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1  | INTRODUC TION

Peripheral blood (PB), a fluid circulating through the blood vessels of 
the body, carries blood cells (erythrocytes, leukocytes, and throm-
bocytes) suspended in plasma. All of them are fundamental for im-
munity and life. Fortunately, PB is easily accessible and observable 
by optical microscopy, so that the visual inspection of the cell mor-
phology is a relevant step in the working flow of the hematological 
laboratories.1 Over the years, pathologists have been able to identify 
morphological qualitative features to characterize the different nor-
mal cells circulating in PB, as well as different abnormal cell types 
whose presence in PB are evidence of serious diseases such as leu-
kemias and lymphomas.2 Morphological analysis of PB smears is ex-
tensively used nowadays as a major diagnosis tool, along with other 
techniques such as immunophenotype and genetics.

Traditionally, PB smear analysis is based on the human inspec-
tion, which is time-consuming, requires well-trained personnel and 

is subject to subjectivity and intra-observer variability. This is partic-
ularly true in the case of abnormal cells, and even more when deal-
ing with malignant lymphoid cells and blast cells (BC). Indeed, subtle 
interclass morphological differences exist for some lymphoma and 
leukemia cell types, which turns into low specificity scores in the 
routine screening. Within this scenario, the past 10 years have wit-
nessed an increasing interest of researchers to develop computa-
tional image-based methods for automatic recognition of PB cells 
and the introduction of commercial systems integrated in the daily 
workload of some laboratories.3

In spite of this effort, the following question can be addressed: 
is it possible to develop an image-based system that is able to recognize 
blood cell images in PB among the class of “all” malignant lymphoid cells 
and blast cells? Such a question is a still open challenging problem, 
which if solved, could contribute significantly to the future of the 
computerized morphological analysis of blood cells. To clarify this 
question, we replace the term “all” by the following cell classes:
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•	 Abnormal lymphoid cells (ALC) from patients with the following 
diagnosis: 
i)	 CLL—chronic lymphocytic leukemia
ii)	 SMZL—splenic marginal zone lymphoma
iii)	 HCL—hairy cell leukemia
iv)	 MCL—mantle cell lymphoma
v)	 FL—follicular lymphoma
vi)	 PL—B and T prolymphocytic leukemia
vii)	 LGL-T—large granular lymphocyte lymphoma
viii)	 SS—Sézary syndrome
ix)	 PC—plasma cell leukemia/plasma cell myeloma

•	 Blast cells (BC) associated with both myeloid and lymphoid acute 
leukemia

•	 Reactive lymphocytes (RL) related to virus infections
•	 Normal lymphocytes (NL)

Figure 1 displays an image sample for each cell type, illustrating 
the variety of morphological appearances. They have been obtained 

with a conventional Olympus BX43 microscope and a digital camera 
DP73.

In addition, the microscopic screening of red blood cells (RBC) 
using PB slides is a common practice of detecting morphological 
alterations. There is also a relatively new interest in applying digital 
image analysis to help in this task. Literature reveals works mainly in 
2 directions: RBC classification4 and malaria identification.5

To concentrate the focus, this review paper deals only with 
lymphoma and leukemia cells. The purpose is to discuss on the 
methods involved in the development of automatic recognition 
systems, with a view on the underlying concepts, the present lit-
erature and the future perspectives, and having lymphoma and 
leukemia cells as a potential target. The main steps in image-
based recognition systems include image segmentation, feature 
extraction/selection, and classification. Segmentation is the core 
step in processing the digital images, while features and classifica-
tion lie within the area of machine learning. Thus, the review will 
go through these 3 steps.

F IGURE  1 A sample image of the 12 
cell groups considered as a target in this 
review, including normal lymphocytes, 
reactive lymphocytes, blast cells, and 9 
types of abnormal lymphocytes 
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2  | SEGMENTATION

The segmentation goal is to divide an image into different parts 
without overlapping. These parts are named as region of interest 
(ROI). While the human vision system segments images on a natural 
basis, without special effort, the automatic segmentation is one of 
the most complex tasks in image processing and computer vision. 
Consequently, a bunch of methodologies and tools have been de-
veloped and applied in a wide variety of areas, from industry-related 
processes to medicine. In the case of PB cells, the segmentation 
aims to separate the whole cell from the background and separate 
also their main elements. Most works consider 2 ROIs: nucleus and 
cytoplasm.

To understand the essence of segmentation and the further use 
of the resulting ROI, we need to see a color digital image as a grid of 
rectangular pixels, the smallest elements of the image.6 Color images 
are decomposed into a number of grayscale images according to a 
color model. RGB is one of the most typical models, where the com-
ponents correspond to the classical decomposition of any color into 
red, blue, and green in appropriate proportions. In a grayscale image, 
there is no color but a continuous distribution between black and 
white. Pixels are then quantitatively described by a number, which 
represents the light intensity in a continuous scale between 0 (black) 
and a maximum (white). Segmentation techniques are generally 
based on exploiting 2 basic properties of the pixel intensity values: 
discontinuity and similarity. Discontinuity looks for abrupt intensity 
changes, which detects the borders of the parts to be segmented. 
Similarity identifies regions with pixels having similar values accord-
ing to prescribed thresholds. The final result of any segmentation 
method is a set of binary images, commonly known as masks, one 
for each ROI. Each mask contains the ROI as a bounded white region 
over a black background.

Segmentation algorithms have been applied in previous works 
for normal leukocytes and BC from acute leukemia in PB and bone 
marrow. Authors have used methods such as automatic threshold-
ing,7,8 color clustering,9,10 mathematical morphology,11,12 and active 
contours.13,14 Segmentation of abnormal lymphocytes has been 
scarcely considered, and it has been always limited to a few types 
of malignancies.11,12,14-16 This could be due to the complex morpho-
logical variants appearing in the abnormal cases. In the case of nor-
mality, segmentation may not be so demanding because a number 
of distinct enough morphological characteristics exists, which may 

be reasonably easy to capture. However, the case of abnormality 
requires extracting many specific features from the different cell re-
gions to describe the morphological differences among the variety 
of subgroups of lymphoid cells. Therefore, segmentation has to be 
more refined to identify the cell ROI with better accuracy.

In an attempt to extend segmentation to broader classes of ma-
lignancies,17,18 our group has been developing a novel segmentation 
scheme. As illustrated in Figure 2, it uses the image color informa-
tion by soft clustering using Gaussian mixture models of different 
color components (like YCbCr) and the application of the watershed 
transformation which allows obtaining 3 ROIs: the nucleus, the en-
tire cell, and the peripheral zone around the cell. The segmentation 
of this external zone has not been addressed in previous approaches, 
while our work reveals that it is particularly important to extract a 
new feature to identify cells with hair-like projections. Most recent 
results19 addressed the segmentation of the whole 12 cell groups 
proposed at the beginning of this study. A number of 16 408 im-
ages from 374 patients were acquired with the CellaVision DM96 in 
the Core Laboratory of the Hospital Clinic of Barcelona (Spain), with 
a resolution of 360 × 363 pixels and stained with May Grünwald-
Giemsa. The overall segmentation efficiency was 98.9%, considering 
that segmentation of a single cell is correct when all the ROIs are well 
segmented as judged by pathologists. To our knowledge, no previous 
work has reported such results for the cell groups under the wide 
morphologic variability addressed in this study.

3  | FE ATURE E X TR AC TION

Feature extraction is the process of identifying a set of quantita-
tive descriptors for each ROI mask. Three main classes of features 
are used: geometric, color, and texture. Geometric features have di-
rect intuitive relation with the visual observations and descriptions 
made by pathologists. Typical descriptors quantify perimeter, area, 
and shape of nucleus and cytoplasm, among other morphological 
geometrical characteristics. These features are present in practically 
any system of morphological analysis.20

Color is also closely related to the visual cell appearance. Besides 
RGB, different authors use other color models to obtain quantitative 
features.18,21 The overall idea is to take advantage of the complemen-
tary information supplied by alternative colors (cyan, magenta, and 
yellow in the CMYK model) and attributes such as hue, saturation, 

F IGURE  2 A 2 steps image 
segmentation process to obtain 3 ROIs 
from a blood cell image. The first step 
generates the mask of the peripheral zone 
around the cell. The second one isolates 
the nucleus and the entire cell 
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and brightness (HSV model) or lightness and chromaticity (in Lab and 
Luv models). The key tool in these features is the histogram obtained 
for each ROI mask for each color component. Histograms display the 
number (or proportion) of pixels with intensity values within non-
overlapped intervals covering the whole intensity range between 
zero and a maximum. For each histogram, first-order statistical de-
scriptors are obtained, such as mean, standard deviation, kurtosis, 
skewness, energy (uniformity), and entropy (variability).

Texture is a term that describes spatial patterns of material, 
color, or intensity, which can be visually observed but may not 
be easy to be described quantitatively. Two main approaches 
for texture analysis are the granulometry and the gray-level co-
occurrence matrix (GLCM). Granulometry aims to measure the 
particle size distribution in an image by means of some operations 
within the context of mathematical morphology.6 The application 
of morphological operations results in the so-called granulometric 
and pseudogranulometric curves. They represent the size distribu-
tion of dark and bright particles. In a similar way as done with the 
histogram for the color features, statistical measures are obtained 
from both curves, which form the set of granulometric features. 
Early applications of mathematical morphology to PB lymphocyte 
description11 provided quantitative features (including chromatin 
density, cytoplasmic basophilia, granulation, and shape) discrimi-
nating among several groups of abnormal lymphocytes (CLL, HCL, 
SLZL, MCL, and FL).

The GLCM22 has been widely used for texture quantification in 
medical imaging. An early application in PB cells23 showed the ability 
of this matrix to obtain texture features to discriminate between 5 
subtypes of normal leukocytes and CLL cells. Most recent studies 
using GLCM have been performed mainly for differentiating among 
normal leukocytes24 and blast lymphoid cells25 as well as in bone 
marrow images to distinguish erythrocyte precursor cells stages.26 
However, recent advances have been reported in the definition of 
texture features using both granulometric and morphological tex-
ture features able to discriminate between a wide range of ALCs, 
blasts, and RL.13,15,17,21,27

The reader may find more detailed discussions about cell mor-
phology and quantitative features in.28

4  | CL A SSIFIC ATION

4.1 | Classification essentials

At the end of the ROI segmentation and the subsequent feature ex-
traction, each cell image is uniquely described by a set of numerical 
descriptors. Automatic classification is the process that aims to as-
sign that set of descriptors to a specific class among a set of known 
classes defined as target. This is a conceptual and practical problem 
well established within the context of machine learning.29 In blood 
cells, the classification objective is to automatically recognize a given 
cell image in its corresponding group. In the following, we will refer 
to the classifier as the system designed to perform this task. There 
are a good number of methods and computational techniques to 

design and evaluate classifiers, but most of them share a common 
structure and design procedure.30

Essentially, a classifier is a mathematical model that has certain 
structure (functions, equations, relations) and certain parameters, which 
have to be properly tuned. In the machine-learning arena, the computer, 
without direct human intervention, performs this tuning autonomously 
and iteratively. The process that leads to select the optimal model 
parameters is called training. This process requires the availability of 
a training set including a significant number of image cells belonging 
to the different target groups. These images have to be labeled, which 
means that the model knows the true group to which they belong. This 
kind of training is called supervised. In the cell recognition problem, 
pathologists have to supply the training set with images truly identified 
a priori. In practice, it is important that the different groups under study 
include a relevant number of images with reasonable balances among 
their relative quantities. The training is usually performed through an 
iterative optimization algorithm that searches for the parameters that 
minimize a performance criterion, which considers the error between 
the training classifications and the true labels.

An important part in any machine-learning system is to combine 
the training process with a validation. The idea is to evaluate the per-
formance of the classifier using a set of new objects (images in our 
case), which means that they have not been used in the training. The 
idea is to evaluate to what extent the classifier is able to predict the 
true class for each image of the validation set and modify the struc-
ture of the classifier, or even change the method, until the validation 
is considered satisfactory. One way to proceed is, before beginning 
the training, to separate the set of available labeled images in 2 parts: 
1 exclusively for training and the other only for validation. This may 
require a too big number of images. Another way, more practical and 
effectively used for many designers, is the so-called cross-validation. 
It consists in randomly decomposing the training set into a number 
of equal partitions, which means subsets that do not share images. 
Typically 10 or 5 is usual, as illustrated in Figure 3.

Then, 5 iterations are performed in such a way that, in the first 
one, the first subset is left apart and the remaining are used to train 
the classifier as described above. Once it is trained, the classifier is 
applied over the first subset to validate its performance. This train-
ing/validation is consecutively repeated until all the subsets have 
been used. The advantage of cross-validation is that only a training 
set is needed both for training and validation, while ensuring that 
all iterative validations are made with images not used for training. 
Once the cross-validation has been finished, a common practice is 
to apply again the classifier over the complete training set to ob-
tain the final parameters. A typical measure to evaluate the classifier 
performance is the so-called confusion matrix and the ROC curves. 
Overall accuracy (the ratio of images correctly classified in their true 
category), sensitivity, and specificity are usual quantitative quality 
indexes to decide whether a classifier is finally ready to be imple-
mented in an operational mode.

Among the methods most used in the classification of PB cells, 
we find neural networks, decision trees, and support vector ma-
chines (SVM).29,30
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4.2 | Literature review for classification of blast and 
abnormal lymphoid cells

In the case of automatic recognition of acute leukemias, the chal-
lenging classification problem is twofold: (i) the differentiation be-
tween BC and RL, as both share some morphological similarities, 
such as nucleoli, basophilic cytoplasm, or diffuse chromatin; and (ii) 
the distinction between lymphoid or myeloid lineage because they 
show similar patterns. This problem has been scarcely addressed in 
the literature in spite that it is well known that automated PB image 
analyzers tend to underestimate the number of BC, mixing them up 
with normal or RL.

Authors in27 have approached this specific problem with a SVM 
classification scheme, resulting into an optimal classifier with 60 more 
relevant features. The validation with a set of 220 new independent 
images, obtained with the DM96 analyzer, got accuracies of 85.11%, 
82%, and 73.97% for RL, myeloblasts, and lymphoblasts, respectively. 
Some previous studies9,31-33 have presented satisfactory results in the 
automatic recognition between BC and NL. But morphological dif-
ferences between these 2 cells are more evident than in the cases 
approached in.27 Other works have reported classification of myelo-
blasts and other myeloid cells at different stages using bone marrow 
cell images.34 Other works14 classified myeloid and lymphoid blast cell 
images as a single group in contrast to other ALCs.

Several works have focused on the classification of lymphoid 
neoplasms (LN), like in the early content-based image retrieval (CBIR) 
system for clinical pathology diagnosis support system,35 where a 
classifier for 3 LN (CLL, FL, and MCL) and a fourth group of NL was 
trained with a 10-fold cross-validation scheme. Results were sat-
isfactorily compared with human experts. SVM classification of 5 
types of normal leukocytes and only 1 group of abnormal lymphoid 
cells (CLL) was reported in.36 Although average accuracy was around 
94%, CLL accuracy was 88%. Within the CBIR framework, authors 
in11 developed a method to classify AL from 6 LN (CLL, HCL, SMZL, 
FL, MCL, and T-PL) using decision trees. Authors in14 classified 
among 4 types of malignancies (CLL, MCL, FL, and acute leukemia) 
and NL using SVM by combining shape, area, and texture features, 
obtaining classification rates of 84.6%. A related work37 presented 
another 10-fold cross-validation classification test with a new and 
independent smaller database but with the SVM trained with the 
old bigger database, resulting in 87.2% of accuracy due to that the 
new interclass similarities and intraclass variations were never seen 
during the training.

Our group has been working in the classification of a wide range 
of abnormal lymphoid cells (AL). Combining geometric, color, and tex-
ture features, a first method was presented17 for the automatic rec-
ognition of 4 AL types (HCL, CLL, MCL, and B-PLL) together with NL, 
obtaining an accuracy of 85.3%. In a further work,18 abnormal cells 
from FL and RL were added to the previous study. A SVM classifier 
was trained with 10-fold cross-validation, obtaining an overall 90.3% 
classification accuracy for the 7 groups. It is interesting to note that, 
in this work, the classifier training is performed in parallel with a pro-
cess that iteratively reduces the number of initially extracted features. 
Selection of a reduced number of descriptors is an important issue in 
machine-learning algorithms to reduce complexity and computation 
time. Figure 4 shows a block diagram of the combined feature selec-
tion and training. In this particular case, a number of 2464 descriptors 
were initially extracted from the ROI and, at the end of the iterative 
process, 150 descriptors were selected and ranked according to their 
maximum relevance and minimum redundancy. Note that only 6 de-
scriptors were geometric, while 144 described color and texture. The 
final classifier is optimized to operate with the selected features only.

In a recent study, this classification scheme has been combined 
with the image segmentation approach displayed in Figure 2 and 
applied for the first time to classify the 12 cell groups illustrated 
in Figure 1. A set of 9395 images was analyzed, obtained from PB 
smears of 218 patients, and captured by a conventional microscope 
(Olympus BX43) equipped with a camera DP73. Figure 5 summarizes 
the main results, showing the confusion matrix. This is a common 
way of evaluating the performance of an automatic classification. 
Rows show the true cell types and the columns the types predicted 
by the classifier. Values are normalized (in percentage) with respect 
to the total number of true numbers (last right column). The diagonal 
represents the proportion of true positive for each class, ranging be-
tween 81% and 96%. The overall accuracy is the mean value of these 
rates: 88.3%. Out of diagonal values give the rates of wrong classifi-
cations. For example, the fourth row indicates that 85% of the 938 

F IGURE  3 Schematic illustration of the cross-validation iterative 
process to train a classifier. The training set is randomly divided into 
5 equal subsets. Five iterations are performed, so that each one of 
the subsets is separated and the other 4 subsets are used to train 
the classifier. Then, the classifier is applied to the separated subset 
to validate its performance. The final performance evaluation is a 
combination of the 5 validations 
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FL cells have been correctly classified, while, reading the remaining 
numbers in the row, we see how many true FL images have been 
misclassified in the other cell groups.

5  | CONCLUDING REMARKS

This paper has started with a question that could be arguable. 
In our opinion, seeking for a wider scope classification system 
is conceptually appealing. Adding more target cell classes helps 
to motivate more refined image processing and segmentation 
techniques, to propose new quantitative features for qualitative 
morphological characteristics, and to design more efficient classi-
fication algorithms. Indeed, these developments supply tools that 
may help the cytologist to perform efficient, objective, and fast 
morphological analysis of blood cells. They may also help to bet-
ter interpret some morphological features and serve as learning 
and survey tools.

Research is still needed as technologies evolve faster and new 
methods and computational tools appear within the context of ma-
chine learning, like for instance the deep learning paradigm.30,38 An 
idea to advocate would be the organization of an extensive database 
of cell images, with contributions of a diversity of hospitals and lab-
oratories, covering the wide spectrum of cell classes. It would be a 
truly helpful instrument and common reference for researchers and 
developers and a good initiative to be promoted through an orga-
nized cooperation among interested partners.

From the point of view of laboratory diagnosis, automatic morpho-
logical recognition of ALCs and BC is not practically resolved by com-
mercially available equipment. The key question is how to integrate 
these advances into a practical computerized image-based system. 
Regarding classification, the last step in the workflow, most research 
works end up with a classifier whose performance is validated using 
sets of images and measuring the accuracy over the whole set. To ap-
proach an implementation stage, classifications should be tested with 
a patient-based perspective,18 in such a way that the input for the 
classification system should be the set of images contained in a PB 
smear of an individual patient. Then, the classification output would be 
the separation of the images within the different cell groups selected 
as targets. Under this perspective, it may be desirable to concentrate 
target cells into prescribed target groups. For instance, a reasonable 
classification strategy may be performed in two steps. First, all the 
abnormal  lymphocytes may be considered as a single group with the 
idea of discriminating “abnormality” from normal or reactive cells. 
Then, a second classification may be done to discriminate the cells 
within the group of abnormal lymphocytes. It is important to define 
screening strategies to exploit the potential of a wide scope recogni-
tion methodology and design realistic and systematic proof of concept 
validations in laboratories.

In addition, there are some practical issues that have to be con-
sidered in a development stage, like the influence of the staining 
and illumination, among other aspects related to the smear origin. 
Robustness of the classification methodology against such variability 
sources should be enhanced in view of a practical implementation. 
As pointed out in some recent reviews,3 integration in daily routine 
is the final target. Advanced image-based automatic recognition sys-
tems could be integrated as new modules with existing analyzers, 
or brand new systems could be built, and altogether combined with 
other well-established systems such as flow cytometers.

F IGURE  5 Classification results by means of the confusion 
matrix for a group of 12 cell image types. Rows represent the true 
cell type and the columns the predicted type given by the classifier. 
Values are given in percentages over the total number of cells in 
each type (outer right column). Diagonal values are the true positive 
rates for each class. The overall accuracy is the mean value of 
these rates: 88.3%. Out of diagonal values give the rates of wrong 
classifications

F IGURE  4 Block diagram with the 
steps to train the classifier. In the first 
block, a set of quantitative features is 
obtained after segmentation of the blood 
cell images of the training set. The second 
block includes a SMV classifier whose 
input is a reduced number of selected 
features, which are the most relevant 
and the less redundant according to a 
prescribed criterion. The training includes 
the cross-validation as shown in Figure 3
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