
November 2017

Facoltà di Ingegneria Informatica Facultat d’Informàtica de Barcelona

MASTER

IN

INNOVATION AND RESEARCH IN

INFORMATICS

SEMANTIC STREAM COMPUTING FOR LARGE DATA-SET
ANALYTICS

Supervisors: Candidate:

Prof. Pierluigi Ritrovato Andrea Giordano

Prof. Fatos Xhafa

Academic Year 2016/2017

Abstract

Today, one of the most interesting research fields in IT industries is the quest

of software able to deal efficiently with Big Data and taking advantages

coming from the use of applications which produce them. Some of them

are so performant that are largely used from the most important Big Data

dealing companies in the world like Netflix, Facebook and Google. A side

aspect but not the least important is tied to the infrastructures generally

used in conjunction with these technologies called Cloud computing which

exploits the power of several, usually a lot of, physical machines to perform

very complex task with high performances outcome.

In this thesis firstly we will study Big Data panorama as a whole, espe-

cially about their spread in the IT industries and in healthcare, where data

are generated at an extremely high rate and the use of computer science can

save or improve lives; moreover, the challenges and a vision of the potential

uses of them were rapidly covered together with a view on so-called wear-

ables: new sensors applied on clothes or directly on the skin of people which

already are revolutionizing our lives. In this dissertation the Introduction,

the chapter 2 are dedicated to these subjects.

The aim of this project was to design and develop a system composed of

a cluster intended for medical use where the core is a real-time detection of

anomalous data originated by wearable sensors. A lot of papers and technical

reports of scientific community were consulted to investigate the State of the

Art of Big Data handling technologies: studying their abilities and properties,

finding strengths and weakness of each one and comparing them in order to

choose the most adequate set of software to achieve the aim of the project.

Therefore, an original architecture was designed assembling several tech-

nologies and taking into account requirements and targets to reach: every

design choice was justified and a particular attention was paid to assure the

essential IT properties of modularity and simplicity without giving up to

performances. In this part the sections 5.3 - 5.6 present the involved devices

and some contributes brought to already existing tools; additionally, an orig-

inal approach to handle semantic-enriched data streams is illustrated, taking

inspiration from an innovative way submitted at the latest ISWC confer-

ence. Furthermore, the document presents the development of a prototype

based on the designed system and shows the outcomes of some experiments

performed on it: these one concern resource’s usage in different operating

conditions on the nodes of the cluster. In the chapter 5 are also showed the

results obtained using the employed anomaly detection algorithm.

Finally, Future works proposes potential improvements adding a semantic

enrichment to the system in order to reach higher achievements about medical

diagnosis and comprehension of data. The chapter 8 section lists the most

celeb existent technologies to do it and shows how their integration with the

presented system can provide substantial advantages in Healthcare as well as

illustrates obstacles and challenges to overcome by presenting a good starting

point to implement further developments.

Contents

1 Introduction 1

2 Problem statement 6

3 Objectives and project scope 9

4 State of the art 11

4.1 Batch computing vs Stream computing 11

4.2 Distributed computing technologies 13

4.2.1 Apache Kafka . 14

4.2.2 Apache Hadoop . 16

4.2.3 Apache Spark . 17

4.2.4 Apache Storm . 18

4.2.5 Apache Flink . 20

4.2.6 Comparison . 21

4.3 Storage layer . 24

4.3.1 Apache Cassandra . 25

4.3.2 Apache HBase . 26

4.3.3 HDFS . 27

4.3.4 Comparison . 27

4.4 Real-time anomaly detection 30

4.4.1 Numenta HTM . 31

4.5 Semantic web . 35

4.5.1 Resource Description Framework 37

4.5.2 Resource Description Framework Stream 38

4.5.3 TripleWave . 40

5 Architecture 41

5.1 Problem definition and requirements 42

5.1.1 Functional requirements 44

5.1.2 Non-Functional requirements 45

5.2 Overview . 47

5.3 Sensing subsystem . 49

5.3.1 REALDISP Dataset 49

5.3.2 MQTT . 51

5.4 Data preprocessing . 52

5.4.1 Raspberry Pi 3 . 52

5.4.2 TripleWave approach 54

5.5 Cluster processing . 56

5.5.1 Kafka cluster . 57

5.5.2 Flink cluster . 60

5.5.3 Data stream output consistency 63

5.6 Data persistence . 65

5.6.1 Cassandra cluster . 65

5.6.2 Cassandra data modeling 69

6 Experimental study 73

6.1 Computational infrastructure 73

6.2 Adopted infrastructure . 73

6.3 Testing and evaluation . 76

6.3.1 Nodes performance . 77

6.3.2 HTM results . 113

6.4 Summative evaluation . 123

7 Conclusions 126

8 Future works 128

Acronyms

Glossary of Terms

References

List of Tables

4.1 Brief comparison of main distributed computing frameworks . 24

4.2 General comparison between Cassandra and HBase 30

4.3 Performance comparison for most famous real-time anomaly

detection. The "perfect" line represents the ideal detector [22]. 35

5.1 Types of sensors. "Codename" column shows the codename

employed in script to refer the specific values. 49

6.1 Details about nodes composing the adopted infrastructure. . . 74

6.2 List of the software installed on specific nodes. 77

6.3 Input and output produced throughputs with an ingestion fre-

quency of 50 Hz. 79

6.4 The configuration chosen for each Flink node 82

6.5 RAM memory consumption expressed in percentage respect to

the total amount available (2 GB). 97

6.6 Input and output produced throughputs with an ingestion fre-

quency of 25 Hz. 101

6.7 Input and output produced throughputs with an ingestion fre-

quency of 15 Hz. 107

6.8 The average data loss in the system. 113

6.9 Comparison of the elaboration time required to compute a sin-

gle record with several network resolutions. 116

List of Figures

4.1 Potential architecture to perform batch and streaming comput-

ing simultaneously [23]. 12

4.2 Apache Kafka role in a typical distributed computing system

[55]. 15

4.3 Three ways to implement Apache Spark framework. Starting

from the left: Standalone mode on HDFS infrastructure, on

top of a YARN manager, on top of a pre-existing distribution

based on Map Reduce system [12]. 18

4.4 Architecture of Apache Storm. Spouts are the sources while

Bolts are processing nodes. [60] 19

4.5 Performance comparison between Flink and Storm. The for-

mer shows an higher throughput while Storm reaches better

latency. [31] . 23

4.6 Comparison between Cassandra and HBase about operations-

per second when cluster’s node number varying. Data from

[29] . 29

4.7 The role of HTM in a real-time anomaly detection algorithm

[22]. 32

4.8 The previously presented algorithm can be adapted in a multi-

ple stream scenario [22]. 34

4.9 On top is represented a typical RDF triple. Below there is an

RDF semantic graph. 38

4.10 TripleWave framework [15]. 40

5.1 High level architecture of designed system. 47

5.2 An example from Left calf accelerometer which measures the

acceleration value on axes x-y-z. 50

5.3 Node-Red environment designed on RPI3. 54

5.4 Sample of produced JSON-LD. 56

5.5 Basic schema of Apache Flink architecture [6]. 61

5.6 Topology of a Cassandra cluster. In the figure the ring designed

in this project is displayed . 66

5.7 Table used to provide efficient reads for queries A and C . . . 71

5.8 Table used to provide efficient reads for query B 71

6.1 In the picture the designed architecture is depicted. Starting

from the left: structure of kafka brokers, Flink’s cluster and

Cassandra system . 74

6.2 Schema of the adopted infrastructure. The leftmost Flink node

is the Job Manager which fetches data from the Kafka broker

and distributes the load through the Task Managers (even to

itself since it is a Task Manager also) which are responsible of

publishing data to the Cassandra’s database. 76

6.3 The left side shows the CPU utilization while on the right we

can see the memory consumption. On the y-axes there is the

usage percentage while on the x-axes the time is expressed in

seconds. 80

6.4 The CPU usage for the node giordano-2-2-100-1 which hosts

both Job Manager and Task Manager 86

6.5 The CPU usage for the other Flink nodes. 87

6.6 The Kafka CPU usage. On the y-axe the usage percentage

while on the x-axe the time is expressed in seconds. 89

6.7 The RAM memory employment (on the left) and the disk space

depletion (on the right). On the y-axe of the rightmost figure

the disk amount is expressed in MB while on the x-axe the time

is expressed in seconds. 90

6.8 The CPU usage of the Job/Task Manager of the Flink clus-

ter with 6 streams ingested towards it. On x-axe the time is

expressed in seconds. The dashed vertical line represents the

instant when the streams end. 92

6.9 The 2 Flink nodes and their CPU usage expressed in percent-

age. On x-axe the time is expressed in seconds. The dashed

vertical line represents the time when the streams end. 93

6.10 The second experiment with an ingestion frequency of 50 Hz

causes an appreciable increment in Kafka CPU usage. 94

6.11 On the left the CPU usage for the Cassandra node in the first

experiment. On the other side the second one is showed. On

x-axe the time is expressed in seconds. 95

6.12 The bars represent the average values registered experimenting

with an increasing number of sensors. 98

6.13 The CPU and memory usage on Raspberry Pi with an inges-

tion rate of 25 Hz. 102

6.14 The CPU graph about Apache Kafka in the second experi-

ments. 103

6.15 The CPU graph of the first node of the Flink cluster. The

dashed line represents the instant when the stream ends. . . . 104

6.16 The CPU graph about the other two Task Managers. The

dashed line represents the instant when the stream ends. . . . 105

6.17 The CPU graph about the Cassandra database within the sec-

ond experiment. 106

6.18 The graph about Raspberry’s CPU and memory consumption

with an ingestion rate of 15 Hz. 108

6.19 The graph about Kafka CPU usage with an ingestion rate of

15 Hz. 109

6.20 The CPU graph about the Cassandra database within the third

experiment. 110

6.21 The usage caused by the job on the first node of the Flink

cluster, finally computed in real-time. 111

6.22 The usage caused by the job on the 2 last node of the Flink

cluster, finally computed in real-time. 112

6.23 An abstract of the class Harness.AnomalyNetwork which rep-

resents the adopted anomaly network. 115

6.24 A summary of the consequences of using a network with dif-

ferent resolution value. 118

6.25 The first 20.000 records of the dataset. 119

6.26 Anomaly peaks found in the first 20.000. 120

6.27 The first 50.000 records of the dataset. 121

6.28 Anomaly peaks found in the first 50.000 records 122

Chapter 1

Introduction

In the last years the term "Big Data" was largely used in IT environment. In

order to better clarify its meaning we report the Oxford Dictionary definition

of Big Data:

"Extremely large data sets that may be analyzed computationally to

reveal patterns, trends, and associations, especially relating to human

behaviour and interactions"

while US Congress specifies it as [13]:

"large volumes of high velocity, complex, and variable data that require

advanced techniques and technologies to enable the capture, storage,

distribution, management and analysis of the information"

Hence the use of advanced technologies is essential to deal with Big Data:

retrieving data generated with an high rate and then analyze them in real-

time or without loss is a complex task often unbearable with a single com-

mon server or using typical software. Lately, Big Data dealing techniques

are mixed with another raising field of computer science: the Semantic web

1

technologies. Semantic data analysis adds meanings to raw, and sometimes

apparently useless, data pulled out from sensors and other devices that would

be otherwise discarded and unused: so, semantic technology allows to mul-

tiply the already huge amount of knowledge extracted from the fetched Big

Data.

In particular in this thesis we want to investigate the case of use repre-

sented by the healthcare, where Big Data handling and semantic technologies

help to improve level of medical treatments and to save lives. The current

worldwide healthcare situation represents both a big challenge and a great

opportunity for IT industries, which operate within Big Data. Definitely,

the need for better medical instruments of hospitals and clinics meets the

rising technology capabilities of engineering and computer science particu-

larly. Since the healthcare is a massive producer’s place of data, it is one

of the most important fields for the application of Big Data technologies:

in 2011 already US Healthcare generated 150 exabytes of data, so it is rea-

sonable to think that this amount can easily reach the incredible number of

some yottabytes [13]. No one non-specialized infrastructure could be able to

examine this impressive volume of data in a reasonable timeframe so there

is a strong need for new software architectures to handle it. Accordingly

to more recent stats in 2015 the 69% of US citizens track their health with

various sensors while the same stat in UK reaches the 70% [25]. Moreover,

in [26] is reported that the number of healthcare IT devices (without con-

sidering wearable sensors) reached 95 millions of units in 2015 whereas a

growth up to 646 millions in 2020 is estimated: again, an adequate Big Data

infrastructure has to manage a dramatic number of data producers and con-

sumers as well as a big amount of informations. Generally, dealing with

Big Data is a very complex task but the difficulties faced by a system raise

2

when the computation has to be performed with real-time requirements: in

this case applications have to fetch, evaluate and in some case store data

within few sub-seconds without errors. Most modern hospitals are becoming

increasingly instrumented with new technologies: every beds in critical care

units have lots of sensors to measure vital signs like heart rate, breath rate,

blood pressure and other devices producing large volumes of physiological

data. One of the most interesting category of sensing devices is composed

of wearable sensors to monitor human signs as well as geographical body

position, arms orientation and every secondary information could be extract

from these parameters. Typical wearables are wristbands, headsets, smart

glasses or even clothes but also smartphone belong to this family: according

to [21] just in 2014 15 million wearable smart devices were sold.

The main subjects who would take advantages applying these technologies

are the patients: unfortunately, despite the recent improvements, today in

a typical hospital scenario health conditions of patients are checked just few

times in a day wasting precious time to early react to any symptoms: in fact,

hand-made measurement of vital parameters obviously does not permit to

do more. Clearly this situation is no more bearable: indeed, preventing and

healing diseases beforehand means having the opportunity to free up beds

faster and to serve more patients. In [16] is highlighted as the vast majority

of data collected by monitoring systems is transient whereas in the other

cases they are simply not adequately employed: in fact, these data often

are just archived in analogical ways as support for clinicians’ decision or for

statistical purposes. We talk about petabytes of very useful underestimated

- or worse discarded - data.

Big Data technologies can help healthcare not only in "stream" appli-

cations but also for "offline" data elaborations, for instance to evaluate the

3

impact of medicine on long term or in other fields for statistical administra-

tive analysis like medical prescriptions and insurance. Every type of data

can be analyzed and used to improve patient’s experience. Again, these

technology outcomes can take advantage of a vast amount of historical data;

they offer hints about which drugs fit better a specific category of people or

estimate post-surgery recovery time needed for particular subjects.

The advantages of using Big Data in healthcare are not limited to the

single patients: potential benefits include a greater way to perform medi-

cal research with more data and studying population’s health over years,

predicting epidemic spreads and generally improving quality of life.

In addition to the obvious reasons related to the increase of quality life for

people and patients in particular, there are also economic advantages deriving

from the analysis of Big Data : indeed, as IT industries also Healthcare

changes rapidly on time and today hospitals and clinics are not anymore

only places of care but also business opportunities for private companies and

government; a good-working hospital means patients have good health and,

in most cases, this means great incomes for private companies and public

entities. According to [16] Big Data technologies in healthcare provide more

than 300 billion of dollars in savings for year just in United States; they

reduce waste of money and time in research increasing development of faster

and more targeted pipelines in drugs and devices.

This thesis wants to propose a solution to deal with Big Data in a health-

care context. In particular the aim is to create a modular system which can

be integrated in pre-existing ones or used as starting point to deploy a more

complex architecture. The central feature of the system should be able to de-

tect anomalous values from the data flow originating by wearables attached

to subjects involved in the system. The data coming from the sensors should

4

be quickly fetched and analyzed in real-time in order to give the opportu-

nity to trigger reactions in case of emergency; finally they should be stored

in database to provide further consultations or elaboration, maybe in offline

manner. Furthermore, the system should follow semantic web convention in

order to make it adherent to the state of the art of Big Data technologies.

To date a large number of researchers have reported a number of sys-

tems to analyze physiological data streams but not so many of them perform

pattern detection or online real-time processing. For instance, the scenario

described in [30] remotely monitors patients using data from ECG and ac-

celerometers: the application reports to clinicians periods of elevated heart

rate filtering expected critical situations, during a run for example.

The remainder of the thesis is organized in following way: firstly in chap-

ters 2 and 3 the illustrated problem and proposed solution to face it are deep-

ened. In chapter 4 the most important technologies currently employed in

distributed computing are compared in order to justify the technical choices

adopted in design process. Then, chapter 5 provides details about system’s

implementation, it describes applied technologies and employed technical ap-

proaches. Finally, in order to evaluate designed system some test and exper-

imentation are showed in chapter 6 while in chapter 8 further opportunities

to extend this architecture are proposed.

5

Chapter 2

Problem statement

In Introduction we have already addressed briefly the problem faced in this

thesis; this section want to go into details to deepen characteristics and issues.

The challenges concerning Big Data handling do not stop on the amount of

data management, there are also problems about the type of data, which

are heterogeneous, their speed generation and the search for a way to store

this volume of data. As already seen healthcare is a perfect trial field to

experiment Big Data technologies because it presents exactly the challenges

of Big Data applications: the huge volume of data since in a typical hospital

there are hundreds of patients at the same time, then heterogeneous data

since there are multiple sensors which produce different kinds of information,

data generation rate because in order to read efficiently vital signs these

devices have to operate at high frequency and finally veracity since sensors

can transmit misleading data due to low batteries or noise or other factors.

Historically scientific community agrees about the definition of 3 major

issues - called V’s - in Big Data analytics. Storing a vast amount of data,

around hundreds of terabytes, in a secure way is a challenge of primary im-

portance and surely it represents the first of these V’s, known as Volume.

6

This issue requests a novel approach to explore new techniques for spreading

storage whereas it should also offers efficient data retrieval: some advances

in this direction are already guaranteed by the use of cloud computing in-

frastructures. The second V is derived directly from the former and it is

the Velocity. Indeed, Big Data need great speed in retrieving, processing

and publishing of new data, especially in applications where data incoming

rates is extremely high, as in the case of healthcare. The third major issue

is the Variety because incoming data from different sources can have differ-

ent format - structured or unstructured - of plaintext or graph-based or also

relational-like data: Big Data applications have to handle, link and process

them and also it is necessary to use smart technologies for merging all these

kinds of data. Actually some researchers, e.g. [19], consider a forth char-

acteristic of Big Data: Veracity. It is also called data assurance and it is

a measurement of credibility of data: this feature is particularly important

in some applications where data integrity and reliability is crucial, like in

healthcare.

In [20] other Big Data aspects are described. In particular, there are some

challenges about Big Data application lifecycle regarding the three phases of

data elaboration: acquisition, cleaning and integration. Acquired raw data

represent a massive input stream generated by hundreds, thousands or also

million of IoT sources. Hence, an important step could be filter them on-

fly and extracting useful information from redundant and noisy flow. Data

cleaning instead concerns issues about erroneous or uncertain data and it is

related to Veracity property: addressing this problem requires online error

detection and preferably data correction. Finally, data integration is one of

the biggest issue in a Big Data scenario. In IoT there are lots of different

sources which generate different type of data and organizing and extracting

7

useful information from them efficiently is challenging.

Most sensors employed in healthcare are wearables which operate at high

frequency, even dozens of reads each second [24]. However they do not offer

great processing performance so data analysis has to be performed necessarily

on remote systems, depending on complexity, amount of data or application

requirements. Again, the author of [20] highlights how centralized servers

- as much as powerful they may be - cannot handle all these affairs so a

distributed system composed of a number of machines is usually required:

each node of the system will be responsible for one or more of above tasks

and together they contribute to complete the whole job. In this case the main

challenge is the Timeliness because distributing data across several machines

means they are not all available in local so they need to be moved rapidly

and with minimal latency. Last, but not least problem is finding a way to

execute real-time analysis of data, automatic annotation and integration with

existing ontologies: the latter process usually requires appropriate specialized

softwares, very efficient codes and well-equipped machines.

8

Chapter 3

Objectives and project scope

As we have seen, typical Big Data characteristics are high velocity data

generation, large variety, veracity and huge data volume: hence, there is a

strong need for solutions to analyze these data. Generally, managing large

amounts of data is one of the most important challenges in computer science

and engineering; the progress in miniaturization technology, the increase of

the available bandwidth and the progressive reduction of costs boosted the

production of millions of new devices like environment sensors, smartphones,

wearables and so on.

Hospitals and clinics are some of the most important data producers

thanks to their huge amount of sources: the patients. They represent a

fundamental trial field for emerging Big Data technologies. Simultaneously

healthcare represents the typical scenario where wearables can be found:

they can be employed to monitor physiological parameters possibly raising

alarms to warn medical staff without human intervention and potentially sav-

ing patients’ lives. Reconsidering observation by [16] is evident that many

diseases could be detected early and with more benefits if patients were mon-

itored along 24 hours. In [19] is described the example of Acute Hypotensive

9

Episodes, a disease that needs continuous monitoring because it presents

sudden critical events with tragic consequences. Moreover, sometimes nurses

and clinicians cannot perceive every symptoms because they are silent or not

visible to the human eye. Without the right level of technological support,

medical practitioners rely exclusively on their experience whereas with a con-

tinuous analysis of vital signs, an automated system can help clinicians’ work

allowing them to focus on more important aspects like posterior diagnosis.

Today, IT industry has to assist healthcare improving medical experience

and saving more lives more efficiently and with minor costs. This thesis aims

to investigate a particular scenario composed of a lot of sensors worn by a

group of patients: these wearables produce unbounded data flows and the

purpose is to design an application able to detect abnormal values within

them. Data are ingested at high frequency, analyzed and stored safely in

a permanent storage to be available for further evaluations and knowledge

extraction: all these operations must be executed in real-time so the in-

frastructure has to face with Big Data challenges. Also, the system has to

be scalable according to the number of subjects involved without requiring

architectural changes: moreover, it has to integrate the most recent conven-

tions in semantic web context and it must be easily expandable for future

improvements allowing potential replacements of passed technologies.

10

Chapter 4

State of the art

4.1 Batch computing vs Stream computing

Big Data analytics can be performed mainly in two different ways: batch

computing and stream computing. Usually these techniques are used in dis-

tributed systems like cluster of computers or even with a network of smaller

devices but it is possible also imagine an architecture with one single node

which has the responsibility of the entire analytical process. Sometimes batch

and stream computing are used together in a parallel or serial infrastructure

to enhance the powerful of analysis and to extract more relevant information.

This is the case of the framework designed in [23] illustrated in Figure 4.1,

where two distributed computing systems run simultaneously on top of a

shared broker which virtualizes many sensing sources.

Usually we refer to the batch processing as the automatic execution of a

complex software or process on a large series of input data, for instance log

computation of a long business task at the end of working day. Generally,

batch computing involves interrelated data so processing results are obtained

aggregating all the input data. Stream processing is slightly different: we

11

Figure 4.1: Potential architecture to perform batch and streaming computing
simultaneously [23].

have a continuous stream of data and the crucial idea is to process it strictly

in real-time. Obviously, in this situation the processing cannot use every

time the entire set of data because it could not exist; instead there is a

continuous and infinite data flow of events that happens as the system runs.

An acceptable latency in batch computation is in terms of minutes while

for stream computation we distinguish between near-real-time and real-time

computation: to achieve the latter, the latency must be around sub-seconds.

Essentially, in a stream architecture the processing of the current data flow

has to be completed before the income of the next flow’s event; indeed, in

stream computing the emphasis is on the velocity of data more than the

elaborated record amount. Sometimes the context drives the choice towards

batch or stream computing approach: if the final application requires a real-

time (or low-latency) taken decision then the use of a stream computing

infrastructure it will be mandatory. Some scientists talk about Big Data

Stream Computing as

12

"a system which provides real-time computing, high throughput dis-

tributed messages and low latency processing with massively parallel

processing architecture."[23]

Finally in [2] are described the 8 main characteristics that a RT (i.e. real-

time) Stream Processing architecture has to provide to handle Big Data

streams. Ideally, these kind of systems have to process data on-the-fly as

they arrive and especially pull them when they are generated without any

polling mechanism. Another important rule concern the flexibility against

potentially imperfections and holes in continuous data flows: they do not

have to affect a significant information retrieval from the stream Finally, also

the fault tolerance of the system is important: if a processor fails, the system

must avoid data loss and should be able to move the process towards others

machines to continue it.

4.2 Distributed computing technologies

The recent complexity growth of problems led the IT industries to believe

there was a need for a new more powerful processing architecture able to take

on with incoming hard challenges and with distributed computing. Divide

and Conquer technique seems to be the best solving approach, in terms of

costs, when there are very large problems with different data types, many

records and high throughput; On the other hand, using a parallel method-

ology raises many other issues about where and how to split the problem

efficiently.

Actually, there are many other approaches to parallelize computing like

clustering, cloud networking and Grid computing. In this thesis, we will focus

on the former: it assumes there are many commodity-hardware computers

13

with a shared task and same or similar hardware and software equipment.

Every nodes in the cluster are coupled with the others using high-velocity

linkages (e.g. Gigabit Ethernet). They have to solve an assigned subtask in

order to complete the main cluster job: at the end the computed partial re-

sults are combined to get the final outcome. Grid computing is quite different

from cluster one even through the general approach is similar: the "group"

is composed of many machines which are loosely connected each other so

usually they do not share info. Generally, these workstations are spread in

different geographic places although they participate to solve the same task.

Today clustering computing is a mature technology which offers: horizon-

tal scaling to easily add new nodes in the cluster, fault tolerance properties to

safe data in case nodes go down and high performance processing using smart

load balancing and splitting the job through the nodes. This scenario has to

face several obstacles and it needs solutions which can overtake challenges

like the system reliability with hundreds of nodes, data security assurance in

every circumstances and the execution of complex jobs proficiently. In the

remainder of this chapter, the most important technologies in distributed

computing are described.

4.2.1 Apache Kafka

Apache Kafka is one of the most important top Apache framework. It is a

publish-subscribe distributed messaging system designed to use in Cluster

computing context and a high throughput system thanks to its performance,

scalability, and fault tolerance property. Kafka originated as a LinkedIn inter-

nal project and later released as open source in 2011 under Apache umbrella.

Jay Kreps, one of the creator and main developer in LinkedIn, described

Kafka as a central hub of data streams. Indeed, Kafka often has a central

14

role in computing architecture, both stream and offline, because it represents

a safe dock where retrieving, sending, storing data. Moreover, it can exchange

data with other machines of the platform without worrying about replica-

tion issues or connection management with specific other devices which could

be relational databases, NoSql databases or perhaps another distributed en-

vironment: Kreps names this problem as data integration. In Figure 4.2 a

potential simplified scenario where Kafka can be involved is illustrated . It

should be noted that there are several technologies that operate with different

latencies and very different purposes. Like other publish-subscribe messaging

systems, Kafka uses topics to provide an access point for data producers and

consumers. In particular, Kafka gives the opportunity to establish and main-

tain simultaneously a large number of topics: as the data arrive, it stores and

replicates them in order to provide offline consumption by topic subscribers

so it fits perfectly stream requirements where producers could be faster in

data generation respect to consumers in data evaluation.

Figure 4.2: Apache Kafka role in a typical distributed computing system [55].

Apache Kafka is one of the most important messaging system in high

performance computing context mainly for its stability: it presents great

15

performances even with many TB of stored data and it can bear over 2

million writes each second. One of the main reason to use Kafka respect to

its competitors is the large support, documentation and full compatibility

with the main distributed computing platforms like Apache Hadoop, Spark,

Storm and Flink.

4.2.2 Apache Hadoop

Hadoop is an open source Apache project designed to execute batch jobs in

distributed way on large clusters of commodity hardware. The framework is

one of the most important and it is historically used from celeb IT companies

like Facebook, Google, Yahoo: it offers a scalable and fault tolerant system

for Big Data applications. The main Hadoop components are MapReduce,

which represents a processing paradigm, Apache YARN that provides jobs

scheduling and HDFS, a distributed file system. Hadoop is designed to run

on commodity hardware and it follows the MapReduce processing model with

a master-slave architecture where the master node is named NameNode. As

data blocks are submitted, Hadoop splits them in smaller pieces and then

spread them to slaves. Usually data chunks are replicated in many nodes so

Hadoop can guarantee the integrity of data also if a node fails. MapReduce is

a programming way designed to face efficiently Big Data on many machines

through two steps called Map and Reduce: in the former phase data are pro-

cessed while in Reduce step a result aggregation is performed. Usually, each

slave runs a different MapReduce instance. This programming model has

many implementations in different languages, open source or not, performed

by Google, Yahoo and Apache. HDFS is the default Hadoop file system but

it is used also with other frameworks. Its goal is providing high aggregate

throughput moving and spreading the computation where data are located;

16

other responsibilities are node failure recovery and data replication. HDFS

is deepened in one of the following sections.

4.2.3 Apache Spark

Apache Spark is an open source framework designed for cluster computing

of Big Data. Its develop started in 2014 at University of Berkeley in order to

create a paradigm more powerful and faster than MapReduce: actually Spark

paradigm seems to be hundred times faster in some applications [12]. Spark

is designed to cover a wide range of workloads such as batch and stream-

ing applications, iterative algorithms and interactive queries. Spark provides

an application programming interface based on a data structure called Re-

silient Distributed Dataset, a set of data items distributed over a cluster of

commodity hardware. It offers a form of distributed shared memory which

facilitates the execution of iterative algorithms and repeated data querying:

this allows to reach a significant improvement in latency respect to Hadoop

implementations. It should be noted that Spark requires either a cluster

manager like Hadoop YARN, and a storage system, for example HDFS or a

NoSQL database.

17

Figure 4.3: Three ways to implement Apache Spark framework. Starting
from the left: Standalone mode on HDFS infrastructure, on top of a YARN
manager, on top of a pre-existing distribution based on Map Reduce system
[12].

At foundation of Spark there is a component named Spark Core which

provides job-dispatching and all cluster management functions through an

application programming interface centered on RDD. In order to perform

streaming analytics Spark offers Spark Streaming, an extension built on top

of Spark Core; despite there are other stream processor employable on top of

Spark, the Streaming extension is fully integrated in Spark universe and it

supports important consumers and brokers like Kafka, Flume and TCP/IP

sockets. Actually, Spark Streaming does not provide a real-time stream anal-

ysis, instead it splits data in very small pieces and performs batch elaboration

on them: this technique is called micro-batching and allows, without changes

in Spark paradigm, to obtain near-real-time performance.

4.2.4 Apache Storm

The entire IT community agrees to consider Apache Storm as the stream

version of Apache Hadoop. Actually, Storm achieves the same objectives of

the latter in a distinct scenario and with a different infrastructure topology,

18

i.e with a different computational model.

Apache Storm is an open source real-time distributed system designed in

2011 to handle Big Data streams and today it is still used by the greatest IT

companies in the world, like Twitter and Facebook. It is very appreciated also

for the flexibility provided by the many available programming languages.

Essentially, Storm provides a set of primitives for real-time computing and

exposes an architecture (Figure 4.4) based on two type of nodes: Bolts and

Spouts. As we know, in a streaming scenario there is a continuous unbounded

data flow: in Storm these are caught by Spout nodes. As the data arrive

they inject continuously in the system key-value pairs called tuples so we can

define Spouts as the sources of the framework.

Figure 4.4: Architecture of Apache Storm. Spouts are the sources while Bolts
are processing nodes. [60]

Data are fetched with a pull strategy so the nodes ask for new data and

start to process them autonomously. This approach limits to one the num-

ber of potential points of failure because data can be lost due to a plenty

buffer only on first stage [1]. Bolt nodes are processing elements which re-

ceive raw tuples from Spouts or pre-processed data from other Bolts. The

Storm’s architecture describes a stage-like topology of Bolts nodes designated

to execute a list of tasks which can comprises aggregations, filtering, joins or

custom operations. Like Hadoop, Storm uses a master-slave paradigm: slaves

19

are also called workers and on top of them there are logical supervisors which

periodically exchange messages with the master. It is interesting to note that

also if the master node goes down, all workers can continue computation and

produce outputs; same observation clearly is still valid if a worker fails.

4.2.5 Apache Flink

Apache Flink is an open source platform for distributed streaming and batch

processing deployed in 2010 in Berlin and initially named Stratosphere Project.

Later, in 2014 its name changed in Flink for commercial reason and also be-

cause the term "Flink" - i.e. speed/agile in German - better fits the main

property of the framework, specialized in effective real-time stream comput-

ing. Today, Flink is an open source Apache top project and it is a strong

competitor of Apache Storm and Apache Spark while it is largely used by

some of the most important world companies like Zalando, ResearchGate and

Alibaba Group. The reasons behind the Flink success are the high real-time

throughput and the very low latency during processing; they make Flink one

of the fastest stream processor on the market. Moreover, Flink provides also

a batch processing engine to work on static data.

As reported by the official page, Flink is stateful and fault tolerant with

zero data loss; it can recover from failures while maintaining exactly once ap-

plication state; furthermore it performs large scale processing with thousands

of nodes without affecting throughput and latency. Another great Flink fea-

ture is the support to event time semantic which allows to compute accurate

results over streams also when messages arrive out-of-order. Moreover, Flink

supports flexible windowing on time, count and sessions and even data-driven

one: in this way it can model the reality of the data environment. Like other

distributed systems, Apache Flink can be executed on clusters or on a single

20

machine, in standalone way or on top of YARN or MESOS. In the Flink

Forward Conference in 2015 a research group owned by Bouygues [4] noted

that the framework can handle 500,000 events per second with an end-to-end

latency less than 200 milliseconds: this result was achieved on a small cluster

of 10 nodes with 1GB of memory each.

4.2.6 Comparison

Finding an absolute winner in Big Data processing platform panorama is

impossible. Each one has weakness and strengths respect to the others and a

choice between them can be taken only considering the particular application

to develop. Actually, we can distinguish Hadoop from Spark, Storm and

Flink because the Hadoop goal is to perform batch processing without any

type of streaming analytics: if the application do not present data stream to

analyze, Hadoop maybe is the right choice for its large compatibility with

other software. It has the longest history in IT panorama so it has also the

biggest community and a great stability given by its larger use in the world.

Spark, Storm and Flink can be all together used to perform stream com-

puting but they fit different use cases. Storm has some predefined structures

for Bolts and Spouts so if the requirements match perfectly with them opt-

ing for Storm is a good idea to simplify the development. However, others

aspects have to be considered to choose the right framework, for instance the

latency: Storm and Flink operate in order of sub-seconds, lesser than Spark

because this one does not perform pure stream processing.

Generally, an evaluation between Storm and Spark is difficult because

they provide solutions to slightly different problems: Spark is a general pur-

pose framework for distributed computing and it has both batch and stream

capabilities while Storm is exactly a pure stream computing system. In the

21

same stream context Storm and Spark offer solutions in very distinctive ways

and with different performances. For instance, Spark (with Spark Streaming

extension) does not treat data as a continuous unbounded flow, like Storm,

but it adopts a micro-batching technique to simulate it. On the other hand,

if a potential data loss is not acceptable probably Spark is a better choice

than Storm because the former presents more delivery guarantees.

With only streaming requirements we can evaluate a comparison between

Flink and Storm. Indeed, they are both pure stream processors and they

both have similar pipelined engines to handle stream: anyway, accordingly

to [6] Flink presents better throughput performance. Actually, in [31] a

comparison exposes similar performances for Storm and Flink: the latter

achieves a better throughput while Storm reaches lesser latencies Figure 4.5.

Really, Storm presents very low latency with a - sometimes unacceptable -

trade off on assured level of correctness: it does not provide exactly-once

guarantee and even those which are provided came at a high overhead [4].

On the other hand, Flink provides exactly-once guarantee. Actually, using

Trident extension Storm can provide exactly-once guarantee: unfortunately,

in this case it becomes a micro-batching processor like Spark, affecting its

performances. Finally, Flink has higher-level API compared to Storm, so

application’s development with the latter could be more complicated because

all functionalities need to be manually implemented.

Due to the dual analytic possibilities offered by Flink - batch and stream

processing - a comparison with Spark it is very interesting. Actually, Flink

and Spark are similar just in use cases but they are very different in internals.

Indeed, for streaming processing Spark uses micro-batching while Flink offers

pure streaming analysis. It should be noted that Spark needs a file system

under itself so if the system is based on a pre-existent Hadoop instance,

22

Figure 4.5: Performance comparison between Flink and Storm. The former
shows an higher throughput while Storm reaches better latency. [31]

opting for Spark on top of HDFS is a better choice than building a Flink

instance from scratch.

The choice between these frameworks depends on particular application

requirements and even on context: if we want to extend a Spark instance

with a stream processing infrastructure there are no reason to choose Flink.

However, if a new application requires fast and real-time streaming analysis

and batch computing maybe Flink is the best choice.

23

HADOOP SPARK STORM FLINK

Open Source X X X X

Batch processing X X X

Stream processing Micro batching X X

Exactly once guarantes Trident X

Latency High Medium Very low Low

Throughput High High Low Medium

Fault tolerant X X X X

Kafka supporting X X X X

First release 2011 2014 2011 2015

Community Large Large Medium Medium

Table 4.1: Brief comparison of main distributed computing frameworks

4.3 Storage layer

The storage layer has a primarily importance in a system designed for Big

Data. It has to provide fast and safe access to data from several agents

simultaneously. Unfortunately, the standard RDBMS are not able to face

with Big Data properties of scalability, high performances requirements and

very high volume of data. In fact, Big Data applications has to deal with

petabytes and with large variety of data; moreover, RDBMS usually can-

not scale because they have limited capabilities in adding new nodes and in

redistributing the load automatically when data amount grows or needs a

better management. Furthermore, having good performances with a single

node which has to manage dozen of simultaneous reads and writes is unre-

alistic, mostly because splitting a relational structure in smaller pieces and

spreading them in different nodes is a demanding affair.

On the other hand, in recent years another category of databases started

24

to spread: NoSQL databases, indeed, fit perfectly this scenario and they

answer to Big Data challenges with great performances in high volume data

management and scalability. Therefore, in this context several NoSQL databases

were proposed and many of them have strong integration with the distributed

computing technologies presented in above sections. In the remainder, some

of the most important storage solutions in Big Data context are presented.

4.3.1 Apache Cassandra

Apache Cassandra is a top level open source project designed in 2008 to pro-

vide a high performance persistence layer without using a standard relational

database. Originally Cassandra was developed by Facebook to solve some

problems about an old weird use of MySQL, successively it was published

on Google Code and therefore included in Apache Incubator program; today

Cassandra is used in many Big Data frameworks thanks to its great per-

formance. It belongs to column-oriented database’s family hence it handles

objects made of three values: a key column reference, a timestamp assigned

to the value and the value itself. Cassandra is a distributed NoSQL database

management system useful to work with a huge amount of data and offering

fault tolerance and scalability. It is usually used in clusters of commodity

hardware where data are spread to optimize performances. Every node of

the cluster is identical to others so there are no master units and data are

replicated many times on different nodes to guarantee consistency and to im-

prove read velocity. A Cassandra database is very tunable: there are many

parameters to configure the desired grade of consistency but everyone of these

obviously affects general system’s performances so the administrator has to

found an adequate trade off between velocity and reliability.

Cassandra follows the model of Google’s BigTable so a table could be

25

considered essentially as a multi-dimensional map indexed with keys and

populated by highly structured values of unlimited length. Like BigTable,

columns can be grouped in families similar to the tables of RDBMS model

(indeed in CQL3 families are called tables): anyway they are more flexible

and dynamic than the latter because they has not to be declared at schema

definition time. Finally, Cassandra has linear scale performance so the re-

sponse time increase linearly adding new data; furthermore, it supports many

programming languages and has the own query language: CQL.

4.3.2 Apache HBase

HBase was developed by Google in 2006 and then it was absorbed in Apache

Incubator in order to extend persistence layer for Hadoop. Indeed, HBase

has a strong compatibility with the cited processor and runs on top of HDFS.

Now it is largely adopted in IT industry by companies like Netflix, Adobe

and Google itself because it provides a great fault tolerant way to manage

Big Data. It derives from Google’s BigTable and it is a member of the large

family of column oriented database: the documentation describes it as an

"Open source BigTable implementation" [10]

It can be used in distribute or standalone ways so it is very flexible. Note that

in standalone mode it can be used also without HDFS; instead, in distributed

and pseudo-distributed architectures HDFS is required since there are more

machines to handle. Unlike Cassandra, Apache HBase follows a master-slave

paradigm where the master guarantees the consistence of the cluster, balances

the load and handles node failures while slaves manage I/O requests in the

cluster and towards the distributed file system.

26

In HBase data are modeled in tables, i.e. maps of rows, where each row

represents a key-value pair: similar keys are stored close to each other in order

to improve performances. A column is another model entity: it represents

a type of row’s key; actually a value for a column key can be viewed as a

key-value entry where the key is a timestamp. Like Cassandra, columns can

be organized in families, but in HBase they have to be declared at creation

time.

4.3.3 HDFS

The use of a NoSQL database is not mandatory to deal with Big Data and

HDFS is another efficient way to store data with fault tolerance and consis-

tency guarantees. HDFS is the acronym of Hadoop Distributed File System

so it offers a full integration with Hadoop infrastructure and can be used also

as foundation for other solutions (NoSQL for example). Main characteris-

tics of HDFS are the reliability, the failover recovery mechanism, distributed

data replication, extreme scalability, low cost infrastructure and portability.

Moreover, it moves the computation where data are placed so reaching high

performances.

The HDFS architecture considers a single main node, called NameNode,

containing file’s metadata and many DataNodes where data are stored and

replicated in fixed dimension blocks. Data are organized into files and di-

rectories and they are retrieved from clients directly in DataNodes without

consider NameNodes.

4.3.4 Comparison

The choice of a system is not absolute but it is strictly dependent from the

application we want to develop. The most important thing to consider is the

27

compatibility between all parts of the system: if Hadoop is utilized as batch

processor maybe the most natural choice at storage layer can be HBase or

HDFS because they are fully integrated in its ecosystem. In a comparison

between them we have to consider the performance of both systems: HBase

for example (like others NoSQL databases) allows random reads over data

while HDFS provides only sequential reads and, in a random context, the

latter requires a complexity of O(n), worse than HBase.

Both Cassandra and HBase are NoSQL databases and they share many

characteristics: basically, both databases cannot be manipulated with SQL

instruments, however it is possible to make a comparison relying on perfor-

mances and on various facilities offered to developers. Apache Cassandra

implements CQL, a query language very similar to SQL, which could be very

helpful for developers are migrating from RDBMS. Moreover, Cassandra has

a larger documentation than HBase. Both are distributed databases and

both adopt column oriented paradigm, furthermore they share access data

methodologies. On the other hand Cassandra, accordingly to [8], allows a

better consistency tuning respect to HBase so it offers the greatest control

for developers. About performances, as reported in [29] and in Figure 4.6,

Cassandra beats HBase for number of operations executed per second in

load process context. This effect is highlighted in a scenario with a balanced

number of writes and reads: Cassandra overtakes HBase hundreds times [28].

Moreover, it should be noted that the resulted gap remains also when the

number of nodes involved in the test grows from 1 to 32. Finally, in [1] HBase

is indicated as a database management system optimized for read operations,

while Cassandra is better in a context with many writes.

NoSQL databases are designed to deal with the need of fast data accesses:

indeed, they provide a parallel way to execute reads and writes so they are

28

more indicated than HDFS for Big Data stream and real-time processing,

which is usually used in batch - then slower - computing. To better clarify

the comparison of NoSQL databases, Table 4.2 is provided.

Figure 4.6: Comparison between Cassandra and HBase about operations-per
second when cluster’s node number varying. Data from [29]

29

CASSANDRA HBASE

Open Source X X

Hadoop Supporting X X

No single points-of-failure X

Supported languages 13 8

Optimized operation Write Read

Typing 3

Api Proprietary Java

Concurrency X X

Durability X X

First release 2008 2008

Table 4.2: General comparison between Cassandra and HBase

4.4 Real-time anomaly detection

Some of the most interesting information that may emerge from real-time

monitoring are the detection of anomaly patterns of data, abnormal values

and sensor faults. Especially in healthcare, discovery of anomalous vital

signs has an extreme importance to prevent sudden disease and to assure an

immediate medical intervention in order to solve issues as soon as possible

with advantages in term of costs for hospitals and benefit for the patient’s

health. Moreover, it has also a great importance to know how to distinguish

between real anomalous value and false alarms, in order to avoid useless

anxieties in patients and to reduce load on analyzing systems.

An anomaly is defined as a point in time where the behaviour of the

system is unusual and significantly different from the past [22]. This defini-

tion implies a problem despite an anomaly can be considered in general like

an unusual value in a continuous data flow. we can distinguish between two

30

kinds of anomalies: they can be spatial when a value overtakes a threshold or

temporal when a value correctly fit in a threshold but it occurs in an unusual

sequence. In following sections are briefly described some techniques used in

IT industry to perform anomalies detection. More details about them can

be found at [7].

4.4.1 Numenta HTM

Hierarchical Temporal Memory is a foundational technology for the future of

machine intelligence based upon the biology of the neocortex. The project

borns in 2004 and it is still fully supported by Numenta’s community while

all HTM related project are committed as open source. Info about Numenta

and HTM’s theory can be found at [18] while details and use cases of HTM

algorithms are described in [22].

HTM can be used to achieve multiple prediction goals with online and

unsupervised learning properties, providing also a high order representa-

tion of data and supporting multiple simultaneous prediction. NuPIC and

HTM.java are some of the most relevant implementation of HTM theory

but the community is still at work to improve them and to develop other

applications.

In this section it is briefly described how HTM theory can be used to

perform powerful anomaly detection. A peculiarity of the HTM algorithm

is that it continuously learn and model the input. Note that HTM does not

evaluate directly if there is an anomaly in data flow, but starting from HTM

output it is possible to decide if the interested value is a anomaly or not.

In the picture below (Figure 4.7) is fully represented the role of HTM in a

typical anomaly detection algorithm:

31

Figure 4.7: The role of HTM in a real-time anomaly detection algorithm [22].

Considering Xt the current input of the system, HTM will compute two

values: a(Xt) and π(Xt). The former is a sparse binary code representation

of the current value while the latter is a vector which represents a prediction

of the "a function" for the future input. Using a(Xt) and π(Xt) the algorithm

evaluates a first raw anomaly score with the following equation:

st = 1− π(xt−1) · a(xt)
|a(xt)|

St represents a 0 to 1 constrained value which conveys how much the

current input is predicted, in particular 0 means fully predicted and 1 is

unpredicted. Raw anomaly scores and involved functions are computed every

time a new value arrives as input of the system. In order to detect anomalies

another step is required: a raw anomaly score is just a predictive parameter

which does not represent a reliable way to describe anomalies. Sometimes

having a spike or out-of-bound values in data flow is absolutely normal so

to obtain a useful information we have to apply a threshold method to the

raw anomaly score. Therefore, a real anomaly likelihood can be evaluated

considering a window of the last n-calculated raw score and computing a

normal distribution with the following average and variance:

µt =

∑i=W−1
i=0 st−1

k

32

σ2
t =

∑i=W−1
i=0 (st−i − µt)

2

k − 1

A threshold is applied to the Gaussian tail probability in order to decide

if it is necessary to raise or not an alarm. So, the final anomaly likelihood is

defined as the complement of the tail probability Lt :

Lt = 1−Q(µ̃t − µt

σt
)

It is interesting that in a noisy scenario variance will be large and a spike

in values flow has no great impact on anomaly likelihood score: accordingly to

the noisy nature of the case, instead a series of abnormal value influences Lt

score and highlights an anomaly in the observed system’s behaviour. Finally

anomalies can be detected thresholding the Lt score, triggering a particular

event or alarm depending on the application.

The power of HTM algorithm lies also on the opportunity of spreading

these concepts over multiple source of data streams: many industrial applica-

tions present a large number of sensors and continuous data flows to analyze

simultaneously. In Figure 4.8 an extension of HTM anomaly detection algo-

rithm with different sources is illustrated :

33

Figure 4.8: The previously presented algorithm can be adapted in a multiple
stream scenario [22].

A solution for this problem is to consider joint probability of raw anomaly

scores and apply a threshold to the tail probability. Nevertheless, this com-

putation can be very difficult in a streaming context so, without big loss of

generality, it could be assumed sources’ models as independent each other

and so simplifying the computation considering to following estimation:

P (s0t , ..., s
M−1
t) =

i=M−1∏
i=0

P (sit)

Then anomaly likelihood score can be represented as:

1−
i=M−1∏
i=0

Q(
µ̃t

i − µi
t

σi
t

)

In [7] are also described some practical considerations and experimenta-

tion results on NAB real-world benchmark which shows as HTM owns other

famous anomaly detector.

34

ALGORITHM NAB SCORE

Perfect 100

HTM 65.3

Twitter ADVec 47.1

ETSY Skyline 35.7

Bayes Change Pt. 17.7

Sliding threshold 15.0

Random 11.0

Table 4.3: Performance comparison for most famous real-time anomaly de-
tection. The "perfect" line represents the ideal detector [22].

4.5 Semantic web

In this subsection we describe briefly semantic web basis in order to provide a

panoramic vision of the context in which this project is developed. Recently,

semantic technologies have had an important role in the growth of Internet

of Things and Big Data. Tim Berners Lee in a famous speech in 2001 defined

the semantic web as

"a web of data that can be processed directly and indirectly by ma-

chines"

while W3C presents it as follows:

"The Semantic Web provides a common framework that allows data

to be shared and reused across application, enterprise, and community

boundaries."

Effectively, having a huge amount of raw data is quite useless, or more cor-

rectly, data are not enough exploited if they do not have any significance.

35

Semantic Web technologies get raw data and enrich them performing reason-

ing and producing new knowledge potentially using pre-existing information.

Generally, traditional web has some problems due to a lack of semantic:

the contents have no structure or they are structured to allow only human

comprehension, so they do not allow an effective automation of information

extraction from machines. Moreover, it is important to note that semantic

web will not to be a replacement for traditional web but an extension and

lots of efforts are employed to assure full compatibility with standards and

existing contents of the current web. Probably we can imagine semantic web

like a new powerful representation of the web.

With Linked Data term we describe data which are using semantic web

technologies, published on the web and linked with each others using various

relationships and properties: in this way new knowledge can be inferred ef-

ficaciously, rapidly and autonomously. Today semantic web technologies are

largely used in static contexts or quasi-persistent data while reasoning over

transient data is still an emerging field of study due to its complexity. Gen-

erally, monitoring a scenario in real-time presents some requirements about

time, knowledge, and locality. Semantic data analysis can occur in short or

long term that depends on particular application: for instance, in case of de-

tection of sudden changes or abnormal events a real-time analysis is required,

otherwise other type of analysis may be performed. Same reasoning can be

done about locality requirements: sometimes it is essential understand if we

have to correlate different information each others or if a local monitoring is

sufficient.

Occasionally, the context is very complex and in order to do a good

analysis it is essential to have a full comprehension of the scenario: on the

other hand, this type of reasoning can require a lot of time to consider all

36

parameters and clearly this collides with real-time computing requirements.

Finally, both real-time monitoring and long term analysis could be performed

simultaneously.

4.5.1 Resource Description Framework

Resource Description Framework is a standard used to define web resources,

their properties and relationships with other web entities. It is designed to

represent knowledge in a distributed way. It is important to note that RDF is

directed to characterize meaning and knowledge and sometimes it can refer

to abstract concepts or to non-physical characteristics. Actually, an RDF

statement is based on a triple formed of three elements: Subject, Predicate

and Object. The former is exactly the subject of an assertion and it can

be a person, a thing, a topic but even an interest or any abstract concepts.

Predicate represents a relationship between the Subject and the Object while

the Object is the concept modified by the predicate associated.

Each resource has an Internationalized Resource Identifier (IRI) which

can be a URL, frequently, or another unique identifier: with this one every

people and every machines can identify uniquely a particular resource in the

world, eventually constructing and extending its definition and relationships

or potentially adding other resource names. Also a property is identified with

a IRI but truly it is a special kind of resources describing relations between

other resources, for instance the age of a person.

37

Figure 4.9: On top is represented a typical RDF triple. Below there is an
RDF semantic graph.

Note that an RDF document can be viewed as a set of triples or like a

semantic graph (Figure 4.9). However, int the RDF convention described here

time is not accounted; effectively until few years ago semantic enrichment was

performed thinking only to static data.

Reasoning over static data is a challenge solved with a lot of frameworks

and middleware but achieving the same task in real-time is a very different

question. This topic is focused in next section.

4.5.2 Resource Description Framework Stream

Today the IT world can be represented also an unbounded flow of time-

varying data originated from billions of sensors geographically spread in the

planet: smartphones, social media, urban and medical sensors are just few

of them. Consequently, reasoning over static data is not enough anymore:

there are data that have a very short lifecycle which have to be analyzed in

real-time to provide useful knowledge. In [15] is considered the problem to

suit RDF to these new forms of data.

RDF standard is not adequate anymore because it does not consider time

in its triples, so it cannot be used to represent transient data. To overtake

38

these challenges RDFStreams was designed from RDF to maintain full com-

patibility with standard. RDFStreams represents an extension of RDF where

time is accounted and which allows reasoning over streams instead of per-

sistent data. We talk about continuous semantic and a completely different

query paradigm: indeed, to execute an automatic extraction of knowledge

queries have to be registered. In RDFStreams time is accounted using a

timestamp: usually it is used the data generation time but there are other

solutions as the use of two timestamps to highlights that exists a time inter-

val in which data are legal. Note that an RDFStream without timestamp is

just an ordered sequence of data items and it is not very useful because it

does not provide any information about what happened earlier than another

event.

There are two different paradigm to process RDFStreams: DSMS and

CEP. The former is based on DBMS concept so it supports common SQL op-

erators like join and aggregation while CEP (Complex Event Processor) con-

siders data like discrete events and effectively sees data as a flow of occurred

events, like in real world. DSMS and CEP follow two different paradigms:

the former produces query results which are continuously updated to adapt

to the changes of input data while CEP offers detection and notification of

complex data patterns involving sequences and ordered relationships [27].

It should be noted that currently main stream processing systems support

features of both approaches.

Generally, Stream Reasoning term refers to a computation performed in

real-time, with multiple, gigantic and heterogeneous data streams. In order

to deal with these streams a lot of RDF stream processor were developed in

recent years: C-SPARQL, SPARQLStream, CQELS and Streaming Linked

Data.

39

Figure 4.10: TripleWave framework [15].

4.5.3 TripleWave

TripleWave is a framework presented at ISWC2016 and described in [15].

It is released as an open source project and it is designed to create and

publish RDFStream over the web. Due to lack of technologies which dealing

with annotated data strefams currently there are no standards to handle

RDFStreams then TripleWave represents an answer to this need.

TripleWave provides many operative modes: It can get data from different

sources: from existing RDF dataset in order to refactor standard RDF data

in RDFStreams or from live raw streams like social network flows in order to

produce a live RDFStream output. TripleWave is written in Javascript and

its architecture provides three running modes: conversion, replay and replay

loop. The former is the standard way to convert live raw stream in annotated

RDFStreams while the others are used to refactor existing time-annotated

data. To express a custom mapping from RDBMS data TripleWave uses a

R2RML language to map data field in RDF triples.

40

Chapter 5

Architecture

This chapter introduces the architecture of the designed system and their

components. However, first of all in section 5.1 the faced problem is recalled

and better described in term of functional and non-functional requirements.

Thus, in section 5.2 the experimental infrastructure thought to realize the

architecture will be illustrated and then a deeper attention will be granted

to analyze every single components. In each section, the architectural com-

ponents are firstly described at a conceptual level and then more technical

aspects are examined with an overview, when it is possible, on used algo-

rithms and chosen technical methodology approached. The Overview sec-

tion represents a summary of the system as a whole and describes briefly

the responsibility of all high-level component. Next, in Sensing section are

described the input data and how these are pushed in the subsequent Data

Preprocessing part; this introduces a Raspberry Pi 3 which collect input data

and preprocess them before to submit the streams to a commodity hardware

cluster with running instances of Apache Kafka and Apache Flink. Hence, a

distributed solution to memorize processed data is described while this chap-

ter is followed by another one where some real test outcomes are analyzed.

41

5.1 Problem definition and requirements

This thesis aims to investigate and face the issues related to a Big Data

dealing system. Actually, the particular healthcare context does not present

important additional difficulties to the problem because it fits perfectly the

Big Data scenario. As already listed in chapter 2, Big Data are character-

ized by four properties: Volume, Velocity, Variety and Veracity. The first

one concerns the relevant data amount generated by sensors and others de-

vice while Velocity and Variety affect respectively how quickly data must

be treated and how their large variety type must be handled. The Veracity

instead raises the most ambiguous problem: how to evaluate the credibility

of data.

All these properties represent hard challenges to deal with. In particular,

a single machine would find many difficulties to handle a big amount of

messages even sent dozen times each second. Performing analysis directly

on sensors and wearables could be impossible: to be low cost, these devices

have just the strictly required capability to connect to a network and send

messages. Actually the issues are not related to how much fast a single

machine runs: we can imagine to have a very powerful hardware but still it

could not be the best solution to handle Big Data. Handling a single powerful

machine has an advantage related to the logical simplicity of a well-tested

paradigm; despite it, the most important IT companies do not use single

servers to face with Big Data. Indeed, using a single server presents also

many disadvantages like high costs and the possibility that the machine goes

down for a period leading to a dramatic loss of data: in this case we would

have hole data flows which would be useless to perform knowledge extraction.

Moreover, a single powerful server is a special machine which requires specific

hardware, software and specialized staff to deal with it; other requirements

42

are a considerable space to host such a voluminous computing node and air

conditioning to avoid overheating: all these factors contribute to raise the

cost of a solution based on a single server so much that the expenses could

overcome the advantages coming from the Big Data analysis.

Instead, employing a cluster of commodity hardware represents a better

solution which can deal more easily with the previously presented V ’s. The

difficulties of handling many different messages incoming with high frequency

can be shared among dozens, hundreds or thousands of nodes. In a cluster,

each node has a hardware configuration which is relatively low: that will

be enough to bear the assigned task but at the same time it will be not so

expensive in case of node replacement. Moreover, a node fail does not lead to

a job failure: the task assigned to the node will be moved to an unoccupied

node or put in an idle state until the interested node is recovered or replaced.

Since that, this system need an architecture based on a cluster of com-

modity hardware.

In the remainder of this section functional and non-functional require-

ments of the application will be listed. Generally, the problem requirements

specify the system behaviour from an external point of view, without going

into details with hardware and software employed. Functional requirements

describe the services and functionalities offered by a system or the effects

of some operations while non-functional requirements depict system con-

straints and its properties: sometimes constraints on development process

can be specified too. The non-functional requirements are more critical than

the others: often, if they cannot be complied the system cannot be realized.

It should be noted that some requirements could be both functional and

non-functional.

43

5.1.1 Functional requirements

The application to develop within this thesis is characterized by a number

of functional requirements. The scenario is composed of many individuals

which wear sensors operating at 50 Hz: in particular the involved persons

wear 8 sensors each one so as minimal requirement the system has to be able

to retrieve messages sent from sensors. The number of people involved in

the system could be quite big and it could increase over time. The medium

dimension of the messages ingested by sensors is around 113 bytes, then the

total throughput generated by a single person is around 45 KB/s. During the

processing the messages could be enlarged in order to add more information

and their size can raise until 1 KB around. Data coming from sensors and

enriched by the system must be safely memorized in a persistence storage

to allow further elaborations. Moreover, the core of the thesis is the search

for anomalous values within the data stream originated by sensors: these

anomalies have to be detected, annotated and memorized in a persistent

storage. Finally, all the data memorized may be queried by third-party

systems also during the processing.

Given that and in order to sum up them, the functional requirements are

listed:

• The system must be able to retrieve data streams from sensors.

• The system has to bear a big number of sensors which asynchronously

send data concurrently.

• The input throughput the system has to handle is amounting to some

MB/s.

• The throughput the system has to handle is amounting to many MB/s.

44

• The system has to have the ability to edit coming data in order to add

more information.

• In order to assure availability the system has to replicate data through

the cluster.

• The system must memorize in a persistent storage all data coming from

sensors.

• The system must have the ability to perform anomaly detection on data

streams.

• The system must memorize in a persistent storage all detected anoma-

lies.

• The system has to make memorized data available for external systems

also during the processing.

5.1.2 Non-Functional requirements

Some of the non-functional requirements described here are typical of any

Big Data dealing system. However, some of them are not mandatory in

general but they are very important for the purpose of this thesis. First

of all, a fundamental property is the resiliency: data cannot be lost for a

network lack or if a node fails; moreover if the latter case occurs, it must

not affect the other nodes and the job has to continue regularly. Another

fundamental property to achieve is the real-time processing for each coming

stream. A delay within one second could be accepted. The data must be

always available for consuming by third-party system. The system must be

composed only of open source frameworks and has to expose properties of

45

simplicity and reusability. A very important requirement concerns the inte-

gration with semantic web technologies in order to take part to the forefront

of Big Data technologies. Potential future improvements of the system must

not revolutionize its original architecture.

Given that and in order to sum up them, the non-functional requirements

are listed:

• The system must be able to buffer and temporarily store data coming

from sensors in order to avoid data loss if the computation is delayed

or in case of network lack.

• The system must be able to continue regularly the job also if one or

more nodes fail.

• The system has to process coming data streams at least in Near-Real-

Time.

• The system has to exposes data to external systems at any time so it

must be always available.

• The system must employ only open source frameworks.

• The system must be easily expandable, modular and has to allow inte-

gration with other systems.

• The system has to allow future improvements and framework replace-

ment without revolutionize itself.

• The system has to integrate semantic web technologies.

46

5.2 Overview

The proposed architecture supports a system which can be used to perform

real-time anomaly detection on a stream of data originated from a bunch

of wearable sensors. The main purpose of the system is to provide a useful

instrument to early detect abnormalities and irregularities in data patterns

coming from individuals which wear sensors in different parts of their bodies.

In the previously described scenario, performing real-time detection is es-

sential because it provides the ability to react immediately to critical events

capturing symptoms or signs which are invisible to humans due to its high-

frequency sampling. Moreover, it allows to discover and get details about ev-

ery single abnormal samples: on the other hand, sensors are fallible hardware

objects so they can fail reading a value due to signal noise or for damaged

devices; consequently it is also essential handle potential false-alarm events.

Hence, in order to implement this kind of analysis the following architecture

was designed:

Figure 5.1: High level architecture of designed system.

47

In the next sections each block of the figure, briefly presented here, is

discussed extensively:

• The Sensing subsystem feeds the entire system and it represents the

first functional block of the architectural schema. It ingests data to

analyze and it is composed of 8 sensors which generate information

about acceleration and gyroscope on left calf, right calf, left thigh and

right thigh of individuals which wear them.

• The Data preprocessing block is implemented with a Raspberry Pi

3. The goal of this block is to collect inputs deriving from sensing

subsystem as an unbounded data flow and to execute a conversion

from raw sensor data in an RDFStream representation. Finally, the

converted stream is sent to the cluster.

• The Cluster processing box is composed of instances of Apache

Kafka and Apache Flink. The purpose of the former is to buffer streams

and to offer a reliable and fault-tolerant access point for a cluster of

commodity hardware. Kafka might be seen as the messaging hub be-

tween the Data preprocessing block and the rest of the cluster, where

Apache Flink is installed and real-time anomaly detection is performed.

• The Data persistence block is deputy to store data obtained as out-

come from the processing in order to allow further elaborations in fu-

ture. In Future works section potential extensions of the system which

use this layer as starting point are presented.

48

5.3 Sensing subsystem

The sensing subsystem represents the source of the entire framework and it

is composed of wearable sensors. For the specific implementations, instead of

real sensors, a preexisting dataset named REALDISP was used as source to

generate a data stream of sensors collected data. REALDISP was presented

in [32] and [33] and fully described in [34].

5.3.1 REALDISP Dataset

The cited dataset was filled in order to create a fitness dataset for activity

recognition; it contains several log files where wearable sensor values sampled

at 50 Hz are recorded. Note that the values come from different sensors on

17 involved individuals and the whole dataset contains about 7 GB of data.

Each record contains information about seconds and microseconds registered

when data was collected and acceleration and orientation sensor values on

three axes (x,y,z). Sensors were placed on the following position:

CODENAME POSITION OBSERVED VALUE

LC-ACC Left calf Acceleration

LC-GYR Left calf Gyroscope

LT-ACC Left thigh Acceleration

LT-GYR Left thigh Gyroscope

RC-ACC Right calf Acceleration

RC-GYR Right calf Gyroscope

RT-ACC Right thigh Acceleration

RT-GYR Right thigh Gyroscope

Table 5.1: Types of sensors. "Codename" column shows the codename em-
ployed in script to refer the specific values.

49

In order to simulate sensor readings some scripts have been developed,

using Python 2.7 as programming languages, to parse REALDISP log files

and to fire out recorded data with a specific rate according to seconds and

microseconds info annotated in every records. In particular, for each record a

timestamp (in standard date format: yyyy-mm-dd hh:mm:ss.mmm) was cre-

ated to provide a more human-readable temporal information. Note that for

each sensor a different script was developed and each one runs independently

from others in order to simulate a realistic scenario. Finally, the output of

scripts was structured as a serialized JSON object containing sensor infor-

mation as described in the figure below:

Figure 5.2: An example from Left calf accelerometer which measures the ac-
celeration value on axes x-y-z.

In order to represent data, the JSON standard was chosen for its wide

diffusion and for the presence of a vast number of plugins to handle it with

every programming language: in addition, the choice is due to a reason

related to RDFStreams which will be investigated later in Data Preprocessing

section. Hence, the considered serialized JSON object was sent, using the

MQTT protocol, towards a broker installed on an embedded system described

in Data Preprocessing block. It should be noted that in a realistic scenario,

sensors could be linked with the cited embedded system in several ways and

technologies, wired or not, like GPIO pins or HSDPA-LTE, Bluetooth, Wi-Fi

50

and other wireless standard; in order to maintain the most general approach,

in this particular implementation MQTT was used to perform this link to

take advantage of its platform-independent features and also because fits

perfectly the simulated situation where the sensors push out data towards

their consumer as data are generated. Moreover, MQTT stores automatically

data coming from sensors, even for days, allowing to reach easily a good level

of resiliency for the subsystem in case of sensors failure.

5.3.2 MQTT

MQTT is the acronym for Message Queue Telemetry Transport and denotes

a standard (ISO/IEC PRF 20922) designed to describe a publish-subscribe

messaging protocol. The official website [35] describes it also as a machine-

to-machine connectivity protocol because it fits perfectly IoT requirements,

since it is very lightweight and requires limited network bandwidth to trans-

mit data. MQTT is particularly adequate when there are lots of (perhaps

different) publishers and consumers because it provides an independent com-

munication hub and it can be implemented in many software, developed

with different languages, just with few lines of code. The central nodes in a

MQTT infrastructure are called brokers : they are responsible for distribut-

ing messages to the interested clients based on message’s topic. Figuratively,

a topic can be viewed as a post office box where publishers send messages

and subscribed clients are authorized to retrieve them: topics are used from

publishers and subscribers to establish a common access point on the broker.

51

5.4 Data preprocessing

Data preprocessing block is physically located on an embedded system and

it is deputy to perform an initial elaboration of raw data coming from the

sensors. Getting into details, the pre-elaboration phase was added in order

to reduce load amount on the cluster and especially to convert raw streams

originated from sensors in RDFStream following the standard showed in [36].

So, an independent subsystem was created providing a modular architecture

where each block can be joined with subsystems developed separately, for

instance by other designers to fit additional requirements. The only one con-

straint is related to the use of a standard and largely used messaging hub

like Apache Kafka. The choice around the embedded system to implement

the preprocessing phase has fallen on Raspberry Pi 3 since its features com-

pletely fit the scenario requirements and because it is one of the most widely

used board on the market and in IoT context. Those features are described

in the next section.

5.4.1 Raspberry Pi 3

Raspberry Pi is a credit-card-sized computer which can be used in electronic

projects and for small scale computations in a similar way as a standard

personal computer does [37]. Today RPI3 is known in the world as one of

most useful and flexible embedded system. In the following, its specs are

described:

• ARM Cortex-A53 64 bit 1.2 GHz quad core

• 1 GB RAM (shared with GPU)

• 4 USB ports

52

• HDMI rev1.3 port

• MicroSDHC slot

• Bluetooth 4.1, Wi-Fi, 100 Mbit Ethernet and 17 GPIO pins

Hence, the choice to adopt a Raspberry Pi 3 (from here simply Raspberry)

as embedded system to perform data preprocessing is mainly due to its low

cost (35$), low consumption, powerful architecture, limited size and wide

spread in the world. For these reasons Raspberry is supported by a very large

community and many open source projects and several Linux distributions

were developed to fit every needs; moreover, due to its success many general

purpose softwares run over its board.

Speaking of the described scenario, RPI3 is used as a processing bridge

between Sensing subsystem and Cluster Processing block (Figure:5.1).

On it Mosquitto [38], a broker which implements the MQTT protocol,

and a Node-Red server were installed: the latter is a software tool developed

by IBM to easily write code for wiring together devices and online services as

part of an IoT application. Essentially, Node-Red provides a browser-based

flow editor; it offers some pre-developed nodes in order to implement most

used online services. Then, in Figure 5.3 the Node-Red environment installed

on RPI3 is illustrated. The Mosquitto nodes represent the broker consumers:

their responsibility is fetch data from sensors in Sensing Subsystem and to

push out them towards the function nodes. These last nodes implement a

TripleWave approach to convert raw live streams in RDFStreams. Node-Red

offers a set of built-in nodes (MQTT is just one of those) but it allows also the

definition and employment of custom nodes. node-red-contrib-kafka-node [59]

is a set of custom nodes which offers the functionality of a Kafka client: the

one described in the figure is a producer node used to deliver data to the next

53

block. However, the concerned node offers only the opportunity to specify

the reserved topic for messages and it does not present all the functionalities

offered by a Kafka producer; hence for this project a custom version of it was

written with JavaScript and installed on the local Node-Red environment in

order to fit project’s requirements. Furthermore, the opportunity to send

also keyed messages to the broker and to set a partitioning strategy based

on hash values were implemented.

Figure 5.3: Node-Red environment designed on RPI3.

5.4.2 TripleWave approach

TripleWave is released as executable software available on GitHub [39]; de-

spite this, it is still in an early stage and today some functionalities are

not yet implemented: for instance, the project-required MQTT connector is

planned but currently under developing. Since that a custom solution, in-

spired to the TripleWave approach, to convert raw streams in RDFStreams

54

was preferred and the javascript_function displayed in Figure 5.3 were

used. Python was considered as an alternative language to write the scripts

above due to its power, simplicity and raising spread in IT panorama, but

the python nodes implementable in Node-Red currently are unstable with an

high rate of incoming data so the Javascript version was preferred.

Technically, TripleWave creates a JSON-LD starting from a non-refined

live stream where LD means Linked Data. JSON-LD is a specific method to

indicate linked data in JSON: now the previously described choice to repre-

sent raw sensor data with JSON makes sense because the conversion from

JSON to JSON-LD requires just a little effort for developers so simplifying

this processing step. Moreover, a JSON-LD can be serialized and handled as

JSON, being itself just a particular version of a JSON. JSON-LD is a stan-

dard drafted by RDF Working Group and it is designed around the concept

of "context" to provide additional mappings from JSON to RDF: the "con-

text" is employed to link object properties of JSON to concept of ontologies.

In the following, the ontologies employed to characterize data are listed:

• IoTDB [40]: to describe sensor values as acceleration and orientation.

• MiMuWear [41]: to describe anatomical body parts.

• SSN Ontology [42]: to describe sensor features.

Hence, each javascript_function receives raw data from a Mosquitto

consumer, parses them, creates new JSON with JSON-LD syntax and then

provides an output coherent with an RDFStream. This one perfectly fits se-

mantic stream conventions and then it can be sent to an instance of Apache

Kafka installed on the cluster in order to be employed in further seman-

tic analysis. In the following figure a sample of the produced JSON-LD is

showed:

55

Figure 5.4: Sample of produced JSON-LD.

5.5 Cluster processing

The Cluster Processing block has a central role in the project. As already

explained in the Introduction, in chapter 2 and in section 5.1, there are many

reasons which carry this system to adopt a cluster processing logic instead of

one based on a single machine: in particular, the main one is the enormous

potential data amount generated from a Big Data application which cannot

be supported effectively by a single operating node. The recent technology

56

growth helps us to define a powerful but fundamentally intuitive and cheap

solution to deal with Big Data issues. A cluster of commodity hardware today

can solve problems which few years ago seemed intractable to computers, at

least if we do not talk about very complex hi-end calculators which presents

other inconvenience like the costs and the need for specialized workforce

to deal with. In order to manage the application described in this thesis,

the chosen architecture considers the use of a cluster of several nodes which

execute three different tasks:

• Communication with sensing system

• Evaluation and processing

• Data storage

The first point is covered with a small cluster of three Apache Kafka bro-

kers. The second one is executed using ten nodes with a running instance

of Apache Flink which perform anomaly detection using a distributed imple-

mentation of HTM library. At last, a group of three nodes forms an Apache

Cassandra cluster which represents the persistent storage for potential fur-

ther processing.

5.5.1 Kafka cluster

As already seen in chapter 4, Kafka represents one of the most widely spread

messaging system in cluster processing field. In this thesis it is used as an

hub to collect data coming from sensors and to provide a reliable access

point for the Flink application. The Kafka cluster is composed of 3 nodes:

the broker’s number was chosen considering the desired replication factor for

the hub. This one represents how many times data have to be replicated in

57

order to offer a reliable access point: if a node fails, data are preserved in

other brokers and Kafka can expose always an access point to consumers. In

the described architecture, a replication factor of 3 was chosen accordingly

to Kafka documentation because it represents, in most realistic scenario, an

appropriate backup. On the other hand, Kafka allows to set up a cluster

with a number of brokers greater than the replication factor in order to offer

different ways to balance loads. Anyway, a single Kafka broker is usually

able to handle many terabytes of data so in this project, where data loads do

not reach such a huge amount, a number of brokers equals to the replication

factor was considered widely sufficient.

It is important to note that Kafka server autonomously choose a cluster

leader and automatically moves the cluster control to other brokers if the

leader fails. Due to these reasons, each broker is chosen identical to others

and each one manages exactly 8 topics. A Kafka topic is an abstract area

where data are sent by producers and retrieved by consumers: we can see

that as a postal box where everyone can deliver messages but just subscribed

members can consume from it. In this architecture, there is a topic number

equals to the sensors number in order to reserve a topic for sensor. In this

way, the sensors have a preferred zone to send own readings and consumers

can subscribe to particular topics being sure to retrieve just data they care

about.

Kafka allows to split topics in partitions: the number of these represents

the parallelism degree of a Kafka broker because producers can execute write

operations on different partitions in full parallel way. However, on consumer’s

side each thread always get data from one partition at time. Partitioning

topic has several benefits and one of these is a general improved scalability:

when a topic presents just one partition every messages sent to it are stored in

58

a single partition-related log file which completely resides in a single machine.

Given that, the maximum size of the log file is constrained by the physical size

of disks equipped by the particular node. Partitioning allows to spread data

in different log files which can be host on different machines without worrying

about physical disk space of specific nodes. Finally, other benefits concern

server and client load balancing allowing parallel operations on brokers, where

each one can be the leader of a particular single partition.

Besides, Kafka is able to send keyed messages which are strictly related

with partition’s concept. For each keyed message Kafka calculates an hash

value for the key: the messages which exhibit the same hash are determin-

istically mapped and sent to the same partition This behaviour is useful to

distribute the load on the broker or through the cluster and it can be fun-

damental for certain applications: messages within a partition are always

delivered in-order to the consumer. It is important to note that if we want

to modify partition number when Kafka server is running the in-order guar-

antee cannot be hold: in this case, messages with same hash could be spread

in different partitions so a good rule is to set partition’s number at first.

Unfortunately, an exaggerated number of partitions carries some disad-

vantages. As already seen, every partitions are replicated on every brokers

and each partition has the own log file. Every time a message is sent to a

partition an I/O operation is performed and a number of writes, that de-

pends on replication factor, is executed. These operations are fundamental

because they permit to Kafka to guarantee its feature but at same time they

affect system’s performance. However, Kafka is able to manage thousands

partitions at same time without problems.

In the described system a fair partition number for topic was established;

accordingly to [43], it should depends of the target and achieved throughput

59

of the system. Note that the architecture described here contemplates an

estimated throughput of 400 KB/s for individual so the partition number

should depends of how many people are going to use the system simultane-

ously. The proposed work is just a concept of a cluster processing system so

a flat number of 10 people is considered a good target in order to obtain a

consistent data throughput of 4.0 MB/s: hence, each topic will be divided in

10 partitions. Note that in this way data related to a single individual are

always posted in same partition exploiting Kafka hashing function.

5.5.2 Flink cluster

The purpose of the Flink cluster is to fetch sensor data stored in Kafka and

process them. In particular, an instance of the HTM algorithm to perform

anomaly detection with cluster processing was employed exploiting a java

library (details in section 6.3.2). Originally, HTM was not designed to run

on a cluster, anyway it supports some of the principal programming languages

like C++, Java and Scala so it can assist applications implemented on a Linux

cluster. Some researchers have already developed an HTM library supported

by Apache Flink [49]: in this work the described library was retrieved and

adapted to the project’s characteristics and requirements.

Developing an efficient version of the Flink-HTM algorithm needs a clus-

ter of multiple nodes because the high arrival rate requires a spread elab-

oration to satisfy the real-time demands. Actually, the resources requested

to perform the anomaly detection are not so high: a bunch of single-core

machines could be sufficient to handle effectively the throughput for a single

subject so the architecture must be designed taking into account the number

of persons involved in the system. It should be noted that the cluster can be

extended progressively simply adding nodes as the individual number grows.

60

In this section, the basis of Flink architecture will be illustrated to better

clarify the choices taken in the cluster design process. Figure 5.5 describes the

Flink architectural stack: on the lower level three development possibilities

are showed. In the presented case, the Cluster was the only one consid-

ered and in particular the Standalone mode was chosen to deploy it. The

other possibilities implement Flink on a preexisting installation of YARN or

MESOS. These ones are two celebrated cluster managers extremely useful in

large scale clusters due to their strong capabilities to manage failures and

resources. However, in this project the cluster is composed of few nodes, so

a standalone set was preferred due to its greater simplicity and to maintain

platform’s technology independence. In the third level of the stack Flink

allows programming against two API sets: DataStream and DataSet. The

former was widely used in the designed system in order to deal with streams

coming from Kafka’s topics while DataSet are dedicated to batch elabora-

tions, which are basically absents in the described work.

Figure 5.5: Basic schema of Apache Flink architecture [6].

61

In Flink, there are two types of nodes: Job Managers and Task Managers.

The formers are also calledMasters and coordinate the distributed execution,

schedule tasks, plan checkpoints, provide recovery in case of failures. There

is always at least a Job Manager but in big clusters or when high-availability

is a fundamental property there could be multiple masters: in any case there

is just one leader and the others are backup masters. When a job is running,

the Job Manager keeps track of distributed tasks, decides when to schedule

the next one and reacts to finished tasks. About Task Managers, they are

also called Workers. They executes tasks and subtasks about data flows and

buffers data streams. The Task Managers are connected to the Job Managers

to notify their availability or to announcing they are computing a task. It

should be noted that there is always at least one Task Manager but usually

there are many of them. In the described project we have to deal with a small

sized cluster so the presence of a single Job Manager is widely sufficient to

handle it.

A task in Flink is the basic execution unit and the place where each

parallel operator instance is executed. It should be noted that a Task Man-

ager node hosts a JVM process so it can execute more than a task using

multithreading architecture and separating a single task in many subtasks.

Initially, each worker has to specify its number of task slots. A slot repre-

sents a fixed subset of Task Manager’s resources: on the other hand, just the

memory is split and reserved to the specified slot while the CPU capability

is shared by the slots. By default, Flink allows subtasks to share slots even if

they belong to different tasks. Slot sharing provides some advantages about

getting better resource utilization: without it lightest subtasks will block re-

sources as heaviest operations do. Instead, using slot sharing there will be a

fairly distribution of resources. The choice about number of slots per node

62

and the use of slot sharing depends by the particular application: generally,

the documentation reports that a good rule is to assign a number of task

slots equals to the number of CPU cores of the node. From this perspective,

the latter choice was taken in this project so assigning a number of task slots

equal to CPU cores.

In the project a particular type of stream named KeyedStream is used.

It partitions data on a specified key: essentially Flink creates a set of sub-

streams with same key and autonomously distributes those to different slots.

For these reasons, no constraints were applied to Flink nodes about tasks

assignments, which is delegated to Flink’s engine. On an higher level we

can distinguish 3 essential tasks to execute: data retrieval from the Kafka

broker, HTM data elaboration and data storing into Cassandra database.

About Kafka and Cassandra, Flink’s default connectors have been employed

whereas for HTM it the java library developed in [49] was integrated.

Flink considers three different notions of time in streaming programs:

• Processing time: It refers to the time as the system time of the

machine when the operation on data is executed.

• Ingestion time: It refers to the time as the system time of the machine

when data get into the system.

• Event time: It refers to the time incapsulated in the data, for instance

a timestamp tied to the specific value.

5.5.3 Data stream output consistency

It should be noted that the processing and ingestion time are very influenced

by delays and latencies due to causes external to the system, so it would

be possible that some values are received out-of-order and the uncorrelated

63

timing influences the computation. Sometimes maintaining the order of data

respect to their generation time is essential so the event time mechanism is

strictly necessary. In the project, data are medical values and their generation

moment is crucial so the event time characterization is used to establish an

order between data values: the time field is generated and included like a

timestamp by the sensor and it is made explicit in the message sent to Flink.

In order to exploit event time characteristic a custom timestamp extractor

was developed.

About data reordering, a window of fixed length was used to check the

data order in the streams: Flink applies a tumbling window (with duration

of 800 ms in the implemented case) which collects data coming from the

streams. Then, within the window Flink sorts messages on event time basis.

Unfortunately, Flink does not implement this functionality with own API so

it is not possible to perform incremental aggregations of data, i.e. messages

are not ordered as they arrive: a routine will be launched when the windows

ends leading to a greater resource consumption and even lesser performance

due the unoptimized ordering function. It should be noted that the choice

of the window duration could be very important: a too short one affects the

performance because could trigger the sorter too often, while if it is too long

the function will be called on a consistent amount of messages so requiring

a lot of times to complete the sorting.

The event time it is also used to emit watermarks, which are used to

measure time progress. Essentially, a watermark declares that the event time

has reached the specific instant t and it means that no messages with event

time lesser than t should arrive in future. Clearly, it cannot be assured so

the mechanism marks out-of-order messages comparing its event time with

the last computed watermark: if they arrive out-of-order with a lateness

64

greater than a fixed value they will be dropped because there are no chance

of re-insert them in the stream. Effectively, if the element’s sorting is very

important dropping an element is better than adding it, unordered, within

the stream.

Finally, Flink has a limited knowledge about data types hence it handles

serialization just for java primitive types: given that and since Flink does not

support natively deserialization of Kafka messages even a custom deserializer

was developed.

5.6 Data persistence

The Data persistence block is designed to offer a reliable storage for data

generated from sensors and computed in the Flink cluster. In the project it is

composed of a NoSQL cluster with an installed instance of Apache Cassandra.

The designed cluster is formed of three nodes. In the remainder of section the

reasons which have led to the carried out choices about Cassandra’s nodes

configuration are described.

5.6.1 Cassandra cluster

Apache Cassandra is a NoSQL database belonging to the column-oriented

family. It is a system designed to run on cheap commodity hardware and

a platform to handle high write throughput without sacrificing a good read

efficiency. NoSQL paradigm is completely different than the RDBMS’s one;

here its features are not explored completely because it falls outside the

purposes of this thesis. Further details about column-oriented paradigm can

be found at [45] and [46].

Cassandra, as other NoSQL databases, is optimized to work in distribute

65

ways; the reasons are encapsulated in Big Data concepts. In fact, the need

for managing a huge amount of data, making them constantly available and

handling high throughput lead to the use of multiple nodes in order to satisfy

efficiently every requests. Cassandra, in particular, offers a P2P architecture

which avoid single points of failures and allows to reach high availability

property more easily respect to other storage systems. In a Cassandra clus-

ter there are no master nodes and, through a gossip protocol, each node is

informed about the status of other machines in the cluster. Intuitively we

can imagine Cassandra cluster’s topology as the ring showed in Figure 5.6

where each node is directly linked with the adjacent ones. Each node is the

first responsible for a portion of data indexed with a key named partitioning

key. Nevertheless, data are replicated in many nodes in order to guarantee

their availability also if the responsible machine is down.

Figure 5.6: Topology of a Cassandra cluster. In the figure the ring designed
in this project is displayed

66

Cassandra distinguishes between 2 different replication strategies:

• Simple Strategy : The default strategy is used with clusters formed of

a single rack. Data are replicated a number of times on adjacent nodes

with natural clockwise order.

• Network Topology Strategy : It is used with multiple data centers,

eventually distributed in different geographical locations.

The data distribution criteria is based on the hash value of the partition-

ing keys so Cassandra assigns to each cluster node a random value which

represents its position within the ring. Each partition key is mapped on a

specific node which becomes the coordinator for the particular keyed data.

Accordingly to the requirements, data are replicated on a number of nodes

in clockwise-order starting from the first host. In [45] some arrangements to

avoid an unbalanced cluster are described.

Another important aspect to consider during the configuration of a Cas-

sandra cluster is the desired consistency. It can be immediate, which assure

that when a client reads a value the system returns the updated one, or

eventually which returns "eventually" the last updated value.

In Cassandra a write operation returns a "success" response with three

different level of correctness, tunable by the developer:

• ONE: The operation returns a success if at least one replica has ac-

knowledgment.

• QUORUM: The operation returns a success if the majority of replicas

has acknowledgment.

• ALL: The operation returns a success if all the replicas have acknowl-

edgment.

67

Choosing a level of write correctness affects system performance depend-

ing of the size of the cluster. Clearly, in a single node cluster just the "ALL"

option is available.

It should be noted that the most of the optimizations and configura-

tions exposed in the remainder of the section are focused on write operations

because in this project Cassandra has to handle a big amount of writes com-

pared to reads. Moreover, the great performance in executing writes is the

main reason which have lead to the choice of Cassandra for the persistence

layer. The design of the cluster’s configuration was drawn up accordingly

to the previous considerations and taking into account recommendations of

official Cassandra documentation. The replication factor chosen for the clus-

ter is 3: then data are stored and copied on 3 different nodes. It allows to

obtain the best trade off between performance, consistency and availability

using QUORUM criteria to define a successful write operation.

It should be noted that a replication factor less than 3, although it offers

better performance with less latency, does not provide much flexibility to

tune consistency and availability while a greater RF influences performance

raising latency to perform writes on more nodes and exposing the system

to a greater number of failed writes. About replication strategy, due to the

presence of a cluster composed of a single rack, a Simple Strategy was chosen.

About the cluster design, an important aspect is the hardware sizing. A

configuration composed of multi core processors was preferred respect than

a single core due to the high rate of write operations to perform. In particu-

lar the documentation advises to employ CPU with 16 cores for production

and 2 for tests. Examining the simplicity of the environment presented in

this document, a common quad core CPU was considered sufficient. About

memory, some considerations must be taken into account: Cassandra’s write

68

operations are performed on different types of memory. Initially write opera-

tions are marked on a commit log which lies on HDD. Then, data are written

primarily on a mem table on volatile memory and finally, when mem table

is full, it is flushed on mass storage in a structure called SSTable. Generally,

having a configurations with a lot of RAM is better because it reduces the

number of memory dumps; anyway the documentation advises to use at least

8 GB in production and 4 GB in tests. The first choice is widely adequate

for the studied project. About mass storage, the doc [47] advises to use SSD

instead of HDD due to their less latency but a hi-end disk could b a better

compromise between costs and performance. Cassandra stores in mass stor-

age both commit logs and SSTables but the space occupied by the formers is

negligible respect to SSTable. Cassandra periodically executes a space com-

paction of SSTable in order to reduce space waste and get more space for

further data: there are many strategies to perform it but everyone utilizes

disk space so a good practice is to provide always an additional amount of

space (between 10% and 50% of the total occupied by data). Accordingly to

the project’s data size, a 2 TB of disk space per node is required in order

to store safely data computed and enriched by the cluster. For the cluster

sizing evaluations also the following paper [48] was considered.

5.6.2 Cassandra data modeling

Data modeling in Cassandra is completely different respect to a RDBMS so

a typical relational approach should be very inefficient. Usually, and this is

the case, NoSQL databases are modeled thinking about queries which will be

performed on it. Normalization and relations between tables, always taken

into account when we design a relational database, have to be avoided in

Cassandra because they lead to a catastrophic use of resources. Cassandra

69

is strongly optimized to execute write operations so they have a negligible

cost compared to reads: given that, the primary goal of data modeling is to

organize data in order to provide reads as efficient as possible. Generally,

data modeling in Cassandra has to consider two purposes:

• Data must be spread nearly the cluster as much as possible.

• Queries have to scan the minimum number of partitions to retrieve

data of interest.

Often this objectives are in contradiction so the developer is in charge to

find a good trade off. Choosing an adequate primary key is a good way to

satisfy the first goal. The key and its hash value spreads data in partitions

which are hosted within the cluster. Reading a partition is an expensive

operation because each one can be placed on a different node, so developers

must avoid it as much as possible. On the other hand, also reading parti-

tions which reside on same node is more expensive than scanning a single

one: possibly, each query has to scan the minimum number of partitions so

correlated and requested data have to reside on same partition. Since that,

some queries were formulated in order to provide a correct implementation

of Cassandra:

A) Retrieve every values belonging to a specified sensor of a specified user

B) Retrieve every abnormal values belonging to a specified sensor of a spec-

ified user

C) Retrieve every values belonging to a specified sensor of a specified user in

a fixed time interval

70

In order to execute efficiently the query A and B the tables represented

in Figure 5.7 and Figure 5.8 were implemented. The table in Figure 5.7 is

employed also by the query C.

Figure 5.7: Table used to provide efficient reads for queries A and C

Figure 5.8: Table used to provide efficient reads for query B

It should be noted that query A and C use the same table: the only

difference is in the query formulation which includes a temporal criteria.

The primary key definition of the table creates a compound partition key

composed of sensor and user fields: so there will be a separate partition for

71

every pairs sensor-user and the query allows to scan just a single partition

to retrieve interested data. The second field of the primary key is called

clustering key and it is used to establish a sorting among records: in the

particular case records are ordered on time basis. The last query clause is

used to optimize the query execution: it reduces latency because the data

sorting is performed at insertion instead to do it when the query is called

up. It should be noted that a new query like "Retrieve all sensor data for

a specified user" would be very inefficient with this model, because it would

require a scan of a number of partitions equals to the number of sensors. In

this last case a new table must be designed.

Another table was implemented to perform efficient data fetching for

query B. In a relational database this table would be a violation because

it produces data redundancy: in a NoSQL database instead it represents a

good example of data modeling based on query requirements.

72

Chapter 6

Experimental study

6.1 Computational infrastructure

In the chapter 5 has been described an ideal infrastructure which suits per-

fectly the real requirements of a typical application representing the docu-

ment’s purposes. Then, it is summarized in Figure 6.1 in order to expose the

architecture needed to efficiently support the application.

6.2 Adopted infrastructure

The application designed and exposed in this thesis was elaborated during a

study period at Universitat Politècnica de Catalunya. The cluster’s hardware

used for experimentations and tests was provided by Research and Develop-

ment Laboratory (RDLab) of [44] Computer Science Department at UPC.

Due to some limitations tied to hardware availability, the development of

the application followed a simplified architecture. In particular, the adopted

infrastructure is composed of the node listed in Table 6.1 :

This infrastructure is sufficient to handle the amount of data and the

73

Figure 6.1: In the picture the designed architecture is depicted. Starting from
the left: structure of kafka brokers, Flink’s cluster and Cassandra system

N. NODES CPU RAM HDD RUNNING INSTANCE

1 Single core 4 GB 200 GB Kafka

1 Dual core 4 GB 1 TB Cassandra

3 Dual core 2 GB 100 GB Flink

Table 6.1: Details about nodes composing the adopted infrastructure.

74

throughput required by the developed application considering a single indi-

vidual involved. The Sensing subsystem produces around 45 KB/s each per-

son; then the Raspberry collect, enrich and convert the stream in a JSON-LD

stream and finally send it producing in output a throughput of 34 GB/day

each person. The available disk space for the Kafka node is 200 GB so it can

offer data caching for a single individual (i.e. 8 sensors) for 5 days.

Flink’s input throughput is equal to 1.2 MB/s each person: anyway these

data are transient and are stored in mass storage only if the memory is full.

Considering the throughput and the fact that Flink consumes data in real-

time, the possibility that a cache of 2 GB (the RAM size for Flink nodes)

would filled due to a bottleneck during the processing are really low so the

200 GB of available disk space are largely sufficient.

Due to the computation and data enlargement operated by Flink, the

throughput towards Cassandra is increased until 100 GB/day each person.

In Cassandra, half of the available disk space has to be reserved for SSTable

compaction to keep high performances (details in section 5.6.1): given that,

a disk space of 1 TB is enough to handle 5 days of continuous work while

4 GB of RAM memory assures a sustainable dump rate between mem table

and SSTable.

Unfortunately, the absence of redundant nodes for Kafka and Cassandra

makes impossible to evaluate performances in terms of fail recovery, data

replication and leader-role switching that are typical situations in a real

cluster. Moreover, it should be noted that the three nodes running Flink

are not installed on separate physical machines, but they are simulated us-

ing three virtual machines (with reserved resources) on the same hardware,

so any analysis about linkage performance within Flink cluster cannot be

performed.

75

Figure 6.2: Schema of the adopted infrastructure. The leftmost Flink node
is the Job Manager which fetches data from the Kafka broker and distributes
the load through the Task Managers (even to itself since it is a Task Manager
also) which are responsible of publishing data to the Cassandra’s database.

6.3 Testing and evaluation

The infrastructure described previously was employed to evaluate the results

obtained with some tests and experiments performed in a case of use. Taking

into account the limitations explained in the above paragraphs, the system’s

performances were evaluated in order to provide a yardstick to understand

how many nodes and what kind of resources are needed to handle efficiently

a real production system.

The infrastructure is located at the Research and Development Labora-

tory (RDLab) [44], property of the Computer Science Department at UPC

University. Each node presents an instance of Ubuntu 12.04.2 LTS whereas a

recent version of Java (1.8.0.131) has been installed to exploit completely the

features of the employed software. The nodes are accessible via Secure Shell

protocol then each operation on nodes was executed using the functionalities

offered by the Linux console. In Table 6.2 the software installed on specific

nodes are showed:

76

NODE NAME INSTALLED SOFTWARE

Giordano-1-4-200 Apache Kafka 2.11_0.11.0.0

Giordano-2-4-1000 Apache Cassandra 3.11.0.0

Giordano-2-2-100-1 Apache Flink 1.3.2

Giordano-2-2-100-2 Apache Flink 1.3.2

Giordano-2-2-100-3 Apache Flink 1.3.2

Table 6.2: List of the software installed on specific nodes.

It should be noted that on Giordano-2-2-100-1 resides both the Job

Manager and the first of the Task Managers of the Flink cluster while on

the other nodes run only Task Managers. Since the machines host a Linux

OS, the Linux console tools were used to evaluate resources performances.

sar command was employed to asses CPU utilization: it shows all running

processes on the node and the associated CPU consumption percentage for

each core or the cumulated one which is more useful in this case; moreover,

sar shows also statistics about memory usage. The outcomes were obtained

parsing an annotated output file with an interval of 1 second. These consid-

erations are listed in section 6.3.1 while in section 6.3.2 the outcomes of the

HTM analysis and the evidence of the anomalies found within the ingested

streams are reported. The data employed in the test come from an abstract of

REALDISP dataset: it contains measurements of sensors like accelerometer

or gyroscope: a full description of the dataset is available in [34].

6.3.1 Nodes performance

As already seen in section 6.2 the described system is formed of a cluster

divided in four parts: a Raspberry Pi, a Kafka broker, a Flink mini-cluster

and a Cassandra database. In this section node’s performances are examined

77

especially in term of CPU and memory usage during tasks execution: in some

case (e.g. Apache Kafka) also other parameters are examined. Many words

will be spent on Apache Flink because it represents the core and the most

complex part of the system guiding even the analysis concerning the other

parts of the system as a whole.

A task which provides the full functionalities of the system was fired up

employing a set of 8 sensors simultaneously in a fixed ingestion frequency:

on these basis the performance on the adopted infrastructure were evaluated.

In the remainder, a comparison of nodes’ performances obtained changing

the number of sensors involved in the system is illustrated to study how

the system reacts and how much the entity of load increase hits the node’s

resources.

Ingestion frequency: 50 Hz

The first experiment set an ingestion frequency of 50 Hz which is generally

considered an high value for medical sensors that usually have a transmission

rate of 20-25 Hz: due to the high rate the duration of this experiment is

quite short however it is useful to do some considerations about nodes and

the software involved. In table Table:6.3 the throughputs produced for each

software are illustrated.

Firstly, in Figure 6.3 the performance of the Raspberry Pi is analyzed:

the graph displays the percentage of utilization of the quad-core CPU and

memory amount required to handle the process. When the system starts the

Raspberry Pi runs the Mosquitto broker with 8 active topics and the related

consumers, 8 running javascript independent functions and 8 Kafka producers

which send keyed messages to 8 different Kafka topics. In order to get most

reliable results and to avoid to affect statistics all non-essential interfaces like

78

INPUT OUTPUT

Raspberry 45 KB/s 400 KB/s

Kafka 400 KB/s 1.2 MB/s

Flink 1.2 MB/s > 1.2 MB/s

Cassandra > 1.2 MB/s n.d

Table 6.3: Input and output produced throughputs with an ingestion frequency
of 50 Hz.

bluetooth, GPIO, Serial and others were deactivated. Data originated from

the scripts (which simulate the sensors) consist of 8 sequences of messages of

113 bytes sent with a frequency of 50 Hz each one.

79

Figure 6.3: The left side shows the CPU utilization while on the right we can
see the memory consumption. On the y-axes there is the usage percentage
while on the x-axes the time is expressed in seconds.

Initially the graph describes an idle situation, i.e. when the Raspberry

Pi has no application running, so CPU and memory usages are due only to

OS tasks. At the 10th second the Mosquitto broker and the Node-Red server

are fired up and the initial peak shows the efforts required to start them:

however, the situation quickly returns to a normal percentage. At second 53

the data stream is launched and it begins to be elaborated by the Raspberry.

It should be noted that at this moment the CPU usage has a strong rise until

around 60%. It is interesting discovering that Raspberry’s CPU is essentially

80

unaffected by the efforts required to run the MQTT broker and the Node-Red

server. An important increment in CPU’s usage is clear only when the data

stream is pushed into the MQTT broker and it ends at second 441 when

the task ends: in any case the load appears to be largely supported by the

Raspberry Pi.

About memory a premise should be considered: memory management is

primarily an OS responsibility and it is true for all nodes of the system so

the following results are partially affected by that. Generally we can note

as the usage in idle state lies between 40% and 50%; later when Mosquitto

and Node-Red started it reaches the 55% while at second 53 the utilization

begins to raise because data streams arrive to the Raspberry: the increment

is gradual as the data arrives and at second 337 the OS is obliged to free RAM

memory to handle forthcoming data, reasonably. After that, the utilization

remains under 70% until the stream ends and later drops towards an idle

state. Anyway, these results do not indicate the Raspberry’s RAM is not

able to handle much more data than just performed: the OS generally uses

more memory in comparison to how much is strictly required in order to

spare time and resources needed to execute a dump on mass storage. Based

on the experimental results we observed that the system bears safely the

proposed load.

The Flink’s cluster is composed of more than one node. The 3 interested

nodes have the same configuration with a dual-core CPU, 2 GB of RAM and

a disk space of 200 GB. Generally, Flink nodes can cover two different roles

within the cluster so in this case we have one Job Manager, which manages

and distributes the job, and 3 Task Managers because one of the machines

works both as Job Manager and Task Manager. Having a node which has

a double role is unusual in Flink due to the required resource’s sharing:

81

FLINK CONFIGURATION

NODE ROLE HEAP (MB) N. SLOTS

Giordano-2-2-100-1 JobManager 256 Not defined

Giordano-2-2-100-1 TaskManager 1512 1

Giordano-2-2-100-2 TaskManager 1512 1

Giordano-2-2-100-3 TaskManager 1512 1

Table 6.4: The configuration chosen for each Flink node

here the choice is mandatory to assure a good performance level with of a

cluster composed of few nodes. Particular attention was paid to tune the

right parameter set about heap size, slot number and parallelism for each

TM so many configurations were tested in order to find the best one. Flink

runs operators and user-defined functions inside the Task Manager JVM, so

the heap amount reserved for each TM should be as large as possible to get

more benefits: memory is shared with the OS, hence an analysis about how

much memory was occupied by Flink was performed. In order to measure

it, some experiments were ran setting an increasing heap size to discover

the reachable limit: the top linux tool was used for this purpose and finally

the chosen values for each node are showed in Table 6.4. Clearly, the node

giordano-2-2-100-1 divides its memory between the Job Manager and the

Task Manager: the former, due to the few nodes to handle, does not need a

big amount of MB so the majority is left to the TM. In the same figure the

established slot numbers are displayed and in this case a single slot for TM

was set arguing with documentation advises: the justification for this choice

will be clear soon in the following of this section.

The first experiment was initially started using 2 slots each TM, accord-

ingly to the documentation, since each TM is equipped with a dual-core CPU.

82

All the 8 sensor streams ingested in Kafka were analyzed. Unfortunately, all

the TMs was failing continuously due to memory overflow errors while the

Job Manager restarted the job many times in vain. The reason of the failure

lies on the inference task performed by the detection algorithm: it produces

an heavy effort analyzing too many streams on the same node. On the other

hand, it should be considered that for each sensor 3 neural networks have

to be implemented because each sensor is composed of one stream for each

"physical direction" of data (axes x,y,z). Performing real-time anomaly de-

tection on even just one of them is a very expensive operation in term of

memory consumption and CPU usage. Essentially, data were ingested faster

than the network was able to elaborate them so the long formed data queue

led the JVM to a crash.

Rehearsing to solve the issue more memory was reserved to the applica-

tion reducing the heap portion allocated for Flink’s internal operations from

70% to 20%: regrettably it was not enough. Another attempt concerns the

distribution of job’s tasks within the cluster. Usually, Flink distributes tasks

through the nodes trying to maximize efficiency so it tends to allocate in

the same slot operators which share data or with similar task: in our case

this behaviour could lead to an unbalanced cluster. Flink does not recognize

machines properly but it organizes the cluster looking at slots: it could dis-

tribute many HTM operators in 2 different slots which reside on the same

machine, causing a dramatic load on the specific node. The issue can be

mitigated influencing manually the task distribution strategy, setting up just

1 slot each TM and forcing the application to reserve a specific slot for par-

ticular operators: Flink calls this functionality Slot Sharing Group. Usually,

SSG is used to force the application to put in the same slot a group of op-

erators for user needs. Anyway, the developer cannot choose exactly which

83

slot of which machine has to host the group, because in Flink does not exist

the concept of machine itself.

Therefore, to figure out the limits of the configuration, an experiment

with just 1 sensor (i.e. 3 simultaneous streams) was planned. Precisely, the

sensor analyzed by Flink was the accelerometer located on the left calf of an

individual. Anyway, the active sensors in the system were still 8 so the num-

ber of streams seen by Raspberry and Kafka is always the same. Differences

are in the number of analyzed streams in Flink, the data amount sent to the

Cassandra database and the number of Kafka consumers. Thus, each Task

Manager was deployed with a single slot and the SSG was adopted to have a

balanced cluster. Using SSG Flink automatically creates a so-called Default

Slot where will be deployed all the operators not assigned to a particular slot.

Hence, in order to implement the analysis of 3 streams, 2 custom slots were

specified to host respectively two of the network operators while the third

one was deployed by Flink in the Default Slot with all remaining operators.

As consequence of SSG, we have to sacrifice one of the most interesting

Flink’s feature: the operator parallelism. It allows to split the execution

of operators in many parts, so partitioning the streams and spreading the

elaboration within the slots. Each partition is elaborated in a different slot

while the results can be unified in a single stream, forwarded towards an

operator with same parallelism or spread to another with an higher one.

Clearly, the data distribution affects the ordering within the stream and it

cannot be applied in every cases: for instance, the flink-htm network operator

cannot be parallelized to execute correctly its operations. Since two of the

tree slots are reserved, the other Flink operators are constrained to reside in

the Default Slot with no possibilities to use parallelism: this one requires a

separate slot for each parallel instance. The parallelism would provides an

84

important performance boost for applications but it could be implementable

just adding more TMs to have more available slots or employing a bunch of

more powerful TMs to avoid the use of SSG.

In Figure 6.4 and in Figure 6.5 the CPU usage percentages for the Flink

nodes are displayed: we can note that after an initial phase where the CPU

utilization is high, due to the communications need for job submission, the

percentage hardly exceeds the 50%. The sudden low usage period nearly

330th second is probably due to a network lack which prevented the applica-

tion to consume data from Kafka; this insight is confirmed by the subsequent

peak showed in the graph which corresponds to a relative large number of

data to analyze. Anyway this event confirms that together Flink and Kafka

face successfully an issue like a network lack. Finally, the elaboration as

a whole is performed in real-time as confirmed by the fact that the CPU

percentage drops exactly when the raspberry stops to send data.

85

Figure 6.4: The CPU usage for the node giordano-2-2-100-1 which hosts
both Job Manager and Task Manager

86

Figure 6.5: The CPU usage for the other Flink nodes.

The Apache Kafka broker was deployed on a node equipped with a single

core CPU, 4 GB of RAM and a 200 GB of mass storage. The broker provides

8 topics and each one is divided in 10 partitions. Having more partitions

represents a performance boost when there are many consumers which read

from the same topic; however, in this case it is not relevant since we have just

one subject involved in the system (i.e. one Raspberry) and the established

partition strategy assigns a single partition for each individual. In Figure 6.6

the CPU percentage usage is represented; moreover in Figure 6.7 a view of

RAM usage percentage and disk space depletion is presented.

87

As already said in the chapter 4 Kafka is one of the most efficient Big Data

technology. Since that, the extremely low resources’ usage annotated about

CPU is unsurprising: a throughput of around 400 KB/s is largely bearable

by a broker which, considering the specific machine characteristics, is able

to handle a rate of several MB/s and millions of concurrent writes without

effort. It should be noted that the throughput of the test depends on the

number of Raspberrys involved in the system: we have just one Raspberry so

any stress test on the Kafka broker is limited by this constraint. Based on the

results we can estimate that even this unusual low Kafka configuration can

handle several Raspberrys easily. As we can observe, the CPU usage remains

averagely on a low percentage except for the spikes probably due to a network

congestion in the instants immediately precedents (this is confirmed by the

CPU effort below the 1% at the corresponding seconds) which caused a long

queue of messages to handle.

It is interesting to note that the RAM usage remains always on a fixed

level and the ingested data stream essentially does not affect the memory

employment: it is due to the Kafka engine which stores incoming data di-

rectly in the mass storage rather than do it on RAM. Kafka writes always

sequentially hence it benefits of the sequential access on disk which are often

faster than random access in memory [58]. Moreover, since data on Kafka are

almost never deleted, the filesystem is not fragmented and reads are executed

sequentially too.

88

Figure 6.6: The Kafka CPU usage. On the y-axe the usage percentage while
on the x-axe the time is expressed in seconds.

89

Figure 6.7: The RAM memory employment (on the left) and the disk space
depletion (on the right). On the y-axe of the rightmost figure the disk amount
is expressed in MB while on the x-axe the time is expressed in seconds.

The node’s disk space depletion also was obtained using sar command.

The total disk space is 200 GB and the graph in Figure 6.7 illustrates how

the space drops when the data stream arrives to Kafka. The plain regions

of the graph are the result of the application of a particular routine of every

Linux OS: it intercepts every Kafka writes on the filesystem and builds a page

cache which is flushed into the disk after a certain time or if the cache is full.

The plain regions are the occurrence in which the OS holds the data in the

90

cache and the subsequent drops represent the flush operations. Kafka allows

to force the flushing obtaining the desired behaviour but the documentation

recommend to leave the default settings which seems to be the best trade-off

between latency and throughput.

As consequence of this successful experiment, the same one was launched

analyzing 2 sensors simultaneously. Recalling the issues related to the slots

and the cluster limitations, every Task Managers were equipped with 1 slot

and for each one a couple of HTM operators were deployed in order to main-

tain the cluster as balanced as possible. The following figures shows the

performance of Flink nodes receiving 2 sensors, which corresponds to an

analysis of 6 streams simultaneously. The heavy usage of CPU immediately

stands out.

91

Figure 6.8: The CPU usage of the Job/Task Manager of the Flink cluster with
6 streams ingested towards it. On x-axe the time is expressed in seconds. The
dashed vertical line represents the instant when the streams end.

92

Figure 6.9: The 2 Flink nodes and their CPU usage expressed in percentage.
On x-axe the time is expressed in seconds. The dashed vertical line represents
the time when the streams end.

The figures describe the undesirable situation of a very delayed data elab-

oration: the vertical dashed line on the graph represents the instant of the

end of stream ingestion. More or less, all the nodes were not able to perform a

real-time analysis and in the worst case, i.e. the node giordano-2-2-100-2,

the task is completed with an impressive delay of more than 300 seconds.

Essentially, the data are queued in a long buffer on the network operators

because they are not able to consume them enough rapidly, causing the de-

lay. Clearly, this is not acceptable in a system where the real-time analysis

93

Figure 6.10: The second experiment with an ingestion frequency of 50 Hz
causes an appreciable increment in Kafka CPU usage.

is essential: in a real medical system a delay of just few minutes could be

fatal. The outcome leads to consider the ingestion frequency of 50 Hz too

much high to handle more than 1 sensor with the adopted infrastructure.

In the Figure 6.17 is illustrated the Kafka CPU usage when the consumers

are doubled. As we can note effectively there is a visible increment in per-

centage: the greater number of Kafka consumers, raised from 3 to 6, affects

the CPU performance although it remains on a low level.

Apache Cassandra, for technology and node configuration (dual-core CPU,

4 GB RAM and a disk of 1 TB) is able to handle an heavier load compared

to the amount ingested from Flink. On the other hand, Cassandra is placed

94

downstream respect to the entire system hence it is obliged to face the lim-

itations imposed by the Flink’s cluster. About memory consumption, it is

around 90% even in idle state while under the load it raises from 87% to 91%

with an increase of only few points in both experiments: this suggest that

the effort due to the load is really low with the provided throughput. The

CPU usage instead is illustrated in the figure below:

Figure 6.11: On the left the CPU usage for the Cassandra node in the first
experiment. On the other side the second one is showed. On x-axe the time
is expressed in seconds.

The graph put in evidence a low CPU usage, which remains averagely

95

under the 20% in both cases. This outcomes is due the cut operated by Flink

to the throughput. It should be considered that in the second experiment,

with the highest load for Cassandra, the throughput is nearly 300 KB/s

whereas without Flink’s limitations it would be at least 1.2 MB/s: these

values represent both a load widely bearable by Cassandra. Someone could

be note that the throughput of data destined to Cassandra is greater than

the one registered on Raspberry: this is not strange if we think that Kafka,

for instance, gets a stream of data where the 3 "directions" values are packed

in one (since usually sensors transmit these data jointly in a single message)

while Cassandra receives the streams separated, one for each "direction"

analyzed by Flink; moreover, if a record appears to be anomalous it will

be recorded twice in two different tables producing an higher throughput.

Comparing the graphs in Figure 6.11 we can note there are no substantial

differences in CPU usage percentage except for the duration of the task,

which is longer in the second case.

The table in Table 6.5 highlights an interesting aspect about memory us-

age about Flink. The memory average percentage stands on very high values

in both tests: this outcome is counterintuitive because the latter experiment

doubles up the operators and it should be greedier than the first one. This

confirms that Apache Flink gets practically all the memory allocated for it

without consider if this memory will be employed or not.

Finally, a statistic about performance with an ingestion frequency of 50 Hz

and using a raising number of sensors is provided in the following histograms.

Except for Flink, all the other systems present great performances with the

designed system and it is interesting finding out their limits. In order to

do it many simulations were done using a number of sensors between 2 and

32 for the Raspberry and Kafka and between 2 and 64 for Cassandra. The

96

AVERAGE MEMORY CONSUMPTION (%)

NODE EXPERIMENT #1 EXPERIMENT #2

Giordano-2-2-100-1 94.73 95.90

Giordano-2-2-100-2 93.12 95.00

Giordano-2-2-100-3 93.47 93.56

Table 6.5: RAM memory consumption expressed in percentage respect to the
total amount available (2 GB).

Raspberry showed signs of elaboration issues with a number of sensors greater

than 32: in fact, the coming messages were computed lately and many of

them were dropped. Anyway, handling 32 sensors is a good result because it

corresponds to an input throughput of 181 KB/s and to an output throughput

of 1.6 MB/s. Also the Kafka results are very good: the test with 32 producers

can simulate a scenario with 4 concurrent Raspberry. Unfortunately, due

to the limit reached by the Raspberry, a more challenging test cannot be

executed. About Cassandra, a separate Flink program which simulates just

the stream dispatching of the original application was deployed in order to

define better the performance of the database. To improve readability some

graphs present a re-sized scale on y-axe. The Figure 6.12 describes, from the

highest to the lowest, the average CPU and RAM memory employment for

the Raspberry Pi, the Kafka broker and the Cassandra database.

97

Figure 6.12: The bars represent the average values registered experimenting
with an increasing number of sensors.

98

About the Raspberry the results were very good. We can note as the CPU

usage presents an slight and gradual increment of few percentage points also

among the two higher cases (i.e. 16 and 32 sensors). Today no application

uses so many wearables on a single person but the result suggests that in

future an embedded system like the Raspberry could perform the task very

well: that is confirmed also by the memory graph which highlights as the

gap between the tests consists only of 8 percentage points.

Actually, an important issue was found during the test: Node-Red is

deployed as a single-core process so after a certain limit, discovered using

12 sensors, it shows many difficulties to handle the throughput generated.

In order to solve the issue and to continue the test Node-Red was deacti-

vated and all its functions were developed in a separate group of Python

scripts which perform the same task: they act as MQTT consumers, enrich

messages and dispatch data to Kafka with the appropriate producers. This

solution represents a multi-core process and it exploits a pool of thread to

manage separately reception and message dispatching. Nevertheless, the re-

sults obtained with Node-Red are still valuable: with a load of 8 sensors the

framework is completely able to execute the task efficiently.

In the Kafka CPU graph is clear that for the broker there are no sub-

stantial differences using more or less sensors at least when this gap is small.

Looking at the histogram in Figure 6.12 we can note that only when the

number of sensors explodes Kafka shows a significant increment in CPU ef-

fort. The project provides 8 sensors each individual: this test demonstrates

that using 4 person (i.e. 32 sensors) Kafka is able to own the scenario also

with a poor node configuration. The Kafka memory consumption is always

high and its changes are negligible: it depends by the OS and its routines

to handle I/O operations. Kafka effectively assigns data to write on disks to

99

the operating system but the latter is the one that decides when and how to

do it accordingly to the policies exposed previously.

Apache Cassandra is located downstream to Flink, so the most of the

experiments on it were executed using a simplified version original program:

it dispatch data operating a dummy analysis. In this way an outlook of the

Cassandra performance was obtained. As we can observe, Cassandra exposes

a boost in CPU usage when the number of sensors raises from 32 to 64:

this last result corresponds to the case of 8 person analyzed simultaneously.

Despite that, the CPU usage percentage remains still under the 35%. Based

on the experimental results, the provided configuration is able to handle

far more sensors but unfortunately a further test with 128 sensors was not

completed because the Flink’s Job Manager has not enough heap memory to

handle a so large number of operators.

Regrettably, due to the limited resources available it was impossible to do

the same comparison just seen with the Flink cluster. The HTM algorithm

is a too heavy task: with the preferred network settings, exposed in section

6.3.2, every experiments which have analyzed 3 or more sensor streams led

to node’s crash. It seems that flink-htm operators used to store a lot of

intermediate data in order to perform an accurate anomaly detection.

Ingestion frequency: 25 Hz

In order to understand how much the ingestion frequency penalizes the

adopted infrastructure a new experiment was performed. We wanted to

check if halving the ingestion frequency, so sending 25 messages per second

instead of 50, it is possible to employ more than a single sensor. No one of

the other parameters were changed. In the Table:6.6 the input and output

throughputs generated with an ingestion frequency of 25 Hz are showed. It

100

INPUT OUTPUT

Raspberry 23 KB/s 200 KB/s

Kafka 200 KB/s 150 KB/s

Flink 150 KB/s > 150 KB/s

Cassandra > 150 KB/s n.d

Table 6.6: Input and output produced throughputs with an ingestion frequency
of 25 Hz.

should be noted that the values related to Flink, Cassandra and Kafka for the

output throughput are affected by the limitations provided by the anomaly

detection: within them, at most 2 sensors can be evaluated simultaneously.

Despite an experiment with 1 sensor was executed also in this case, no

graphs about that will be reported because they do not represent an in-

teresting case of study: the 3 streams were elaborated in real-time with a

significant decrease of efforts in term of CPU. About memory, as already

seen, Flink gets all the available amount also if it is not necessary. On the

other hand there were no reasons to justify a deterioration of performance

applying a lighter load to the system. Instead, the core of this second at-

tempt is to verify if, halving the ingestion frequency, the Flink application is

able to analyze 2 sensors simultaneously.

The Figure 6.13 shows the CPU and memory performance on Raspberry

with an ingestion frequency of 25 Hz:

101

Figure 6.13: The CPU and memory usage on Raspberry Pi with an ingestion
rate of 25 Hz.

102

Figure 6.14: The CPU graph about Apache Kafka in the second experiments.

The CPU effort shows only negligible differences while the memory con-

sumption is characterized by a decrease of about 6-7 percentage points. The

Kafka graph in Figure 6.14 about CPU shows an average effort essentially

equal to the previous one but with a more stable trend thanks to the lesser

ingestion frequency which avoids sudden back-pressures due to potential net-

work congestions. The central part of the experiment is represented in Fig-

ure 6.15 and Figure 6.16

103

Figure 6.15: The CPU graph of the first node of the Flink cluster. The dashed
line represents the instant when the stream ends.

104

Figure 6.16: The CPU graph about the other two Task Managers. The dashed
line represents the instant when the stream ends.

Using an ingestion frequency of 50 Hz we observed an heavy CPU effort to

complete the task: despite it, the task was completed with an unacceptable

delay. Halving the ingestion frequency the CPU percentage of utilize is still

very high and touches the 99%. This is symptomatic of an heavy task like the

simultaneous elaboration of 6 six streams. Unfortunately even in this case

the job is not completed on time and halving the ingestion rate seems not

to be enough to analyze more than one sensor: anyway, the delay was very

reduced compared to the previous case. It suggests that probably analyzing

105

Figure 6.17: The CPU graph about the Cassandra database within the second
experiment.

more than 1 sensor at time accepting is possible if we accept a trade off

with the sensor reading frequency. Finally, a predictable decreasing CPU

utilization of Apache Cassandra is displayed in the figure below while its

memory consumption is always stable around an interval of 90-95%.

Ingestion frequency: 15 Hz

The last one experiment cuts the original ingestion frequency of 70% in order

to verify if it is possible analyze more than 1 sensor with the adopted infras-

tructure choosing a lower throughput. In the Table:6.6 the input and output

throughputs generated with an ingestion frequency of 25 Hz are showed. It

106

INPUT OUTPUT

Raspberry 14 KB/s 120 KB/s

Kafka 120 KB/s 90 KB/s

Flink 90 KB/s > 90 KB/s

Cassandra > 90 KB/s n.d

Table 6.7: Input and output produced throughputs with an ingestion frequency
of 15 Hz.

should be noted that the values related to Flink, Cassandra and Kafka for the

output throughput are affected by the limitations provided by the anomaly

detection: within them, at most 2 sensors can be evaluated simultaneously.

The Figure 6.18 - Figure 6.20 depict the behaviour of Raspberry, Kafka

and Cassandra with the new ingestion frequency: they decrease slightly the

efforts or maintain same performances of the previous test. The most inter-

esting graphs are Figure 6.21 and Figure 6.22 which display the CPU utiliza-

tion for Flink’s nodes: the percentage is still very high but finally the job is

elaborated in real-time, the dashed lines now correspond exactly to the end

of the computation.

107

Figure 6.18: The graph about Raspberry’s CPU and memory consumption
with an ingestion rate of 15 Hz.

108

Figure 6.19: The graph about Kafka CPU usage with an ingestion rate of 15
Hz.

109

Figure 6.20: The CPU graph about the Cassandra database within the third
experiment.

110

Figure 6.21: The usage caused by the job on the first node of the Flink cluster,
finally computed in real-time.

111

Figure 6.22: The usage caused by the job on the 2 last node of the Flink
cluster, finally computed in real-time.

The confused trend of the last graphs is due to the low ingestion fre-

quency which reduces the throughput towards Flink from 300 KB/s to 90

KB/s. The lower throughput causes an increment of oscillations in CPU

graph respect to the case of the first experiment: thanks to the lower fre-

quency the network operators have enough time to detect anomalies before

the next messages arrive that oscillations are caused by periods of intensive

computation alternated with periods of quite "silence".

112

AVERAGE DATA LOSS (%)

INGESTION FREQ. (Hz) 3 STREAMS 6 STREAMS

50 0.302 ± 0.02 0.366 ± 0.03

25 0.284 ± 0.01 0.326 ± 0.1

15 0.273 ± 0.01 0.293 ± 0.07

Table 6.8: The average data loss in the system.

Data loss

During the processing data sent and partially elaborated by the system can

be lost for many reasons. The most probable is a network lack but also a

dropping by Flink can occurs. As explained in section 5.5.2 if a message

arrives with a lateness greater than a fixed value (800 ms in the implemented

case) it is dropped because it cannot be more added to the stream to analyze.

Some statistics about the average data loss are depicted in the following

table. The experiments were executed with the 3 different ingestion rate

which are employed in the test and for the 2 Flink applications with 3 and

6 data streams simultaneously analyzed. The test was repeated 3 times for

each value. Reasonably, the percentage loss decreases with the lower ingestion

rates and analyzing less sensors, thank’s to the lower effort required to run

the application.

6.3.2 HTM results

At the present the Numenta HTM algorithms can be implemented using

several object-oriented languages, in particular Python, C++ and Java while

Apache Flink employs Java and Scala. As consequence flink-htm library was

specifically built-up using these last two languages. Due to its simplicity and

113

spread, in this project Java 1.8 version was preferred.

The first step to execute the anomaly detection algorithm is building an

HTM network. Creating it from scratch could be a very complex task due

to a lot of parameters to set and because it requires a strong knowledge of

neural networks and machine learning topics. The construction of a network

is strongly related to the data it has to analyze. Actually the particular

network employed in this project was built following a standard template

which is considered generally adequate to the 90% of cases by the Numenta

engineers. The network template was refined and improved in accordance

with HTM documentations and community’s tips in order to make it more

adherent to the provided data patterns. Indeed, to obtain the best results

many attempts were performed changing options and parameters: finally, the

set showed in the Figure 6.23 was chosen as the best compromise between

accuracy and velocity of execution. The class Harness.AnomalyNetwork

represents the employed HTM network.

One of the most important tuned parameters is the network resolution:

if it is low it produces a more accurate output although it will be paid with

a greater delay to perform the analysis. The Table:6.9 sums up the time re-

quired to compute anomaly degree for each record testing 4 different networks

with a decreasing resolution.

We can intend the resolution as a measurement of how much the values

differs each other: if they are very close a more fine-grained resolution will

be required to detect anomalies, otherwise just few anomalies will be found.

Going down into details, the network creates a set of bins with a length fixed

to the resolution value: the bins represent a sort of data quantization. The

algorithm computes a prediction value with the equations listed in section

4.4.1 and puts the obtained value in the correspondent bin correspondent.

114

Figure 6.23: An abstract of the class Harness.AnomalyNetwork which repre-
sents the adopted anomaly network.

115

RESOLUTION TIME PER RECORD (ms)

0.1 25.98

0.3 16.35

0.5 15.19

0.7 15.17

Table 6.9: Comparison of the elaboration time required to compute a single
record with several network resolutions.

At the next step the algorithm compares the "predicted" bin with the des-

tination bin of the real value: if they are equal the prediction was good. If

the the resolution was too high, the bins will be very large and many values

will fall in bins which do not represent adequately the data; moreover, if

there are few bins the wrong predictions will fall in the same bin of the real

values leading to a false negative and returning no anomalies. The chosen

network has a resolution of 0.3 because it provided the best trade-off between

accuracy and computation speed.

The dataset used to represent sensor data belonging to a subject is com-

posed of 180.000 records temporally separated from 20 milliseconds. The

values considered here as example match the acceleration along the X-axe.

In order to improve readability the Figure 6.25 and Figure 6.27 present only

portions of the entire dataset, in particular are showed the first 20.000 and

50.000 records. First of all, we can note that the employed one is a continu-

ous learning algorithm: this means the network do not use a learning phase

as step to perform anomaly detection. However, it requires a time period to

understand and figure out the data pattern during the processing itself: this

phase take up a time which depends on how variable are the data. Indeed, in

the Figure 6.26 and Figure 6.28, which represents respectively the anomalies

found in the first 20.000 and 50.000 records, we can observe the presence of

116

a initial stage of 1 values representing strong anomalies. This is due to the

initial lack of data knowledge of the network. In this test after around 6

seconds the network has a sufficient knowledge about the data pattern and

it is ready to evaluate the forthcoming data.

It should be noted that HTM is a memory-based system and has not

ability to "understand" data meaning, instead it evaluates repeatability and

recurrence of patterns so, for instance, if the data set represents a strict

widening array of natural numbers HTM anomaly detection algorithm will

present a bad behaviour. HTM won’t be able to predict a never seen value

because it has not the ability to understand the numbers for what they

represent. Otherwise it will give great results in case of recurrent values,

just as in the present case, because it knows data pattern and can compute

the value which has the greatest probability to appear. The capability of

"understand" data usually is a prerogative of the system which use using

specific formulae to learn quickly but only on particular types of patterns:

HTM is probably slower but it can learn every patterns even if they are

difficult to express with mathematical expressions.

Finally, HTM tends to consider more probable the arrive of a recent seen

pattern rather than an elder one: the latter is forgot after a long time so

HTM describe an ability to adapt itself analyzing the changes which occurr

in data patterns.

Comparing respectively the pairs Figure 6.25 - Figure 6.26 and Figure 6.27

- Figure 6.28 we can observe how HTM registers high anomaly degree spike

(values closer to 1 respect to 0) exactly where there are abnormal peaks in

the dataset graph. It should be noted that actually HTM do not push out

anomalies directly, instead it calculates an anomaly degree, constrained from

0 to 1. Selecting which values represent anomalies and which not is a task

117

Figure 6.24: A summary of the consequences of using a network with different
resolution value.

heavily dependent by the application. In this project many attempts were

performed to find an adequate threshold to fit the data set and a value of

0.8 was considered as a good limit to distinguish between anomalies (>=

0.8) and standard values (< 0.8). Since that, only values with an anomaly

degree greater than 0.8 were memorized in Cassandra as anomalies. Anyway,

the anomaly threshold is easily changeable in StreamingJob class.

Furthermore, the histogram in Figure 6.24 depicts the number of anoma-

lies found with 4 networks varying thresholds. Generally, resolution has to

be chosen on data basis, in fact an high number of anomalies does not corre-

spond necessarily to an higher accuracy because with a fine-grained resolution

raises even the risk to get false positives. Given that, in this case was useless

testing a resolution of 0.1 or 0.7 because it would lead respectively a too

heavy and a too inaccurate task.

118

Figure 6.25: The first 20.000 records of the dataset.

119

Figure 6.26: Anomaly peaks found in the first 20.000.

120

Figure 6.27: The first 50.000 records of the dataset.

121

Figure 6.28: Anomaly peaks found in the first 50.000 records

Implementing flink-htm

In order to implement HTM algorithms on Apache Flink the library flink-

htm was employed. Unfortunately, using it some fatal bugs were found.

Firstly, a mismatch about Flink version was found, it caused an incorrect

functioning of the application that was unable to complete the task: the

library in fact was deployed when Flink’s last version was the 1.2.0 while

in this project the most recent version of Flink was employed (1.3.2). In

collaboration with the owner of flink-htm a bit a work was needed to edit

the library in order to match the newer Flink version. Moreover, also the

HTM API was changed during the last year hence some hours were spent to

122

re-define some methods used in the library classes. Currently the fixed flink-

htm library is available on GitHub [49]. A third corrected bug concerns the

implementation of parallelism for an operation related to the computation

of the anomaly degree: regrettably, adding it to the most heavy operator is

impossible without affect the detection efficacy. However, the most important

contribute provided to the library was the implementation of the Slot Sharing

Group to the HTM network operator, the one which own the computation

of anomaly values. It allowed to distribute the task over the cluster and

to execute the task: without it no one sensors could be analyzed by the

application.

6.4 Summative evaluation

The testing infrastructure looks unusual, for size and equipment, compared to

the most common used in production: despite this, almost every frameworks

proved to be able to complete the assigned task without problems. The only

critical challenge was represented by the execution of the anomaly detection

routine provided by HTM on Apache Flink. Actually, we cannot state that

Flink was unable to achieve the assigned task: the functionalities offered by

the flink-htm library have proved to be heavier than we assumed. Moreover,

the Cassandra’s test with 64 sensors proved that the Flink node was able to

handle an elevated throughput (3.2 MB/s): the responsibilities of the failure

within the main test (8 sensors at 50 Hz) have to be attributed only to the

external library. Unfortunately, the adopted infrastructure was not able to

perform real-time detection on more than 2 sensors with an ingestion rate

greater than 15 Hz. Actually an ingestion frequency of 15 Hz could be an

adequate value for the most of medical sensors: indeed, sending a message

123

each 66 ms does not represent a low rate and values collected in healthcare

context usually does not require an extremely high sampling. Healthcare

taking more advantages from the use of a real-time system which could raise

alarms or trigger autonomous reactions within few seconds of an emergency.

In tests the aim was to achieve real-time analysis with 8 sensors but the

objective was respected only with single sensor: the results obtained with

2 sensors are quite poor considering the requirements listed in chapter 2

and should be considered a serious problem. Definitely, in order to obtain

a system to analyze many sensors in real-time a more powerful cluster is

required. Another unfulfilled requirement concerns the data loss: anyway a

loss limited to 0.3% of the entire dataset is acceptable, especially in a context

where the whole stream is much more important than the single value.

On the other hand, results exposed in section 6.3.2 illustrates that flink-

htm is a great instrument to implement an anomaly detector. It can work on

almost every dataset, if enough time is dedicated to the build of the network.

Moreover, the accuracy depicted comparing Figure 6.25 - Figure 6.28 is im-

pressive and, at least in term of anomalies detected, HTM fulfills completely

its scope.

About the other blocks of the system, Raspberry reached unexpected

results. It seems to be able to handle easily a number of sensors surely greater

than the necessary. The outcomes of Kafka and Cassandra are unsurprising:

they represent the State of the Art of Big Data technologies and they are

used all around the world in most important companies. Their impressive

abilities emerged also with the little infrastructure employed here and the

results confirm their great performances also with many sensors which send

data simultaneously. Furthermore, the result achieved by these framework

have much more significance because were obtained with an infrastructure

124

which is very distant from a real production cluster so higher performance

could be obtained with a bunch of more powerful machines or with a larger

set of commodity hardware.

Providing some improvements around the number of involved nodes or

using more powerful machines, the designed architecture can be used to re-

alize a real system to face the healthcare scenario presented in this thesis.

Today wearables sensors are widely spread in the world and their cost is

decreasing quickly: one of the main strength of the designed system is the

modularity; it can be sized depending on the specific scenario and the num-

ber of involved patients reducing the cost. The main challenge addressed

here is represented by real-time anomaly detection of multiple sensors but it

can be easily evaded choosing an appropriate processing cluster: the cost to

face to realize the infrastructure would be compensated by the improvements

achieved with a better and advanced service.

125

Chapter 7

Conclusions

The dissertation has presented a summarize of the most used technologies in

Big Data field and it wanted to describe a working architecture to face with

a Healthcare problem. The depicted scenario represented an hard testing

ground to evaluate the listed software also in order to understand which

kinds of applications are effectively runnable on a cluster.

The technical outcomes were largely commented in chapter 6.3 but view-

ing on practical applications, we can easily imagine how to use data fetched

from sensors. For example, accelerometers and gyroscopes can be used to

reconstruct patient’s behaviour and avoid false positives: jointly with other

wearables (e.g. an heart rate belt) the real-time analysis can distinguishes a

real emergency or the symptom of a disease from a natural change of phys-

iological values. As described in section 6.3.2 the HTM algoritm is able to

gradually adapt the prediction to the specific current situation: for instance,

if a patient is moving after a standstill period, HTM will detect the data

pattern change but quickly will understand that is not an emergency.

In this regard, semantic technologies can assist the algorithm and improve

data comprehensibility. They have a fundamental role to assist both person

126

and machine to interpret data and to provide better services to people: fur-

ther considerations on improvements of medical analysis starting from these

statement are described in the chapter 8.

127

Chapter 8

Future works

The designed project could be considered as a completed system: despite

this, some upgrades and extensions are imaginable. Potential supplementary

features on the system concern mainly a batch elaborations on data stored on

Cassandra cluster. These data are particularly important because they allow

to execute deep analysis on patient’s data, predicting potential disease and

obtaining statistical results after the use of a specific drug. Anymore, trend

analysis can describe patient’s progress in therapy or points out deficiencies.

The usefulness of these data is impressive and they can incredibly increase

clinic efficiency while patients gain an higher quality of treatments.

Further developments regard the final part of the system: the addition

a new evaluating cluster downstream Cassandra could offers additional data

elaborations. In this regard two types of elaborations have to be considered:

the streaming and the batch ones. After the choice a processing framework

can be selected between those already described in chapter 4: other stream-

ing analysis should be integrated in the pre-existent data processing block.

Querying over RDF data streams is quite challenging because it requires a

very fast inference process and at the moment the existing semantic pro-

128

cessors represent a performance bottleneck. About a batch analysis, unless

there are specific requirements and in order to avoid unnecessary complica-

tions a good option could be use another instance of Apache Flink; other

possibilities are Hadoop or Spark.

Furthermore, the semantic engine to query the storage and to infer new

knowledge has to be chosen. There are many possibilities released as open-

source or commercial systems to perform reasoning over streaming or static

dataset. They can be divided in two big families:

• Centralized engines: They usually run on single machines. The

category includes C-SPARQL [54], CQELS [50], ETALIS [57], SPAR-

QLStream, INSTANS, Streaming Linked Data and SparkWave.

• Distributed engines: Mainly deployed on cloud infrastructure. Ex-

amples are CQELS-Cloud [51] and Katts [52].

No centralized engines are currently able to face a very massive data

stream or to run on a cluster while there are many other engines successfully

used against static dataset like SPARQL. On the other hand, CQELS-Cloud

is released as a commercial product and it is a bit inflexible about data feeding

modalities and query customization while Katts is more a prototype respect

to the other engines. About stream reasoning, today many efforts are striving

to implements systems to perform it effectively: some examples are showed in

[53] and [56] although the former considers the addition of a pre-processing

stage before the query execution which affects the real-time requirements,

while the latter is proposed in Strider, an hybrid adaptive distributed RDF

Stream Processing engine based on an implementation of Apache Spark and

SPARQL. Besides, it should be noted that Big Data analysis always requires

a distributed approach and there is a significant hole to perform semantic

129

reasoning over distributed clusters: the research of solutions in this sense

will be surely an interesting field in semantic web studies.

The system as whole is meant as a modular structure. This configuration

promotes and simplify future restructuring of the architecture or extensions

needed by the growth of involved people’s number in the system. For in-

stance, about Kafka it should be noted that a potential increase of sensors

each person can be translated in the addition of new topics, without affecting

the preexisting ones. If the number of individuals or sensors grows, in Flink

it is sufficient adding more nodes to handle a greater data throughput. Same

reasoning can be done about Cassandra: in this regard the number of nodes

could be increased also in case of new needs about requested availability.

Acronyms

CEP Complex Event Processing

CQL Cassandra Query Language

DBMS DataBase Management System

DSMS Data Stream Management System

ECG Electrocardiography

IRI Internationalized Resource Identifier

IT Innovation Technology

JSON JavaScript Object Notation

JSON-LD JSON-Linked Data

MQTT Message Queue Telemetry Transport

P2P Peer to Peer

R2RML RDB to RDF Mapping Language

RDBMS Relational DataBase Management System

RDD Resilient Distributed Dataset

RDF Resource Description Framework

RF Replication Factor

RPI3 Raspberry Pi 3

RT Real Time

SSG Slot Sharing Group

TM Task Manager

UK United Kingdom

URL Uniform Resource Locator

US United States

Glossary of Terms

Big Data

Big data is an evolving term that describes any voluminous amount of structured,

semistructured and unstructured data that has the potential to be mined for infor-

mation.

Cluster computing

Cluster computing is a type of computing where a group of several computers are

linked together, allowing the entire group of computers to behave as if it were a

single entity.

Grid computing

Grid computing refers to a group of computer resources from multiple locations to

reach a common goal. It is distinguished from high-performance computing systems

such as cluster computing in that grid computers have each node set to perform a

different task. Grid computers also tend to be more geographically dispersed than

cluster computers.

Near-Real-Time

Pertaining to the timeliness of data or information which has been delayed by the

time required for electronic communication and automatic data processing. This

implies that there are no significant delays.

Semantic web

An extension of the current Web that provides an easier way to find, share, reuse

and combine information. It is based on machine-readable information and builds

on XML technology’s capability to define customized tagging schemes and RDF’s

flexible approach to representing data.

References

[1] Adriana Maria, Bogza, Performance evaluation of Apache Mahout for

mining large datasets, Master Thesis, FIB, UPC 2016. Under the super-

vision of Prof. Fatos Xhafa

[2] Çetintemel, Stonebraker, Zdonik, The 8 Requirements of Real-Time

Stream Processing, 2005

[3] Ballou, Kenny, Apache Storm vs Apache Spark,

https://zdatainc.com/2014/09/apache-storm-apache-spark/

[4] Friedman, Tzoumas, Introduction to Apache Flink, 2016, OReilly Media

[5] Xhafa, Caballè, Naranjo, Processing and Analytics of Big Data Streams

with Yahoo! S4, 2015 IEEE 29th International Conference on Advanced

Information Networking and Applications, 2015, IEEE

[6] Apache Flink official documentation, Introduction to Apache Flink, 2017

https://flink.apache.org (accessed as November 2017)

[7] Girik Pachauri, Sandeep Sharma, Anomaly detection in medical wireless

sensor networks using machine learning algorithms, 4thInternational

Conference on Eco-friendly Computing and Communication Systems,

2015, Elsevier

https://zdatainc.com/2014/09/apache-storm-apache-spark/
https://flink.apache.org

[8] Grehan, Big data showdown: Cassandra vs. HBase, 2014, In-

foWorld https://www.infoworld.com/article/2610656/database/big-

data-showdown–cassandra-vs–hbase.html (accessed as of November

2017)

[9] Haadi Banaee, Mobyen Uddin Ahmed, Ami Loutfi, Data Mining for

Wearable Sensors in Health Monitoring Systems: A Review of Recent

Trends and Challenges, Sensors 2013, volume 13, issue 12, 17472-17500,

2013, MDPI AG

[10] HBase official documentation, 2016 https://hbase.apache.org (accessed

as of November 2017)

[11] Cassandra official documentation, 2017, Introduction to Apache Cassan-

dra http://cassandra.apache.org/doc/latest/ (accessed as of November

2017)

[12] Spark official docuementation, 2017, Introduction to Apache Spark

http://spark.apache.org/doc/latest/ (accessed as of November 2017)

[13] Institute for Health Technology Transformation, Transforming Health

Care through Big Data Strategies for leveraging Big Data in the health

care industry, 2013

[14] Jimmy Lin, Erick Josson, Introduction to MapReduce/Hadoop

[15] Ali, Calbimonte, Dell’Aglio, Della Valle, Mauri, RDF Streams process-

ing. ISWC 2016, The 15th International Semantic Web Conference, 2016

[16] Manyika, Chui, Brown, Buhin, Dobbs, Roxburgh, Big Data: The Next

Frontier for innovation, competition and productivity, 2011, McKinsey

and Company

https://www.infoworld.com/article/2610656/database/big-data-showdown--cassandra-vs--hbase.html
https://www.infoworld.com/article/2610656/database/big-data-showdown--cassandra-vs--hbase.html
https://hbase.apache.org
http://cassandra.apache.org/doc/latest/
http://spark.apache.org/doc/latest/

[17] Noack, Real-Time Monitoring and Long-Term Analysis by Means of Em-

bedded Systems, TU Cottbus, 2011

[18] Numenta Community, 2017, Introduction to HTM, https://numenta.org

(accessed as of November 2017)

[19] Raghupathi W., Raghupathi V., Big data analytics in healthcare:

promise and potential, 2014, BioMed Central

[20] Cortes, Bonnair, Marin, Sens, The 4th International Workshop on Body

Area Sensor Networks, Stream processing of healthcare sensor data:

studying user traces to identify challenges from a Big Data perspective,

2015, Elsevier

[21] Hussain, Kang, Lee, A wearable device base personalized Big Data anal-

ysis Model, Lecture Notes in Computer Science, volume 8867, 2014,

Springer International Publishing Switzerland

[22] Ahmadi, Purdy, Real-Time Anomaly Detection for Streaming Analytics,

2016, arXiv

[23] Van-Dai-Ta, Chuan-Ming Liu, Goodwill Wandile Nkabinde, Big Data

Stream Computing in Healthcare Real-Time Analytics, International

Conference on Cloud Computing and Big Data Analysis, 2016, IEEE

[24] Weihiua He, Yongcai Guo, Chao Gao, Xinke Li, Recognition of human

activities with wearable sensor, EURASIP Journal on Advances in Signal

Processing, 2012, Springer International Publishing

[25] Walker, Every day Big Data statistics, 2015

http://www.vcloudnews.com/every-day-big-data-statistics-2-5-

https://numenta.org
http://www.vcloudnews.com/every-day-big-data-statistics-2-5-quintillion-bytes-of-data-created-daily/
http://www.vcloudnews.com/every-day-big-data-statistics-2-5-quintillion-bytes-of-data-created-daily/
http://www.vcloudnews.com/every-day-big-data-statistics-2-5-quintillion-bytes-of-data-created-daily/

quintillion-bytes-of-data-created-daily/ (accessed as of November

2017)

[26] Andrew Meola, Business Insider, Internet of Things in healthcare: In-

formation technology in health, 2016

[27] Goebel, Plagemann, Søberg, Universitetet i Oslo, (2010), Complex event

processing, Sixth International Conference on Intelligent Sensors, Sensor

Networks and Information Processing, 2010, IEEE

[28] Sahu, A real comparison of NoSQL databases, 2015

https://www.linkedin.com/pulse/real-comparison-nosql-databases-

hbase-cassandra-mongodb-sahu/ (accessed as of November 2017)

[29] Datastax, Benchmarking top NoSQL Databases, 2015, End Point

[30] Chen, Agrawal, Cochinwala, Rosenblut, Stream query processing for

healthcare bio-sensor applications,20th International Conference on Data

Engineering, 2004, IEEE

[31] Farivar, Knusbaum, Performance Comparison of Streaming Big Data

Platforms, DataWorks Summit/Hadoop Summit, 2016

[32] Banos, Toth, Damas, Pomares, Rojas, Dealing with the Effects of Sen-

sor Displacement in Wearable Activity Recognition, Sensors, Volume 14,

Issue 6, 2014, MDPI AG

[33] Banos, Damas, Pomares, Rojas, Toth, Amft, A benchmark dataset to

evaluate sensor displacement in activity recognition, ACM Conference

on Ubiquitous Computing, 2012, ACM

[34] Toth, Banos, Realistic sensor displacement benchmark dataset, 2014

http://www.vcloudnews.com/every-day-big-data-statistics-2-5-quintillion-bytes-of-data-created-daily/
http://www.vcloudnews.com/every-day-big-data-statistics-2-5-quintillion-bytes-of-data-created-daily/
http://www.vcloudnews.com/every-day-big-data-statistics-2-5-quintillion-bytes-of-data-created-daily/
https://www.linkedin.com/pulse/real-comparison-nosql-databases-hbase-cassandra-mongodb-sahu/
https://www.linkedin.com/pulse/real-comparison-nosql-databases-hbase-cassandra-mongodb-sahu/

[35] MQTT Official documentation, 2017, The MQTT Protocol

http://mqtt.org (accessed as of November 2017)

[36] ISWC2016 Manifesto, 15th International Semantic Web Conference,

2016

[37] Raspberry Foundation, Raspberry Pi Official site, 2017

https://www.raspberrypi.org (accessed as of November 2017)

[38] Light, Mosquitto: server and client implementation of the MQTT pro-

tocol, Journal of Open Source Software, 2017, Nottingham ePrints

[39] TripleWave GitHub page, https://github.com/streamreasoning/TripleWave,

2016

[40] IoTDB, 2013, https://iotdb.org (accessed as of November 2017)

[41] Villalonga, Pomares, Rojas, Banos, MIMU-Wear: Ontology-based sensor

selection for real-world wearable activity recognition, Neurocomputing,

Volume 250, 2016, Elsevier

[42] W3C, SSN Ontology, 2011 https://www.w3.org/2005/Incubator/ssn/ssnx/ssn

(accessed as of November 2017)

[43] Jun Rao, Connecting to Apache Kafka Connecting to Apache Kafka

[44] RDLab - UPC - FIB, https://rdlab.cs.upc.edu/ (accessed as of November

2017)

[45] Lakshman, Malik, Cassandra - A decentralized structured storage sys-

tem, ACM SIGOPS Operating Systems Review, Volume 44, Issue 2,

2010, ACM

http://mqtt.org
https://www.raspberrypi.org
https://github.com/streamreasoning/TripleWave
https://iotdb.org
https://www.w3.org/2005/Incubator/ssn/ssnx/ssn
https://rdlab.cs.upc.edu/

[46] DataStax, Apache Cassandra 3.0 Datastax documentation, 2017, (ac-

cessed as of November 2017)

[47] DataStax, Selecting hardware for Apache Cas-

sandra, 2017 https://docs.datastax.com/en/dse-

planning/doc/planning/planningHardware.html (accessed as of Novem-

ber 2017)

[48] Joe Chu, How to size up a Cassandra cluster, 2014

https://www.slideshare.net/planetcassandra/201404-cluster-sizing

(accessed as of November 2017)

[49] Wright, flink-htm GitHub page, 2016 https://github.com/htm-

community/flink-htm (accessed as of November 2017)

[50] Le Phuoc, Danh, A Native and Adaptive Approach for Linked Stream

Data Processing, NUI Galway Theses, 2013

[51] Danh Le-Phuoc, Hoan Nguyen Mau Quoc, Chan Le Van, Manfred

Hauswirth Elastic and scalable processing of linked stream data in the

cloud, International Semantic Web Conference, 2013

[52] Fisher, Charrenbach, Bernstein Scalable linked data stream processing

via network-aware workload scheduling, SSWS’13 Proceedings of the 9th

International Conference on Scalable Semantic Web Knowledge Base

Systems, Volume 1046, 2013, CEUR-WS

[53] Schatzle, Przyjaciel-Zablocki, Skilevic, Lausen, S2rdf: Rdf querying with

SPARQL on Spark, 2015, arXiv

https://docs.datastax.com/en/dse-planning/doc/planning/planningHardware.html
https://docs.datastax.com/en/dse-planning/doc/planning/planningHardware.html
https://www.slideshare.net/planetcassandra/201404-cluster-sizing
https://github.com/htm-community/flink-htm
https://github.com/htm-community/flink-htm

[54] Barbieri, Braga, Ceri, Della Valle, Grossniklaus, C-SPARQL: A con-

tinuous query language for RDF data streams, International Journal of

Semantic Computing, Volume 04, Issue 01, 2010, World Scientific

[55] Kreps, Putting Apache Kafka to use, 2015, Confluent

https://www.confluent.io/blog/stream-data-platform-1/ (accessed

as of November 2017)

[56] Ren, Cure, Strider: A Hybrid Adaptive Distributed RDF Stream Pro-

cessing Engine, 2016, arXiv

[57] Anicic, Rudolph, Fodor, Stojanovic, Stream Reasoning and Complex

Event Processing in ETALIS, Semantic Web, 2009, IOS Press

[58] Kafka official documentation, Persistence section, 2017

https://kafka.apache.org/documentation/ (accessed as of November

2017)

[59] Wang, 2016 https://www.npmjs.com/package/node-red-contrib-kafka-

node (accessed as of November 2017)

[60] Nioche, Low latency scalable web crawling on Apache Storm, Berlin Buz-

zwords, 2015

https://www.confluent.io/blog/stream-data-platform-1/
https://kafka.apache.org/documentation/
https://www.npmjs.com/package/node-red-contrib-kafka-node
https://www.npmjs.com/package/node-red-contrib-kafka-node

	Introduction
	Problem statement
	Objectives and project scope
	State of the art
	Batch computing vs Stream computing
	Distributed computing technologies
	Apache Kafka
	Apache Hadoop
	Apache Spark
	Apache Storm
	Apache Flink
	Comparison

	Storage layer
	Apache Cassandra
	Apache HBase
	HDFS
	Comparison

	Real-time anomaly detection
	Numenta HTM

	Semantic web
	Resource Description Framework
	Resource Description Framework Stream
	TripleWave

	Architecture
	Problem definition and requirements
	Functional requirements
	Non-Functional requirements

	Overview
	Sensing subsystem
	REALDISP Dataset
	MQTT

	Data preprocessing
	Raspberry Pi 3
	TripleWave approach

	Cluster processing
	Kafka cluster
	Flink cluster
	Data stream output consistency

	Data persistence
	Cassandra cluster
	Cassandra data modeling

	Experimental study
	Computational infrastructure
	Adopted infrastructure
	Testing and evaluation
	Nodes performance
	HTM results

	Summative evaluation

	Conclusions
	Future works
	Acronyms
	Glossary of Terms
	References

