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Abstract 

Leishmaniosis is considered a neglected disease that causes thousands of deaths annually 

in some countries, specially tropical and subtropical countries. It is caused by protozoa of 

the genus Leishmania spp., which develop their life cycle between a vertebrate host and 

an invertebrate vector that transmits the disease. There are various techniques to diagnose 

leishmaniosis of which manual microscopy is considered to be the standard. There is a 

need for the development of automatic techniques that are able to detect leishmania 

parasites in a robust and unsupervised manner.  

In this document we present and compare two different procedures for automatizing the 

detection process. The first one uses conventional image processing methods that have 

been around for some time but are known to be robust in the field. The second one is linked 

to a more recent and evolving technology called deep learning, and has proven to deliver 

outstanding results. 
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Resum 

La leishmaniosi es considera una malaltia desatesa que causa milers de morts anuals en 

alguns països, especialment en països tropicals i subtropicals. És causada pel protozou 

del gènere Leishmània spp., que desenvolupen el seu cicle vital entre un hoste vertebrat 

i un vector invertebrat que transmet la malaltia. Hi ha diverses tècniques per diagnosticar 

la leishmaniosi, de les quals la microscòpia manual es considera estàndard. Es necessita 

el desenvolupament de tècniques automàtiques capaços de detectar el paràsit 

leishmaniosi d'una manera robusta i no supervisada. 

En aquest document presentem i comparem dos procediments diferents per automatitzar 

el procés de detecció. El primer utilitza mètodes convencionals de processament 

d'imatges que no són nous, però que s'han declarat com una eina robusta en el camp de 

la medicina. El segon està relacionat amb una tecnologia més recent i en evolució 

basada en tècniques d’aprenentatge profund (Deep Learning), les quals s'estan 

proclamant com a eines revolucionàries del món de la visió per a computadors.  
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Resumen 

La leishmaniosis se considera una enfermedad desatendida que causa miles de muertes 

anuales en algunos países, especialmente tropicales y subtropicales. Es causada por 

protozoos del género Leishmania spp., que desarrollan su ciclo de vida entre un huésped 

vertebrado y un vector invertebrado que transmite la enfermedad. Existen varias técnicas 

para diagnosticar la leishmaniosis de las que la microscopía manual se considera el 

estándar. Existe la necesidad de desarrollar técnicas automáticas que sean capaces de 

detectar el parásito de leishmaniosis de una manera robusta y sin supervisión. 

En este documento presentamos y comparamos dos procedimientos diferentes para 

automatizar el proceso de detección. El primero utiliza métodos de procesamiento de 

imágenes convencionales que no son nuevos, pero que han demostrado ser robustos en 

el campo de la medicina. El segundo está vinculado a una tecnología más reciente y en 

evolución vinculada a aprendizaje profundo (Deep Learning), que se ha declarado como 

revolucionaria en el mundo de visión para computadores.  
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1. Introduction 

Leishmaniasis is a disease caused by parasites of the Leishmania type, and infections in 

humans can be caused by over 20 different species. Next to malaria, Leishmaniasis is the 

second worst known parasitic killing disease; an estimated 700.000 to 1 million new cases 

and 20.000 to 30.000 deaths occur each year according to the World Health Organization 

[1]. The disease is transmitted to humans by the bite of infected female phlebotomine 

sandflies (over 90 sepcies are known) and is mainly found in regions where factors such 

as poverty, malnutrition, deforestation, and urbanization are present. 

There are 3 main forms of the disease: Visceral leishmaniasis (VL), Cutaneous 

leishmaniasis (CL) and Mucocutaneous leishmaniasis.  

Visceral leishmaniasis, also known as kala-azar, is the most serious form of the disease 

and is fatal if left untreated in over 95% of cases. There are a series of laboratory tests that 

can confirm VL diagnosis [2]. The most commonly used tests detect antibodies, which are 

markers that the body produces after being infected by VL. Currently, the best available 

diagnosis tool is the rK39 rapid test. It has many advantages as it is easy to perform, quick 

and cheap with results in around 10–20 minutes and US$ 1 per test, it can be used in 

remote places and does not require any special equipment or training. However, one of the 

major drawbacks of these tests is the fact that they cannot be used to detect relapse cases 

because antibodies remain present long after clinical cure [3] [4].  

For this reason, direct observation of the Leishmaniasis parasite body in the microscopic 

image taken from bone marrow samples can be considered the gold standard for diagnosis. 

Nevertheless, it requires of technical expertise, and because of the quantity of steps 

required in manual diagnosis, this analytic technique is tedious and inclined to human 

mistake even in experienced hands, leading to possibly late conclusions and mistaken 

diagnosis. 

The purpose of this project is to propose an alternative to manual observation and counting 

of the leishmania parasites present in the bloodstream, as this process is hard and time 

consuming, by creating software that automatizes the detection procedure through 

computer vision. We will be researching two of the main fields in cell segmentation and 

parasite identification and comparing their results. 

One of the incentives for starting this project, in part, was a master thesis [5] that was 

carried out in 2014 by Jaume Fernàndez García about deep learning techniques for malaria 

detection in medical images. However, it is not a continuation of this project as the parasite 

images from both infections do not resemble. 

The project can be divided into two distinctive parts. The first half of the project consists in 

developing software with more traditional image processing techniques that have shown to 

be efficient in other fields of medicine. The second half of the project was developed using 

relatively novel techniques that involve a machine learning process. Albert Aparicio, who 

from January to July worked as an intern researcher in the image processing department, 

was the main contributor to the success of this part, as he researched the best method and 

adapted it to our needs.  

During the development of this thesis we have been in contact with the Escola Superior 

d’Agricultura de Barcelona who have provided us with the image database, Professor 
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Daniel Codina and particularly with Berta Raventòs Roca who did her final thesis on 

researching in vitro cultivation methods for leishmania parasites [6].  

1.1. Requirements and specifications 

The initial requirements needed to develop this project involve the following: 

 A basic knowledge on image processing techniques, as this is the core of the project.  

 An in depth research about the Leishmaniasis disease, regarding on how to detect 

the parasites in order to correctly differentiate infected from non-infected images.  

 A thorough research in state of the art technology is key for developing innovative 

and improved software; cell segmentation and object recognition were the main 

terms of research, both in the fields of “conventional” image processing techniques 

and deep learning methods. 

 A dataset with good quality images. 

1.2. Work plan 

1.2.1. Work packages 

Project: Documentation WP ref: 1 

Major constituent: Research Sheet 1 of 6 

Short description:  

This section involves researching the state of the art techniques for 

Leishmaniosis parasite detection. Furthermore, state of the art 

segmentation techniques, object detection techniques and 

morphological transformations will also be researched. 

Planned start date:20/02/2017 

Planned end date:15/03/2017 

Start event:20/02/2017 

End event:13/03/2017 

Internal task T1: Research Leishmaniasis automatic detection state 

of the art techniques. 

Internal task T2: Research how other techniques can be applied to 

identify leishmaniasis parasites. 

Internal task T3: Project proposal and workplan. 

Deliverable/s: 

Project proposal 

and workplan 

Dates: 

05/03/2017 

 

Project: Software development WP ref: 2 

Major constituent: Pre-processing & segmenting Sheet 2 of 6 

Short description: 

To obtain the most precision when detecting parasites, a pre-

processing can be applied to the image to enhance the details or to 

eliminate non-wanted objects. Then each possible parasite has to be 

segmented from the background in order to examine it individually 

later on. 

Planned start date:16/03/2017 

Planned end date:16/04/2017 

Start event:14/03/2017 

End event:27/04/2017 

Internal task T1: Implementation 

Internal task T2: Testing with different settings to find the optimal 

parameters.  

Deliverables: Dates: 
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Project: Software development WP ref:  3 

Major constituent: Parasite identification  Sheet 3 of 6 

Short description: 

For the image being processed, we have two types of object to 

examine: intra-cellular and extra-cellular parasites.  

Individual examination is necessary to determine whether the 

identified objects are parasites or not 

Finally the total amount of parasites should be counted.  

Planned start date:17/04/2017 

Planned end date:30/06/2017 

Start event:04/05/2017 

End event: 

Internal task T1: Cell examination, amastigote detection and 

identification. 

Internal task T2: Promastigote parasite identification. 

Internal task T3: Number of parasites present in the image. 

Deliverables: Dates: 

 

Project: Project critical review WP ref:  4 

Major constituent: Document generation Sheet 4 of 6 

Short description:  

Write the critical review of the project, mentioning the state of the 

project, if the proposed plan has been carried out correctly, if there 

have been any problems or delays, etc. 

Planned start date:03/05/2017 

Planned end date:07/05/2017 

Start event:04/05/2017 

End event:09/05/2017 

Internal task T1: Document writing Deliverables: Dates: 

 

Project: Improvements WP ref: 5 

Major constituent: Research Sheet 5 of 6 

Short description: 

Once the software has been completed, other techniques may be 

researched, such as deep learning, to find ways of increasing the 

detection results. 

Planned start date:1/07/2017 

Planned end date:31/07/2017 

Start event: 15/06/2017 

End event: 31/08/2017 

Internal task T1: Research other techniques  

Internal task T2: Study deep learning techniques, concretely 

convolutional neural networks. 

Deliverables: Dates: 

 

Project: Improvements WP ref: 6 

Major constituent: Implementation Sheet 6 of 7 

Short description: 

Research intern Alerbert Aparicio adapted a Convolutional Neural 

Network to resolve our problem, and my task was to understand the 

functioning of the network and to try it out with different parameters. 

Planned start date:1/08/2017 

Planned end date:31/08/2017 

Start event:1/08/2017 

End event: 02/10/2017 

Internal task T1: Study the python scripts implementing the CNN 

Internal task T2: Test network with different parameters 

Deliverables: Dates: 
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Project: Project report WP ref:  7 

Major constituent: Document generation Sheet 7 of 7 

Short description:  

The objective is to generate a document containing all of the research 

performed, and an in-depth explanation of the generated software. 

Planned start date:01/09/2017 

Planned end date:01/10/2017 

Start event: 11/09/2017 

End event: 08/10/2017 

Internal task T1: Document writing Deliverables: Dates: 

 

1.2.2. Milestones 

WP# Task# Short title Milestone / 

deliverable 

Date (week) 

1 3 Project proposal and workplan Deliverable  05/03/2017 

2  Complete the segmentation Milestone 08/04/2017 

3  Software prototype Milestone 30/06/2017 

4 1 Project critical review Deliverable 07/05/2017 

5 2 Learn about deep learning Milestone 15/07/2017 

7 1 Final report Milestone 30/09/2017 

1.2.3. Gantt diagram 

 

Figure 1.1. Gantt diagram 
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1.2.4. Incidences and deviations from the initial plans 

The main setback during the development of the project was due to the limited resource of 

images to work with. Initially we were given a set of images of different microscopic 

magnifications with a lot of noise, and as a result it was hard to characterize the edges of 

the objects through computer vision techniques. Moreover, in some of the images the cells 

and the parasites were at an advanced phase of reproduction, making it hard to distinguish 

the boundaries and to identify the parasites.  

In the second set of images, the quality was dramatically improved (as seen in Figure 1.2) 

and the colours present in the images were easier to work with, but they were not handed 

to us until early June. The parasites and the cells could be quickly identified through colour 

analysis making it easier for image processing. However, this second batch was taken with 

a mobile phone: the images consisted of a black background where the microscopic image 

was a circle region in the centre of the image; therefore, the area of interest had to be hand 

selected and cut before using them.  

 

 

In regards to the modifications to the initially planned calendar, the biggest change has 

been postponing the final delivery date from the end of June to the beginning of October. 

This fact has allowed to further research the field of deep learning techniques, implemented 

in the second half of the project. 

 

 

 

 

 

 

 

Figure 1.2. Initial images (left), second set of images (right) 
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2. State of the art of the technology used or applied in this 

thesis: 

This section is intended for describing the basic techniques that have been used during the 

course of the project. 

First we will describe methods that have conventionally been used to deal with image 

segmentation problems and object detection, and then we will proceed to explain the 

recently new deep learning techniques, concretely, Convolutional Neural Networks (CNN). 

The latter has proven to achieve outstanding results in image classification and 

segmentation field; since 2012 when a CNN entered the annual ImageNet Large Scale 

Visual Recognition Challenge (ILSVRC) [7] and beat by a 10.8% point margin (41% better 

than the next best) [8], CNNs have been the winning architecture in the ILSVRC and main 

focus of research. 

With conventional methods, you fine tune a model with a specific set of parameters to 

perform a specific task, that is, to detect and recognize a certain object with certain features. 

However, deep learning techniques involve a learning of the machine as it learns to “train 

itself” to find the best parameters for the model given the input data. 

The benefits of each of these methods can also be their restrictions. While classical image 

processing may perform good, new models have to be implemented every time the input 

data changes. For example, if we build a model to detect human faces, it is very likely to 

fail to recognize animal faces, or if the patterns in the dataset change, the parameters also 

have to be modified to fit the new data. On the other hand, even though deep learning 

methods can train the model for a variety of operations, a large dataset is needed in order 

to obtain reasonable results since a lack of data can often lead to overfitting, meaning that 

the model will only work for the training dataset, and in many cases the datasets are a 

limited resource. 

2.1. Mathematical Morphology 

Mathematical morphology (MM) is a nonlinear branch of the signal processing field and 

concerns the application of theoretical concepts to image analysis. The subject arose in 

1964 and it is associated with the names of Georges Matheron and Jean Serra, who 

developed its main concepts and tools [9], presented it in several books and created a team 

at the Centre de Morphologie Mathematique on the Fontainebleau site of the Paris School 

of Mines. These operations are widely used to solve complex imaging applications 

involving shape recognition, image enhancement, image compression, image 

segmentation and image analysis, amongst others. 

Morphology itself refers to the study of shapes and structures from a general scientific 

perspective. Therefore, mathematical morphology comprises a set of nonlinear 

transformations which modify the geometric features of an image. It was originally 

developed for binary images, and was later extended to grayscale functions and images. 

The basic idea in binary morphology is to examine an image with a simple, pre-defined 

shape, drawing conclusions on how this shape fits or misses the shapes in the image. This 

simple shape is called the structuring element, and is itself a binary image (i.e., a subset of 
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the space or grid). The two fundamental operations in MM are erosion and dilation, from 

which you can derive the rest of operations. 

These morphological operators take two pieces of data as input. One is the input image 

and the other is the structuring element (SE), which goes to every pixel and produces an 

output image based on a comparison between the input image and the SE.  

From this point onwards, when we refer to foreground pixels we will be talking about the 

white pixels in binary images or bright pixels in greyscale images, and when we make a 

reference to background pixels we will be talking about black or dark pictures in binary or 

greyscale images. 

In the following paragraphs, we will explain in detail the operators and the elements to be 

considered. 

Structuring element 

The structuring element is a matrix that identifies the pixel in the image being processed 

and defines the neighbourhood used in the processing of each pixel. The size and shape 

of the structuring element is chosen to correspond to the same size and shape as the 

objects that need to be processes in the input image. In the figure below there is illustrated 

an example of flat binary masks. However, when applying morphological transformations 

over greyscale images this SE can be non-flat, where, each neighbour has an associated 

height. 

 

Figure 2.1. Example of symmetrical structuring elements. Source [10] 

Erosion 

The basic effect of this operator on a binary image is to erode away the boundaries of 

regions of foreground pixels. Thus, areas of foreground pixels shrink in size, and holes 

within those areas become larger. 

If for every pixel in the structuring element, the corresponding pixel in the image underneath 

is a foreground pixel, then the input pixel is left as it is. If any of the corresponding pixels in 

the image are background, however, the input pixel is also set to background value. 

Grayscale erosion with a flat disk shaped structuring element will generally darken the 

image; bright regions surrounded by dark regions shrink in size, and dark regions 

surrounded by bright regions grow in size. Small bright spots in images will disappear as 

they are eroded away down to the surrounding intensity value, and small dark spots will 

become larger spots. The effect is most marked at places in the image where the intensity 

changes rapidly, and regions of fairly uniform intensity will be left more or less unchanged 

except for at their edges.  
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Dilation 

The main effect of this operator on binary images is to gradually enlarge the boundaries of 

regions of foreground pixels, meaning that areas of foreground pixels grow in size while 

holes or background pixels within those regions become smaller. 

In binary dilation, for every position at which the structuring element is placed, if any of the 

image pixels comprised within the SE correspond to a foreground pixel, the input pixel will 

also be set to foreground; however if they are all background pixels, the input image will be 

left as it is 

Grayscale dilation with a flat disk shaped structuring element generally brightens the image. 

Bright regions surrounded by dark regions grow in size, and dark regions surrounded by 

bright regions shrink. Small dark spots in images will disappear as they are `filled in' to the 

surrounding intensity value. Small bright spots will become larger spots.  

Both erosion and dilation can be considered as dual operators, since dilating the 

foreground pixels is equal to eroding the background pixels.  

Opening 

While erosion can be used to eliminate small clumps of undesirable foreground pixels, e.g. 

`salt noise', quite effectively, it has the big disadvantage that it will affect all regions of 

foreground pixels indiscriminately. Opening gets around this by performing both an erosion 

and a dilation on the image. The effect of opening can be quite easily visualized. Imagine 

taking the structuring element and sliding it around inside each foreground region, without 

changing its orientation. All pixels which can be covered by the structuring element with 

the structuring element being entirely within the foreground region will be preserved. 

However, all foreground pixels which cannot be reached by the structuring element without 

parts of it moving out of the foreground region will be eroded away. After the opening has 

been carried out, the new boundaries of foreground regions will all be such that the 

structuring element fits inside them, and so further openings with the same element have 

no effect. The property is known as idempotence. 

As we have seen, opening can be very useful for separating out particularly shaped objects 

from the background, but it is far from being a universal 2-D object recognizer/segmenter. 

For instance, if we try and use a long thin structuring element to locate, say, pencils in our 

image, any one such element will only find pencils at a particular orientation. If it is 

necessary to find pencils at other orientations, then differently oriented elements must be 

used to look for each desired orientation. It is also necessary to be very careful that the 

structuring element chosen does not eliminate too many desirable objects, or retain too 

many undesirable ones, and sometimes this can be a delicate or even impossible balance. 

Closing 

One of the uses of dilation is to fill in small background colour holes in images, e.g. `pepper 

noise'. One of the problems with doing this, however, is that the dilation will also distort all 

regions of pixels indiscriminately. By performing an erosion on the image after the dilation, 

i.e. a closing, we reduce some of this effect. The effect of closing can be quite easily 

visualized. Imagine taking the structuring element and sliding it around outside each 

foreground region, without changing its orientation. For any background boundary point, if 

the structuring element can be made to touch that point, without any part of the element 



 

 18 

being inside a foreground region, then that point remains background. If this is not possible, 

then the pixel is set to foreground. After the closing has been carried out the background 

region will be such that the structuring element can be made to cover any point in the 

background without any part of it also covering a foreground point, and so further closings 

will have no effect. The closing operator is also idempotent. 

Closing can sometimes be used to selectively fill in particular background regions of an 

image. Whether or not this can be done depends upon whether a suitable structuring 

element can be found that fits well inside regions that are to be preserved, but doesn't fit 

inside regions that are to be removed. 

In Figure 2.2, a 1-Dimensional example, in analogy to what happens in 2D and 3D with 

image pixel values, there is presented a comparison between these four previous 

morphological operators. The original sample is presented in a black dotted line and the 

dilation, erosion, opening and closing are accordingly expressed in a red dotted line, a blue 

dotted line, a red line and a blue line.  

 

Figure 2.2. Comparison between erosion, dilation, opening and closing. Source: [10] 

2.2. Deep Learning: Convolutional neural networks 

2.2.1. Background 

The origins of Convolutional Neural Networks can date back to 1998 with the publication 

of a paper written by Yann LeCun, León Bottou, Yoshua Bengio and Patrick Haffner [4], 

who built a neural network designed for recognising digits, but it has not been until recently 

that they have gained a great importance in computer vision. The key innovations to as 

why this has been this way is: computation time and available datasets.  

Back in 1999, the transistor count [11] for potent computers of the time was of the order 

of 106 whereas now they reach an order of 109, meaning faster and faster computers.  
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On the other hand, for developing and training CNNs large amount of data and labels are 

needed. In 2009 researchers from the Computer Science department at Princeton 

University attending the Conference on Computer Vision and Pattern Recognition (CVPR), 

released the largest image database up until that moment: ImageNet. Currently it contains 

around 22 thousand object categories with over 14 million images. From that moment on, 

ImageNet gave way for computers to become almost as good as humans in visual 

recognition tasks. 

The breakthrough moment for Convolutional Neural Netwoks, as said before, was in 2012 

when the AlexNet [12] won the ImageNet Large Scale Visual Recognition Challenge with 

a 7 layer CNN by a margin of 10.8 points.  

 

Figure 2.3. Error rate evolution in the ImageNet classification contest throughout the years. Source [13] 

2.2.2. Convolutional Neural Networks 

Convolutional Neural Networks (ConvNets or CNNs) are a category of Neural Networks, 

which in core, are systems inspired by the neuron connections in the human brain. They 

consist of a succession of different processes or layers operating in parallel, where the 

output of one layer is the input of the next (further explanation of the layers will be done in 

following sections).  

The basic unit of computation in a CNN is the neuron, often called a node or unit. It receives 

input from some other nodes, or from an external source, and computes an output. Each 

input has an associated weight (w), which is assigned on the basis of its relative importance 

to other inputs. The node applies a function (transfer function) to the weighted sum of its 

inputs as shown in the next figure. 
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Figure 2.4. Single neuron scheme. Source: [14] 

These networks have proven very effective in areas such as image recognition and 

classification. Specifically, ConvNets have been successful in identifying faces, objects and 

several Natural Language Processing tasks such as sentence classification, apart from 

powering vision in robots and self-driving cars. Contrary to previous methods, ConvNets 

learn directly from the image data that enters the system, therefore eliminating the need 

for manual feature extraction. 

There are two main stages in ConvNets: test and train. During the first stage, a machine 

learning classifier ingests all the data, summarizes it and outputs a model containing the 

knowledge of how to recognize and classify these object categories. Then in the test phase, 

this trained model can be applied on new images to recognize all the objects.  

The first important element in deep learning is a good and complete dataset. Visual data is 

very complex as there are high dimension of inputs, therefore if there is not a sufficient 

amount of data overfitting can happen very fast. This is a state where a model begins to 

"memorize" the training data rather than "learning" it, fitting the model too tightly and 

exclusively to the dataset images. 

2.2.2.1. Architecture 

As stated before, ConvNets consist of a series of layers where the three main types of 

layers are used are: the Convolutional Layer, the Pooling Layer, and the Fully-Connected 

Layer. ConvNets typically alternate between the first two types and are followed by the fully 

connected layer for classification. 

 

Figure 2.5. Diagram of a Convolutional Neural Network. Source [15] 

Together, these layers extract the useful features from the images, introduce non-

linearity in our network and reduce feature dimension while aiming to make the features 

somewhat equivariant to scale and translation.  
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2.2.2.1.1. Convolutional Layer 

The first layer in CNNs is always a convolutional layer, which apply a specified number of 

convolution filters to the input image. The mechanism is as follows. The filter or kernel is a 

matrix of numbers of the same dimension as the input image. This filter then slides along 

every pixel value and multiplies each number of the filter with the corresponding pixel value 

it is placed on, computing element wise multiplications. At every pixel position, each 

multiplication is summed up to be a single element of the output matrix, called feature map, 

as illustrated in the figure below.  

 

Figure 2.6. Practical example of a zero-padded convolutional layer. Source [16] 

The input image is typically either 2-dimensional or 3-dimensional depending on whether it 

is a grayscale image or a colour image. The produced feature map, however, will always 

be 2-dimensional.  

As said before, the filters are used to detect certain features in an image. Each layer can 

have as many filters as desired, so each feature map produced by convolving the input 

image with the filter will be stacked on top of the other. For example, if we have 12 different 

filters applied over an N x M x Z image in one layer, the output will be a N x M x 12 matrix 

(if zero padding is used as in the previous figure). By using more filters, special dimensions 

are preserved better.  

There are many parameters that can be considered when building this layer, for example, 

what to do with the edges of the image when convolving with the filter. Typical options are: 

zero-padding, where an extra margin of zeros is added on the border of the image as seen 

in Figure 2.6, mirroring where the extra margin of pixels “mirror” the original pixels they are 

touching, (for example in  Figure 2.6, the top pixels in the blue square would be [0, 21, 0]), 

or simply applying the convolution without adding extra pixels; in this case, the feature map 

will have 2 pixels less in each dimension.   

Another parameter to take into account is the stride. This is the number of pixels the filter 

matrix moves each time we slide it to another position over the input image. Typically the 

stride is 1 because it has been proven to work better in practice. Additionally, as already 

mentioned stride 1 allows us to leave all spatial down-sampling to the POOL layers, with 

the convolutional layers only transforming the input volume depth-wise. 
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2.2.2.1.2. Activation Function 

After every convolutional layer, an element wise activation function is applied. If the data 

we wish to model is non-linear then we need to account for that in our model, so by applying 

an activation function we break the linearity of the network allowing it to learn more complex 

functions than linear regression.  

The three most typical activation functions are Sigmoid or Logistic, Tanh or Hyperbolic 

tangent and ReLu or Rectified Linear Units.  

Sigmoid function: It is an activation function of the form f(x) =
1

1+e−𝑥,  limiting the output 

between 0 and 1. Between X values -2 to 2, Y values are very steep, which means that any 

small changes in the values of X in that region will cause values of Y to change significantly. 

However, towards either end of the sigmoid function, the Y values tend to respond very 

less to changes in X so the gradient in those regions is going to be small. This gives rise 

to a problem of “vanishing gradients”, where network refuses to learn further or is drastically 

slow.  

Hyperbolic tangent: Its mathematical formula is 𝑓(𝑥) =
2

1+𝑒−2𝑥 − 1,  a scaled sigmoid 

function. Its output is zero-centered, ranging between -1 and 1. However, just like the 

sigmoid function tanh also has the “vanishing gradient” problem.  

ReLU: This is the activation function mostly used in ConvNets. It function follows the 

formula: f(x) = max(0,x) so it takes the maximum value between the value itself and 0. As 

it involves simpler mathematical operations it is less expensive computationally then the 

previous two, and the problem of the “vanishing gradient” cannot happen. 

 

 

2.2.2.1.3. Pooling layer 

Spatial Pooling (also called subsampling or downsampling) reduces the dimensionality of 

each feature map but retains the most important information. Spatial Pooling can be of 

different types: Max, Average, Sum etc. 

In the case of Max Pooling, we define a spatial neighbourhood (for example, a 2×2 window) 

and take the largest element from the rectified feature map within that window. Instead of 

taking the largest element we could also take the average (Average Pooling) or sum of all 

elements in that window. In practice, Max Pooling has been shown to work better. Figure 

2.5 shows an example of Max Pooling operation on a Rectified Feature map (obtained after 

convolution + ReLU operation) by using a 2×2 window and stride 2. 

Figure 2.7. Sigmoid function on the left, hyperbolic tangent in the middle, ReLU on the right 



 

 23 

 

 

Figure 2.8. Max pooling. Source [17] 

 

2.2.2.1.4. Fully connected layer 

After several convolutional and max pooling layers, the high-level reasoning in the neural 

network is done via fully connected layers. The term “Fully Connected” implies that every 

neuron in the previous layer is connected to every neuron on the next layer. The output 

from the convolutional and pooling layers represent high-level features of the input image. 

The purpose of the Fully Connected layer is to use these features for classifying the input 

image into various classes based on the training dataset. 

 

Figure 2.9. Diagram of a Convolutional Neural Network. Classification focus. Source [15] 

2.2.3. Training using Backpropagation 

Backward Propagation, often abbreviated as BackPropagation or BackProp is one of the 

several ways in which a neural network can be trained. In supervised learning, the training 

set is labelled meaning that for some given inputs, we know the desired/expected output 

(label). 

Backpropagation can be separated into 4 distinctive sections: the forward pass, the loss 

function, the backward pass, and the weight update. Initially all the filters and weights are 

randomly assigned. For every input in the training dataset, the ConvNet is activated and 

finds the output probabilities for each class. Since weights are randomly assigned for the 

first training example, output probabilities are also random. Then, this output is compared 

with the desired output that we already know from the labels, and the total error, or the loss 

function, is “propagated” back to the previous layer (BackPropagation). In this step, the 

gradients of the error with respect to all weights in the network are calculated, and then 
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gradient descent optimization algorithms are used to update all filter values / weights and 

parameter values to minimize the output error. This process is repeated with all of the 

training images until the output error is below a predetermined threshold. 

 

Figure 2.10. Backpropagtion diagram. 

There are a few parameters to be considered in this section that can increase the 

performance of the training process. One of them are the optimizers, which are used to find 

the best coefficients that minimize the loss function. Stochastic gradient descent is typically 

used. Another parameter that can increase performance is the cost function, which is a 

measure that calculates how good the network did respect to the given input and the 

expected output. Choosing a good cost function can help to regulate the speed that the 

network learns (or the update step the weights take).  

3. Methodology / project development:  

In this section, we present the relevant methods used in the development of the project. 

We will first proceed to list the technologies and software tools used to set up our working 

environment. Then we will proceed to explain the methods and techniques used, as well 

as the steps taken to develop the software.  

3.1. Technologies used 

This section describes the software and machines used in the development of the project. 

In the first half, the project was developed on a laptop with the following specifications:  

• Operating system: Windows 7 Ultimate  

• Processor: Intel i7-2630QM 2GHz 

• RAM: 8GB 

• Graphic card: Radeon ™ HD 6770M 

To develop the mathematical morphology and also to implement the labelling program [18] 

that Albert Aparicio created, we used Matlab 2016b programming engine with the following 

installed packages:  

• Image processing toolbox v.9.5 

• Statistics and Machine Learning Toolbox v.11 
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In the second half of the project, for implementing the deep learning techniques, the 

programming language that was used was Python 3.5, with tensorflow as the library to 

develop machine learning. The scripts were executed on the Image Processing Servers of 

the Escola Tècnica d'Enginyeria de Telecomunicació de Barcelona (ETSETB). The 

packages needed for executing the code were the following: 

• Numpy v.1.13.1 

• Click v.6.7 

• Pillow v.4.2.1 

• Tensorflow-gpu v.1.2.1 

• Scipy v.0.19.1 

• Scikit-image v.0.13 

 

3.2. Image Database 

The images used for the development of this project have been provided by Berta Raventós 

Roca, a Biological Systems Engineering student from the Escola Superior d’Agricultura de 

Barcelona who performed a research in Leishmania parasite cultivation. To be able to 

observe and recognize the different cell components, an auxiliary technique used in 

microscopy for image contrast enhancement is applied. This technique is called staining. 

There are many staining methods available, though for this dataset of images Giemsa 

staining is used. The images have been captured using a mobile phone under a 

microscopic magnification of 50, and are stored in PNG format with a resolution that 

averages 1320px x 1900px. The total number of images in our dataset is of 45. 

3.3. Basic image processing techniques 

In order to create a piece of software able to detect Leishmaniasis parasites using more 

conventional methods that do not require powerful computers, the steps are the following: 

first of all, the input image will have to be processed in order to enhance it and remove any 

artifacts that might be present, such as noise, or to correct uneven illumination, allowing 

the most relevant objects to stand out. After this, we will need to locate and perform a 

segmentation of the parasites, if any, within the image to perform an individual examination 

of each detected object in order to evaluate whether the blood sample is infected with 

leishmaniasis or not.  

 

Figure 3.1. Block diagram 

The parasites and the cell’s nucleus are the main focus for segmenting and obtaining the 

parasite density. When looking at Giemsa stained images it is easy to classify these two 

objects of interest as they can be observed in a darker shade than the cytoplasm and the 

background (Figure 3.1). However, this presents the first challenge since they both come 

in different shapes and sizes. On the one hand, the cell’s nucleus is large and elliptical, 

typically easy to identify because they are isolated from each other; we might find touching 

cells but not touching nucleuses. On the other hand, the parasites can be presented in 

various forms as shown in the right side of Figure 3.1: when they are in their amastigote 

form, located within cells cytoplasm, they are typically small rounded dots but can often be 

mistaken as part of the non-homogeneous cytoplasm; when they are in their promastigote 

Image pre-processing
Parasite detection and 
region segmentation

Individual analisis Verification
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form, outside of the cells, they can become elongated and in many occasions are grouped 

together, making it hard to separate from one another.  

 

Figure 3.1. Giemsa stained image(left). Promastigotes (3 images top right).  

Amastigotes (4 images bottom right). 

3.3.1. Image pre-processing 

The main goal of the pre-processing is to maximise the useful information in an image while 

discarding the redundancies, in order to make the job of the feature extraction and 

classification blocks easier.  

For this purpose, we have performed tests using two different approaches. At the end of 

this section we will describe which technique fits our needs the best. 

The first proposed method aims to do cell segmentation to detect and separate the red 

blood cells and the promastigotes from the background. The second method takes 

advantage of the dominant colours in the image, to produce a binarized version containing 

the cells and the candidate parasites.  

3.3.1.1. Watershed segmentation  

There exist two basic ways of approaching image segmentation. The first one is boundary-

based and detects local changes in the image, and the second one is region-based, that 

searches for pixel and region similarities.  

The proposed method makes use of watershed segmentation consisting of “region 

growing”, as it has been used in many cases of cell segmentation. This transformation 

comes from the geological meaning of watershed, which is defined as a divide that 

separates adjacent catchment basins.  

The basic idea of the watershed transformation is to imagine the image to segment as a 

topographic surface, where the grey-levels can be thought of as the height of the surface. 

If we make the analogy to the geological meaning, bright pixels are the lines that run along 

the top of the ridges while darker pixels are the catchment basins. The objective is to place 

a water source in each catchment basin and to start flooding until the different water 

sources meet, this way creating region barriers. There is a graphical example in Figure 3.2 

to understand the flooding concept, as it can be somewhat difficult to picture the brightness 

of an image as a topographical surface. 
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A typical phenomenon in watershed transformation is oversegmentation, where the image 

can become overly fragmented into subcomponents by creating many insignificant 

boundaries. Median filter is said to remove the impulsive noise from the image and 

therefore, prevent oversegmentation. The advantage of the median filter over others is that 

it preserves the borders of the segments making it beneficial for a proper shape extraction.  

So this is the first step to apply. 

The use of the single watershed algorithm alone can also lead to oversegmentation, given 

that the input image is typically not as simple as the one in Figure 3.2. For overcoming this 

problem, marker-controlled segmentation can be used.  

To find the markers, we transform the RGB image into a grayscale image, and produce a 

binarization using Otsu’s method [??]. The resulting image will contain the objects to 

segment in white, and the background in black. This approach is based on the idea that 

machine vision systems often roughly "know" from other sources the location of the objects 

to be segmented, in this case the source is the colour. 

After this, an image opening and a hole filling are also applied to the binarized image, as 

there are often regions within the cell area that have been incorrectly binarized as part of 

the background. We obtain the perimeter of the foreground object using an inbuilt method 

in Matlab to act as a ridge, and then dilate the binarized image to use as the catchment 

basin. Figure 3.3. Watershed process illustrates this process: a) shows the binarized 

image, b) shows the perimeter that has been extracted from the previous image, c) shows 

the superposition of the marker image and the perimeter on the original image and d) shows 

the final watershed segmented image. 

 

Figure 3.2. Original image (left). Topographic surface of the image (centre). Transversal cut of the  
topographic surface with water flooding (right). Source [26] 
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Figure 3.3. Watershed process 

Note that this is useful to segment the promastigotes and the cells. If we observe the right 

top corner of the segmented image, we will see that it has done a pretty good job at 

segmenting the group of promastigotes. However, it does not take the amastigotes into 

account.  

3.3.1.2. Colour segmentation 

The second method, as mentioned before, takes advantage of the fact that the nucleuses 

and the parasites are tinted in the same colour tone while and the cell’s cytoplasm and 

background are tinted in different tones.  

We will be comparing two methods for image colour segmentation for extracting the “cell-

clumps”. The first one uses k-means algorithms to calculate the predominant colours in the 

image and assign every pixel to one of these colours. The second one uses histogram 

thresholding on different image colour components. The final step is to perform a 

binarization of the image. 

K-means 

This algorithm is widely used to solve classification problems. The main idea is to treat 

each object as having a location in space, in order to classify a given data set through a 

certain number of clusters, defined by k centroids. K-means finds partitions such that 
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objects within each cluster are as close to each other as possible, and as far from objects 

in other clusters as possible. 

A number of fixed clusters are randomly placed over the data. After this, each pixel in the 

image is assigned to one of the clusters depending on its Euclidean distance to the centroid. 

After having assigned every pixel, the centroids are updated to fit according to the data 

assigned to that cluster. This process is iterated until the k centroids do not change their 

location any more or until maximum number of iterations is reached. 

 

Figure 3.4. K-means iterations to find the centroids, from left to right & top to bottom. Source [10] 

In Figure 3.4 we can see an example of the centroids and data moving to create three 

separate classes. In our algorithm, depending on the number of clusters we have defined, 

the algorithm finds the k most likely colours given the set of pixels, and assigns a colour to 

the set of pixels in the same cluster. A maximum number of iterations set is of 150. 

Once we have obtained the colour k-means segmented image, the next step is to binarize 

it in order to produce a mask for post-filtering. The built-in function in Matlab that performs 

the binarization follows Otsu’s method so as to reduce the interclass variance. The output 

after each step in this method is shown in Figure 3.5. On the right is the original image, in 

the middle is the k-means colour segmented image, and on the right, is the image after 

applying a binarization. 

 

Histogram thresholding 

The second method takes advantage of the colour space. It tries to obtain the cells and 

parasites performing a binarization using a greyscale image containing the most relevant 

information possible. 

We experimented with several colour spaces: RGB, HSL, HSV and YCbCr, and several 

transformations: we studied individual channels versus previously applying image contrast; 

we applied transformations to enhance individual colour components; we studied the 

Figure 3.5. Colour k means algorithm, output images 
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histograms of the colour components; we also tested colour component subtractions in the 

different colour spaces. 

Finally we found that the best method was to subtract the green component from the red 

components in the RGB colour space. The image we obtained was a grayscale image 

where the parasites and the nucleuses where noted in bright pixels, the cells cytoplasm 

were painted in dark grey and the background of the images were practically all black. The 

three different regions were clearly separable by simply looking at the histograms of the 

images, since there were three distinctive peaks corresponding to each of the grey-levels 

mentioned before. 

In observation of the generated R-G component images, we noted that many of the cells’ 

cytoplasm contained holes showing through to the background. To solve this problem, 

given that the holes are a darker colour than the cytoplasm, a ‘hole filling’ was applied, 

where dark regions that are enclosed by lighter pixels take on the lighter pixels’ value. 

Finally, we proceed to binarize the image in the same way as before but using two 

thresholds instead of one. This way can segment the cells while also detecting the parasite 

candidates. To find the thresholds, Matlab has a built in function called multithresh() that 

implements Otsu’s method to find the optimal threshold. In the figure below, the stages of 

this procedure can be observed. In the image on the left we have the image created from 

applying R-G. In the centre, the three notable peaks can be seen in the histogram. The last 

image is the segmentation produced after applying a threshold to the input image.  

 

Figure 3.6.  Red minus green component (left), histogram of the colour component difference (centre), 

segmentation using Otsu’s method (right). 

Considering the benefits and disadvantages of each of the three methods, we finally decide 

to use the histogram thresholding method over the watershed segmentation and the k-

means colour segmentation. The main reason for this choice are the quality and efficiency 

of the results; the cytoplasm segmentation is not perfect, but it is sufficient for the context 

in which we need it, and moreover, all of the nucleuses and parasites can be localised, 

avoiding having to process the image a second time over in order to find these elements. 

3.3.2. Finding candidate parasites 

The next step in the process is to identify any possible candidates to be a parasite. As 

mentioned in the previous paragraph, through analysis of the histogram of the difference 

image we found that by using the same thresholding method as to detect the cytoplasm of 

the cells, the parasites could also be detected.  
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First, we created a mask where the nucleuses and the parasites were in white. At this point 

we want to discard the nucleuses, because the only objects of interest now are the 

parasites. In order to perform this task, we study the sizes of the particles in the image.  

The technique is called Granulometry, and is achieved in a similar manner to that of which 

geologists use to determine the average particle size within soil, where the soil is sifted 

through a succession of filters of increasing size and the remains are collected after each 

pass.   

Morphological granulometry, therefore, is achieved through a succession of openings with 

a structuring element of increasing size, and counting the remaining object surface area 

after each opening. The radius of the structuring element is increased until the remaining 

image has no more objects to eliminate. Below in Figure 3.7 we can see some quantitative 

results from applying granulometry to the binary image. Image a) is the input image. In 

image b) we can see there are 7 distinctive peaks,  which in turn correspond to the seven 

nucleuses of image a). Iis a simple plot of the particle pixel count in the vertical axis. The 

horixontal axis represents the amount of connected components in image, but is not 

ordered in any maner. Image c) represents the decay in white pixel count (y) against the 

structuring element radius (x). As it can be seen, there is a strong slope that starts at around 

a radius of 25; this is the point where the nucleuses start to dissappear. Image d) represents  

the gradient of the decay.  

 

 

a 

 
b 

 

c

 

d

 

Figure 3.7. Particle size distribution 
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The structuring element we have chosen to use is a circumference, given that the 

nucleuses of the cells and of the parasites tend to have an elliptical geometry. Once the 

average particle size distribution is calculated, we remove the nucleuses in the image by 

eliminating the objects larger than the found radius value. 

After this, we divide the candidate parasites into promastigotes and amastigotes, because 

the analysis for both of these forms of parasites will differ. To do this, we recover the binary 

mask containing the cytoplasm that we obtained in section 3.3.1.2, and we superimpose it 

with the binary parasite mask. The pixels that fall within large regions of cytoplasm are 

amastigotes, and the remaining parasites are classified as promastigotes. The objects that 

fall in the border of the image are eliminated. 

A small note, is that the promastigotes that found themselves adhered to the exterior of the 

cytoplasm or located very close to it, were sometimes classified as amastigotes due to the 

fact that the region they fell upon on were large regions of wrongly classified cytoplasm.  

One we have the two parasite classes, the next step is to extract small sub-images 

containing each of the candidates for individual examination. We followed the method 

proposed by Jaume Fernandez in his master thesis [5] for malaria parasite segmentation, 

where the sub-images are created around the centroids of each object in the binary mask. 

However, he also states the fact that the stained objects usually create more than one area. 

In other words, a single parasite may create several blotches that if treated independently, 

would lead to a detection of one too many parasites. In the case of leishmania parasites, 

this can also happen when the parasites are very close together.  

To solve this, centroids that are very close together are treated as one, thus, the created 

sub-image will vary in size according to its content. 

3.3.3. Individual analysis  

What mainly distinguishes the parasites from the rest of the image is their colour. 

We make the assumption that amastigotes and promastigotes will be darker in than the 

rest of the image, and this is generally true because of the staining technique used to 

obtain the images. We perform a closing of the image with a very small structuring 

element so as not to erase the parasite, to reduce at minimum any possible artefacts that 

may be present. Immediately after, a k-means colour classification (the same as in 

section 3.3.1.2) is applied, resulting in images similar to that in Figure 3.8. As mentioned 

before, the algorithm applied to detect amastigotes and promastigotes will be different. 

For instance, the number of clusters when applying the k-means classification will be of 3 

and not 4 in the case of the promastigotes. If we closely inspect the middle images in 

Figure 3.8, the region of interest is also slightly different in each case. In the amastigote 

image, we just need to segment the darker area, whereas in the promastigote image, the 

area to segment is whatever is not background. For this reason, the binarization 

threshold is also different.  

After applying the binarization with the corresponding threshold, a series of morphological 

operations are applied in this particular order: hole filling, elimination of small objects and 

dilation. The final segmentation can be observed in the right images of Figure 3.8. 
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3.4. Deep learning techniques: U-net 

Convolutional neural networks are typically used for classification tasks, mainly for 

assigning labels to whole images, and using thousands of images for training the networks. 

But in biomedical image processing it is most likely to need to assign a label to each pixel 

(pixel classification) allowing a localization of different regions in the image, while using few 

training images given that these are often a limited resource. Fully convolutional networks 

are often used, that is the fully connected layers are withdrawn. 

U-net [19] presents an alternative when the set of available images is relatively small. In 

the original paper they stated that there were only about 30 annotated images available, 

and where this presents a main challenge for most Convolutional Neural Networks it was 

no setback for the U-net, as they relied on the use of data augmentation for a more efficient 

use of the annotated samples. This network was chosen precisely because the number of 

images in their dataset resembled the amount we had in ours: 45. 

The basic U-net classifier that we use was downloaded from [20] and was initially 

developed and used for Radio Frequency Interference mitigation using deep convolutional 

neural networks [21]. Further improvements described in this project concerning the U-net 

have been developed in its integrity by Albert Aparicio. 

In the following sections we will first explain the method used to label the images, because 

as we already know, this is a crucial part in deep learning, and then we will proceed to talk 

about the architecture and parameters of the U-net. 

3.4.1. Image labelling 

Deep learning for computer vision requires of a ground truth in order to train the model of 

the network. For this, Albert Aparicio, a research intern in the image processing department 

of the ETSETB, developed a labelling program [18] in Matlab which allows to manually 

draw different class regions of interest on the image, mapping each drawn object to a label. 

In our case, we have 8 different labels (Figure 3.9): background, cell nucleus, promastigote, 

amastigote, adhered parasites, cell cytoplasm, non-usable area and non-parasitic element. 

These last two labels are for when it is unclear what the object is (1), if the object is part of 

a parasite but is of no interest (2), or when there is only a fraction of the object in the image 

making it unidentifiable (3).  

Figure 3.8. Amastigote and promastigote images after applying k-means colour classification and 
segmentation. From left to right: original images, k-means segmented image, detected parasites. 
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The 45 images in our dataset were split into two, and both Albert and I labelled half of them.  

3.4.2. U-net structure 

The architecture of the network consists of a large number of operations divided between 

the contracting (left) path and the expansion path (right), as seen in Figure 3.10. Each blue 

box corresponds to a multichannel feature map and the number of channels is denoted on 

top of these boxes. 

 

Figure 3.10. U-net architecture. 

Most of the operations are standard 3x3 convolutions followed by a non-linear activation 

function. After the max-pooling layer, the number of feature channels is increased by a 

factor 2.  

The more or less symmetrical u-shaped architecture of the network is due to the fact that 

high resolution features from the contracting path are combined with the upsampled output 

in the expansion path. As a large number of channels are used, it allows the network to 

propagate context information to higher resolution layers, giving the possibility to obtain 

Figure 3.9. Image on the right and corresponding labels on the left: amastigote (light blue), promastigote 

(dark blue), nucleus (pink), cell cytoplasm (white), background (black), adhered parasites (green), non-usable 
area (red) 

2 

 1 
 2 

3 
 2 
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good pixel localisation and to produce a high-resolution segmentation map. A successive 

convolution layer can then learn to assemble a more precise output based on this 

information.  

The original paper talks about performing random elastic deformations to the input images 

to produce data augmentation, since they were using a reduced dataset. In this project we 

decided to use mirroring and image rotation for simple computational reasons.  

Given that our dataset contains large images of varying sizes, we also decided to introduce 

small fixed-sized patches into the system, and to discard patches that did not contain at 

least a 5% of parasite pixels. The reason for this second design choice to omit certain 

patches was that, initially, the model was only classifying pixels into background, cytoplasm 

and nucleus classes.  

3.4.2.1. Parameters 

In order to fine tune the model to perform the best it can, there are a few parameters that 

can be played around with. The most relevant ones being the following: the optimizer, the 

cost function, the number of layers, the number of initial filters, the patch size and the patch 

overlap, the number of epochs and training iterations, and variations or transformations 

within the input image.  

In the remains of this section we will present some of the tested design options. 

The goal of optimization, is to find the weights to minimize the loss function when doing 

backpropagation. In this project, we have used an optimizer called Adaptive Moment 

Estimation, or Adam [22], which is derived from the Root Mean Square Propagation 

(RMSProp) and the Adaptative Gradient (AdaGrad) optimizers. At this moment, it is one of 

the most used gradient descent optimizers, since It has been shown that Adam works well 

in practice and compares favourably to other adaptive learning-method algorithms, while 

reducing the performance time. 

Various trainings have been launched using different parameters, but in general we have 

not noted any significant improvements. For instance, changing the number of epochs in a 

range from 10 to 50, modifying the number of training iterations starting at 50 to about 250, 

or variations in patch and overlap sizes from 100 to 250 and 5 to 30. The average patch 

size that was used the most, however, was of 150 because we measured the parasites 

and found that a region of these dimensions contained enough information to be able to 

extract the parasites.  

A more recent test involved changing the input image colour space where the regions were 

more visible, or creating an image applying enhancement transformations on the individual 

colour spaces. However, as these are simple linear transformations to the original images 

it did not improve the results. 

We also compared adding and removing the weights on the classes but without any luck.  

The only slight changes noted have been when modifying the number of filters from 16 to 

32 and incrementing the number of layers from 3 to 4. These results will be presented in 

the next section. 
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4. Results 

To verify the accuracy of the software, there are a few previous measurement terms 

necessary for their understanding: precision and recall. 

In pattern recognition, information retrieval and binary classification, precision is the fraction 

of relevant instances among the retrieved instances, while recall (also known as sensitivity) 

is the fraction of relevant instances that have been retrieved over the total number of 

relevant instances. Both precision and recall are therefore based on an understanding and 

measure of relevance. The last measure of accuracy is the F1 score, or F-score which is 

the harmonic average of the previous two measurements. The formulas of these values 

are the following:  

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
   𝐹1 = 2 ∗

𝑃𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 

Where TP corresponds to true positives, which are the correctly detected parasites; FP are 

the false positives, which correspond to the objects that were classified as parasites when 

they were not really parasites; and FN are the false negatives, which correspond to the 

non-detected parasites that were really parasites.  

4.1. Basic Image processing techniques 

The data from the following tables has been obtained from the analysis of 10 images.  The 

first two tables correspond to the precision and recall values of amastigotes and 

promastigotes: 

Amastigote count TP FP FN Precision Recall 

91 80 51 11 61.07% 87,9% 

Table 1. Precision and recall values for amastigotes 

 

Promastigote count TP FP FN Precision Recall 

70 33 3 37 91% 47,14% 

Table 2. Precision and recall values for promastigotes 

Nevertheless, considering that all of the false negative promastigotes were in fact detected 

as amastigotes, we can reconsider the previous results and re-calculate these 

measurements according to the number of total parasites detected, regardless of their 

form: 

Total parasite count TP FP FN Precision Recall 

161 150 17 11 89.92% 93.16% 

Table 3. Precision and recall values for parasites 
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4.2. U-net 

Next, we will present the results obtained from executing the U-net with different 

parameters. We have used 43 images for training the network and 2 images for test with 

their respective patches. The support column indicates the number of occurrences of 

each class in the ground truth.  

We have chosen to display the two most relevant results: 

▪ Batch size: 50 

▪ Epochs: 20 

▪ Patch size: 150 

▪ Patch overlap: 10 

▪ Layers: 3 

▪ Initial filters: 16 

▪ Optimizer: Adam 

▪ Cost function: class-weights

 

Class Name Precision Recall F1 score Support 

Background 0.5288 0.513494 0.47361 6284.41 

Non-usable area 0 0 0 230.252 

No-parasite 0 0 0 0 

Cytoplasm 0.197406 0.406505 0.228658 2229.55 

Nucleus 0.14978 0.13612 0.13803 1047.82 

Promastigote 0 0 0 661.798 

Adhered parasite 0 0 0 291.826 

Amastigote 0 0 0 918.347 

Table 4. First set of results from U-net 

In the table below are the results of the U-net with the following parameters:  

▪ Batch size: 60 

▪ Epochs: 20 

▪ Patch size: 150 

▪ Patch overlap: 10 

▪ Layers: 4 

▪ Initial filters: 32 

▪ Optimizer: Adam 

▪ Cost function: cross-entropy 
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Class Name Precision Recall F1 score Support 

Background 0.399246 0.350512 0.36 97.833 

Non-usable 

area 
0 0 0 5.733 

No-parasite 0 0 0 0 

Cytoplasm 0.2422 0.3224 0.250108 46.553 

Nucleus 0.0978 0.081 0.0818 17.606 

Promastigote 0.01496 0.010597 0.0104 7.922 

Adhered 

parasite 
0 0 0 7.814 

Amastigote 0.0095 0.00883 0.0096 12.5333 

Table 5. Second set of results from U-net 

And in Figure 4.1 you can observe the previous results represented as images. The image 

on the left corresponds to the original labels. The image in the middle corresponds to the 

Table 4 results and the image on the left corresponds to the results in Table 5.  

Figure 4.1. Image results from U-net classification 

It is obvious that the best segmentation is the one from the picture in the middle using the 

parameters in the first table, since the nucleuses are detected almost to perfection, and the 

cytoplasm of the cells are not far off.  

However, considering that many training iterations have been launched with no 

improvements in the results, we find that the results in the last image take us a step closer 

to obtaining the class segmentation that we are aiming for. The nucleuses are not perfect, 

but at least two more classes appear (amastigotes and promastigotes). 
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5. Budget 

An important section in any kind of project being developed is the budget. For this reason, 

in our project we have implemented free software tools and educational versions of the 

software. On the one hand, Python and tensorflow are open source tools that can be 

downloaded by anyone through their websites [23] [24], and are available for a great variety 

of operating systems and versions. On the other hand, Matlab is a payed software, but it 

offers the possibility to purchase a student license for those taking courses in degree-

granting institutions, therefore, the cost is less than expected.  

First of all, we have to take into account all of the hours that have been put into this project. 

We have considered that the development of the system requires two engineers that are 

partially dedicated to this task, and a project coordinator that advises and supervises the 

progress of the project. For the engineers, supposing that they work work 20 hours a week 

for 30 weeks makes a total of 600 hours. For the project coordinator, supposing the amount 

of weekly hours spent is 5, which make a total of 150 hours.  

Next we have to account for the material used. As we are using personal laptops, we will 

need to consider the amortization costs: we set the initial price of the laptop at 1304.6€ with 

a life expectancy of 5 years and a residual price of 175€. So the amortization value per 

year will be of 225.92, meaning that for 6 months the price will be of 112.96€. 

A GPU and a server are also necessary in the development of the project for the training 

and testing of images in the deep learning part of the project. And finally, the Matlab license 

has to be added too.  

 

 Cost Total 

Junior software engineers 600h x 12€/h 7200€ 

Project coordinator 150 x 20€/h 3000 € 

 
  

Personal Laptops  112.96€ x 2 225.92€  

GPU  200€ 

Server  400€ 

Student Matlab license 69€ x 2 138€ 

Light, internet and telephone 90€ x 6 months 540€ 

 Total: 11,703.92 € 

 

Table 6. Budget analysis  



 

 

40 
 

 

6. Conclusions and future development: 

 

The purpose of this project was to deepen our knowledge in image segmentation and 

classification techniques by implementing a parasite detection software. The two methods 

researched follow very different paths and include two very separated ways of approaching 

image segmentation, and as we have seen in our case, can also obtain very different 

results. 

As we have seen with mathematical morphology, there is a wide set of available techniques 

that have been overly exploited during the years. The decisions made were based upon 

what fit the most according to our needs, but for sure could have been improved. For 

instance, in the pre-processing section we see that watershed segmentation obtains good 

results for segmenting the cells and the promastigotes, but does not segment the 

amastigotes. Perhaps with some more research we could have also achieved amastigote 

segmentation, and to some extent, improved our results.  

To enhance the results from the U-net seems tricky at this point, but having read about the 

good results that it obtains in certain tasks, makes it hard to believe that it worked so poorly 

in our project. As there are no specific guidelines for resolving computer vision tasks, the 

solution to the incorrect detection issue may just be lying in a certain combination of 

different parameters to the ones used.  

However, even though the final detection results were very inferior in the Convolutional 

Neural Network than with the basic image processing techniques, we would still bet on the 

novelty of deep learning, as it is an area in expansion and leaves the doors open to new 

ideas in the future.  

6.1. Personal conclusion 

This project was developed with the main objective of expanding my knowledge in image 

segmentation and classification techniques, and I can assure that this objective has been 

accomplished. I was first introduced to image processing techniques a few years ago, and 

was amazed by the unlimited spectrum of possibilities available at the tip of our fingers. 

Given that the world as we now know it revolves around computer vision, this was a good 

field to choose to do my final thesis on.  

After developing this project, I can say that I have gained experience in project 

development and a lot of new information, especially regarding deep learning techniques 

as they were a novelty for me.  

One of the main conclusions that I have been able to extract from this project, is the fact 

that a good initial planning is the key to success. Mine could have been improved, and also 

a bit more implication wouldn’t have harmed. Overall, the sensation is a positive one. All 

experiences are positive.  
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Glossary 

▪ AdaGrad Adaptative Gradient 

▪ Adam: Adaptive Moment Estimation 

▪ CL: Cutaneous leishmaniasis 

▪ CNN: Convolutional Neural Network 

▪ ETSETB: Escola Tcnica Superior de Telecomunicacions de Barcelona 

▪ FN: False negatives 

▪ FP: False positives 

▪ HSL: Hue, saturation and lightness colour space 

▪ HSV: Hue, saturation and value colour space 

▪ ILSVRC: ImageNet Large Scale Visual Recognition Challenge 

▪ MM: Mathematical Morphology 

▪ ReLu: Rectified Linear Unit 

▪ RGB: Red, green and blue colour space 

▪ RMSProp: Root Mean Square Propagation 

▪ PNG: Portable network graphics 

▪ SE: Structuring element 

▪ TP: True positives 

▪ VL: Visceral Leishmaniasis 

▪ YCbCr: Luminance and chroma colour space 

 

 


