
Master's Thesis

DOUBLE MASTER'S DEGREE IN INDUSTRIAL ENGINNEERING AND MANAGEMENT

ENGINEERING

InduBot

Final Report

 Author: Marco Facchini Amondarain
 Director: Marta Gatius Vila
 Rapporteur: Lluis Solano Albajes
 Edition: 04/18

Escola Tècnica Superior
d’Enginyeria Industrial de Barcelona

InduBot Pág. 1

InduBot Pág. 2

Abstract

Chatbots are disrupting the market to substitute traditional channels of interaction between

businesses and customers. People nowadays are using messaging apps more than never

before and when booking a flight, ordering a pizza or whatever the transaction, in many cases

companies has a chatbot there, 24/7, ready to chat and give a service.

This project consists on the development of InduBot, a chatbot to respond to student’s

demands when searching academic information about the university. In this final report it is

explained the followed phases to design, develop and implement the functional prototype.

InduBot is intended to be a first step and a base for developing other chatbots to connect the

university with the students.

The resulting chatbot for this project can be found on the messaging app Telegram by

searching TheInduBot. It has been configured to be always running on a server as a web

application and through a webhook and the Telegram Bot API answer at any time to user

requests.

The university should be ready for chatbots and contemplate this new channel of

communication because it may be the key to transform the relationship with the students in

the coming years.

InduBot Pág. 3

INDEX

ABSTRACT ___ 2

INDEX ___ 3

1. GLOSSARY __ 5

2. PREFACE __ 7

2.1. Origin of the project .. 7

2.2. Motivation ... 7

2.3. Previous requirements ... 7

3. INTRODUCTION ___ 8

3.1. Objectives of the project ... 8

3.2. Scope of the project.. 8

3.3. Current situation at ETSEIB ... 9

4. CONTEXT ___ 10

4.1. Definition and types of chatbots ... 10

4.1.1. Classification 1: Chatbot’s purpose ... 10

4.1.2. Classification 2: Chatbot’s logic ... 13

4.1.3. Classification 3: Answering model ... 18

4.2. Chatbot industry ... 21

4.2.1. Present.. 21

4.2.2. Trends ... 21

5. METHODOLOGY ___ 24

5.1. Agile model ... 24

5.2. Planning.. 26

6. DESIGN & IMPLEMENTATION ______________________________ 27

6.1. Requirements ... 27

6.1.1. Functional requirements .. 27

6.1.2. Non-functional requirements ... 30

6.2. Chatbot Design ... 30

6.2.1. Technologies ... 30

6.2.2. Architecture ... 31

6.2.3. Functional Design ... 33

6.2.4. Ontology.. 37

6.2.5. Technical Design .. 39

6.3. Implementation ... 50

InduBot Pág. 4

6.3.1. Configuration .. 50

6.3.2. Business Logic ... 52

6.3.3. Knowledge Base .. 52

6.4. Testing and results ... 52

6.4.1. Testing ... 52

6.4.2. Results ... 53

7. PROJECT COSTS __ 55

8. ENVIRONMENTAL IMPACT ________________________________ 57

CONCLUSIONS __ 59

Improvements .. 59

Challenges and limitations ... 60

BIBLIOGRAPHY __ 61

Websites .. 61

Documentation .. 61

Tutorials ... 61

Forums .. 61

Data used by InduBot .. 61

APPENDIX __ 63

InduBot Pág. 5

1. Glossary

Server: is both a running instance of some software capable of accepting requests from clients

and the computer such a server runs on. A web server is an information technology that processes

requests via HTTP, the basic network protocol used to distribute information on the World Wide

Web. The term can refer either to the entire computer system, an appliance or specifically to

the software that accepts and supervises the HTTP requests.

Integrated development environment (IDE): is a software application that provides

comprehensive facilities to computer programmers for software development. An IDE normally

consists of a source code editor, build automation tools and a debugger. Most modern IDEs

have intelligent code completion.

Open source: as a development model promotes a universal access via a free license to a

product's design or blueprint, and universal redistribution of that design or blueprint, including

subsequent improvements to it by anyone.

Chatbot: a computer program designed to have a conversation with a human being via auditory

or textual methods. It is also known as a Conversational Agent, Talkbot, Chatterbot, Conversational

Bot, Artificial Conversational Entity or on many occasions simply as Bot.

Turing Test: in artificial intelligence, a test proposed (1950) by the English mathematician Alan

M. Turing to determine whether a computer can “think.”

Loebner Prize: an annual competition in artificial intelligence that awards prizes to the

computer programs considered by the judges to be the most human-like. The format of the

competition is that of a standard Turing test.

Linguistic deflection: a way for the chatbot to avoid responding to an input it does not

understand by giving a canned response.

Machine Learning: is a field of computer science that uses statistical techniques to give

computer systems the ability to "learn" with data, without being explicitly programmed.

Natural Language Processing (NLP): is a branch of artificial intelligence that helps

computers understand, interpret and manipulate human language. NLP draws from many

disciplines, including computer science and computational linguistics, in its pursuit to fill the

gap between human communication and computer understanding

InduBot Pág. 7

1 ETSEIB: Escola Tècnica Superior d’Enginyeria Industrial de Barcelona.

2. Preface

2.1. Origin of the project

During the history of computer science, there have been many approaches to create

conversational systems. Several of these systems try to simulate a human being while others

are focused on helping the user in a specific task (i.e., booking a flight, accessing a database,

etc.). One of the first well-known examples of the systems from the first group, was Eliza; which

emulates a Rogerian psychotherapist and when it appeared in the 60's, some people actually

mistook her for a human. But it has been in recent years that many companies have started to

create chatbots to drive value for their business. Followed by the rise in this industry many

tools and facilities have appeared in the market to easily develop a chatbot and test it with

users.

2.2. Motivation

During my student life at university many times I have needed information about courses and

other academic issues but never had a quick procedure to obtain it. Sometimes looking at the

school’s websites took me several minutes only to know simple information such as: who the

teacher for Electronics course was or when I was going to have the next exam of the Algebra

course. With the boom of chatbots, I found a solution to make students life easier and avoid

them to waste time navigating through the web. Besides this project contemplates the

implementation of a chatbot in a real case of use with real benefits.

2.3. Previous requirements

In order to conduct this project, some previous knowledge is required. Firstly it is essential to

understand the state of art and take advantage of the tools and technologies already

developed in the field of chatbots to avoid creating what is already created. Another

prerequisite is the familiarity with a programming language to complete the project with a

prototype. In this case, the code will be performed in Python which is the programming

language taught at ETSEIB1 and the one more extended in the chatbots industry.

There are also other important resources needed for the implementation and prototyping such

as a server or website for running the system.

InduBot Pág. 8

3. Introduction

3.1. Objectives of the project

The main objective to achieve in this project is the creation of a chatbot to find information

about the ETSEIB. Other minor goals are the study of the user experience and the impact this

chatbot could have for the University and the students. That is, in a schematic form:

Main goals:

 Design and implement a chatbot to support students with academic information from

the ETSEIB website.

Secondary goals:

 Provide a seamless user experience, such as the one of talking with a human by

chat.

 Transform the relation university has with the student through the use of new

channels of communication.

 Give accurate answers when information comes from a database.

 Set a first chatbot base which can be continued in future developments.

3.2. Scope of the project

Creating a chatbot to improve the student’s accessibility to ETSEIB’s information is an

ambitious proposal. For this project, the scope will be limited to the planning, design, and

implementation of a prototype of the chatbot. The field of knowledge of the chatbot will be

restricted to the Degree of Industrial Engineering and to the following subset of the information

provided by the website of ETSEIB:

 Exams’ dates and hours

 Teachers information

 Courses information

The chatbot will be configured to talk in the Catalan language since is the most frequently used

one at ETSEIB among students and also the main one for the university website.

The prototype will be a functional beta version but after the end of the project no further

developing or maintenance is planned to be done. However, the project will be open in case

someone in the future would like to continue it. The complete code of the prototype and the

project’s memory will be of public access for everyone interested in improving the chatbot.

InduBot Pág. 9

3.3. Current situation at ETSEIB

The current generation of ETSEIB students is digital native who have used the Internet since

a young age and are generally comfortable with technology. They really appreciate the

immediacy of response and do not want to spend time on procedures. During the day, they

constantly use WhatsApp or other messaging platforms to chat with other people and find it a

very useful way of communication.

At ETSEIB, as in most of the universities, when a student wants to know the timetables of a

course or the date of an exam the first channel is the website. In the case of ETSEIB, the

website presents a responsive layout that can be used from any device without problems.

However, the number of clicks, 4 in case a student wants to find the date of an exam, the

disposal of the information that may be not so intuitive or the experience of navigating through

a static website, maybe not so exciting.

With InduBot the experience of searching information can be transformed into a conversation

through a chat as the one of asking information to a friend. The project would like to create a

new channel of interaction with the student to consult information online.

InduBot Pág. 10

4. Context

4.1. Definition and types of chatbots

A chatbot is a service (computer program), powered by rules and sometimes artificial

intelligence, and often designed to convincingly simulate the conversation of a human being

via text or voice interactions. It can automate certain tasks, by chatting with a user through a

conversational interface. The most advanced bots are powered by artificial intelligence, helping

it to understand complex requests, personalize responses, and improve interactions over time.

The service could be any number of things, ranging from functional to fun, and it could live in

any major chat product (Facebook Messenger, Slack, Telegram, Text Messages, etc.). [1]

Since there is not an established classification for chatbots 3 approaches have been chosen,

each of them based on different criteria.

4.1.1. Classification 1: Chatbot’s purpose

There are two major types of chatbots depending on their final goal: chatbots for entertainment

and chatbots for business.

4.1.1.1. Entertainment chatbots

Engineers have been developing chatbots for entertainment for decades, since the famous

chatbot, the psychotherapist ELIZA, was introduced in 1966. Creators of these chatbots

usually try to make a bot which can look like a human, in other words passing the Turing test.

Perhaps all of the bots which participate in Loebner’s prize and similar competitions can be

included in this group. For example, the Microsoft’s bots Xiaoice and Tay meet this definition.

Chatbot responses to user messages should be smart enough for the user to continue the

conversation. The chatbot does not need to understand what user is saying and does not have

to remember all the details of the dialogue.

One way to assess an entertainment bot is to compare the bot with a human (Turing test).

Another option, the quantitative one, are metrics, such as calculating the average length of

conversation between the bot and end users or the average time spent by a user per week. If

conversations are short then the bot is not entertaining enough.

ELIZA

InduBot Pág. 11

Back in the 1960s, MIT professor Joseph Weizenbaum developed ELIZA, the first ever

chatterbot, that could interact with people like a

psychotherapist would. It was designed to imitate human

conversations by using pattern matching and substitution

methodology. ELIZA would ask open-ended questions and

even respond with follow-ups. It uses a script that simulated

a Rogerian psychotherapist. [2]

ELIZA works by recognizing keywords or expressions from

the input to replicate a response pairing them to a list of

possible scripted responses – customized reactions.

Taking the sentence “I want to run away from my parents” it

is possible to understand exactly how it works.

ELIZA attributes a weighted value to each word of that sentence:

ELIZA attributes low values to pronouns (I), slightly higher values to action verbs (want to), and

the highest value to the actual action (run away from my parents). This allows the programme

to know exactly how to flip the sentence around to ask a digging question. How? Simply turn

the values into a question, flip the pronoun, and switch the verb to convey meaning. The

answer, then, becomes "What would getting to run away from your parents mean to you?".

Figure 4.1 Joseph Weizenbaum

InduBot Pág. 12

The biggest learning point to get from ELIZA is about complexity. It amazes how simple

ELIZA's script actually is, yet plenty of humans got easily tricked.

4.1.1.2. Business chatbots

Chatbots for business are often transactional, and they have a specific purpose. Conversation

is typically focused on user’s needs. Travel chatbot, for example, is providing information about

flights, hotels, and tours and helps to find the best package according to user’s criteria. Google

Assistant readily provides information requested by the user. Uber bot can take a ride request.

Conversations with this kind of chatbots are typically short, less than 15 minutes. Each

conversation has a goal, and quality of the bot can be assessed by how many users get to the

goal. Has the user found the information he/she was looking for? Has the user successfully

booked a flight and a hotel? Has the user bought products which help to solve the problem at

hand? Usually, these are the used metrics to measure success and they are easy to track.

Tommy Hilfiger chatbot

Tommy Hilfiger’s chatbot lets consumers globally explore pieces from the brand’s new

collection by asking questions that help identify the customer’s individual tastes and required

sizes. To purchase products suggested by the chatbot, customers are transferred to

tommy.com, where the items will have already been placed in their basket.

InduBot Pág. 13

Figure 4.2 Tommy Hilfiger’s Facebook Messenger Chatbot

4.1.2. Classification 2: Chatbot’s logic

When interacting with different chatbots the user will probably find that some react in a

completely different way than others. Some have the ability to reply to anything the user throw

them, and others will simply keep on apologizing, while some simply seem to have a single

path that the user can follow. The reason for that is not every bot is the same and their

intelligence level as well as their capabilities are defined by the back-end, which powers them.

So a reasonable classification is to divide chatbots depending on their logic. [3]

4.1.2.1. Flow-oriented chatbots

These bots are made to follow a certain path that is defined by a logic tree created for a specific

purpose. So the user goes through a set of questions, options based on those inputs, and then

the chatbot goes down the pre-defined path.

InduBot Pág. 14

So although the user still gets to make the decision, he/she will need to go down one of the

pre-set paths. These bots have quite a lot of buttons, options, and quick replies to restrict the

domain of the conversation and will usually keep on apologizing if the user writes anything in

they do not understand.

These chatbots are usually created to realize specialized processes that replace the need to

talk with a person or use more complicated UIs such as mobile apps or websites. Since they

are trained on top of structured data they just can do a set of limited operations. Think of what

a bank operator can do for you over the phone: verify your identity, block your stolen credit

card, give you the working hours of nearby branches and confirm an outgoing transfer.

Weather bot

A chatbot created to know the current weather and forecast for a determined location. It has a

predefined path with buttons to guide the user through the conversation.

The following figure shows the chart-flow for this chatbot:

Figure 4.3 Flowchart Weather Bot

To illustrate the highlighted states 1,2,3 and 4 in orange behind there are the corresponding

conversations.

InduBot Pág. 15

Figure 4.4 Weather Bot Telegram

InduBot Pág. 16

The chatbot has also mechanisms to handle with inputs that are out of scope. Here there is an

example of how it has answered when it does not know a city.

Figure 4.5 Weather Bot Telegram

4.1.2.2. Artificially Intelligent chatbots

So the main difference between Artificial Intelligence and flow-chatbots is that they can handle

free-text. So the user can simply enter any sentence and the main difference here is that the

chatbot will be able to analyse that into a set of parameters and understand what the user's

intent was and thus react accordingly.

Of course, this is powered by Natural Language Processing and Machine Learning. To function

it accurately, the bot needs a complex back-end that can truly handle anything that is asked

by the user. Currently, there are few NLP engines in the market, which are open-source and

are owned by the big tech companies. However, it is possible to create an AI engine to train

your chatbot and mimic human conversations.

Following there is an example of how NLP works within a chatbot:

InduBot Pág. 17

Figure 4.6 Flight Bot Facebook Messenger

4.1.2.3. Hybrid chatbots

Hybrid chatbots combine the two types of bots and create a semi-intelligent system that is

configured of some NLP capabilities and a pre-defined flow. In fact, most of the bots in the

market today, are hybrid bots. This is due to the fact that NLP still has quite a long way to go

to completely understand any sentence with different spellings, and sometimes even accents

in applicable languages. These misunderstandings can lead to user frustration and abandon

of the conversation, so that is the reason why by now hybrid chatbot approaches are the most

used ones.

This chatbots guide the user through questions/answers with a certain logic tree, but the bot is

also able to handle free text and reply accordingly in a way, to get the user back into one of

the set paths to achieve the intended functionality.

4.1.2.4. Human supported bots

These bots go down the path of an artificially intelligent bot, allowing the user to interact using

free text, however, there is also always a human operator that is observing and takes over if

the bot is no longer handling the requests in an acceptable manner. Of course, these bots can

also be trained, by their operators, who can add-in those missing parameters as they occur

and teach the bot how to react/reply for future reference.

Revolut Chatbot

The FinTech startup Revolut, dedicated to digital banking that includes pre-paid debit cards,

currency exchange, cryptocurrency exchange and peer-to-peer payments, has an app to

manage all the finances. The support service has a chat that starts with an AI-powered chatbot

InduBot Pág. 18

that changes to a human when it does not understand the user’s requests.

Figure 4.7 Revolut Support Chatbot

4.1.3. Classification 3: Answering model

The chatbot can either generate responses from scratch, based on machine learning models

or use some heuristic to select a response from a library of predefined responses. [4]

4.1.3.1. Retrieval-based models

Retrieval-based models are easy to build. They also provide predictable results. The user

probably will not get 100% accuracy of responses, but at least user knows all possible

responses and can make sure that there are no inappropriate or grammatically incorrect

responses.

Retrieval-based models are the most practical at the moment for business and procedures

since many algorithms and APIs are readily available for developers.

The chatbot uses the message and context of conversation for selecting the best response

from a predefined list of chatbot messages. The context can include a current position in the

dialog tree, all previous messages in the conversation, previously saved variables (e.g.

username).

If the bot does not use context then it is stateless. It will only respond to the latest user

message, disregarding all the history of the conversation.

InduBot Pág. 19

KLM Chatbot

The Dutch Airlines KLM offers the users to receive their flight documentation via Facebook

Messenger. After booking their flight on KLM.com the users can choose to receive the booking

confirmation, check-in notification, boarding pass and flight status updates via Facebook

Messenger. This makes their travel information easy to find in a single place, available at the

airport, end route or at home. And if there are any questions the chat is available 24/7.

Figure 4.8 Weather Bot Telegram

4.1.3.2. Pattern-based heuristics

Heuristics for selecting a response can be engineered in many different ways, from if-else

conditional logic to machine learning classifiers. The simplest technology is using a set of rules

with patterns as conditions for the rules. Early chatbots used pattern matching to classify text

and produce a response. This is often referred to as “brute force” as the developer of the

system needs to describe every pattern for which there is a response. This type of models is

very popular for entertainment bots. ELIZA and many other chatbots that compete to pass the

Turing test follow this heuristic.

A standard structure for these patterns is AIML (artificial intelligence markup language), a

widely used language for writing patterns and response templates.

An example of pattern matching written with AIML:

<aiml version = "1.0.1" encoding = "UTF-8"?>

http://www.klm.com/

InduBot Pág. 20

 <category>

 <pattern> WHO IS ALBERT EINSTEIN </pattern>

 <template>Albert Einstein was a German physicist.</template>

 </category>

 <category>

 <pattern> WHO IS Isaac NEWTON </pattern>

 <template>Isaac Newton was an English physicist and

mathematician.</template>

 </category>

 <category>

 <pattern>DO YOU KNOW WHO * IS</pattern>

 <template>

 <srai>WHO IS <star/></srai>

 </template>

 </category>

</aiml>

The machine then produces:

User: Do you know who Albert Einstein is?

Chatbot: Albert Einstein was a German physicist.

When the chatbot receives a message, it goes through all the patterns until it finds a pattern

which matches the user message. If the match is found, the chatbot uses the corresponding

template to generate a response.

Despite the most popular language for pattern matching is AIML it can be written in any

programming language with a proper use of regular expressions.

4.1.3.3. Machine learning for intent classification

The inherent problem of pattern-based heuristics is that patterns should be programmed

manually, and it is not an easy task, especially if the chatbot has to correctly distinguish

hundreds of intents. Imagine building a customer service chatbot which has to respond to a

refund request. Users can express it in hundreds of different ways: “I want a refund”, “Refund

my money”, “I need my money back”. At the same time, the bot should respond differently if

the same words are used in another context: “Can I request a refund if I don’t like the service?”,

“What is your refund policy?”. Humans are not good at writing patterns and rules for natural

language understanding, computers are much better at this task.

InduBot Pág. 21

Machine learning allows training an intent classification algorithm. It is just needed a training

set of a few hundred or thousands of examples, and it will pick up patterns in the data.

Such algorithms can be built using any popular machine learning library like scikit-learn.

Another option is to use one of the cloud API: wit.ai, api.ai or Microsoft LUIS. However, it is

necessary a great number of examples for the training set to guarantee a reliable accuracy.

4.2. Chatbot industry

Subsequent to reviewing what a chatbot is and which types exist, it is necessary to examine

their present and trends to understand the importance of chatbot industry.

4.2.1. Present

It has been from 2016 that thousands of companies started to develop their own chatbots. The

future is uncertain, the Artificial Intelligence paradigm and the adoption of new habits of

communication will decide the course of the industry.

The global chatbot market was valued at over $190 million in 2016 and is only expected to

grow in the coming years. Chatbots are here to stay, and it is not hard to see why. According

to a study by Aspect Software Research, 44% of consumers said they would prefer to interact

with a chatbot over a human customer service representative. [5]

4.2.2. Trends

Chatbots are a huge trend today. Top brands are seizing the opportunity to meet their

customers where they are already spending time  in: messaging apps. That the reason there

is a massive number of chatbots appearing in various different industries, from e-commerce

and fashion to more conservative sectors like banking.

There are three major trends that are prompting the rise of chatbots:

 The ever-present app fatigue

 The explosion of messaging apps

 The increased commoditization of AI algorithms

As app downloads and usage decrease, the use of messaging apps continues to surge.

People all over the world use messaging apps more than any other channel and this is why

brand-customer communications are increasingly moving to chat.

Companies are building their own chatbots leveraging AI for their domain of knowledge and

ability to personalize conversations. These branded chatbots live on existing messaging apps,

such as Facebook Messenger, Telegram, Kik, Viber and more.

InduBot Pág. 22

The chatbots people interact with today may be built to do simple things, but as bot makers

start to leverage advanced machine learning technologies, bots will become more intelligent

and capable of interacting with users in more contextually relevant ways.

To support the previous paragraphs following there are some statements from chatbot

researches:

 “80% of businesses want chatbots by 2020 ” -  Oracle

 “The global chatbot market is set to grow at CAGR of 37.11 during the period of

2017–2021” -  Orbis Research

 “Chatbots expected to cut business costs by $8.000 million by 2022 ” -  Juniper

Research

Another important point is the popularity acquired in the last 2 years since the announcement

of the Facebook and Telegram platforms to develop chatbots. Google trends shows the

evolution of people searches in google about the term chatbot.

Figure 4.9 Google Trends results for “chatbot”

During the last years, Gartner has included chatbots in their famous hype cycle of emergent

technologies. In 2017 Gartner conversational user interfaces were situated in the Innovation

Trigger but very close to Peak of Inflated Expectations. That means there has been a number

of success stories, often accompanied by scores of failures. Some companies take action;

many do not and media interest has triggered significant publicity. [6]

InduBot Pág. 23

Figure 4.10 Gartner Hype Cycle of Emerging Technologies 2017

InduBot Pág. 24

5. Methodology

The overall purpose of this project is to create a chatbot to give information about the ETSEIB.

On the one hand, this includes understanding the capabilities of chatbots and what can be

achieved with this technology. On the other hand, it involves building a software and all the

corresponding steps of planning, designing, developing and implementing.

This chapter presents the applied methodology that was decided to be most suitable for

addressing the formulated objectives.

The first approach when the project started was to employ an adaptation of the Waterfall model

to develop the Chatbot, but after several weeks it was identified the necessity to change the

development path. Finally, it was adopted the Agile methodology that incorporates iteration

and continuous feedback to successively refine the prototype.

The waterfall model is a popular version of the systems development life cycle model for

software engineering. Often considered the classic approach to the systems development life

cycle, the waterfall model describes a development method that is linear and sequential. This

brought with it many disadvantages such as the non-possibility to come back after a phase is

overcome.

5.1. Agile model

“Agile Development” is an umbrella term for several iterative and incremental software

development methodologies. The most popular agile methodologies include Extreme

Programming (XP), Scrum, Crystal, Dynamic Systems Development Method (DSDM), Lean

Development, and Feature-Driven Development (FDD). [7]

While each of the agile methodologies is unique in its specific approach, they all share a

common vision and core values. They all fundamentally incorporate iteration and the

continuous feedback that it provides to successively refine and deliver a software system. They

all involve continuous planning, continuous testing, continuous integration, and other forms of

continuous evolution of both the project and the software. They are all lightweight, especially

compared to traditional waterfall-style processes, and inherently adaptable. Another

characteristic of agile methods, that does not apply to this project because is being performed

individually, is that they all focus on empowering people to collaborate and make decisions

together quickly and effectively.

For this project, the adopted methodology is the iterative and incremental development. This

method of software development is modeled around a gradual increase in feature additions

and a cyclical release and upgrade pattern.

InduBot Pág. 25

Iterative and incremental software development begins with planning and continues through

iterative development cycles involving continuous user feedback and the incremental addition

of features concluding with the deployment of completed software at the end of each cycle.

Iterative and incremental development is a discipline for developing systems based on

producing deliverables, for this project functional prototypes. In incremental development,

different parts of the system are developed at various times or rates and are integrated based

on their completion. In iterative development, it is planned to revisit parts of the system in order

to revise and improve them. User feedback is consulted to modify the targets for successive

deliverables.

Iterative and incremental software development came about in response to flaws in the

waterfall model, a sequential design process in which progress flows steadily downwards. It

differs from the waterfall model because it is cyclical rather than unidirectional, offering a

greater ability to incorporate changes into the application during the development cycle.

Figure 5.1 Agile Methodology Diagram of Steps

Iterative and incremental development can be grouped into the following phases:

 Inception: deals with the scope of the project, requirements, and risks at higher levels.

 Design: delivers working architecture that moderates risks identified in the inception

phase and satisfies non-functional requirements.

 Development: fills in architecture components incrementally with production-ready

code, which is produced through the analysis, implementation, design, and testing of

functional requirements

 Implementation: delivers the system to the production operating environment

In the Annex is it possible to find a comparative example of how waterfall and agile

methodologies work.

InduBot Pág. 26

5.2. Planning

For this project there was an initial planning considering the waterfall methodology but, as

explained before, it was dismissed so the final planning corresponds to an iterative approach

of many phases in the development.

From the beginning of the project, there has been a willingness to discover and learn about

chatbots and discover possible technologies and tools to use for the final prototype. The

experimentation coding and the research have accompanied the whole project to guarantee

the best results and ensure the success of the project through the incorporation of new ideas

and solutions to the different phases.

The final planning of the project is reflected in the following Gantt diagram:

Figure 5.2 Gantt Diagram Planning

In January there was a redefinition of the objectives consequence the new knowledge acquired

about chatbots with the research and coding. The planning was also reviewed and adapted to

ensure the timings and finalisation of the prototype before the end date.

InduBot Pág. 27

6. Design & Implementation

The developed chatbot corresponds to a purpose-specific chatbot, designed to answer

questions about ETSEIB to students and implemented in the best manner with the available

resources of time and knowledge.

6.1. Requirements

Before starting with InduBot’s design, the first step has been to determine in detail and

exhaustively what capacities should the chatbot have, under which criteria should be taken the

different design decisions and which characteristics will differentiate it from other existing

systems. The identification of all these requirements is essential to define minimum objectives

that must be achieved.

Within the set of requirements, there are two large groups, which together affect decisions in

different areas: functional and non-functional.

Below are the differences between each group and a list that includes all the identified

requirements, their motivation and their influence on the final product.

6.1.1. Functional requirements

This group includes the requirements that directly affect the capabilities of the bot, both

comprehension of the input, generation of an answer in natural language and accuracy in the

information delivered.

The following requirements have been identified:

Speed

One of the prime purposes for the existence of a chatbot is to help the users instantly. The

speed of the chatbot should be faster than the time a human will take to write the answer.

When building the chatbot, it should be integrated with knowledge-based database and

programmed to fetch information and respond quickly. For example, if a student wants to know

about the date of an exam, the chatbot should provide the information faster than what it takes

to search it on the university website.

InduBot Pág. 28

Purpose oriented

The chatbot has been built to provide students information

about the university, so the flow of the conversations should

always be oriented towards that goal. If a user just wants to

have a conversation with the chatbot it may found it boring

since it has been conceived for another purpose and

conversation is not its strength. This is why the chatbot must

clearly state in the presentation its purpose and do not create

false expectations for the user.

The following image reflects the welcome screen of the

chatbot when starting a conversation with it. The scope is

clearly stated and the different options are presented as

buttons so the user knows exactly what to expect.

Comprehension capabilities

The chatbot must be able to understand natural language

within a certain domain and be able to determine the user

input topic independently of the construction of the sentence.

Good comprehension capabilities of a chatbot should ensure

the error-free experience for the user. When a user types a

spelling mistake or makes an error in a sentence, the program

should enable the “auto-correct” feature to avoid that little

mistakes can influence the comprehension of the chatbot.

When the user is requested to write the name of a course,

InduBot is able to check if it exists within the list of ETSEIB

courses of the Degree of Industrial Engineering, and in case

it matches with an accuracy of more than 95% the

conversation can proceed. Otherwise, the chatbot gives the 3

most similar options for that subject.

Answer capabilities

Once the chatbot understands what the user says, it should

be able to choose or generate a response, based on the current input and the context of the

conversation. The given answers must be coherent with the context derived from the entry.

The only reason to accept an incoherence with the conversation thematic will be the entry of

Figure 6.1 InduBot welcome screen

Figure 6.2 InduBot Suggestions

InduBot Pág. 29

an unknown word. In such a case, the expansion of the vocabulary with the necessary relative

information must be sufficient to for correctly interpret and answer in the future. However, the

chatbot should be able to guide the conversations to avoid this kind of situations.

User engagement

The chatbot should be capable of initiating conversation with

the users and interact with them to share information.

Secondly, InduBot should be capable of “balanced text-use”.

This means that the chatbot must use a combination of both

short descriptions and engaging content like emojis to hold

the user’s attention. In addition, it is important to welcome the

user with onboarding steps and present an intuitive layout to

improve user’s experience.

InduBot makes an extensive use of emoticons and quick

answers to invite the user to continue the conversation and

be eager to use the chatbot.

Deflection capabilities

In case the chatbot does not understand the input or the user

is just trying to crash the chatbot’s logic it is important to have

the capacity to give a canned response. The user will get the feeling he/she is speaking with

a smart chatbot.

Language style and vocabulary

The chatbot should speak the users’ language, with words, phrases, and concepts familiar to

the user, rather than keywords. Follow real-world conventions, making information appear in

a natural and logical order. And the vocabulary should be adapted to the domain of the

university.

Consistency

Users should not have to wonder whether different words, situations, or actions mean the same

thing. Dialogues should not contain information which is irrelevant or rarely needed. Every

extra unit of information in a dialogue competes with the relevant units of information and

diminishes their relative visibility.

Figure 6.3 InduBot emojis use

InduBot Pág. 30

6.1.2. Non-functional requirements

Interoperability

Interoperability simply means the ability of computer systems or software applications to

exchange and make use of information. In this case, the chatbot would be implemented in only

one channel but the way it is programmed should be able to support multiple channels.

Scalability

The chatbot should be designed to be scalable so that it can support numerous users and

additional modules at the same time. Also, the chatbot should be built to accommodate itself

in most server environments. So regardless of any server environment, chatbot should be

capable of working on either of them.

Languages

The chatbot must understand Catalan for its operation, but it should be considered to extend

the available languages in the future.

6.2. Chatbot Design

The chosen design for the chatbot is presented in this section. Firstly, it is explained the

selection of the used technologies and the adopted architecture, and then it is detailed the

applied design to comply with the requirements and achieve the stated objectives of the

project.

6.2.1. Technologies

To develop the chatbot there are two considerations referred to technologies, the programming

language used for all the code and business logic and the databases where the knowledge is

stored.

Programming languages

Currently, there are many programming languages in the market, each one with its advantages

and drawbacks. For this project, the selection has been made according to what other

programmers usually do when programming chatbots. In addition, it has been considered the

versatile and easy to use of the language to face not only the coding of the chatbot logic but

also the need to support the API and webhook to connect with the messaging service platform.

After analysing the valid programming languages used to program chatbots Python was found

InduBot Pág. 31

the most appropriate because:

 It is simply to build an API and connect with the messaging platform. It supports

Facebook Messenger, SMS, Slack, Telegram, Twitter, Kik, etc.

 It is the more popular language for Machine Learning and Natural Language

Processing.

 It has good support for serving web content: when scaling up the application to allow

it to receive many messages per second.

 It is portable: it is easy to run the same code on Linux, MacOS, or Windows.

Additionally, most of the forums on the internet recommend Python to build chatbots. That

reinforces the legitimacy of the election.

Databases

This project requires storing the knowledge about the university in some kind of source. When

implementing the prototype it has been decided using dictionaries was the easiest way to

access the information. The information will be stored in CSV files and the dictionaries created

when starting the application. An approach using MySql was frustrated by the incompatibilities

and limitations of queries with the web hosting provider PythonAnywhere.

6.2.2. Architecture

Before starting to get into details is important to have the big picture of how it is addressed the

architecture. The chatbot can be divided into 2 layers: the back end and the front end.

 Back end: the layer where business logic and data storage is managed. This code

resides on the server.

 Front end: the channel through the user interacts with the chatbot. It can be a web

application or a messaging service.

Figure 6.4 Schema of InduBot architecture

InduBot Pág. 32

For this project the back end is being hosted in a web hosting service, the front end is provided

through a messaging service and the connection between them is done by an API.

6.2.2.1. Back End

Web hosting service: PythonAnywhere

To host the business logic of the chatbot and all the data files for InduBot’s functional operation

it has been selected PythonAnywhere. It is not only a web hosting service, but it also provides

an online Integrated Development Environment (IDE), which allows to code from any device

(even smartphones) just by entering a browser and accessing the web application.

The IDE was created to work specifically with Python, which is the used programming

language for this project. This feature grants that there are enough documentation and threads

in forums to perform the coding without unexpected problems that can stop the progress of the

development.

Web framework: Flask

To support the development of the application and provide a standard way to deploy the

chatbot it has been used Flask. The functionalities of this web framework made it easier and

reduce the time of coding when setting up the server.

6.2.2.2. Front End

Messaging Service: Telegram

To interact with the user there are several options: create a web application, develop a mobile

app or use an existing messaging service. The interface should be user-friendly, allow instant

answers and be supported by the maximum devices possible. When considering channels the

first option was Whatsapp, but since it does not support chatbots with an API, there were two

clear options: Facebook Messenger and Telegram. Facebook Messenger has more tools and

capabilities such as Payments or Analytics, which are not necessary for this project, and is

more popular among students. But Telegram offers an easier API to use, better documentation

and security. So for this project Telegram resulted to be the most suitable path of

communication between the user and InduBot.

In addition, Telegram is increasing its user base much faster than the other big messaging

services Whatsapp, Facebook Messenger, Viber, Line, etc. And despite being smaller it has a

huge potential for growth thanks to its privacy policies and the push on chatbots.

InduBot Pág. 33

6.2.2.3. APIs

To connect the back end with the front end it has been used the Telegram Bot API, which is

basically an HTTP-based interface created for developers to build chatbots for Telegram.

6.2.3. Functional Design

The functional design considers what the chatbot will do and what answers it should provide.

It also identifies the scope of the chatbot, the conversational flow with the user and the UX and

personality.

6.2.3.1. The chatbot functionalities

The first step is to answer the following questions about

InduBot to describe what the bot does:

 What is the main user goal?

o Obtain information about the ETSEIB.

 What is a successful conversation?

o Ask for the information and receive the

answer faster than it will take to look at the

website.

 What are all features the bot has?

o The bot has information about exams,

teachers, and courses.

With the answer to these questions, it has been elaborated a

description of InduBot that is the one used to present itself on

Telegram.

The scope of InduBot has been limited to this project to

answering questions about Exams, Teachers, and Courses

of the Degree of Industrial Engineering of the ETSEIB.

Information about procedures, Erasmus, internships or any

other information that may appear on the ETSEIB website is out of scope.

6.2.3.2. The conversational flow

The flow of the conversation determines the necessary steps to go through for the user to

reach the goal. Here it is included the questions the chatbot has to say to guide the user to the

end and the information the user has to give to get a great reply.

It is very important to conceive each step of the conversation as a state. When certain

Figure 6.5 InduBot welcome

screen

InduBot Pág. 34

parameters are fulfilled it is possible to jump from one state to

another.

To represent the flow of the conversation it has been used a

flowchart. This diagram allows structuring the interaction the

chatbot has with the user and most importantly it can be used

to determine the purpose orientation requirement, guiding the

user through a defined path state by state until the reaching

the goal.

The chatbot logic tree can be split into 3 categories, each with

its own logic subtree. When starting the chat, InduBot

presents itself to the user and displays the different options as

shown in the figure below.

The generic flowchart is shown below.

Figure 6.7 InduBot flowchart

Each of the branches of the tree has a more specific flowchart that shows in detail the

interaction user-chatbot.

Figure 6.6 InduBot welcome with

3 categories

InduBot Pág. 35

Figure 6.8 InduBot flowcharts by category

All the steps in the flow consider the possibility the user makes a mistake so there are functions

to handle errors and redirect the user to the beginning or the previous step.

To fully understand the flow of a conversation lets illustrate it with an example with the states

indicated in every moment. The following example contemplates the request of information for

the final exam of the course of Electromagnetisme.

InduBot Pág. 36

Figure 6.9 InduBot exam flowchart with states

6.2.3.3. UX and personality

The first aspect before continue is giving a name to the chatbot and creating an avatar for it.

The given name comes from the fusion of the words Industrial (from Industrial Engineering)

and Chatbot deriving in InduBot. For the avatar it was

thought that it should look like a robot with some features

to identify it with ETSEIB. The result is the shown in the

picture at right. The colours also correspond to the ones

of the university.

The only interactions the users will have with InduBot is

through conversation, so building a rich and detailed

personality makes the chatbot more believable, relevant

and fun to the users.

Personality creates a deeper understanding of the

chatbot’s end goal, and how it will communicate through

the choice of language, mood, tone, and style.
Figure 6.10 InduBot Avatar

InduBot Pág. 37

InduBot will interact with students of Industrial Engineering

who want to get punctual information about the university. So,

probably, the interactions will be short and the user will want a

straight to the point answer to his/her questions. To craft a

personality that copes with this, InduBot’s answers should be

short and specific, giving the required information. Besides

InduBot will also use a friendly tone and in a happy mood. In

the figure at left it is possible to observe how InduBot answers

exactly what is required, the code of the subject, in a clear way.

Once defined the personality it has been analysed the UX

elements offered by Telegram. Actually, it supports text,

images, emoji’s, gifs, audio, buttons and much more. However

for this project it has been used text entries, buttons to guide

the conversation and quick replies and emoji’s to enrich the

conversation. Indeed emojis are essential for building the

personality of InduBot, in many cases is easier a happy face

than a text to express agreement. The figure at left shows the

buttons with quick replies.

6.2.4. Ontology

In computer science and information science, an ontology is a formal naming and definition of

the types, properties, and interrelationships of the entities that really exist in a particular domain

of discourse. An ontology compartmentalizes the variables needed for some set of

computations and establishes the relationships between them.

The components of an ontology can be grouped into 4 different categories:

 Classes: Sets, collections, concepts, classes in programming, types of objects, or

kinds of things, such as the class Course.

 Attributes: Aspects, properties, features, characteristics, or parameters that objects

(and classes) can have. For example, the class Course has the attribute Code.

 Relations: Ways in which classes and individuals can be related to one another.

 Individuals: Instances or objects to a class. For example the Course (instance) of

Àlgebra Lineal (individual).

Furthermore, a domain is necessary to contextualize the ontologies. Is not the same to refer

to a card in a poker domain (“playing card”) than to do it in a computer hardware domain (“video

card”). In this project, the domain is restricted to the field of the university.

The following figures illustrate the ontology of InduBot.

Figure 6.11 InduBot buttons and

short answers

InduBot Pág. 38

Figure 6.12 InduBot general ontology

Figure 6.13 InduBot example ontology for Àlgebra Lineal

InduBot Pág. 39

Figure 6.14 InduBot example ontology for Informàtica

6.2.5. Technical Design

Once the functional design and the ontologies are defined it is necessary to specify the

business logic and the knowledge base of InduBot.

As explained in the conversational flow, InduBot design is conceived to guide the user through

questions/answers with a certain logic tree. The flow should be understood as a compilation

of states, each one accessible by fulfilling specific parameters. For example, if the user wants

to know the date of an exam it is necessary to specify the course and the type of exam (final,

midterm or recovery).

At this point in the project, came one of the most important decisions for a chatbot: how the

input is going to be processed. Here are the main approaches:

 Machine Learning for intent classification: dismissed

 Pattern Matching: tried but finally dismissed

 Retrieval model with keywords and script: used one

From the beginning, it has been dismissed the use of the heuristic of machine learning for

intent classification since it does not exist a training set for such model. A training set of

conversations from ETSEIB students talking with academic support asking about exams and

InduBot Pág. 40

courses. Of course, there was the option to create one, but it would have required the

involvement of academic support and the permission from students, so the idea was totally

rejected.

Here there were two possible approaches for the business logic: a first one that uses a hybrid

logic with pattern matching techniques. And the second approach with a more rigid flow with

structured data and much more focused on performance. Finally, the second option results to

fit better for this project and has been implemented as the final one.

First approach: Hybrid logic and pattern based heuristics

During the project objectives definition, it was stated that a goal is to provide the user an

experience similar to the one of talking with a human through a chat. To achieve this it is

necessary to allow free text input, so the user does not have the sensation of being limited

when formulating questions. This first design approach considers a conversation flow,

meaning that depending on what the user asks it could be required to facilitate some

information about the topic to deliver an accurate answer. However, the intended flow is

flexible, and the user could jump from topic to topic.

The chatbot follows a predefined flow and tries to understand what the user wants to know,

sometimes questions can be answered within one interaction, other times it would be

necessary more iterations. It is also important the idea of how the input is processed, pattern

matching techniques compare the input with a pattern and pairs it with the most similar one.

Afterward, it answers with the corresponding predefined answer from the matching template.

To illustrate how it works it can be taken the example of answering a course exam’s date.

The user wants to know when is the exam’s date of a certain course, and can ask it in different

ways. And the chatbot has a list of templates with patterns, which fortunately one would match

with the exam’s date questions.

Assuming the patterns / answer for the intent GET FINAL EXAM DATE are:

1) Quan és l’examen final de < COURSE > / L’examen final de <
COURSE > és el dia < DAY >

2) Quin dia és l’examen final de < COURSE > / L’examen final de

< COURSE > és el dia < DAY >
3) L’examen final de < COURSE > quin dia és / L’examen final de

< COURSE > és el dia < DAY >

4) L’examen final de < COURSE > quan és / L’examen final de <

COURSE > és el dia < DAY >

And the patterns / answer for the intent GET EXAM DATE MISSING EXAM TYPE (when exam

is not defined between FINAL or MIDTERM) are:

1) Quan és l’examen de < COURSE > / Final o Parcial?

InduBot Pág. 41

2) Quin dia és l’examen de < COURSE > / Final o Parcial?
3) L’examen de < COURSE > quin dia és / Final o Parcial?

4) L’examen de < COURSE > quan és / Final o Parcial?

And the patterns/answer for the intent GET EXAM TYPE are:

1) Final
2) Parcial

Where COURSE is the entity the chatbot needs to identify.

And the scripted answer is:

Where DAY is the entity for the exam’s date and is obtained from a database.

Easy Scenario. If the user asks:

Quan és l’examen final de Àlgebra Lineal?

The input matches with the pattern Quan és l’examen final de < COURSE > from

the intent GET FINAL EXAM DATE. The entity COURSE is easily identified and the program

just needs to search in the database the corresponding day to answer the correct date to the

user.

Figure 6.15 InduBot First Approach: easy scenario

Medium scenario. If the user asks:

InduBot Pág. 42

Quan és l’examen de Àlgebra Lineal?

The input is matched with the Quan és l’examen de < COURSE > from the intent GET

EXAM DATE MISSING EXAM TYPE. Here the chatbot will ask about which kind of exam is

with the following question: Final o Parcial?. Then the user will answer Final and the

information from the corresponding course final exam will be retrieved.

Figure 6.16 InduBot First Approach: medium scenario

Difficult scenario. If the user asks:

Vull saber quan és Àlgebra Lineal

There is no pattern to match with, the chatbot will give the predefined answer for situations

when it does not understand the user’s input.

InduBot Pág. 43

Figure 6.17 InduBot First Approach: difficult scenario

Here there are many possible initiatives to attempt to educate the user on how to properly post

questions in order to receive an answer and improve results. For example:

 Every time the user mistakes entering a question because the words are a little

different from the ones in the patterns, try to discover the intent and propose a way

to ask the question so the chatbot can understand.

 Create a manual to display before starting the conversation with the chatbot that

shows all or part of the accepted questions that the user can formulate and the

chatbot will correctly process and answer.

Another feature is the misspellings made by the user. The input has to be corrected before

trying the matching with patterns to increase success matching rate. To do so it can be created

a spelling corrector that checks input before processing it.

These are some of the applied ideas to guide the conversation towards the desired result and

provide better answering.

This first approach is strong in some aspects:

 Once identified the intent is easy to extract the entity and formulate the scripted

answer with the appropriate information retrieved from a database, giving an

accurate result.

 It is quite easy to implement, it just necessary to write down different patterns for

each intent the chatbot has to answer.

However, there are many points that make it a bad approach:

InduBot Pág. 44

 When delivering an accurate answer to the user it can fail because of the need to

precisely formulate the questions in a certain way.

 The learning curve for the user is not fast, it has to memorize the different ways to

pose questions. Besides, if there is not a manual at the beginning where the

capabilities of the chatbot are clearly stated, the user may not discover all the

possibilities the chatbot offers since the layout does not present the different options.

 Being required to repeat the same wording structure every time you want some

information can be boring for the user.

 Despite the user may have a good experience when the chatbot understands the

input because it is similar to chat with a person, on many other occasions it can be

frustrating

 To cope with different ways of asking questions it is necessary to write hundreds of

alternative patterns for each intent, trying to include all the variations the user may

use.

Finally, this first approach was dismissed and a new alternative was formulated.

Second approach: Flow-oriented and retrieval based heuristics

The strategy to elaborate this second design has been based on delivering accurate answers

to the user in a fast and intuitive way. To do so the chatbot needs to minimize the intellectual

load and increase speed. The design contemplates a layout with quick replies that are self-

explanatory, meaning that the quick replies offer the scope and limitations of the chatbot

domain.

The chatbot has a predefined logic tree that restricts the conversation to one of the branches.

The user is guided from the beginning and has limited freedom to jump from one state to

another, once it has chosen to go down a branch the chatbot will try to reach the end. The

conversation is like a script, the questions and answers are already written, so the user has to

choose usually from quick replies. In some circumstances, it is required to facilitate free text

input, but it is restricted to the necessary keywords to retrieve information from the databases.

The following figures show the quick replies with buttons that are used to guide the

conversation and inform the user about the possible paths there are.

InduBot Pág. 45

Figure 6.18 InduBot Second Approach

6.2.5.1. The business logic

InduBot mechanism is simple, the user sends a message, Telegram Bot API sends that

message to the web hosting service PythonAnywhere where the web application with the

business rules is running, the message is processed by the web application and an answer is

sent to the user through the Telegram Bot API. In this section, the focus will be on the business

logic inside the web application that is in charge of processing the message and create the

answer.

To understand InduBot’s business logic it is necessary to define the following elements:

 State: is the scenario where the conversation currently is. The first scenario 0

corresponds to the welcome messages and the first layout. Afterward, the user

chooses a path with his/her answers and decisions to reach a final state that

fortunately gives a response to his/her initial doubt. All the possible situations are

contemplated within a state, otherwise, it could crashes and the chatbot will restart

the conversation from the beginning.

 Input: the message the user sends to the chatbot. This message contains more

information a part from the plain text written by the user. But for this chatbot, the

needed one is the text and the chat id.

 State variables: these variables are the ones required to elaborate the answer. They

give essential information about the user and the conversation. Some of these

variables are the current state, the chat id, the course, the teacher, etc.

 Script: the different answers InduBot sends to the user are gathered in a group of

scripts. Each script corresponds to a state and has different predefined answers

depending on the input and the state variables.

InduBot Pág. 46

The core logic is built around four different modules:

 Administrator module: receive the messages, manages the different modules to

create the answer and sends the answer to the user.

 Answers module: contains the script with the answers for each state. It creates the

answers using the script and the data from knowledge module.

 Knowledge module: contains the knowledge data and structures it in a way is easy

to access.

 Layout module: contains the elements to create a better UX such as emoji or

keyboards.

Besides this modules, there are other elements such as the state variables that are used by

the various modules and has not been included in any of them.

Administrator module

The administrator module corresponds to the main function, called telegram_webhook that

gets the message from the user and depending on the state calls a function from the answers

module.

To illustrate following there is a piece of code:

Figure 6.19 InduBot Webhook function

The code begins with getting information from the user message. In line 3 it is retrieved the

plaintext from the input and in the 4th line, it is stored the chat_id, a variable to identify each

user and to do not cross conversations.

From line 6 below there are the business rules of the conversation flow. If chat message is the

command /start, the conversation resets to the beginning. For the other cases, the function

telegram_webhook checks the state and calls the corresponding function for each state. This

InduBot Pág. 47

other functions are called manage_stateX and are the responsible to create the answer and

set the new state depending on the input. Once an answer is returned to the main function

telegram_webhook, it is sent to the user the answer and the corresponding keyboard if

required. The keyboard corresponds to the layout of the buttons and how are they set up.

Answers module

The answers module are the collection of functions in charge of producing the answer from

the current state and the text input. As seen in the previous module the functions are called

manage_stateX, one function for each possible state.

These functions contain a mini script for each state and the business rules to choose the

answer, and in some cases call the knowledge module for the required information.

When a user starts a conversation with InduBot the first state is the state 0. Here the user is

presented with the presentation layout where it can choose from 3 options: Exàmens,

Assignatures, and Professors. The following function is in charge to create the answer for this

state 0:

Figure 6.20 InduBot Manage_State0 function

As it is possible to see, depending on the input, the new state and the answer varies. If the

user chooses Exàmens, the conversation will change to state 1, and the answer will be Quin

examen?. If the user input is not one of the 3 presented options, he/she will be required to

repeat the step, and will not move further on remaining in the same state 0. The screens

through which the user will pass are:

InduBot Pág. 48

Figure 6.21 InduBot States 1: Exàmens

In the piece of code below, there is an example of function manage_stateX that interact with

the knowledge module. In fact, in the 4th and 5th lines, the function is creating an instance from

the class Teacher and calling the method get_email() to get the teacher’s email. The 6th line is

the answer and corresponds to the email of the teacher obtained from the instance t.

Figure 6.22 InduBot manage_state311 function

Knowledge module

The knowledge module contains all the data about the university and necessary to construct

some answers. The data is stored in dictionaries and is obtained through instances of classes.

There are 2 dictionaries. One of the information about courses and the other with information

about teachers. To encapsulate and organize the data the program has 3 classes, one for

each of the topics: Exàmens, Professors, and Assignatures. These classes contain attributes

and methods that allow to easily access the desired information by doing an instance.

Following there is the class Teacher with some attributes and methods:

InduBot Pág. 49

Figure 6.23 InduBot Teacher class

For example, to get the email of a teacher there is a method, get_email(), that searches in the

dictionary dic_teachers and creates an attribute with the found email.

Layout module

The layout module contains the emoji’s and keyboards that are used to improve the UX. The

emoji are stored in variables to be able to use them just by typing the variable name.

Figure 6.24 InduBot Emojis variables

Here the emoji point_down has been used:

Figure 6.25 InduBot sendMessage function

The keyboards are the layout of buttons used for quick replies and which are used to guide

the user through the conversation flow.

Figure 6.26 InduBot keyboards for buttons

The figure above shows the code of the keyboard predefined and stored in a dictionary. Then

when needed it is retrieved and send it to the user.

Figure 6.27 InduBot sendMessage function with buttons

The result looks like the following figure.

InduBot Pág. 50

Figure 6.28 InduBot with buttons

6.3. Implementation

This chapter presents the complete implementation of the prototype end to end, from

configuring the web hosting to the design of the buttons and emoji’s that the user receives on

the screen through Telegram.

6.3.1. Configuration

6.3.1.1. Create Telegram Bot

First, is necessary to understand what a Telegram Bot is; at the core, it is

a special account that does not require an additional phone number to set

up. The messages, commands, and requests sent by users are passed

to the software running on the servers (PythonAnywhere). Telegram’s

intermediary server handles all encryption and communication with the

Telegram API. The communication with the server (PythonAnywhere) is

done via a simple HTTPS-interface called Telegram Bot API. [9]

To create the account it is necessary to talk with The Botfather. He

indicated all the steps for the creation and correct configuration of

InduBot. The following commands were used:

 /newbot: to create the newbot, choose the name (InduBot) and

the username (TheInduBot). Here it is obtained the authorization token, required to

set the connection with the API and allow the server-bot communication.

 /setdescription: to define the description that is presented to users the first time they

open a chat with the chatbot.

 /setuserpic: to select the profile picture for InduBot.

6.3.1.2. PythonAnywhere and Flask

PythonAnywhere is the development and hosting environment where the chatbot (web

application) is running. The servers of PythonAnywhere are already set up and ready to use.

A remarkable feature is that they offer a free plan, the one used for this project. [12]

To implement the chatbot it has been created a free account on PythonAnywhere and set up

a web application using the Flask framework. Basically what the Flask application will do is

handling the request from the webhook (explained in the Telegram Bot API section). The

Figure 6.29 The

Botfather

InduBot Pág. 51

following code creates the Flask app and configures it to run a function when it gets a POST

request on the secret URL. This URL has to be difficult to guess to secure the communication

and avoid inappropriate uses. [12]

Figure 6.30 Flask App

6.3.1.3. Telegram Bot API

The chatbots in Telegram are controlled using HTTPS requests to the Telegram Bot API. To

do so it is possible to use the Telegram Bot API oneself or profit from a framework such as

Telepot that is written in Python. In this project it was chosen the second option, taking

advantage of the tutorials, documentation, and examples Telepot offers. [10]

To set the API it is necessary to use the authorization token obtained during the chatbot

creation with The Botfather. Next, there is the decision to select how to configure the HTTPs

requests. For this project, and following the advice from Telepot it has been configured a

webhook. A webhook (also called a web callback or HTTP push API) is a way for an app to

provide other applications with real-time information. A webhook delivers data to other

applications as it happens, meaning the data is obtained immediately. Unlike typical APIs

where it is necessary to poll for data very frequently in order to get it real-time. This makes

webhooks much more efficient for both provider and consumer. The only drawback to

webhooks is the difficulty of initially setting them up. However, since speed in answering and

getting real-time data is one of the most important requirements, the webhook has been set.

To illustrate how it was made following there are the written lines of code. [12]

The first step is to set the chatbot with the corresponding authorisation token, obtained during

the creation of the chatbot. For security reasons, the token has been blurred in this caption.

Figure 6.31 Create the Chatbot

Secondly, it has to be settle the webhook. This will be the connection between the server and

Telegram. The chatbot is using a publicly-accessible website so it is important to secure the

connection by using an unguessable URL to avoid inappropriate uses.

Figure 6.32 Create the webhook

InduBot Pág. 52

With the webhook, Telepot notifies Telegram that when InduBot gets a message it has to send

it to that unguessable URL. Then the web application running on PythonAnywhere will handle

the message and answer to the user. It is also worth noting that the configured webhook uses

secure HTTPS (PythonAnywhere has it for default) rather than HTTP, and Telegram (quite

sensibly) will only send webhooks over HTTPS.

6.3.2. Business Logic

As explained in the technical design section the business logic is distributed in modules, but

basically it consists on a webhook that; receive the user messages, calls other functions that

create the answer and sends the message with the answer back to the user. For the

implementation, it has been used the integrated development environment (IDE) offered by

PythonAnywhere that allows coding from any device just from the browser. This gives

incredible freedom when coding because it has been possible to program from different

devices, and also permits to has all the configurations and packages on the cloud, without

depending on a specific device.

6.3.3. Knowledge Base

For the knowledge base of courses and teachers from ETSEIB, it has been used information

from PDFs and the website. In many cases, the PDFs contains the information in such a way

it is possible to extract it as a table, adjust it with excel and store it as a CSV file. For some

other data such as teachers’ names, it has been needed some web scrapping programming

that has been done by the local command prompt with Python since the PythonAnywhere IDE

does not support web scrapping. By using this method it has been obtained the information

necessary to create the knowledge module with the information contained in the ontology

about exams, courses, and teachers.

For the implementation, it has not been used a database. The chatbot reads two CSV files,

one for teachers and another for courses, where all the data is stored. This files are in the web

hosting server PythonAnywhere and are accessed from the knowledge module functions when

needed.

6.4. Testing and results

6.4.1. Testing

The testing has been conducted iteratively while developing the chatbot to find software bugs

and verify it meets the requirements. In most of the cases, the tests have been done by using

the chatbot with the Telegram application in a mobile device and checking how it responds to

different inputs and which was the user experience. All the detected necessary changes have

InduBot Pág. 53

been accomplished to build the final operative prototype ready for use.

During the months of the project, more than 15.000 messages have been exchanged with

InduBot to test its capabilities and ensure its readiness for the launch of the final version of the

prototype.

6.4.2. Results

Before launching InduBot it has been performed a test with real people to check the

advantages the chatbot offers to ETSEIB students. As user experience is difficult to check

because of the subjective connotation of each individual the test has focused on the speed

approach marked as one of InduBot requirements. The test consisted of comparing how it

takes to search using ETSEIB website (http://www.etseib.upc.edu/) versus the time it takes

with InduBot.

The test has been divided into two searches:

 Find the date of the final exam of Mecànica de Fluids

 Find the timetables of the course Equacions diferencials

And to guarantee the reliability of the results it has been done with 5 students who had never

before interacting with InduBot. To conduct the test it has been used the same device, a

smartphone with the application Telegram already installed and good access to the internet.

When searching through the website the time considered: from starting to type ETSEIB in

google until the information is found. In the case of using InduBot the time considered: from

starting to search the chatbot in Telegram until the information is located.

The results are included in the following table:

 Website InduBot

 Test 1 Test 2 Test 1 Test 2

Student 1 49'' 45'' 23'' 25''

Student 2 43'' 38'' 21'' 22''

Student 3 52'' 51'' 18'' 24''

Student 4 51'' 43'' 24'' 27''

Student 5 42'' 48'' 17'' 21''

Figure 6.33 Results ETSEIB website vs InduBot

As observed in the results the chatbot can speed up the searching process to half of the time

in almost all the cases. If applied to other information searches it may vary, but the results are

consistent about the advantage InduBot supposes for students when looking for exams and

InduBot Pág. 54

courses information.

InduBot Pág. 55

7. Project costs

This chapter considers the associated costs associated with the design, plan and developing

of the chatbot.

The resources used for the development of the project are:

 Hardware: physical computer resources

 Software: programs and applications

 Human resources: people that worked on the project

Hardware

The whole project has been developed with only one computer and the tests have been done

on a smartphone.

Software

For the developing of the prototype, it has been used PythonAnywhere as IDE and server,

Telegram as messaging platform and Microsoft Office Professional 2013 for the intermediate

deliverables and the final document.

Human Resources

The design and developing of the chatbot have been done by the author of the project as well

as the final document. In some occasions, it has also been required advice from the director

of the project.

The power supplies, costs of facilities and other indirect costs have not been considered

because of the difficulty to calculate them and the little proportion they supposed compared to

the labour expenses.

Product expenses

Item Units €/unit Total

Laptop +external monitor 1 700 700

Smartphone 1 300 300

Microsoft Office Professional 2013 1 70 70

PythonAnywhere server 1 Free 0

Telegram 1 Free 0

Total 1.070

Figure 7.1 Product Expenses

Labour expenses

InduBot Pág. 56

Task name Time €/hour Total

Business Analyst 80 40 3.200

Developer 180 25 4.500

Back office 100 15 1.500

Director 5 60 300

Total 9.500

Figure 7.1 Labour Expenses

The total cost for the project is estimated in 10.570 € despite the extensive use of open source

applications for the developing of the chatbot.

InduBot Pág. 57

8. Environmental impact

Even if a software as the one developed in this project has a very environmental impact it is

important to track the power consumption and the effects on the Greenhouse gasses

emissions.

To measure the environmental impact of this project first it should be identified the three

phases of the product life cycle:

 Developing the product

 Operating the product

 Decommissioning the product

The first stage corresponds to the design, development and implementation of the chatbot.

During this phase it has been used different resources:

 Computer + monitor: power consumption when coding and writing the reports

 Smartphone: power consumption when testing

 Web hosting: power consumption of the hardware running the server that hosts the

web application

The second phase considers the consumption of the web hosting another time.

And the last stage corresponds to the decommissioning that in this case is just turn off the

software without any residual elements.

So to quantify the impact it just necessary to calculate the power consumption of the computer,

smartphone and web hosting servers.

The laptop + monitor have been used for the research, the coding and writing the reports. In

total they have been used for 360 hours. The power is 12W for the laptop and 30W for the

monitor. The resulting consumption has been 15.120Wh. In this case it is considered that the

total amount of power consumption corresponds to the project programs running on the

computer.

The smartphone has been used during 20 hours for the test and its power is 3W. The resulting

consumption is 60Wh. As with the computer, the total amount of energy is considered to be

used when testing.

Last one there is the server. In this case the configuration of the application has been done

with a webhook, so the time the software is running is minimum. Another aspect is the life of

the application, PythonAnywhere closes the websites after 3 months of inactivity. Also, it

should be considered that the account used corresponds to the free one which has a limited

bandwidth and CPU usage per day. For these reasons and compared to the energy used by

InduBot Pág. 58

the computer during the developing of the prototype it has not been calculated the power usage

for the web hosting services.

The total power consume for the project is 15.180Wh which is equivalent to 11,3 kg of CO2.

[8]

InduBot Pág. 59

Conclusions

InduBot has been created satisfying most of the proposed objectives as well as confirming the

deadlines. After the execution of the whole project, there are many aspects to point out which

have been of important relevance.

The main objective of designing and implementing a chatbot to facilitate information searches

to ETSEIB students has been fulfilled with a fully operative and functional prototype. It performs

the defined tasks of information retrieval and consultation faster than it takes to look at

ETSEIB’s website and with a friendly interface such as it is Telegram. Besides, InduBot is a

totally purpose oriented chatbot that with its intuitive design guides the user to get the desired

information within few interactions.

The secondary goals have all been achieved except for one: the goal of having a seamless

experience, similar to the one of talking with a human. This requisite that was marked at the

beginning of the project has not been accomplished since the final approach of InduBot

contemplates a restricted use of free text input and an extensive use of quick replies and

buttons limiting the options in many cases. This restrictions in the user input augments the

accuracy and speed of the interactions but also diminishes the sensation of having a real

conversation, similar to the one of speaking with a human being.

InduBot could be considered an attempt to create a new channel of communication between

students and the ETSEIB and it is also a base if someone in the future wants to continue with

the chatbot development. The way in which it has been designed allows a high scalability in

case lots of student would like to use the chatbot. Furthermore, with changes just in the content

of the scripts it is possible to change the language of interaction from Catalan to any other.

And in case another university likes InduBot and wants one similar chatbot for their students it

is very easy to adapt, it just needs with few changes and nurturing the program with other data

about courses, exams and teachers.

Improvements

The resulting chatbot performs well in most of the requirements but there are many

improvements out of the scope of the project that may contribute to create an outstanding user

experience and drive more value to the students.

The first improvement is the NLP capabilities. Including Natural Language Processing to the

chatbot will allow the user introducing free text and asking questions whenever they want.

Another upgrade will be augmenting the range of the offered information to more data such as

including FAQs about academic procedures or getting access to internship offers.

InduBot Pág. 60

Other improvements maybe allowing a human supervised logic that allows to change to a live

agent in case the student does not find the desired information. Also important is the channels

of interaction with InduBot; right now it has been configured to work with Telegram, but it is

also possible to set it up to be working on other messaging platforms.

Challenges and limitations

During the different phases of the project there are many challenges and limitations that

represented a difficulty and restricted the result of the same. The first one has been the

incipient rise of some of the used technologies and tools for chatbots, which obligates to get

information from not consolidated sources of information. In many cases the only source of

information have been blogs and forums. This also affected the research and elaboration of

the state of art of the chatbots in some points.

Another issue has been the information quality when creating the files that contain the data to

nurture the chatbot with knowledge. In many cases the data was contained in PDFs or it was

necessary to create a script and make some web scrapping. To obtain consistent and

homogenous data it takes some time to organize it and check its quality.

Another limitation has been the election of the web hosting service PythonAnywhere; while at

the beginning it seems to be all advantages, because it is free, very easy to use, prepared to

work with Python and create chatbots with Telegram, etc. At some point it started to present

limitations such as the difficulties to configure a database, the non-allowance of doing web

scrapping from the web application (this would have been useful to get real time data from the

ETSEIB website to nurture InduBot knowledge base), and the low limit to the maximum

number of users the chatbot can handle every second.

InduBot Pág. 61

Bibliography

Websites

[1] https://www.wikipedia.org/

[2] https://chatbotslife.com

[3] https://medium.com

[4] https://chatbotsmagazine.com

[5] https://www.forbes.com

[6] https://www.gartner.com

[7] https://www.versionone.com

[8] https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator

Documentation

[9] https://core.telegram.org/bots

[10] https://core.telegram.org/bots/api

[11] https://www.python.org/

Tutorials

[12] https://blog.pythonanywhere.com/

Forums

[13] http://stackoverflow.com

[14] http://www.python-forum.org/

Data used by InduBot

[15] https://etseib.upc.edu/ca

https://www.wikipedia.org/
https://chatbotslife.com/
https://medium.com/
https://chatbotsmagazine.com/
https://www.forbes.com/
https://www.gartner.com/
https://www.versionone.com/
https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator
https://core.telegram.org/bots
https://core.telegram.org/bots/api
https://www.python.org/
https://blog.pythonanywhere.com/
http://stackoverflow.com/
http://www.python-forum.org/
https://etseib.upc.edu/ca

InduBot Pág. 62

[16] https://futur.upc.edu/

https://futur.upc.edu/

InduBot Pág. 63

Appendix

Methodology comparative example

To compare the two models approach

imagine Leonardo da Vinci when it was

ordered to create the Mona Lisa. Medici

probably specifies him the idea of what they

want, the requirements. For example, he

might have been told to paint a woman in a

pastoral setting with a landscape in the

background. To understand the reasoning of

this comparison it should be assumed Mona

Lisa could be delivered in parts.

If Leonardo would have opted for the Waterfall model he would have present to the Medici the

portrait when finished. If something would have been wrong and not as desired Leonardo

would not have time for changes and would have had to start from the beginning.

Instead, if he would have opted for just an iterative model, showing the Medici the scratch of

the picture and the evolution of it, Leonardo would have had the opportunity to readdress the

painting if necessary. Even if after each iteration there would have not been any parts to

deliver.

Figure 4Mona Lisa Requirements

InduBot Pág. 64

If Leonardo would have chosen the incremental approach he would have divided the painting

into parts and painted them one by one. After painting each he would have been able to deliver

it to Medici and avoid making them wait for the final result. The problem would have been if

Medici would have not liked one part, that Leonardo would have had to repeat it. However, it

is better than with the Waterfall approach, one part instead of all the painting.

The last option for Leonardo would have been to adopt the Agile model using the incremental

and iterative approaches together, the result would have been something like the following

picture.

Leonardo would have delivered first a scratch of what he had thought and in parallel small

finished parts for Medici before the final portrait.

