
SVQ: A PROPOSAL FOR STILL IMAGE CODING IN MPEG 4 - SNHC

L. Torres D. Gimeno* D. García

Universitat Politècnica de Catalunya *DGG Software
{luis,albroto}@gps.tsc.upc.es dgg@grn

ABSTRACT

A technique for efficient coding of homogeneous
textures is presented here. The technique is based
on the use of Stochastic Vector Quantization and
provides very high compression with graceful
degradation. To encode the image, a linear
prediction filter is computed. Then, the prediction
error is encoded using a Stochastic Vector
Quantization approach. To decode the image, the
prediction error is decoded first and then filtered as a
whole using the prediction filter, thus avoiding the
block effect found in conventional VQ. The
approach has been proposed as a still image coding
technique in MPEG 4 SNHC. Comparisons with
the Video VM of MPEG 4 are also presented.

1. INTRODUCTION

Vector quantization (VQ) has been extensively used
as an effective image coding technique. One of the
most important steps in the whole process is the
design of the codebook. The codebook is generally
designed using the LBG algorithm which uses a
large training set of empirical data that is
statistically representative of the images to be
encoded. Stochastic vector quantization (SVQ)
provides an alternative way for the generation of
the codebook [1]. The main difference of the SVQ
with respect to the conventional vector quantizer is
the design of the codebook. In the SVQ the
codewords are generated by stochastic techniques
instead of being generated by a training set
representative of the expected input image. This
means that the codebook is generated using a
random number generator. In the original SVQ
approach white-gaussian noise images of the same
size as the subimages to be encoded, are passed
through some shaping filter H(z1,z2) whose
output follows the selected model. The scheme has
been modified to cope with homogeneous textures
and high compression.

This work has been partially supported by the
VIDAS ACTS project of the European Union and
by TIC 95-1022-C05-05 of the Spanish
Government

The objective of this paper is to provide details of
the SVQ approach for homogeneous textures in the
context of the proposal made to MPEG 4 SNHC.

2. STOCHASTIC VQ

The Stochastic Vector Quantization approach is
based on concepts related to Linear Prediction. To
have a self-contained paper some explanations are
given here.

2D Linear Prediction

Given a grayscale digital image u[x,y], a linear
predictor can be defined by

û[x,y] = aku[x − αk ,y − βk]
k
∑

The pixels are assumed to be ordered by rows. In
order for the 2D filter to be causal, we have to
consider only the pixels previous to the one being
predicted. Figure 1 shows the terms used by a 2D
causal linear predictor of order K; all the terms
labeled with a number less than or equal to K are
used. The number of predictor coefficients is P =
2K(K+1).

1

1 1 12

2 2 2

2

2 2

23

3

3

3 3 3 3 33

3

3

3

Fig. 1 terms used by a 2D causal linear predictor

The predictor coefficients ak are chosen such as to

minimize the mean square estimation error

(MSEE), considering u[x,y] a random variable
being estimated in terms of the RVs u[x–αk, y–

βk].

The prediction error e[x,y] is the difference between
u[x,y] and its prediction:

e[x,y] = u[x,y] − û[x,y]
The prediction filter (LPF) allows the original
image to be reconstructed from its prediction error:

u[x,y] = û[x,y] + e[x, y] = ak u[x −α k, y − β k]
k

∑ + e[x, y]

SYSTEM DESCRIPTION

In what follows, the image size will be assumed to
be N × N, although the system is well suited for
non-square images as well. The order of the filter
is K, the codebook length (number of codewords) is
L and the codeword size is M × M. The number of
filter coefficients is P = 2K(K+1).

Encoder Operation

The current implementation of the encoder is for
grayscale images only. To encode a color image,
each of its components (YUV) is encoded
separately, using the following steps:

1. Mean extraction. Compute the mean of the

image and remove it. Complexity: 2N2 additions.

2. Filter computation. Compute the predictor
coefficients that minimize the mean square
estimation error for the image. Only filters of order
1 and 2 are used (4 and 12 coefficients,
respectively). For some images and a given filter
order, some of the filter coefficients may be greater
than 1 in magnitude and the filter becomes
unstable. The problem can be solved changing the
order of the filter.

Complexity:
P(P + 1)

2
+ 1


 


  N

2

 multiplication’s-additions.
Also, a system of equations of order P must be
solved. The complexity of this step is due to
multiple computations of the self-correlation of the
image to get the coefficients for the system of
equations. It can be reduced by ignoring some of
the samples (256×256 samples are usually
enough).

3. Prediction error variance computation.
Compute the variance σ2 of the prediction error.
Complexity: None. It can be done as part of the
prediction filter computation and its complexity
has already been included there.

σe
2 = E{ e2} = R[0, 0] − ak R[αk,β k]

k
∑

4. Codebook generation. Generate a
stochastic codebook following the prediction error

model (a gaussian PDF). All that is needed for that
is to fill the codewords using a gaussian random
number generator. For efficiency reasons, a second
codebook can also be generated by feeding the
prediction filter with the codewords of the

prediction error codebook. Complexity: LM2

gaussian random numbers for the prediction error

codebook, PLM2 multiplication’s-additions for the
filtered codebook.

5. Block coding. Encode the prediction error
using stochastic vector quantization methods (see

below). Complexity: (3P+L)N2 multiplication’s,

(3P+3L)N2 additions.

3. SVQ OF THE PREDICTION
ERROR

For every block in the prediction error image, the
encoder chooses a codeword from the codebook
following its stochastic model. The prediction
error itself needs not be computed. To encode a
block, the SVQ encoder computes the output that
each codeword would produce at the decoder after
filtering and it is that output distortion which is
minimized. Since the codebook is stochastically
generated, the decoder can use exactly the same
codewords as the encoder without the need of
transmitting them, just using the same seed for the
random number generator. Only the codeword
indices need to be encoded (together with the mean
of the image, the variance of the prediction error
and the filter coefficients).

Prediction error encoding hints
It is very important to keep in mind two points.
First, although we are using SVQ to encode the
prediction error, we are not interested in the
prediction error itself, but the original image
instead. Thus, the codewords should not be chosen
to minimize the distortion in reproducing the
prediction error. Rather, they should be chosen to
minimize the distortion in reproducing the original
image after filtering the prediction error with the
prediction filter in the decoder.

Second, to improve image reproduction, the whole
prediction error image is decoded first and then
filtered as a whole, rather than using a block-by-
block procedure. That means that to encode a
particular block, surrounding blocks must be taken
into account to evaluate the resulting image after
filtering.

Thus, the encoder needs to know what will be the
output at the decoder if a particular codeword is
chosen to encode a given block. The problem is
that, due to the autoregressive nature of the

prediction filter, given two contiguous blocks to be
encoded the best choice for anyone of them depends
on what was the choice for the other. That is,
assuming that blocks are encoded in sequence (by
rows), to choose the best codeword for a particular
block we need to know the prediction filter output
at pixels located in blocks that have not been
encoded yet. The problem arises from the fact that
the order in which pixels shall be filtered in the
decoder (by rows) is not the order in which they are
encoded (by blocks) –unless the blocks are 1-pixel
rows.

While using 1-pixel rows for the blocks could be a
solution, a more flexible approach has been devised
to allow using blocks of arbitrary dimensions, thus
increasing the flexibility of the system. The
following considerations are of great help:

1. Actually, we don't need to know exactly the
output values produced by encoding a given block
with a particular codeword. All we need to know is
if that codeword gives better results than any other
in the codebook.

2. The influence of a prediction error block in the
output image is more relevant for the pixels located
in that block. Hence, the pixels located in the
block being encoded is where different codewords
will produce greater differences in output distortion,
so we do not need to evaluate output distortion
outside that block.

3. In principle, since the PF is recursive, to
compute the output of the prediction filter at a
particular pixel, all previous output pixels should
have already been computed. If the reproduction
quality is good enough, however, the unknown
(because the block they are in has not been encoded
yet) but needed pixels can be estimated from the
original image. Such pixels are those located to
the right of the block being encoded.

4. All the output pixels surrounding the block
being encoded can thus be estimated, either because
their blocks have already been encoded or because
we use the original image values. This and the fact
that we only evaluate the output distortion at the
block being encoded, can dramatically reduce the
filtering needed to choose the best codeword for a
given block. Rather than filtering all the prediction
error already encoded, we consider the output in that
block as the result of the superposition of two
signals at the input of the prediction filter: (1) the
codeword itself (with zero surrounding pixels) and
(2) all the surrounding pixels (with zero values at
the location of the block). Thus, we need to filter
every codeword Wi only once before encoding any
block. The result of such pre-filtering is stored in
what can be viewed as a second codebook, {Vi},
reproducing locally the output image statistics.

5. For a given block, the encoder chooses the
codeword Wi such that Vi plus the effect of
filtering an empty input block with the non-zero
estimated output surrounding pixels minimizes
output MSEE for pixels in that block.

6. After encoding a block, it is convenient to re-
filter it, together with one or more previous
blocks, to avoid error propagation in output
estimations for pixels surrounding the next block
to be encoded.
The goal of the procedure outlined above is to
reproduce, as closely as possible, the decoding
process at the encoder so that the codewords are
chosen taking into account the way they will be
used.

Overall encoder complexity
Given the parameters of the system, the overall

encoder complexity is O(N2). For a given image
size and large codebooks, it is O(L). So the
complexity of the encoder increases linearly with
the image size and the codebook length.

Decoder Operation
The current implementation of the decoder is for
grayscale images only. To decode a color image,
each of its components (YUV) is decoded
separately, using the following steps:

1. Codebook generation. Generate the same
stochastic codebook for the prediction error as the

encoder. Complexity: LM2 gaussian random
numbers.

2. Block decoding. Decode the prediction error.

Complexity: None (N2 memory moves).

3. Image filtering. Filter the decoded prediction
error with the prediction filter.

3. Complexity: PN2 multiplication’s-additions.

4. Mean restoration. Restore the mean to the

image. Complexity: N2 additions.

Overall decoder complexity
The overall decoder complexity is O(N2). For
large codebooks, the encoder complexity can be

written as O(LN2), which means that the decoder is
much simpler than the encoder.

4. SYSTEM SYNTAX

The system syntax for grayscale and color images
follows. The current system syntax for color
(YUV, 4:2:0) images is basically the concatenation

of the grayscale syntax applied to each component.
This syntax may change in the future due to
system tuning for color images. The following
diagrams show the actual encoder and decoder.

SVQ Encoder

Mean
Extraction

Block
Partition

Filter
Comput.

Codebook
generation

VQ
Encoder

u[x,y]

u[x,y] – µu

u[x,y] – µu

µu i

Wi

Bitstream

σe , ak

σe , ak

SVQ Decoder

Mean
Restoration

Prediction
filter (LPF)

Codebook
generation

VQ
Decoder

û[x,y]

û[x,y] – µu

µu ak i

Wi

Bitstream

Block
Recompos.

ẽ[x, y]

σe

5. RESULTS AND CONCLUSIONS

 The SVQ scheme has been applied to a variety
of images with similar results. We have selected
here the Fabric image from the MIT data base used
in Core Experiments X1 and Z1 of MPEG 4
SNHC [2].. The Video VM 5.0.1 of MPEG 4 was
not able to go further than a compression ratio of
14 for this image. As a conclusion it can be said
that the SVQ approach provides coding results for
homogeneous textures in the range of 10 - 200.
For the high compression range, the SVQ always
outperforms the Video VM developed in MPEG 4
video.

6. REFERENCES

 [1] D. Gimeno, L. Torres, J.R. Casas, "A New
Approach to Texture Coding Using Stochastic
Vector Quantization", ICIP, Vol. 1, pp. 119 - 123,
Austin, Texas, USA, November 1994.
[2] Results of Core Experiment X1 and Z1".
M1706 - 1900 ISO/IEC JTC1/SC29/WG11.

 Original image SVQ Compression 10 VM 5.0.1 Compression 14

 SVQ Compression 50 SVQ Compression 101 SVQ Compression 10

