a Treballador is
not associated to any Usuari,
this means that no more worked
hours can be registered for this
worker (for example, because he
no longer works in the com-
pany). In addition, in the fu-
ture it is expected that there will
be different Users roles, and in
particular there will be the roles
of administrator and partner,
who can enter worked hours for
any worker, even if the partners
will only have associated one
Worker and the chief adminis-
trator none (because, maybe it’s
an external accountant).

79

In the next scheme part we can
see the most important figure
with its most direct relation-
ships. This is Feina, which will
have an assigned Treballador
as a responsible. At the same
time each project is done for a
Client, and a Feina is organized
in one or more Partides. You
can also see that each Partides
is related to a company’s Area.
This will be useful in the future
to extract reports.

Another relationship with the
Feines is Despeses. These are
not directly related to Feines,
but are associated with Par-
tides of a Feina. So the Par-
tides’s expenses can be con-
sulted, and therefore the Areas
also can be consulted. As you
can see, Despesas are paid to a
Provëıdor, and has an associ-
ated TipusDespesa.

80

Another important structure in
the system are the Factures.
As you can see, Factures are
composed of one or more Dis-
tribucióImport. Since Distri-
butionsImports are related to
Partides, we can know which
percentage of the Factura’s to-
tal amount correspond to every
Partida. So, ultimately, you
can know the billing for each
Àrea.

Finally, given a Feina’s Partida
and a Treballador, the time
spent on Feina can be registered
for that Treballador on a spe-
cific day. As you see, in one day,
for the same Treballador and
Partida more than one Hora
can be entered.

81

7. Design

7.1 Physical architecture

In the context of this Intranet, the typical physical client-server
web architecture will be used.

As you can see, a client (a web browser of a computer) makes
a request for a specific page of the Intranet to the server, and
the server responds to the request. The answer is an HTML web
page with the needed CSS and Javascript.

It can also be observed that the server has an API, in particular
a REST API. This is due to the fact that there are certain in-
tranet interfaces that are more dynamic and therefore have been
created with a Javascript framework named ReactJs. So, in these
cases, the client in the first request downloads the HTML, CSS
and Javascript (as mentioned before), but in the pages where a
React component is executed, it makes subsequent asynchronous
requests through the API to get and send data to the server. The
data for these requests are sent in JSON format.

Thanks to the logical architecture that has been used (explained
in the next section), it is very easy to maintain both types of
requests (normal and API).

82

7.2 Logical architecture

This section will be explained how different system’s components
are organized and how interact with each other in order to achieve
the desired operations. There are many forms of organization,
and these make up the different known architectures. These ar-
chitectures can range from a classic, like 3 layers architecture,
to more evolved concepts such as Hexagonal architecture. We
could think that they are totally different concepts, but in gen-
eral, all the architectures share many things, such as the division
and grouping of the different components of the system in layers.
What varies between each architecture is exactly where these divi-
sions are found and how many are. There are also “rules” about
how components must communicate with each other that vary
between architectures. Therefore we can define an architecture
as a set of rules that define how to separate and organize in lay-
ers the different components of the system and how to perform
communication between these elements and layers.

Next is the explanation of what these rules are in a Clean ar-
chitecture. We will see that many of this rules come from other
previous architectures, and the fact that what Clean architecture
does is to keep and combine the “best” rules of the previous ar-
chitectures and emphasize some rules of communication between
components that in other architectures did not take such impor-
tance.

7.2.1 Clean architecture

7.2.1.1 Basic rules

Before explaining how a Clean architecture works, it is necessary
to explain some basic rules or principles with which this architec-
ture is based.

First of all, the SOLID principles must be explained. SOLID
is an acronym, introduced by the same author (Robert C. Mar-

83

tin), which groups 5 basic object-oriented programming princi-
ples. The purpose of this is that developers use these 5 principles
as much as possible in order to achieve better software designs.
They are very widespread in development environments with ag-
ile methodologies and with practices such as TDD.
In a very brief way, the 5 SOLID principles are the following:

• Single responsability principle.
That says that an object should only have one responsibility.

• Open/closed principle.
The concept that software entities (classes) must be opened
to (allow) their extension, but must be closed to modifica-
tion.

• Liskov substitution principle.
This principle says that objects of a program would be able
to be replaced by instances of subtypes of these without
altering the correct operation of the program.

• Interface segregation principle.
The idea that many specific client interfaces are better than
one generic interface.

• Dependency inversion principle.
Which says software entities must depend on abstractions
rather than implementations.

As has been said, all principles are important, but Open/Close
principle is often considered the most important. If we analyze
what this principle says, we will see that it seeks to be able to
expand a software without having to modify what has already
been done. If this objective is fulfilled, then it facilitates working
with agile methodologies, where products are created incremen-
tally. Therefore, we can also see the rest of the principles as a
way to facilitate the Open/Close principle.

In order to explain Clean architecture, it is also necessary to em-
phasize Dependency inversion principle, since it plays a key
role in this. One way to achieve this principle is by applying a
dependency injection pattern.

84

Basically what defines this pattern is that a class can not “instan-
tiate” its dependencies, these must be passed from the outside
(inject). This injection can be done in many ways, depending on
the characteristics of the programming language, tools, or frame-
works that are used, but the two most basic forms are through
class constructors methods or as a call parameter.

Apart from the SOLID principles, another rule that must be ex-
plained before entering to define a Clean architecture, is the law
of dependency. As mentioned above, a software system has a
series of layers with which system objects are organized, and each
architecture defines which layers are to be created and where the
borders of these layers are. But in the case of Clean architecture,
it is also very explicitly defined which dependencies there can be
between these layers. As will be seen later, Clean architecture
defines a series of concentric layers, where, in the center, there
are the most “important” objects, and in the outside, there are
the “details”. And it is defined that the dependencies between
objects of other layers always have to go inwards. Therefore,
and as an example, no object in the central layer can know any-
thing external to its layer. This is where Dependency inversion
principle comes into play, as it will allow us to enforce this law.

85

7.2.1.2 Interactors, Entities, and Boundaries

As explained in the State of the art section, before talking about
Clean Architecture, Robert C. Martin wrote about the concept of
Screaming Architecture.

The most basic and summarized idea that the author wants to
convey with this concept is the fact that a person should be able
to know what an application does by looking at folder and files
names. In contrast, today if you look at the folders and files
names you will, generally, know which programming language is
used, which type of application (web, mobile, desktop), which
tools are used to develop it (IDEs and / or frameworks), and
you can even detect design patterns and architectures easily, but
you will not know the most important think; What does this
application do?

That’s why Robert C. Martin talks about the Interactors.

In a Clean architecture, the Interactors are a central element.
Basically, they are objects that “encode” the business logics de-
scribed in the use cases. Also we can say that the Interacors
contain business logics specific to the application.
Therefore, if we look at the Interactors names, such as GetUser-
sListInteractor, CreateUserInteractor, etc., we can have a quick
idea of what this application does.

As mentioned previously, in a Clean architecture, business logics
specific to the application are in the Interactors. In general these
refer to the interactions between users and the system, but not
to more generic or high-level business logics.

In a Clean architecture, these more generic business logics are in
Entities.

86

These Entities are objects that contain generic business logics,
and are the most central part of the architecture, which makes
any Entity to know nothing about the outside of this layer.
Therefore, the Interactors will be in charge of using and coordi-
nating the different Entities to achieve their objectives.

With these two artifacts (Interactors and Entities) we have lo-
cated all the business logics of our system, and we have managed
to locate it in a very specific way and isolate it so that it is as
easy as possible to work with it.

Once we have these two layers we need to be able the Interactors
to communicate with the rest of the system. One problem we
have here is that, for the dependency law, the Interactors can not
know anything about the rest of the system that is “outside”, so,
they only have knowledge of other Interactors and of Entities.
Therefore, in order to get this communication, the Boundaries
come into play.

87

Here is where we use the Dependency inversion principle.
The Boundaries will be interfaces declared in a layer (Interactors
layer) and implemented in another (external layers), thus a com-
munication is achieved between the external and internal layers,
and at the same time the Internal layers do not have any outward
dependency, which creates the effect of plugin; the outer layer be-
comes a plugin for the internal layer, and is easily interchangeable
with another.

In the case of the Interactors, in the previous figure, you can see
that a first interface, defined by the Interactor and implemented
by some object of the external layers, will be used as a way to
communicate from the outside toward the inside. And a second
interface, defined in an outer layer and implemented by the In-
teractor, will be used as a communication channel from inside
out.

88

7.2.1.3 Delivery mechanism

With all the architecture explained until now we have two layers
where all the business logic of the system are located and a way
of communicating with them. There are a par of any application
that will be communicated with these layers, and this part is what
Robert C. Martin calls delivery mechanism.

The delivery mechanism can be any, a website, a mobile applica-
tion, or even a command line, and this should be a detail in our
application, since it will surely be one of the parts that change
the most over time. This is where we will surely find the typical
patterns of MVC or MVP (Model View Controller or Presenter).

A possible implementation of this delivery mechanism could be
the following:

89

As we can see, we would have a Controller that would be in
charge of receiving a user request, creating a Request Model
(which would be a simple data collection) and sending it to the
Interactor through the Boundary. The Interactor when receiving
the Request Model would read it and execute its business logics
along with those of the Entities to end up generating a Response
Model that would be sent to a Presenter through the Bound-
aries again. And finally, the Presenter would be in charge of
showing the final result to the user in the corresponding format.

90

7.2.1.4 Persistence mechanism

Another very common part is the persistence mechanism. This is
the way in which data is saved, so that they are always accessible,
usually in a Database. This part may be one of the main features
of this architecture, as opposed to other more classic ones, where
the Database plays a more central and important role. On the
other hand, in a Clean architecture, the persistence mechanism
becomes an implementation detail that can be easily interchange-
able with another.

The way to achieve this is very similar to the delivery mechanism;
basically reusing the dependence law, the dependency inversion
principle, and the dependencies injection pattern, we get the fol-
lowing scheme:

As you can see, the Interactor will again get a Boundary injected
(which in this case has been called Entity Gateway), which
is just an interface, whose implementation is in the persistence
mechanism layer. The object Entity Gateway Implementa-
tion will be in charge of accessing the data to generate or save
the Entities required for the Interactors. It is clear that there
will surely be more than one interface and implementation for

91

each type of Entities, and here is where some data access pattern
(Active Record, DAO, etc) will surely be implemented.

92

7.2.1.5 Summary

With all these parts explained so far, we could say that we have
a basic architecture to be able to develop a software system.

Figure 7.1: Basic class diagram of a Clean architecture

Seeing the previous diagram it is easy to detect 4 layers in the
architecture. Starting with the layer that we could say Domain
which contains the Entities, then we would have the Interactors
with the Boundaries, and then at the same level the layers about
presentation and persistence.

Seeing the previous diagram it is easy to detect 4 layers in the
architecture. Starting with the layer that we could say Domain,
which contains the Entities. Then we would have the Interactors
with Boundaries. And last, at the same level, the presentation
and persistence layers.
It is necessary to say that there is no obligation to have these
exact same layers always, depending on the requirements of the
system, there may be fewer layers (for example we do not want
persistence), or have more (in mobile applications we can have

93

more layers for different device services (GPS, gyroscope, etc.).

It is also common to find the following image as a summary of a
clean architecture:

Figure 7.2: Summary diagram of Clean architecture most important
parts

As you can see, although the previous image explains the same ar-
chitecture and also 4 layers are defined, these do not quite match
the previous layers explained.

In this case, two inner layers that match the previous ones (En-
tities and Use Cases, which are the Interactors) are defined, but
then is shown a layer with all the implementations of the different
Boundaries that can be included in the system, and to finish, a
fourth layer where we would find all the most specific implemen-
tations of the system (DB, UI, etc).

94

You can also see that the Law of dependence is shown and an
example about how to “cross” boundaries between layers without
breaking this law.

95

8. Implementation
In the Design section we have explained how the different el-
ements of a clean architecture are organized in the theoretical
field, but it is obvious that when creating a concrete implemen-
tation, the final architecture will not be equal to the theoretical.
Additionally, by using agile methodologies in this project, we not
start the implementation with a final design completely defined,
but the product has been built iteration by iteration and still it
can not be considered completely finished.

In general terms, the implemented architecture so far is the fol-
lowing:

Figure 8.1: Diagram of the implementation of a PHP Clean archi-
tecture

Observing the direction of the dependency arrows you can visu-
alize which are the concentric layers and which the external ones.

To begin with, you can see that from the Entities layer there is no
out arrow, and all are inward. Therefore it means that this layer
is the most central of all (as it should be). And if we continue to

96

analyze the diagram this way, it is easily seen that the next layer
is the UseCases’ layer, followed by the Services and Presentation
layers, that are at the same level. Finally, the most external layer
is about Infrastructure.

Following are the different layers that make up the architecture,
and possible improvements to be made in the future.

8.1 Layers

8.1.1 Entities and UsesCases

These two layers, as Clean architecture says, theoretically contain
all the objects that encode all business logic. The UseCases layer
(Interactors in the theoretical explanation) has a sublayer with
the Boundaries (Interfaces) needed for the data stream.
As you can see, these layers have been grouped into a larger Core
layer, simply to make it more explicit that these layers make up
the core of the Intranet.

8.1.2 Services

Following we see that next to Core we find the layer of Services,
which basically contains all the necessary implementations for
the interfaces of the UseCases’ layer. At the same time, this
layer also declares a series of Interfaces to try to “outsource”
even more implementation details such as the specific connection
to the database, or access to the server session system.

8.1.3 Presentation

Also around the Core layer we find the Presentation layer. In
this layer we can see that we have objects like Controllers,
Parsers and Presenters, which basically are implementing a

97

MVPC (Model View Presenter & Controller) pattern. You can
also see that in Presenters layer some Interfaces are defined, which
will basically be necessary for Presenters to use some type of
HTML rendering engine without depending on it.

8.1.4 Infrastructure

Finally, the most external layer is Infrastructure. In this layer
we find the concrete implementations of the most external details.
This is where we will use frameworks and external and internal
PHP libraries.

In particular, there is an implementation to connect to the database
using the PDO library owned by PHP. In this sense, there is also
an implementation to read and write files on disk that was used as
a database during the first iterations, and subsequently stopped
using it to begin using the implementation that connected to the
database without having to touch anything in the Core.
Also, we can find an implementation of a SessionManager that
uses the same PHP variables of $SESSION.

There are also all the necessary implementations for the Presen-
ter layer, this is an implementation of an HTML rendering engine
using the Twig library and the Symfony framework Form com-
ponent.

Here we also find the entry point of the web service, but it’s iso-
lated in a kind of “HTTP API” where we use the Silex framework
to simplify the code. This component basically is responsible for
reading HTTP requests from the server, and redirecting it to the
corresponding Controller. And when it receive a response from
the Controller, it generates an HTTP response that returns to
the client.

Inside this layer, in particular along with the rendering engine,
you find the SASS and Javascript code to generate the CSS styles
of the pages and all the Javascript code necessary to dynamize
the Intranet, including the components made with the ReactJS
framework.

98

8.2 Testing

As discussed in the Validation Methods section, part of the tests
are done manually during the demonstrations at the follow-up
meetings and on the day-to-day development. But another very
important part is the automatic tests that help to give robustness
to the system and ensure that the modifications that are made
do not introduce any errors.

To perform these automatic tests, a whole Test Suite1 has been
created for unit and integration tests. Thanks to the implemented
architecture it has been very easy to create these tests, since the
level of coupling between the different elements of the system is
very clear it is very easy to create tests where all the dependencies
of the tested element are replaced for some type of TestDouble2.
At a more practical level, in the project we can find a test folder,
where the whole class structure is replicated but with the tests
(apart from some extra helper classes to perform the tests).

As we have said, unit tests have been created for the entire sys-
tem, excepting at some outer layers. Until now there are 468
unit tests created that performs 844 assertions to validate all the
integrity of the system.

1Test Suite: https://en.wikipedia.org/wiki/Test_suite
2TestDouble: https://martinfowler.com/bliki/TestDouble.html

99

https://en.wikipedia.org/wiki/Test_suite
https://martinfowler.com/bliki/TestDouble.html

Figure 8.2: Unit tests execution

Integration tests have also been created between the services and
infrastructure layers. In total there are 99 tests with 128 asser-
tions that validate all transactions with the database.

Figure 8.3: Integration tests execution

As seen, the execution of unit tests is much faster (2.23 seconds)
than integration tests (7.11 seconds), although the number of unit
tests is almost 5 times higher than those of integration. Since we
have been using the TDD technique for all development, it is im-
portant to have this in mind, since if the execution of the tests
is too long, it makes it unfeasible to use this technique correctly.

100

That’s why we created a script that allows you to execute unit
or integration tests separately. Thus the unit tests are executed
many times, but those of integration only when touching some-
thing related to the database. Also, to try to increase the speed
of development, the IDE has been configured to be able to ex-
ecute the tests and check the results quickly and without going
through the console.

As you can see, the amount of tests there is quite high, and these
will not stop increasing in parallel with the application. That is
why it is very important to organize the tests so that it is easy to
maintain them, and to interpret them quickly when one fails. The
fact of having a test structure that is a replica of the application
structure itself greatly facilitates finding the test files when they
are searched.

Also, when writing the tests, a nomenclature has always been
followed to facilitate its interpretation. In general, in all sys-
tems, the tests follow the same pattern; First, the element and
its environment are configured to control the initial state, then
the behaviour it is tried to test is executed, and finally it is val-
idated that the result is correct. This pattern could be called
Given, When, Then. That’s why the name of all the tests indi-
cates Given, When, Then of the test in particular, and internally
in the tests you can see very well the separation in the code of
these three areas. As you can see in the following image, as a
result of applying this nomenclature makes it very easy to know
what each test is doing only by reading the name:

101

Figure 8.4: Test nomenclature example

Lastly, as noted in the Validation Methods section, it has been
working using Git in a way that has allowed to create Pull Re-
quests for each implemented feature. And the central repository
server (GitHub) was configured to use TravisCI service to run the
entire test suite on each Pull Request. This gives us confidence
than when integrating the necessary modifications to implement
a new feature, it does not have any error, and we can also be sure
that none of the existing features are affected.

102

8.3 Architecture improvements

The first major improvement refers to objects that depend on
Entities. In the theoretical model, the UseCases and the Entities
Gateways were the only ones that depended on Entities. More
specifically, the entire presentation layer (Controllers and Presen-
ters) did not have any knowledge of the Entities. In the case of
the implementation shown, you can see how certain elements of
the presentation layer (Controllers and Parsers) are dependent
on the Entities. In theoretical architecture, to avoid this, always
use Request and Response Models between the presentation layer
and the UseCases. Since, initially, the Entities of the system were
quite simple, the fact to use these models for the data flow be-
tween presentation and UseCases meant creating many identical
classes, and therefore a lot of code repetition. Because we are not
breaking the law of dependencies at any time we assessed that un-
til it was not necessary we would leave it this way to maintain
simplicity. But perhaps it is time to make this change, since the
Entities are beginning to grow.

The last possible major improvement is also between the presen-
tation layer and the UseCases. Basically, it can be seen that the
Controllers depend directly on the UseCases, instead of using the
Boundaries. Initially, this has also been done to simplify the ar-
chitecture, since the UseCases initially were very simple. Like
before, maybe now is time to make this change.

8.4 Used technologies

Nowadays there are many programming languages to program
web services. From Java to Swift, and through many others.

However, in this project PHP has been chosen, since it is one of
the most widespread languages in the web world, and has existed
for many years. Although it is a scripting language3 and in its

3Scripting language: https://en.wikipedia.org/wiki/Scripting_language

103

https://en.wikipedia.org/wiki/Scripting_language

beginnings it did not have features to do OOP, with the latest
versions have been added many features that allow OOP.

Silex4 framework is used to streamline some parts of the PHP
code. Silex is a micro-framework based on another larger frame-
work that is Symfony5, so, other Symfony’s components are also
used in some parts of the project, such as the Twig compo-
nent6 as a template engine for PHP. In order to manage all
these dependencies that have the PHP code the Composer7 man-
ager is used, which facilitates the import of the necessary li-
braries/frameworks.

For the presentation part, being a website, HTML, CSS, and
Javascript are used. In order to improve CSS code and make it
more readable and maintainable, SASS8 framework is used. Reac-
tJS9 framework is used to create the most complex and dinamyc
interfaces. As in the PHP part, to manage all the dependencies of
this part the Yarn10 dependency manager will be used. Brunch11

is also used as a build tool, which basically takes all the CSS
and Javascript code and dependencies, prepares it, joins it, and
minimizes in order to reduce the final size of the files.

In order to develop all of this, Vagrant12 is used to create and
share a virtual machine with all the necessary configuration to
use it as a development environment.

To deploy the app, both in a test and production environments, a
server is used. In this server has been installed a Dokku13 service.
Dokku basically allows us to deploy the version we want in the
environment we want by making a simple git push on the server.

4Silex: https://silex.symfony.com/
5Symfony: https://symfony.com/
6Twig: https://twig.symfony.com/
7Composer: https://getcomposer.org/
8SASS: http://sass-lang.com/
9ReactJS: https://facebook.github.io/react/

10Yarn: https://yarnpkg.com
11Brunch: http://brunch.io/
12Vagrant: https://www.vagrantup.com/
13Dokku: http://dokku.viewdocs.io/dokku/

104

https://silex.symfony.com/
https://symfony.com/
https://twig.symfony.com/
https://getcomposer.org/
http://sass-lang.com/
https://facebook.github.io/react/
https://yarnpkg.com
http://brunch.io/
https://www.vagrantup.com/
http://dokku.viewdocs.io/dokku/

9. Resources
We can divide the necessary resources to realize this project in
three categories; human, material and software.

9.1 Human Resources

In this project, mainly 4 people will participate:

• Main developer: this will be me, with a weekly dedication
of 25 hours.

• Support Developer: This will be Asier, with a dedication
of 4-5 hours per week. His dedication may vary greatly dur-
ing the project depending on factors such as other company
projects (which will reduce hours to this project) or the need
to spend more hours on deviations in planning.

• Comissió Intranet: formed by two partners of l’Apòstrof
(Gemma and Mart́ı) who will perform the role of Product
Owner of the project. Their dedication will be between 1
and 2 hours a week to make the necessary follow-up and
planning meetings.

9.2 Material resources

• Work places: where the project will be carried out, mainly
in l’Apòstrof office. This includes tables, chairs, meeting
rooms, electricity, etc.

• Computer equipment for development: the computers
that we will use Asier and I to develop the project, and my
personal computer to carry out the project’s memory.

• Production server: where the intranet will be uploaded
once it is finished.

105

9.3 Software resources

• Development environment: editor or IDE that each de-
veloper will use. Usually will be the Atom, Sublime Text, or
PHPStorm editors.

• Vagrant: to create a virtual and distributed work to be
able that all developers work under the same conditions.

• Composer: PHP dependency manager.

• PHPUnit: library to perform unit tests for the verification
of the source code.

• Codeception: library to perform the integration tests for
the verification of the system.

• Git: code version control system, to manage the source code
of the project.

• Github: online Git repository server.

• Trello: for project management and iterations.

• Google Drive: to store all the documentation of the project
and to be able to share documents.

106

10. Planning
It should be taken into account that in this project a methodology
very similar to Scrum will be used. Therefore the planning will be
created creating a list of user stories that will be as independent
as possible between them. This is done in order to be able to
modify the order at any time if the Product owner decides it and
also to be able to work on them in parallel.

Therefore this initial temporary plannification can be modified
if the Product Owner decides at some time to modify the orders
described herein. Even so, the final result should be the same.

It should also be taken into account that when using the TDD
work methodology, each user history already has the necessary
time to carry out the associated tests. And that all the tasks
associated with GEP and the creation of the project’s memory
will be done by myself outside my 25 hours a week of work in
””l’Apòstrof””.

10.1 Calendar

The project lasts 7 months, beginning on February 1 and with
a deadline of September 1. Although the defense of the project
will be around October, it has been decided to set the data limit
in early September to have a margin for possible deviations and
to prepare the defense of the project.

10.2 Initial planning

In every project initially a first planning must be done, where it is
necessary to analyze the requirements of these, their objectives,
and to make estimates of time and costs. Much of this will be
done at GEP.

107

Also, with Scrum methodology an initial Backlog must also be
defined. This Backlog is basically a list, sorted by priority, with
all the user stories required for the project. Also, in these user
stories, a score that is used to estimate the effort to implement
them is assigned. This part will be done within the 25 hours of
weekly work in ””l’Apòstrof””, it will be done with Asier, and
will be reviewed with Comissió Intranet.

10.3 Project iterations

We will have two weeks iterations. A meeting will be done at the
beginning of each iteration in order to decide which user stories
will be implemented. At the end of the iterations, there will also
be a meeting with the Intranet Commission to show the work
done and receive feedback.

10.3.1 Iteration 0

In this project an implementation of a Clean architecture must
be done with PHP, and this is not the typical architecture that
has been seen during the university path. For this reason, in
this project we will do an iteration 0 (longer than normal) where
a basic user history (user login) will be developed in order to
study how to carry out the implementation of the architecture.
Obviously in the following iterations, the architecture must be
outlined, but in this first iterations I will dedicate more time.

10.3.2 Iteration 1

In this iteration, all the functionalities related to the basic man-
agement of the projects will be created. Register, edit, delete and
list. We refer to basic management since only the basic data of a
project will be managed. Everything related to hours, expenses,
invoices will be made later.

108

10.3.3 Iteration 2

In this second iteration, the concept of project batches will be
added. The project file will be modified to be able to list, edit,
create and delete project batches.

10.3.4 Iteration 3

Then the features to manage the worked hours (listing, insertion
and deletion) will be implemented. Specifically, a list of worked
hours per day and worker will be created with a form to be able
to introduce more hours into the system.

10.3.5 Iteration 4

In the fourth iteration, the expenses will be added to the project
file. In particular, a list of all expenses that a project can have
and a form to create new ones will be shown. You can also edit
and delete the existing ones.

10.3.6 Iteration 5

Although users already exist in the system, in this iteration fea-
tures to be able to manage them will be created; user list, regis-
tration form and editing, and feature to delete users.

10.3.7 Iteration 6

In the same way that with the users, despite the existence of
the concept of worker in the system, all the necessary features
to manage them will be created in this iteration; list of workers,
forms of registration and editing, and deletion.

109

10.3.8 Iteration 7

In this seventh iteration, we will continue to add features to man-
age “system entities”. Therefore all the necessary functionalities
to manage the areas of the company will be created; list, regis-
tration forms and edition, and deletion.

10.3.9 Iteration 8

In this case, all the necessary functionalities to manage the types
of expenses will be created; list, registration forms and edition,
and deletion.

10.3.10 Iteration 9

In this iteration, the features concerning to management of clients
will be created; list, registration forms and edition, and deletion.

10.3.11 Iteration 10

In iteration number 10, features about the management of providers
will be created; list, registration forms and edition, and deletion.

10.3.12 Iteration 11

In this iteration we will begin to develop functionalities regarding
to the invoices. In particular, a list of invoices will be added to
the project file, and a form for a quick invoice registration will be
created (which will create a new invoice with a requested state).
The invoice file will also be created, so all invoices parameters
can be edited.

110

10.3.13 Iteration 12

In this iteration we will carry out the rest of features related to the
invoicing. In particular, an invoice printing view will be created,
and the functionalities of rectifying and deleting an invoice will
be implemented. The user page will also be modified to be able
to manage which worker is associated with each user.

10.3.14 Iteration 13

Finally, we will create the functionality to be able to delete a
project, and the logout feature will also be implemented.

10.4 Finalization

When all the iterations are finished, the intranet must be de-
ployed to production. The project’s memory and the necessary
documentation will also be made.

111

10.5 Gantt

112

Figure 10.1: Gantt diagram

113

11. Alternatives and action
plan
It is very likely that, like every project, there appear factors that
do not allow to carry out the planning previously explained. Gen-
erally, these factors are due to a bad estimation of the efforts
necessary to implement the different functionalities of the sys-
tem. There may also be unexpected events that delay the project
so that we can not dedicate the planned hours.

11.1 Bad planning

In the case that more hours than planned are required, extra
hours will be attempted to recover this time. But if it is not
enough, or we can not do these extra hours, then it will be neces-
sary to re-prioritize the Backlog in a meeting with the Comissió
Intranet to try to rule out tasks that can be carried out in the
future and stay with the really important and indispensable ones.

11.2 Unforeseen events

It may also be that in ”l’Apòstrof” arises the need that I dedicate
more hours than those planned to other projects. In this case, we
will try to do the same as in the previous section. First, we will
try to replace this lack of hours by doing extra hours, and in the
case that it can not be done, then we will reprioritize the Backlog
to try to rule out features that are not trivial and can be done
later.

114

12. Deviations
As has been said, at the beginning of the project many user stories
were considered, they were prioritized and a cost estimation was
made. Later, they were distributed in iterations to try to foresee
when the project would finish. After a few months of carrying out
the project we had a few deviations regarding the initial planning.

These deviations have been mainly due to the following reasons:

• Bad planning
The necessary time tto implement the clean architecture was
not anticipated. Due to the lack documentation of this ar-
chitecture, and especially in PHP, we have taken more than
expected to find a way we feel comfortable to program all
parts of the system.

• Resources modifications
During the project, we were not able to dedicate all the
hours that were planned, since we had to carry out other
company’s projects. In particular, Asier (one of the two
developers) has almost failed to do anything about the In-
tranet, nor do Code Reviews. Until reaching the point where
Asier left the company, and so, now there is only one devel-
oper to complete the project.

• Changes in technologies
Initially, it was not anticipated that we would use the Re-
actJS framework, but after a month of work, we decided to
use this tool to improve the most complex interfaces. After
seeing what we took to get acquainted with ReactJS and be
able to implement some ”final thing”, it is obvious that we
made a mistake when deciding to introduce this technology,
as it has caused us a lot of delay and perhaps we could have
done it with some simpler alternative.

115

12.1 Modifications

The main consequence of deviations has been the need for extra
hours on my part to try to implement the maximum possible
functionalities for the completion of this project.

On the other hand, and as planned, in case to have problems for
any reason to arrive in time to implement all the functionalities of
the Intranet, it has been re-prioritized the Backlog with Comissió
Intranet to try to discard tasks that can be carried out later and
stay with the really important and indispensable ones.

Therefore unnecessary features have been left out, such as session
finishing and deletion of some entities that in practice are almost
never deleted (clients, suppliers, projects, etc).

12.1.1 Validation methods

As initially said, the TDD methodology has been used when pro-
gramming, in order to ensure that everything is correctly tested
with unit and integration tests. It was also said that would be
Code Reviews between the two developers of the project, but
since one of the developers has almost not participated in the
project, these have not been done at all. As an alternative, I’ve
continued to create Pull Request to integrate the changes in each
user history implemented, but the code has been reviewed only
by myself. A continuous integration server has also been config-
ured in order to ensure that any accepted Pull Request will not
integrate errors in the system.

116

13. Budget

13.1 Identification of costs

As in most software projects, this project has 3 types of costs;
human resources, hardware and software.

However, since all the software necessary for the development
of this project is free, it will not be necessary to do the cost
calculation of the software section.

13.2 Cost estimates

13.2.1 Human resources

As mentioned above, this project will be developed mainly by one
person (I, Ferran Martin), although he will have the occasional
help of a second developer (Asier Illarramendi). Also, the people
who make up the Comissió Intranet (Product Owner) will partic-
ipate. These will be Gemma Casamajó (who is also the director
of the project) and Mart́ı Lázaro.

Because this project is developed in a company, we will summa-
rize the hours worked and what price they have in order to make
costs calculations of human resources.

In order to be able to make a good costs estimation, the project
has been divided into 4 phases; Initial planning, iteration 0, set
of iterations, and final phase.

Asier and I participate in the initial planning phase, and this
phase lasts for 8 days. In this phase I work 5 hours a day, and
Asier collaborates in the last part with a total of 8 hours.

117

Budget
Initial Planning Hours e/hour Total price
Ferran 40 32 1.280e
Asier 8 32 256e
Total 1.536e

Table 13.1: Initial Planning Budget

From this phase my dedication to the intranet will be of 20 hours
per week. In the meantime, Asier will dedicate 5 hours a week.

The iteration 0 has been counted aside, since I will work alone,
and there are no hours of coordination.

Budget
Iteration 0 Hours e/hour Total price
Ferran 40 32 1.280e

Table 13.2: Iteration 0 budget

Once the iteration 0 is finished, the set of iterations starts, with
a total of 13. Coordination and development hours are considered
per each iteration.

Coordinating hours include Marti, Gemma, and I. In total there
will be 2 coordination hours per iteration.

Asier and I participate in the development hours, and in total
there are 48 development hours per iteration.

Budget
Set of iterations Coord. hours Dev. hours e/hour Total price
Ferran 2 38 32 1.280e
Asier 0 10 32 320e
Mart́ı 2 0 32 64e
Gemma 2 0 32 64e
Total 1.728e

Table 13.3: Set of iterations budget

So, the total set of iterations cost will be 1.728e * 13 itera-
tions = 22.464e.

118

In the final phase I will participate alone, and I will dedicate 4
days to do it. In this last phase, I will dedicate 5 hours a day.

Budget
Final phase Hours e/hour Total price
Ferran 20 32 640e

Table 13.4: Final phase budget

As can be seen, the total hours were based on the estimates made
in the planning section and included the hours of meetings and
coordination by Comissió Intranet. Therefore the total of every-
thing is as follows:

Budget
Human resources Preu
Planificació inicial 1.536e
Iteration 0 1.280e
Set of iterations 22.464e
Final phase 640e
Total 25.920e

Table 13.5: Human resources buget

13.2.2 Hardware

The necessary hardware for the development of this project will
consist of the computers of each developer and the production
server where the intranet will be published. But, keep in mind
that, since this server is already being used for other tasks and
projects, we will not take it into account in the following cost
calculations.

Hardware budget Euros Life span Amortization
iMac 21’ 1279e 5 years 255,80e
Macbook pro 13’ 1699e 5 years 339,80e
Total 595,60e

Table 13.6: Hardware budget

119

13.3 Management control

With all of the previously calculated we have a budget for a
project which goes well to 100%. As this is very difficult to hap-
pen, a calculation of possible unforeseen events and contingencies
will be calculated below to adjust the budget.

The main unforeseen is time; so more hours of the estimated ones
are needed to achieve the project goals. As explained above, if
this happens, the first attempt will be to improve the prioritiza-
tion of the tasks in order to try to discard those that are not con-
sidered necessary so that only those that are really necessary and
indispensable remain. But in case that more hours were needed,
extra hours would be done to compensate. It is estimated that
these extra hours could be 10% of the development hours during
the iteration set phase. Therefore, this would increase the budget
at (38 + 10)hours * 13 iterations * 0.1% * 32e/h = 1.996,8e

Finally, in order to be sure that everything is covered in the bud-
get, a percentage will be applied to the total for contingencies,
which will be 5%.

13.4 Total budget

Once all sections are calculated, the total budget is as follows:

Total budget Cost(e)
Human resources 25.920
Hardware 595,60
Unforeseen events 1.996,8
Contingencies 1.425.62 (5%)
Total of the project 29.938,02e

Table 13.7: Total budget

120

14. Sustainability
In this section we will analyze the sustainability of this project, we
will do it for the economic, environmental, and social dimensions.
It should be taken into account that we will only analyze the PPP
part of the sustainability matrix, since, as already explained, the
scope of this project only reaches this section.

14.1 Economic dimension

During the planning of the project, the costs for human, hard-
ware, and software resources have been taken into account. As
we have seen before, human resources will be the minimum to
be able to perform the project, as well as hardware resources. In
regards to software resources, since everything that is used is free
or open source, the cost is 0.

Being an internal project to renew the company’s current in-
tranet, it will not generate direct economic profitability for the
company. But improving current software does add value to the
company indirectly. Also, as mentioned above, it is valued being
able to offer this intranet as a service to other cooperatives, but
this is beyond the scope of this project.

Therefore, the valuation for the economic part would be 8 out of
10, since the risks were well considered and the project is feasible.

14.2 Social dimension

This project has a direct impact only on the company itself, as
it will allow the company to improve its processes and analyze
the data in order to improve profitability, productivity, etc. We
also want to comment that although ”l’Apòstrof” is the only one
that receives a direct benefit, its clients also receive it indirectly,

121

and as ”l’Apòstrof” being a cooperative, which is very involved
in social projects, we believe that this is an important aspect.

As mentioned before, a future idea is to offer this intranet to
other cooperatives, and although this is beyond the scope of this
project, it is important to comment this.

With all this, the score for this part would be 7 out of 10, since
although being developed in a cooperative, and therefore at the
social level has the potential to have a strong impact, there are
important functionalities that do not enter within the scope of
this project.

14.3 Environmental dimension

As in most software projects, the environmental dimension is af-
fected mainly by issues of energy consumption for workplaces and
servers (hardware, lighting, heating, etc.). Apart from this, the
use of office supplies (papers, pens, etc) will be minimal. There-
fore, the score that the project has in this dimension will be 7
out of 10.

With all this, the sustainability table for this project is as
follows:

sustainability PPP
Economic 8/10
Environmental 7/10
Social 7/10

Table 14.1: Sustainability table

122

15. Conclusions
The main project goal was to create a first version of a work
management software that would allow the company ”l’Apòstrof
SCCL” to stop using the current intranet. We can say that this
objective has been satisfactorily achieved, despite deviations and
modifications to the initial plan. It has been possible to create
a first functional, useful and valuable version for ”l’Apòstrof”,
which will continue working to expand it and add non-basic fea-
tures that now have been set aside.

In the most technical aspect of the software architecture used, this
project also had a personal motivation to see how this architecture
worked in a PHP web application context. Once this first version
of the system is complete, I can say that I am very happy with
the results obtained. The architecture has allowed to create a
robust system in a simple and easily maintainable and extensible
way. I also have to say that the use of this architecture along
with Clean Code practices make you constantly refactoring and
reorganizing parts of the code, so it is essential to have a tool
that facilitates this. That is why, when we started the project,
we changed the IDE and we started using PHPStorm (with a free
license) that provides functionalities that facilitate these tasks
(especially autocomplete and rename).

This project also allowed me to see and test the Javascript Reac-
tJs framework, which currently has a lot of demand in the sector.
Adopting the use of this framework is one of the main reasons for
deviations, and therefore it was probably not the best choice. I
did not know how to properly assess the learning curve necessary
to implement ReactJs components of the necessary size for the
Intranet, and seen retroactively, even I think that this topic is big
enough for another TFG. However, I am happy to have learned
to use this framework, because, among other things, it has also
allowed me to experiment with other types of architectures.

123

15.1 Future work

As mentioned above, in this project we have implemented a first
version of an intranet, so there is still a lot of work to do to have
a final product.

The planning we make of this project from now on goes through
three general stages.

A first step will be to implement a series of very important fea-
tures, such as the management of workers’ work schedules and
their time bases, and the automatic generation of reports that
will help a lot of decision making within the company.

The second stage will be used to implement a multicoopertive
layer that will allow access to the Intranet as a service to other
cooperatives. Right now, the business model about this is not
entirely clear, since we want to look for a model based on the
solidarity economy. But, in any case, once we get to this point,
getting a return on the investment made in this software will be
easier.

And lastly, during the third stage, resources will be allocated to
adding less important features, but gradually adding more value
to the final product. These features can be an internal warning
system, projects comment systems, project management systems,
etc. If the system is being maintained, this stage should never be
finished, since it will always be necessary to adapt the software
to the new needs.

124

List of Figures
6.1 System use cases 30
6.2 System administration use cases 32
6.3 Users administration use cases 33
6.4 Workers administration use cases 37
6.5 Areas administration use cases 41
6.6 Expenses types administration use case 45
6.7 Clients administration use cases 49
6.8 Providers administration uses cases 53
6.9 Use cases about projects (and related data) admin-

istration . 57
6.10 Projects administration use cases 57
6.11 Projects batches administration use cases 62
6.12 Expenses administration expenses 65
6.13 Worked hours administration use cases 68
6.14 Invoices administration use cases 71
6.15 Conceptual scheme 77

7.1 Basic class diagram of a Clean architecture 93
7.2 Summary diagram of Clean architecture most im-

portant parts . 94

8.1 Diagram of the implementation of a PHP Clean
architecture . 96

8.2 Unit tests execution 100
8.3 Integration tests execution 100
8.4 Test nomenclature example 102

10.1 Gantt diagram 113

125

List of Tables
13.1 Initial Planning Budget 118
13.2 Iteration 0 budget 118
13.3 Set of iterations budget 118
13.4 Final phase budget 119
13.5 Human resources buget 119
13.6 Hardware budget 119
13.7 Total budget . 120

14.1 Sustainability table 122

126

	Context
	Contextualization
	Personal motivation

	Actors

	Problem formulation
	Current Intranet
	New features
	Goals
	Possible obstacles
	Obstacles with the implementation of Clean architecture
	Time barriers

	Scope

	State of the art
	Existing solutions
	Clean Architecture

	Methodology and rigor
	Work methodologies
	Final method

	Tracking tools
	Validation methods
	Manual validation methods
	Automatic validation methods

	Requirements Analysis
	Functional requirements
	System:
	System administration:
	Projects managment:
	Billing:

	Non-functional requirements

	Specification
	Actors
	Use cases
	System:
	System administration:
	Users
	Workers
	Areas
	Expenses types
	Clients
	Providers

	Projects administration:
	Projects
	Projects batches
	Expenses
	Worked hours

	Invoicing:

	Conceptual model
	Conceptual scheme
	Integrity constraints
	Description

	Design
	Physical architecture
	Logical architecture
	Clean architecture
	Basic rules
	Interactors, Entities, and Boundaries
	Delivery mechanism
	Persistence mechanism
	Summary

	Implementation
	Layers
	Entities and UsesCases
	Services
	Presentation
	Infrastructure

	Testing
	Architecture improvements
	Used technologies

	Resources
	Human Resources
	Material resources
	Software resources

	Planning
	Calendar
	Initial planning
	Project iterations
	Iteration 0
	Iteration 1
	Iteration 2
	Iteration 3
	Iteration 4
	Iteration 5
	Iteration 6
	Iteration 7
	Iteration 8
	Iteration 9
	Iteration 10
	Iteration 11
	Iteration 12
	Iteration 13

	Finalization
	Gantt

	Alternatives and action plan
	Bad planning
	Unforeseen events

	Deviations
	Modifications
	Validation methods

	Budget
	Identification of costs
	Cost estimates
	Human resources
	Hardware

	Management control
	Total budget

	Sustainability
	Economic dimension
	Social dimension
	Environmental dimension

	Conclusions
	Future work

