
A Security Framework for JXTA-Overlay

Joan Arnedo-Moreno
Estudis d’Informàtica, Multimèdia i Telecomunicació

Universitat Oberta de Catalunya (UOC)
Rambla de Poblenou, 156 08018 Barcelona, Spain

Email: jarnedo@uoc.edu

Keita Matsuo
Graduate School of Engineering

Fukuoka Institute of Technology (FIT)
3-30-1 Wajiro-Higashi, Higashi-Ku, 811-0295 Fukuoka, Japan

Email: bd07002@bene.fit.ac.jp

Leonard Barolli
Department of Information and Communication Engineering

Fukuoka Institute of Technology (FIT)
3-30-1 Wajiro-Higashi, Higashi-Ku, 811-0295 Fukuoka, Japan

Email: barolli@bene.fit.ac.jp

Fatos Xhafa
Department of Languages and Informatics Systems

Technical University of Catalonia (UPC)
Jordi Girona 1-3, 08034 Barcelona, Spain

Email: fatos@lsi.upc.edu

Abstract

At present time, the maturity of P2P research field has
pushed through new problems such us those related with
security. For that reason, security starts to become one of the
key issues when evaluating a P2P system and it is important
to provide security mechanisms to P2P systems. The JXTA-
Overlay project is an effort to use JXTA technology to
provide a generic set of functionalities that can be used
by developers to deploy P2P applications. However, since
its design focused on issues such as scalability or overall
performance, it did not take security into account. This work
proposes a security framework specifically suited to JXTA-
Overlay’s idiosyncrasies.1

Keywords: peer-to-peer, security, XMLdsig, JXTA, JXTA-
Overlay.

1. Introduction

Peer-to-peer (P2P) have become highly popular in recent
times due to its great potential to scale and the lack of a
central point of failure. Just as the popularity of P2P systems
has risen, so has concerns regarding their security, specially
since it is no longer possible to trust a central server which
capitalizes all security operations. As P2P applications move
from simple data sharing to a broader spectrum, they become
more and more sensitive to security threats and it becomes
very important for current P2P platforms to include security
mechanisms that can fit into a broad set of scenarios. Even at
the cost of some impact on performance, a security baseline
must be kept in any P2P system in order to ensure some
degree of correctness even when some system components
will not act properly.

1. This work is partially supported by the Spanish Ministry of Science
and Innovation and the FEDER funds under the grants TSI2007-65406-
C03-03 E-AEGIS and CONSOLIDER CSD2007-00004 ARES.

JXTA [1] (or ”juxtapose”) is a set of open protocols
that enable the creation and deployment of peer-to-peer net-
works. JXTA protocols enable peer-to-peer applications to
discover and observe peers, enable communication between
them or offer and localize resources within the network.
Such protocols are generic enough so they are not bound
to a narrow application scope, but are adaptable to a large
set of application types. For that reason, they also keep im-
plementation independence, so they can be deployed under
any programming language or set of transport protocols.

JXTA-Overlay [2] is a JXTA-based framework. Its main
goal is to improve the original JXTA protocols, increasing
the reliability of JXTA-based distributed applications and
supporting group management and file sharing. However, the
design focus on JXTA-Overlay was completely concerned
with system performance, but not at all with security, a
situation which may become a great constraint under today’s
standards. Even though JXTA provides some basic security
mechanisms, they were not taken into account.

The contribution of this paper is a modular security
framework specifically suited to the characteristics of JXTA-
Overlay. The proposed framework fully realizes the mes-
saging capabilities and functions of both JXTA and JXTA-
Overlay and uses them in order to provide a security
baseline in a transparent manner. As a result, minimum
effort is necessary by application developers and end-users
to deploy a secure environment. Furthermore, because of the
framework’s modular approach, it may be easily ported to
different scenarios, according to the final application’s needs.

This paper is organized as follows. Section 2 provides a
general overview of JXTA and JXTA-Overlay’s architecture
and functions, which is necessary to fully understand which
are its most important parts and which constraints exist
when specifying its security framework. This section also
provides some insights on the current state of security of
JXTA-Overlay and currently security vulnerabilities. Section

2009 International Conference on Network-Based Information Systems

978-0-7695-3767-2/09 $25.00 © 2009 IEEE

DOI 10.1109/NBiS.2009.6

212

3 presents the current related work on securing JXTA-based
systems. The proposal of a basic security framework is
presented in section 4. Concluding the paper, section 5
summarizes the paper contributions and further work.

2. JXTA-Overlay Overview

JXTA-Overlay is a middleware built on top of the JXTA
specification [3], which defines a set of protocols that stan-
dardizes how different devices may communicate and collab-
orate among them. JXTA-Overlay extends JXTA protocols
with the goal of overcoming some of its limitations: the need
for the developer to manage the presence mechanism, peer
group publication and message exchange. To achieve this
end, JXTA-Overlay provides a set of basic functionalities,
primitives, intended to be as complete as possible to satisfy
the needs of most JXTA-based applications.

2.1. The JXTA-Overlay network

In a JXTA-Overlay network, the main interacting entities
are:

End-users connect to the JXTA-Overlay network by au-
thenticating using a username and password. Once the
authentication process is successfully completed, they are
organized into different overlapping groups, so only mem-
bers of the same group may interact. It is also important to
take in to account that JXTA-Overlay end-users are mobile,
they may connect at different times using different client
peers, as well as may be connected through several client
peers at the same time.

A client peer represents an application, which end-users
use to communicate and share resources between them-
selves, effectively acting as end-user proxies within the
JXTA-Overlay network. They forward end-user data to client
peers that belong to end-users of the same group and
authentication data to a broker. A client peer is assumed
to belong to the same groups as its current end-user.

Brokers control access to the network, requesting end-
user authentication, and help client peers interact between
themselves by propagating their related information. Brokers
are very important since they exchange information about
all client peers, maintaining a global index of available
resources, thus allowing all peers to find network services.
Brokers also act as beacons which client peers which have
recently gone online use to join the network. For that reason,
they usually have well-known identifiers, such as a DNS
name or a static IP address.

All the information related to user configuration (user-
name, password and group membership) is stored in a
special single entity within the JXTA-Overlay network: a
central database. Only brokers may access the database data,
in order to check end-user authentication attempts and orga-
nize them into groups. It is assumed that some administrator

takes care of properly configuring the database, registering
new end-users. Nevertheless, JXTA-Overlay does not impose
any constraint on the database architecture.

2.2. General architecture

First of all, it must be remarked that JXTA-Overlay does
not provide any full client peer, apart from some demo
applications. Only brokers are provided as a fully developed
application which may be directly deployed, without the
need for any kind of additional development. The architec-
ture of the JXTA-Overlay middleware defines three modules,
which let the different entities described in section 2.1
communicate: the Client Module, the Broker Module and
the Control Module. Altogether, they form an abstraction
layer on top of JXTA, as shown in Figure 1.

Figure 1. JXTA-Overlay architecture.

• The Client Module defines all necessary primitives for
peer clients to join a JXTA-Overlay network and inter-
act with other peers and the broker. In fact, applications
developed on top of JXTA-Overlay are always based on
the invocation of Client Module primitives defined and
the processing of events thrown upon primitive exe-
cution or a broker response. Primitives are comprised
for: (a) peer discovery; (b) peer resources discovery; (c)
resource allocation, (d) task submission and execution;
(e) file/data sharing, discovery and transmission; (f)
instant communication; (g) peer group functionalities
and, monitoring of peers, groups, and tasks.

• The Broker Module defines all the functions that client
peers may call upon a broker in order to be granted
access to the the network, create and publish groups
or retrieve other client peers’ information. Functions
always produce a reply from the broker to the calling
client peer. Broker functions are always called as a
result of Client Module primitives.

• The Control Module acts as an intermediate layer
between the Broker and Client Modules, providing the
generic functionalities on regards to group management
and messaging.

213

The Control Module provides messaging between JXTA-
Overlay entities using JXTA pipes, a virtual communication
channel between peers. Client peers have an input pipe for
each group it belongs to, so other group members may send
messages using the input pipe associated to that group, as
shown in Figure 2. Brokers have a single input pipe which
is shared for all incoming messaging.

Figure 2. Client peer messaging via input pipes.

2.3. Client peer information propagation

Brokers propagate information between group members,
crossing boundaries such as client peers located beyond
broadcast range. Such information is formatted as JXTA
advertisements, metadata documents used to distribute in-
formation between peers. All advertisements are codified
using XML and passed between client peers using the
JXTA core protocols. JXTA-Overlay has a big reliance on
both JXTA-defined and custom-defined advertisements to
propagate information across client peers via the broker.
As a result, their data is critical for the correct operation
of the JXTA-Overlay network. Each client peer periodically
broadcasts the following advertisement types for each group
its end-user belongs to:

• Peer Advertisement: Acts a presence beacon for other
client peers. While peer advertisements are being re-
ceived from some peer, it is considered to be online.

• Peer Group Advertisement: Announces existing
groups. They are necessary in order to properly join
any group and interact with its members.

• Pipe Advertisement: Transmits the client peer’s input
pipe location for a particular group. Message exchange
between client peers or brokers is not possible without
each other’s input pipe. Therefore, it is one of the most
important advertisements in JXTA-Overlay.

• Overlay Advertisement: This is a JXTA-Overlay spe-
cific advertisement that provides miscellaneous infor-
mation to other client peers. A type field defines the
specific data transmitted:

– Info Advertisement: General information about a
client peer.

– Files Advertisement: List of shared files.
– Statistics Advertisement: Client peer statistics

(transmitted data, uptime, etc.)
– Criteriums Advertisement: Client peer capabilities

(CPU and connection speed, maximum file size,
etc.)

2.4. JXTA-Overlay and security

As previously exposed, JXTA-Overlay’s design is not
concerned with security, with the only exception of end-user
network access control via a username and password. As a
result, its is vulnerable to different security threats which
may jeopardize the network. A security study must take
into consideration the fact that not only entities external to
the JXTA-Overlay network may try to subvert it, but also
malicious legitimate users.

Some of the greatest security concerns in JXTA-Overlay
are the following ones:

• Transmitted data may be easily eavesdropped, since no
data privacy is provided. Even though it may be argued
that data privacy in message exchanges between end-
users is just an optional feature, there are some cases
where privacy should not be optional, namely the initial
authentication username and password. Currently, both
fields are sent as plain text. Therefore, any device
at broadcast range may read this information with a
network protocol analyzer (such as Wireshark [4]).

• Any legitimate user may forge advertisements with no
fear of reprisal. No integrity or source authenticity is
maintained. False fields, such as the source client peer
identifier or any statistics information, may be added
into the advertisement, which will be automatically
distributed by the broker and accepted by all group
members, unaware of the false data it contains.

• Client peers connect to a self-proclaimed broker, but
never check if it is a legitimate one. Even in the case
that client peers are connecting to the proper broker
address, there are no guarantees that the broker is a
legitimate one, since it may be that traffic is being
redirected to a fake one via methods such as DNS
spoofing [5].

As can be seen, some of the current JXTA-Overlay
vulnerabilities are quite obvious ones, such as transmitting
sensitive data with no real privacy. Therefore, it can be
concluded that JXTA-Overlay does not provide a security
baseline and needs serious improvement on this regard.

3. Related Work on Securing JXTA-based
Frameworks

Before a security framework for JXTA-Overlay may be
proposed, it is useful to review which are the current security

214

mechanisms available to JXTA-based applications. From this
review, it is possible to study which may prove usefull or
suitable to JXTA-Overlay’s architecture and network setup
specifics. In this section, we provide a general overview on
security in JXTA applications, but a much more complete
survey may be found in [6].

As far as network access control is concerned, one of
the original creators of JXTA, Yeager, provides a specific
trust model in [7]. Without actually recognizing a spe-
cific Certification Authority (CA) for each peer group, he
proposes that rendezvous peers become the system’s trust
anchors, providing credentials to peers, that can be used to
prove network membership. To acquire a credential the peer
must be authorized via an LDAP (Lightweight Directory
Access Protocol) [8] directory with a recognized protected
password. Rendezvous peers may use a secure connection
to the LDAP service to authorize requesting peers.

Yeager’s proposal is extended in [9], with a similar
trust model, but adding extra capabilities. This approach
is based on a centralized Public Key Infrastructure (PKI)
and a basic challenge-response protocol [10] as a means for
authentication during the join process. Its main contribution
is to provide a method which peers may use in order to
authenticate the group itself.

More elaborated proposals are presented in [11], [12],
based on joint authorization by multiple peers under voting
schemes in order to maximize decentralization. Under these
approaches, credentials are also signed certificates issued by
a CA, however access is based on an agreement reached
between several group members. The main difference be-
tween both proposals is that [12] includes a rank system,
where peers who join the group (“newbies“) have the least
privileges, but they may rise to higher positions as they
contribute to the group.

On regards to message security, the JXTA reference
implementation [13] provides two mechanisms: TLS [14]
(Transport Layer Security) and CBJX [15] (Crypto-Based
JXTA Transfer). The former provides private, mutually au-
thenticated, reliable streaming communications, whereas the
latter provides lightweight secure message source verifica-
tion (but not privacy).

JXTA provides its own definition of standard TLS as a
transport protocol. The JXTA definition of TLS is composed
of two subprotocols: the TLS Record Protocol and the TLS
Handshake Protocol. The TLS Record Protocol provides
connection security using symmetric cryptography for data
encryption. The keys for this symmetric encryption are
generated uniquely for each connection and are based on
a secret negotiated by the TLS Handshake Protocol. In
addition,the connection is reliable by including message
integrity check using a keyed MAC.

On the other hand, CBJX is a JXTA-specific security
layer which pre-processes messages to provide an additional
secure encapsulation, creating a new message that is then

relayed to an underlying transport protocol. The original
message’s is signed, and an additional information block, is
also added to the secured message. This information block
contains the source peer credential, both the source and
destination addresses, and the source peer ID.

In order to use both mechanisms, TLS and CBJX, a
specific group membership service is required: the Personal
Security Environment (PSE). The membership service is one
of the JXTA core services, taking care of group membership
and identity management by providing each group member
with a credential. Peers may include credentials in messages
exchanged within a group in order to prove membership and
provide a means for implementing access control in offered
services. However, PSE solely supports on X509 certificates
[16] as credentials and Java keystores [17] as a cryptographic
module.

It is also possible to provide some degree of advertisement
security in the current JXTA reference implementation by
signing advertisements. No distinction between different
types of advertisements is made, all become a new type
of advertisement when signed: the Signed Advertisement.
A Signed Advertisement encapsulates the original XML
advertisement as plain text encoded via the Base64 algorithm
[18]. Signed advertisements are also contrained to the PSE
membership service.

An alternative method to secure any advertisement type
is proposed in [19]. This method is based on XMLdsig [20]
and can be applied to those advertisement types defined
by JXTA as well as those custom made by JXTA-based
applications. The resulting secure advertisement maintains
its original type, instead of becoming a completely different
new type of advertisement.

4. A Security Framework for JXTA-Overlay

In this section we present a secure framework for JXTA-
Overlay which provides a baseline for protecting end-user
applications against the current vulnerabilities exposed in
section 2.4. In our proposal, we combine several methods
of those previously described in section 3, adapting them
to JXTA-Overlay’s specific architecture and network setup.
Client peers are protected against impersonation by using
broker-issued credentials in a similar way to the approach
in [7]. However, we further extend this approach to the
broker, so a legitimate one may be told apart from malicious
ones, and also provide an alternate lightweight method
for message source authenticity. Furthermore, advertisement
integrity and authenticity, as well as a transparent method
for key transport is provided by adapting the method defined
in [19]. Finally, data privacy is used to protect message
exchanges against eavesdroppers. From this framework, se-
curity capabilities may be easily added to JXTA-Overlay.

The main goal of this framework is operating in the most
transparent way for a JXTA-Overlay end-user application

215

developer, providing a complete abstraction layer.

4.1. System setup

In order to deploy a secure framework, JXTA-Overlay en-
tities must be provided some cryptographic data beforehand,
necessary to execute cryptographic operations on secure
services. Such data is provided at three different stages: at
deployment, boot and login. The first case includes data
that is generated only once during the whole system life,
when entities are deployed into different physical nodes.
On the other hand, the second case comprises data which
is generated each time an entity goes online, just before
it joins the network. The last case regards cryptographic
data provided when the end-user authenticates to the JXTA-
Overlay network via a broker.

All cryptographic data should be securely stored into
to some cryptographic module (e.g. a keystore, smartcard,
Hardware Security Module (HSM), etc.) [21]. However, our
framework has no constraints on regards to which type of
cryptographic module can be used. Client peer developers
may freely chose the one that suits its own needs.

4.1.1. Deployment cryptographic data. Whenever a new
JXTA-Overlay network is deployed, the administrator gen-
erates a public key PKAdm and secret key SKAdm. From
both keys, also generates a self-signed credential, CredAdm

Adm,
thus acting as trusted party by all peers. This is a sensible
stance, since, nevertheless, the system administrator is the
one who that grants access to the JXTA-Overlay network
by creating legitimate usernames and passwords into the
database, having absolute control on end-users nevertheless.

Each broker, Bri, is provided a well-known identifier
IDBRi

by the administrator (in fact, JXTA-Overlay already
does this: a DNS name or static IP address), which will be
the one client peers use to connect to it. Bri also generates a
public and secret key, PKBri and SKBri . From PKBri , the
administrator will provide Bri with a credential CredAdm

Bri
,

by signing PKBri
and IDBRi

with SKAdm. Therefore,
only legitimate brokers will hold a proper credential and be
able to prove its ownership. Such credential is transmitted
using an out-of-band method.

Each client peer, Cli, who wants to use the JXTA-Overlay
network is provided with a copy of CredAdm

Adm.

4.1.2. Boot cryptographic data. Only client peers generate
additional cryptographic data at boot time, immediately
before going online. Namely, they generate they key pair
PKCli and SKCli at this precise moment. The main reason
for such keys not enduring the whole node’s life, in contrast
with brokers, is the fact that end-users are mobile, and
therefore, different end-users may use the same exact node
at different stages during the client peer’s lifecycle. In that
case, it means end-users would also use the same key pair.

Requiring the end-user to transport and manage the key
pair between nodes quickly becomes a hassle as well as
a constraint for application development.

Once the key pair has been generated, the client peer
identifier is set as a Crypto Based IDentifier (CBID), further
described in section 4.2.1. At this point, it is sufficient to
say that it is a method to bind the identifier to PKCli .

4.1.3. Login cryptographic data. Each time an end-user
logins into the network, the broker issues a temporary
credential, CredBri

User, containing the client peer’s PKCli

and his username. An end-user connecting to the network
via several client peer’s will be provided several credentials,
each one assigned and managed by each specific client peer.
Credentials are only valid for a single end-user’s session.
This accounts for the fact that, since end-users are mobile,
PKCli may be a different one each time.

4.2. Key distribution and advertisement security

Once each broker and client peer has established its own
public key, it must be distributed to the rest of group mem-
bers, so it is effectively possible to secure data exchanges.
Data privacy may be obtained using encryption and source
authenticity and integrity by digitally signing messages, for
example, using the RSA algorithm [22] for both cases. The
key distribution method must take into account the fact that
in a P2P network nodes may go online and offline at any
moment, as well as allowing key updates in the case that,
for some reason, a new key must be generated.

To achieve this end, we apply the scheme defined in
[19], based on XMLdsig, where the public key is included
into an advertisement, relying on JXTA-Overlay’s standard
information propagation mechanism, as shown in section
2.3, for key distribution. The credentials generated at the
different stages of system setup, as shown in section 4.1, are
used, not the raw public key. However, Pipe Advertisements
are used, instead of Peer Advertisements, as proposed in the
base scheme. The reasons for this choice are twofold.

First of all, all JXTA-Overlay’s messaging capabilities
between group members rely on the input pipes, as explained
in section 2.2, which can only be accessed by previously re-
trieving its associated Pipe Advertisement. Therefore, client
peers cannot exchange messages unless they have each
other’s Pipe Advertisement. Consequently, by publishing
keys using this advertisement type, it is also always guar-
anteed that both parties have each other’s public key before
any message exchange begins. Furthermore, it avoids relying
on additional protocols for key distribution.

Additionally, the scheme allows the signature of Pipe
Advertisements, providing effective protection against ad-
vertisement forgery, as exposed in section 2.4. It must
be heavily remarked that the importance of each client
peer’s JXTA input pipe in JXTA-Overlay. Once a broker

216

has granted access to a client peer, absolutely all incoming
messages are received via this pipe. Therefore, it is very
important to secure the distribution of each client peer’s
Pipe Advertisement to avoid that a rogue peer may publish
a forged advertisement, claiming that its own input pipe
is assigned to some other Peer ID. In that scenario, all
messages outbound to that Peer ID would be automatically
redirected to the rogue peer.

A crucial advantage offered by this XMLdsig-based
scheme, instead of JXTA’s Signed Advertisement, is its
capability to become invisible to standard JXTA-Overlay
operation, instead of adding a new advertisement type,
completely opaque to advertisement indexing and retrieval
services (all advertisement fields disappear). As far as Pipe
Advertisements are concerned, they are structured into sev-
eral fields. The Id and Type are mandatory fields, the former
to defining the advertisement unique identifier, and the latter
specifying the message transport pipe type, which in the case
of JXTA-Overlay is always unicast. The Name and Desc are
optional fields. However, JXTA-Overlay always makes use
of them in order to define which client peer is the input
pipe owner, by including the client peer identifier in the
Name field, and which end-user is connected through that
client peer, by including the username into the Desc field.
In this manner, JXTA-Overlay may easily search for some
peer of user’s Pipe Advertisement and send messages to the
associated pipe. By signing Pipe Advertisements, its fields
cannot be tampered. Therefore, it is very important that both
fields are kept visible to JXTA-Overlay.

4.2.1. Key authenticity. Key distribution must always guar-
antee public key authenticity, a method so that anyone may
check whether an endpoint is the legitimate owner of some
claimed public key. However, first of all, it must be taken
into account that in the particular case of JXTA-Overlay,
messaging may occur between two different endpoint types:
client peers, for control messaging such as advertisement
propagation, and end-clients, for direct communication, such
as chatting or file exchange. Hence, key ownership must
consider both types of endpoint data exchanges. It must also
take into account the fact that an end-user may be connected
to the JXTA-Overlay network using several client peers at
the same time.

We accommodate to these constraints by using a joint
scheme were a different mechanism is used depending on
the endpoint type. On one hand, since exchanges between
client peer endpoints are very frequent, a lightweight method
is desirable. Thus, CBIDs are used. On the other hand,
exchanges between end-users require some method that
provides additional information that may be presented to the
user, such as the source username and an easily recognizable
identifier of a trusted entity, so he may decide to accept or
not the exchange. Thus, the signed credentials are used in
this case. The schematics of this key authenticity method

are shown in figure 3.

Figure 3. JXTA-Overlay key authenticity model.

The concept of CBIDs, or statistically unique and cryp-
tographically verifiable IDs (SUCV IDs), was initially con-
ceived for IPv6 addressing in order to solve the issue of
address ownership in a lightweight manner [23]. We adapt
this secheme to our security framework by applying it to
the client peer identifier. The client peer public key PKCli

is bound to the client peer identifier by applying a pseudo-
random function on the public key. The result is henceforth
used as the JXTA peer identifier. Secure messages between
client peer endpoints are signed using SKCLi

. In order
to validate CBID ownership, the message’s signature is
validated. If validation is correct, its is proved that the source
peer holds the associated private key. Then, the validating
public key is used to generate the source peer identifier,
i.e. the CBID. If the obtained identifier is the same as the
claimed one, the message is authentic. This method cannot
be used for end-user endpoint data exchanges, since it is not
possible generate a CBID that conforms to his username,
which cannot be changed.

Key authenticity via credentials is checked by verifying
the credential’s signature against the issuer’s public key,
validating the full certificate path: end-user, broker, admin-
istrator (being the latter the trusted party by all entities in
the system). The brokers’ credentials are available to client
peers, since they are also distributed with the Pipe Adver-
tisements. The administrator’s single credential is provided
at deployment, as explained in section 4.1.

4.3. Secure primitives and functions

Once cryptographic data is provided to peers and prop-
agated across the network, it is possible to provide a set
of secure primitives and functions. In this proposal, only
some of the most basic, but not least important, primitives
have been secured. The extension of the JXTA-Overlay
framework to secure every single primitive is beyond the
space limitations of this work (about 122 primitives and
84 events). However, once the building blocks for a secure
system have been established, an integral key distribution
and authenticity scheme, it is feasible to extend security to
every single primitive.

Two very important primitives are the ones related to
discovery which search for a broker and allow authenti-

217

cation, sending the username and password, in order to
join the network: the connect and login primitives. The
functionalities of these primitives have been expanded by
creating two new secure versions which allow to properly
setup client peers as described in section 4.1 as well as
offering protection against those threats discussed in section
2.4:

• authBroker: Locates a Broker Bri and waits for a con-
nection to open. Then, authenticates the broker request-
ing CredAdm

Bri
and checking whether it is a proper one

verifying its signature against CredAdm
Adm, provided to

all client peers at deployment, and challenge-response
protocol [10]. If authentication succeeds, Bri is a
legitimate broker and login may proceed.

• secureLogin: The end-user’s username and password
are sent encrypted to the broker, using the public
key enclosed in CredAdm

Bri
. Furthermore, a credential

request, containing PKCli is sent to Bri. If user-
name/password authentication succeeds, Bri responds
with CredBri

User and proceeds with the JXTA-Overlay
standard group initialization procedures.

Basic messaging is included into the set of instant com-
munication primitives. This set has been expanded to include
two new secure versions of former primitives, so some
degree of privacy and data integrity is provided:

• sendSecureMsgPeer: Send a simple text message to
some other end-user. However, data is previously signed
using PKCli and encrypted using the destination client
peer’s public key. Since message exchange endpoints
are end-users, key authenticity at destination is pro-
cessed via credential validation as explained in section
4.2.1.

• sendsecureMsgPeerGroup: Sends a simple message to
all members of a group. It is actually resolved by
iteratively calling sendSecureMsgPeer.

4.4. Secure architecture

An overview of security framework proposal JXTA-
Overlay is presented in Figure 4. All modules are located
at different layers within JXTA-Overlay and JXTA’s own
architecture.

The following modules are not JXTA-Overlay specific,
but an extension of JXTA protocols. As such, they may be
used in any JXTA-based application:

• The Crypto Manager provides an abstraction layer for
any cryptographic module and key management. It
enables the integration of security services with any
kind of module such as hardware cryptographic tokens.
This approach takes into account the fact that not all
such modules are accessed via plain text passwords
(for example, some use may biometrics). Furthermore,
even in cases were passwords are used, sometimes,

Figure 4. Security architecture for JXTA-Overlay.

each module has its methods for accessing private keys
(such as the special GUI integrated into the operating
system in the the Windows CryptoAPI [24]). The
Crypto Manager is completely modular and accepts
different implementations, according to the needs of
the specific cryptographic module being used for any
particular deployment of JXTA-based application. This
is in contrast with PSE, as exposed in section 3,
which is constrained to a single type of cryptographic
modules, java keystores.

• The Secure Adv defines the secure advertisement for-
mat, providing a method for key transport and addi-
tional fields related to its signature, as defined in [19].

• The Adv Signer manages JXTA advertisement signature
and validation by interacting with the Crypto Manager.
Secure advertisement management is provided in a
modular way to both JXTA and JXTA-Overlay without
the need to modify the standard JXTA libraries.

The JXTA-Overlay specific modules follow:

• The Secure Manager is the common interface to all ad-
ditional security capabilities within the JXTA-Overlay
Control Module, operating as a single entry point for
all secure services. This module provides and initializes
the Crypto Manager implementation for each instance
of JXTA-Overlay.

• Finally, the Secure Functions and Primitives Mod-
ules just extend the base Broker and Client Modules,
discussed in subsection 2.2, providing a set of addi-
tional primitives and functions which take into account
security considerations. As far as secure framework
management is concerned, the end-user application
developer just has to choose which primitives to use,
just as in standard JXTA-Overlay. The secure version
of JXTA-Overlay’s primitives do not replace JXTA-
Overlay’s original non-secure versions, but just comple-
ment them, leaving the final choice on which primitives
to use to the end-user application developer.

218

5. Conclusions

A security framework proposal for JXTA-Overlay been
presented. Apart from providing a baseline for the deploy-
ment of security mechanisms in JXTA-Overlay, which up
to now had not been considered into its design, the main
contributions of the chosen approach are threefold.

First of all, an effective framework for secure key distribu-
tion is provided, by securing pipe advertisements and using
standard JXTA-Overlay procedures for key publication and
update, guaranteeing that keys are always available whenever
messages must be exchanged between peers. As a result key
distribution becomes invisible to the Control Module and
both client peers which use the secure framework and those
who don’t may coexist in the same JXTA-Overlay network,
in contrast with JXTA’s current approaches.

Second, key authenticity is provided by a combination
of CBIDs and signed credentials. The net results of this
approach is that, on one hand, those cases where no end-user
intervention is necessary can be resolved in a lightweight
manner using CBID’s. However, on the other hand, it is
also possible to provide meaningful information to the end-
user in those circumstances where its intervention may be
necessary or helpful, by providing a user credential.

Finally, the proposed framework is completely modular
and can be adapted to different scenarios (different types
of credentials or cryptographic modules) suitable to the
application developers’ needs. This is also an improvement
over the security mechanisms provided by JXTA, which
tie end-user applications to a very specific credential and
cryptographic module type. In our implementation, RSA
public/private keys are used, and credentials are issued in
the form of X509 certificates, but the system accepts any
keystore and credential type in a modular way via different
CryptoManager implementations.

Further work includes using the proposed security frame-
work to define secure primitives for those interactions which
are deemed sensitive to attacks, in a manner that they
complement existing ones, but not forcibly replace them.
Of special note are those of the executable set of primitives,
related to remote code execution.

References

[1] SUN Microsystems, “Project JXTA”, 2001, http://www.jxta.
org.

[2] F. Xhafa, R. Fernandez, T. Daradoumis, L. Barolli, and
S. Caballe, “Improvement of JXTA protocols for supporting
reliable distributed applications in P2P systems”, in Inter-
national Conference on Network-Based Information Systems
(NBiS), 2007, pp. 345–354.

[3] SUN Microsystems, “JXTA v2.0 protocols specification”,
2007, https://jxta-spec.dev.java.net/nonav/JXTAProtocols.
html.

[4] G. Combs, “Wireshark”, 1998, http://www.wireshark.org/.

[5] D. Sax, “DNS spoofing (malicious cache poisoning)”, 2003,
http://www.sans.org/rr/firewall/DNS spoof.php.

[6] J. Arnedo-Moreno and J. Herrera-Joancomartı́, “A survey
on security in JXTA applications”, Journal of Systems and
Software, To be published (accepted, in press). 2009.

[7] B. Yeager, “Enterprise strength security on a JXTA P2P
network”, Proceedings of the 3rd International Conference
on Peer-to-Peer Computing (P2P’03), 2003.

[8] M. Wahl, T. Howes, and S. Kille, “Lightweight directory
access protocol (v3)”, 1997, http://www.ietf.org/rfc/rfc2251.
txt.

[9] L. Kawulok, K. Zielinski, and M. Jaeschke, “Trusted group
membership service for jxta”, in Computational Science
(ICCS’04), 2004, Lecture Notes in Computer Science Volume
3038.

[10] W. Simpson, “PPP challenge handshake authentication pro-
tocol (chap)”, 1996, http://tools.ietf.org/html/rfc1994.

[11] L. Yunhao and H. Jinpeng, “Access control in peer-to-
peer collaborative systems”, First International Workshop on
Mobility in Peer-to-Peer Systems (MPPS), pp. 835–840, 2005.

[12] M. Amoretti, M. Bisi, F. Zanichelli, and G. Conte, “Intro-
ducing secure peer groups in SP2A”, 2005, pp. 62–69.

[13] “JXTA 2.5 RC1”, June 2007, http://download.java.net/jxta/
build.

[14] T. Dierks and C. Allen, “IETF RFC 2246: The TLS Protocol
Version 1.0”, 1999, http://www.ietf.org/rfc/rfc2246.txt.

[15] D. Bailly, “CBJX: Crypto-based jxta (an internship report)”,
July 2002.

[16] CCITT, “The directory authentication framework. recommen-
dation”, 1988.

[17] SUN Microsystems, “Java cryptography architecture
(JCA)”, 2008, http://java.sun.com/javase/6/docs/technotes/
guides/security/crypto/CryptoSpec.html.

[18] Ed. S. Josefsson, “IETF RFC 3548: the base16, base32,
and base64 data encodings”, 2003, http://www.ietf.org/rfc/
rfc3548.txt.

[19] J. Arnedo-Moreno and J. Herrera-Joancomartı́, “Persistent
interoperable security for jxta”, in Proceedings of the Second
International Workshop on P2P, Parallel, Grid and Internet
Computing (3PGIC) 2008. 2008, pp. 354–359, IEEEPress.

[20] W3C, “XML-signature syntax and processing”, 2002.

[21] NIST, “Validated FIPS 140-1 and FIPS 140-2 cryptographic
modules”, 2009.

[22] B. Kaliski and J. Staddon, “PKCS#1: RSA cryptography
specifications. version 2.0”, 1998.

[23] T. Aura, “Cryptographically generated adresses (CGA)”, http:
//www.ietf.org/rfc/rfc3972.txt.

[24] Microsoft, “MSDN library. cryptography”, 2007.

219

