Hydro-mechanical approach and code development for shear and tensile failure on rock fractures

Treball realitzat per: Berta María Gómez Castro

Dirigit per: Sebastia Olivella Jesús Carrera

Màster en: Enginyeria del Terreny

Barcelona, 24 de gener de 2018

Departament d’Enginyeria Civil i Ambiental
Abstract

A new numerical code has been implemented for the assessment of the reservoir behaviour during geological applications involving fluid injection or extraction. This code simulates two-way Hydro-Mechanical coupling due to variations in the amount of fluid in porous media, including pre-existing fractures that can undergo tensile or shear failure because of the pressure increase. Fractures are treated as special elements of zero-thickness and their behaviour at failure is considered as brittle. Therefore, we consider that irreversible displacements take place in fractures when they fail whereas the porous matrix remains elastic. In order to simulate this type of failure characteristic of fragile rocks, two simplified, iterative and cost-efficient procedures are proposed and implemented. One is based on the analytical solutions of Okada (1992) and the other one is a novel numerical-based method. Finally, the code has been validated against several benchmarks and it will enable us to estimate fracture aperture and sliding during failure.
Resumen

Con el objetivo de la correcta evaluación del comportamiento de los reservorios durante la realización de actividades geológicas que conllevan la inyección o extracción de fluido, se ha desarrollado e implementado un nuevo código numérico. Este código permite simular el acoplamiento hidro-mecánico total debido a variaciones de la cantidad de fluido en el medio poroso, teniendo en cuenta la presencia de fracturas preexistentes que pueden alcanzar la rotura por tensión o por cizalla debido al incremento de la presión de fluido. Estas fracturas se tratan numéricamente como un elemento especial sin espesor y su comportamiento en rotura se considera frágil. Esto implica que, una vez que las fracturas rompen, asumimos que experimentan un desplazamiento irreversible, mientras que la matriz porosa mantiene su comportamiento elástico. Para poder simular este tipo de rotura propia de rocas frágiles, se han desarrollado e implementado dos métodos sencillos y eficientes como parte de un proceso iterativo. El primero de ellos se basa en las soluciones analíticas propuestas por Okada (1992) mientras que el otro es un método numérico de creación propia. Por último, este código se ha validado comparándolo con varios problemas de referencia y nos permitirá calcular la apertura y deslizamiento de las fracturas durante la rotura.
1 Introduction and objectives

A deep understanding of the hydro-mechanical coupling is necessary to properly manage several engineering activities as oil and gas extraction, nuclear waste disposal, geological sequestration of CO$_2$ or enhanced geothermal systems. In particular, an increasing attention to this phenomenon has occurred in recent years due to the controversy generated by hydraulic fracturing operations. These operations promote the creation of new fractures and/or the reactivation of pre-existing ones (Hubbert and Willis, 1972). The mechanical response to pressure increase may be non trivial because of the two-way Hydro-Mechanical (HM) coupling and because of the presence of pre-existing fractures, whose conductivity changes with overpressure.

Understanding the physics of the underlying processes is of special interest because (1) the efficiency of shale gas exploitation depends on the development of the fracture network, which increases the low-permeability of the shale formation (Rubinstein and Mahani, 2015), (2) fracking generates great concern because reactivation of pre-existing fractures by means of shear-slip may induce seismicity, which in some cases may reach such magnitude that it is felt by local residents (Ellsworth, 2013), and (3) reactivation of existing faults or unstable growth may create new flow paths for the leakage of the resident or injected fluids to fresh-water aquifer (Vengosh et al., 2014).

It is clear that it is necessary to properly manage fracking operations, in order to avoid undesired effects. To this end, a proper prediction of the system response is key to operation and to risk assessment. Significant advances have been achieved in recent years in the implementation of new codes for the numerical simulation of flow and deformations into porous and fractured media, as well as for the simulation of fracture aperture and propagation (see Jing, 2003; Jalali and Dusseault, 2012; Gómez et al., 2016, for a review). In some cases, fractures failure and propagation are simulated by means of plastic constitutive laws, which are not appropriate for brittle failure, like in the case of shale rocks. Most of them are computationally costly which hinders their utilization for the simulation of large domain problems.
Here we have developed a new code that solves two-way hydro-mechanical coupling into porous media by Finite Element Method (FEM). Fractures can be included as special elements of zero-thickness and their reactivation by shear slip and/or opening can be simulated by means of two new proposed and simplified procedures that lessens the computational time without losing the correctness of the process that takes place in fragile rocks. One of these procedures is based on the set of analytical solutions presented by Okada (1992), and the other one is a numerical method based on the Virtual Work Theory, both of them being part of an iterative algorithm.

Although this work has been done in the framework of the EU - FracRisk project (Deliverable D5.6), the aim is to develop a straightforward and simple method suitable to solve shear and tensile failure in fragile rocks not only during hydraulic fracturing operations, but also applicable in other geological activities which involve great amounts of fluid injection/extraction in the subsurface (e.g. geological storage of CO₂, enhanced geothermal energy, etc.). In this way, a better prediction, modeling and understanding of failure process may be achieved and, thus, the efficiency and safety of this kind of geological activities may be improved.

2 Current state of knowledge

The extended Terzaghi’s concept (Terzaghi, 1923) (coupling stresses and pore pressure) to a generalized three-dimensional theory of consolidation (Biot, 1941), led to the “Theory of Poroelasticity”. During the subsequent years, more accurate approximations were developed, for example, Ghaboussi and Wilson (1973) introduced fluid compressibility into classic soil mechanics consolidation theory. In the last years, hydro-mechanical (HM) coupling has become a main issue in order to deeply understand some geological applications such as oil and gas production or storage, enhanced geothermal systems and nuclear waste disposal. As a consequence of the interest in all these applications, several simulators have been developed to achieve an accurate representation of the HM phenomenon. Some of them also include multiphase and multicomponent flow, reactive transport and energy
transport and, thus, permit performing a thermo-hydro-mechanical-chemical (THMC) analysis. The efforts to attain a comprehensive understanding of the THM process have been focused on two directions: the formulation of suitable coupling methods capable of including all the interactions between each individual phenomenon in an accurate and robust manner; and the development of realistic constitutive laws that are able to reproduce the different material behaviors in all possible stress states.

The coupling between thermal, hydraulic and mechanical processes can be achieved by means of several numerical methods, which may be classified into four groups (Settari et al., 2001; Dean et al., 2006; Kim, 2009):

1. **Fully Coupled**: In this case, all the governing equations are solved together, i.e., the hydraulic, mechanical and thermal equations are solved at the same time at every time step. This method is unconditionally stable and preserves second-order convergence of nonlinear iterations, but it is computationally expensive and the code development may be harder than with other methods (Phillips and Wheeler, 2007).

2. **Iteratively Coupled**: This method, also called two-way coupling, uses a sequential approach, i.e., it first solves one problem (equation), whose solution then feeds the other governing equation(s). The results are then sent back to the first equation. These steps are repeated in an iterative process. Therefore, several iterations might be necessary in each time step until all the equations reach convergence (Preisig and Prévost, 2011). The solution, at the end of the iterations, should be the same as in the fully coupled method. The advantage of this staggered treatment is that it allows to couple different simulators to solve each kind of problem with the most appropriate one (Rutqvist et al., 2016). In addition, diverse domains for flow and mechanics can be used, reducing the computing time due to the fact that a small domain for flow can be chosen (Tran et al., 2005).

Kim (2009) analyze four different sequential-implicit solution strategies to solve the HM coupling. Two of them solve the mechanical problem first (the drained and undrained splits) (Kim et al., 2011a), and the other two solve the flow problem first (the fixed-strain and fixed-stress splits) (Kim et al., 2011b). They show that the drained and
the fixed-strain methods are conditionally stable and independent of the time step size because its stability limit depends only on the coupling strength. However, the undrained and the fixed-stress split are unconditionally stable.

3. **Explicitly Coupled**: This method is a particular case of the iteratively coupled technique. It also solves the different problems sequentially, but the convergence is not checked after the solution of the last equation, that is, it is assumed that the obtained solution is correct and the following time step is faced (Zienkiewicz et al., 1988). This means that only one iteration per time step is performed and that the information goes only in one direction (e.g., from the flow equation to the mechanical equation) within a time step.

It is a straightforward technique but the stability and the accuracy may be compromised if the time step is not adequately chosen (Preisig and Prévost, 2011).

4. **Loosely Coupled**: The method is similar to the Explicitly Coupled, but the solution of the flow equation is transferred to the mechanical equation after a number of time steps. The method is, therefore, time saving but the intervals of coupling update have to be chosen in a reliable way (Gai et al., 2005).

A summary of the advantages and shortcomings of these methods is shown in Table 1.

On the other hand, fractures are essential in order to explain the hydraulic, thermal and mechanical behavior of almost any reservoir. Whether they act as flow barriers or flow path and storage, their influence on the hydraulic behavior is relevant and has to be taken into account (Caine et al., 1996). In fact, production from hydraulically stimulated systems relies on permeability enhancement due to the generation of new fractures and/or shear slip of pre-existing ones (Rutqvist, 2015). Moreover, variations in the effective stress induced by changes in pressure and/or temperature will cause fracture opening or closing and it may induce failure if the fracture tensile or shear strengths were exceeded. This failure may sometimes lead to a seismic event (Cornet et al., 1997). Several numerical methods have been developed to adequately represent the mechanical and hydraulic behavior of fractures. Traditionally, these methods have been classified into continuum, discontinuum
Table 1: Comparison between different coupling methods for THM. (Modified from Jalali and Dusseault (2012))

(discrete) and hybrid methods (Jing, 2003). It should be noted that nomenclature adopted in the literature is often confusing. For example, the term "discrete" is sometimes used to describe a continuum model with a singular representation of a fracture. Here we adopt a classification based on Jing (2003):

1. **Continuum methods**: the main characteristic of the continuum methods is that the displacement compatibility must be fulfilled between internal elements. Thus, large-scale displacements, rotation or complete detachment are not allowed in this formulation and contacts between elements do not need to be updated. Two different approaches can be used inside of the continuum methods:

 a) **Equivalence methods**: these methods are based on an homogenization process in order to achieve one equivalent continuum model (representing fractures and matrix through one set of equivalent properties) or two superposed continua (one representing the fractures and the other one the matrix). In this approach there is not a special representation of fractures, which are instead considered as an effective porous continuum. Examples of these methods are the Equivalent Porous Media Method, based on the concept of a representative elementary volume introduced by Bear (1972);
the Dual Porosity Model, introduced by Barenblatt et al. (1960) and Warren et al. (1963) which consists on dividing the medium into two different continua one of them representing the fractures and the other simulating the matrix; or the Multiple Interacting Continua, a generalization of the Dual Porosity Model introduced by Pruess (1983).

b) **Methods using Special Representation of Fractures**: special elements are used to simulate the fracture behavior allowing the jump in displacements that takes place through the fracture. These elements may be lower dimensional or use a different kind of resolution method. Examples of these kind of elements in FEM are the double-node, zero-thickness element introduced by Goodman (1968), later improved by Zienkiewicz et al. (1970) and more recently used to simulate HM coupling by Segura and Carol (2008b) and Alonso et al. (2013); using Finite Difference Method, Caillabet et al. (1998) and Granet et al. (1998, 2001) employed successfully the "fissure element"; and within Boundary Element Method the Displacement Discontinuity Method (DDM) was developed by Crouch (1976) and it is based on the analytical solution of a constant discontinuity in displacement over a finite line segment embedded in an infinite elastic solid.

2. **Discontinuum (discrete) methods**: in this case displacement compatibility is not required, so contacts between elements need to be updated and large-scale displacements, rotation or complete detachment can take place. Examples are the Discrete Fracture Network Method, in which fractures are represented with lower-dimensional elements, which usually convey the fluid flow, although there is no mechanical neither hydraulic interaction between fractures and matrix (Jing, 2003); and the Discrete Element Method, which can be classified in five different groups (Cundall, 1989): Distinct Element Method, Modal Methods, Discontinuous Deformation Analysis (DDA), Momentum-exchange Methods and Limiting Equilibrium Methods.

3. **Hybrid models**: they perform a combination of the two methods above in order to overcome the respective difficulties. For example, Pan and Reed (1991) presented a DEM/FEM model which employed rigid blocks in the DEM area and elastic elements with non-
linear material behavior in the FEM region; *Lorig et al.* (1982); *Lorig and Brady* (1984); *Lorig et al.* (1986) created a DEM/BEM model implemented by Lemos (1987) in the simulator UDEC; and more recently the FEM/XFEM approximations, one of them presented by Watanabe et al. (2012).

In general, methods using special representations of fractures are more suitable when coupled THM processes are handled. Their advantages in comparison with discontinuous and hybrid methods are showed in Table 2.

<table>
<thead>
<tr>
<th>Numerical Method</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDM</td>
<td>• Easy to formulate.</td>
<td>• Cannot handle complex geometries, material inhomogeneities.</td>
</tr>
<tr>
<td></td>
<td>• No local trial (interpolation) functions required to approximate PDEs.</td>
<td>• Neumann boundary condition can be only approximated, not exactly enforced.</td>
</tr>
<tr>
<td></td>
<td>• The most direct and intuitive technique.</td>
<td>• Inflexible in dealing with explicit fractures, due to the necessity of continuity of functions between neighboring grid points.</td>
</tr>
<tr>
<td>FEM</td>
<td>• Flexible in handling material inhomogeneity and anisotropy.</td>
<td>• Large-scale opening, sliding and complete detachment are not permitted due to continuum assumptions.</td>
</tr>
<tr>
<td></td>
<td>• No coordinate transformation is required for complex geometries.</td>
<td>• Numerical ill-conditioning will occur due to large aspect ratios of fracture elements in the explicit representation of a large number of fractures.</td>
</tr>
<tr>
<td></td>
<td>• Can handle complex boundary conditions.</td>
<td>• Cannot be used for fracture growth, however there are some special algorithms to overcome this problem, e.g., enriched FEM.</td>
</tr>
<tr>
<td></td>
<td>• Suitable for dynamic problems.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Neumann boundary conditions are enforced exactly.</td>
<td></td>
</tr>
<tr>
<td>Discontinuous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEM</td>
<td>• Discretization of the boundary only (reduction of model dimension by one).</td>
<td>• Non-symmetric, fully populated system of equations in collocation BEM.</td>
</tr>
<tr>
<td></td>
<td>• Simplified pre-processing.</td>
<td>• Treatment of inhomogeneous and non-linear problems is extremely difficult.</td>
</tr>
<tr>
<td></td>
<td>• Improved accuracy in stress concentration problems.</td>
<td>• Requires the knowledge of a suitable fundamental solution, hence usually an elastic solution.</td>
</tr>
<tr>
<td></td>
<td>• Simple and accurate modeling of problems involving infinite and semi-infinite domains.</td>
<td>• Practical application relatively recent, not as well-known as FEM among users.</td>
</tr>
<tr>
<td></td>
<td>• Simplified treatment of symmetrical problems (no discretization needed in the plane of symmetry).</td>
<td></td>
</tr>
<tr>
<td>Hybrid Methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEM</td>
<td>• Explicit representation of fractures.</td>
<td>• Lack of knowledge of the geometry of fractures.</td>
</tr>
<tr>
<td></td>
<td>• Flexible to handle large amount of fractures.</td>
<td>• Large amount of computation required.</td>
</tr>
<tr>
<td>DFN</td>
<td>• Requires fewer degrees of freedom in comparison with FEM.</td>
<td>• Matrix-fracture flow interaction cannot handled adequately.</td>
</tr>
<tr>
<td></td>
<td>• Suitable for generic quantitative studies of fracture impacts.</td>
<td></td>
</tr>
<tr>
<td>Hybrid Methods</td>
<td>• Benefits from both continuous and discrete methods.</td>
<td>• Lack of knowledge of the geometry of fractures and hydraulic properties of fractures.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Large amount of computation required.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Can’t handle heat flow and mechanical process.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Displacement continuity and stress equilibrium at the interface is a big concern.</td>
</tr>
</tbody>
</table>

Table 2: Advantages and disadvantages of numerical methods available to perform THM coupling in fractured reservoirs. (*Jalali and Dusseault*, 2012)
3 Basics of Implementation

This work focuses on the development of a new application created to simulate hydro-mechanical coupling, shear and tensile failure on porous and fractured media. We develop the HM simulator as an application named *hydromechanical application* included in the *Kratos Multi-Physics* (*Dadvand et al.*, 2010) (www.cimne.com/kratos) framework, an open source, finite element code written in C++ and developed by CIMNE (International Centre for Numerical Methods in Engineering) in Barcelona.

The choice of this framework is motivated by its flexibility to new implementations and its big and well-tested core. This core has been developed over years in order to make it suitable for the big range of applications existing in *Kratos Multi-Physics*, thus a great variety of numerical approaches are already implemented. The majority of these applications are widely tested, so this framework provides a solid base to start building a new one.

In addition to that, *Kratos Multi-Physics* is linked with GiD, an user-friendly pre- and post- processor, which simplifies the performing and analysis of simulations.

4 Methodology

This section summarizes the governing equations, and their corresponding FEM discretization which describes the interaction between fluid flow and a porous or fractured medium. As fractures’ behaviour is different from that of the rock matrix (they may act as flow barriers or flow path and storage, they could fail causing a big opening or a shear movement, etc.), a special formulation is needed to properly describe their discontinuity role. However, for both the fracture and the rock matrix the main unknowns are the fluid pressure p and the solid displacement u. The numerical approach chosen to solve the resulting coupled system of equations is the fully coupled or monolithic procedure, because it is the most straightforward method since all the equations are solved simultaneously at each time step. Furthermore, this procedure is unconditionally stable and keeps second-order convergence of nonlinear iterations (*Jalali and Dusseault*, 2012). The time discretization
is fully implicit, so large time steps are possible. The resulting system matrix is stored using the skyline method to reduce the storage requirement of the code. Finally, the linear system is solved by means of a LU factorization.

4.1 Continuum Medium

The combination of the fluid balance equation, together with the general form of Darcy flow, results in the groundwater flow equation for a porous medium (Coussy, 2004)

$$S_s \frac{\partial p}{\partial t} + \alpha \frac{\partial (\nabla \cdot \mathbf{u})}{\partial t} + \nabla \cdot \mathbf{q} = f,$$

(1)

where $S_s = \frac{1}{M} = \frac{\phi}{K_f} + \frac{\alpha - \phi}{K_s}$, M is the Biot’s modulus, ϕ is porosity, K_f is the bulk modulus of the fluid, K_s is the bulk modulus of the solid grains, α is the Biot-Willis’ coefficient defined as $\alpha = 1 - \frac{K}{K_s}$ where K is the bulk modulus of the medium, and q is Darcy flux defined as

$$\mathbf{q} = -\frac{k}{\mu} (\nabla p + \rho g \nabla z).$$

(2)

If we consider the rock grains as incompressible, then $K_s = \infty$, so that $\alpha = 1$ and $S_s = \phi \beta$, where β is water compressibility. Notice that the fluid flow is coupled to the mechanical problem by means of the volumetric deformation expressed as $(\nabla \cdot \mathbf{u})$ in Eq.(1).

The FEM formulation of Eq.(1) for each element is results from applying the Standard Galerkin method and the Green’s theorem

$$S \frac{d\mathbf{p}}{dt} + Q^T \frac{d\mathbf{u}}{dt} + \mathbf{H} \mathbf{p} = \mathbf{f}_p,$$

(3)

where

$$S = \phi \beta \int_V N^p N^p dV$$

(4)
\[Q = \int_V B^T m N^p dV \] (5)

\[H = \int_V (\nabla N^p)^T k \frac{\mu}{\nabla N^p} dV \] (6)

\[f_p = -\int_S N^p^T q n dS + \int_V N^p^T f N^p dV \] (7)

and \(N^p \) is the matrix of shape functions which interpolates the nodal values of all state variables, \(B \) is a matrix composed by gradients of shape functions, \(m \) is a vector fulfilling the function of the identity tensor and \(n \) is the vector normal to the elements' surface.

On the other hand, the basic equation which describes deformation and completes with Eq. (1) the HM coupling formulation in a saturated porous media is the equilibrium of forces

\[\nabla \cdot \sigma + b = 0, \] (8)

where \(\sigma \) represents the total stress tensor and \(b \) is the body force vector.

This equation is coupled to pore pressure by means of the generalization of Terzaghi’s law which relates total and effective stresses \((\sigma') \) with pressure

\[\sigma' = \sigma + \alpha p I, \] (9)

where \(I \) is the identity matrix, the sign criterion of positive tension is assumed and the Biot-Willis coefficient \(\alpha \) is taken equal to 1.

By applying the weighted residual method and the Green's theorem, Eq. (8) at any time
(for instance at t^{k+1}) can be expressed as

$$r(\sigma^{k+1}) = \int_V B^T \sigma^{k+1} dV - f_u^{k+1} = 0,$$ \hspace{1cm} (10)

where $r(\sigma^{k+1})$ is the residual corresponding to the mechanical problem, B is a matrix composed by gradients of shape functions and σ^{k+1} is the total stress vector at time t^{k+1} (notice that stresses and strains are expressed as vectors and not as tensors in FEM) and f_u^{k+1} includes the body force terms and the boundary condition of forces

$$f_u^{k+1} = \int_V N^T b^{k+1} dV + \int_S N^T t^{k+1} dS. \hspace{1cm} (11)$$

In order to express the system in terms of the main unknowns, i.e., displacements and fluid pressure, we assume the Small Displacement Theory which relates the strain tensor (ϵ) and displacements as follows

$$\epsilon = \frac{1}{2}(\nabla u + (\nabla u)^T). \hspace{1cm} (12)$$

Moreover, a constitutive law relating strains to effective stresses is necessary. This relationship is represented in elasticity by Hooke’s law, which can be written in incremental or non-incremental formulation. Each formulation leads to different development of the problem due to implicit assumptions involved in each case. Both formulations have been implemented in the code as presented in the following.

4.1.1 Non-Incremental Formulation

In the non-incremental formulation the constitutive law of elasticity relates effective stresses and deformations by means of the stiffness matrix D_e

$$\sigma' = D_e \epsilon . \hspace{1cm} (13)$$
Substitution of Eq. (13) into Eq. (9) and (10) yields, respectively

$$\sigma^{k+1} + mp^{k+1} = D_e \varepsilon^{k+1}$$

(14)

and

$$\int_V B^T D_e \varepsilon^{k+1} dV - \int_V B^T m p^{k+1} dV - f_u^{k+1} = 0$$

(15)

Note that stress is expressed as a vector in Eq. (14) so the identity matrix is replaced by the corresponding vector m.

Equation (15) can be expressed in terms of displacements and fluid pressure (both interpolated from nodal values) using Eq. (12), which leads to

$$K u^{k+1} - Q p^{k+1} = f_u^{k+1}$$

(16)

where

$$K = \int_V B^T D_e B dV$$

(17)

and

$$f_u = \int_S N^u t dS + \int_V N^u \rho g dV.$$

(18)

This formulation considers absolute values of σ' and ε, i.e., the values with respect to a reference state $\sigma' = \varepsilon = u = 0$. Therefore, it solves problems that begin at initial condition $\sigma' = 0$, which means that, according to equation (9), the initial value of the normal total stresses (in compression) and the fluid pressure must be equal. If another initial stress state has to be represented, it is necessary to calculate previously the displacements of the model corresponding with such initial stress state and then proceed to calculate the displacement due to a given perturbation of the in-situ stress field. This may be inconvenient in non-linear elasticity models, because it results in a non-linear model. The inconvenience can
be circumvented for large scale models by starting the initial state model with the stiffness tensor D_e corresponding to lithostatic and hydrostatic conditions. The advantage of this formulation is that it allows to take into consideration an initial heterogeneous strain field due to differences in the initial stress state in large scale models.

4.1.2 Incremental Formulation

In the case of incremental formulation, the constitutive law of elasticity relates increments of strains with increments of effective stresses

$$d\sigma' = D_e d\varepsilon$$

(19)

or, considering time discretization,

$$\sigma'^{k+1} - \sigma'^{k} = D_e (\varepsilon^{k+1} - \varepsilon^{k}).$$

(20)

Following the same procedure than for the non-incremental formulation, the constitutive law (Eq.(20)) is substituted into equation (9) taking into account the strain-displacement relationship expressed in equation (12), which yields

$$\sigma^{k+1} = \sigma^k - m(p^{k+1} - p^k) + D_e B(u^{k+1} - u^k).$$

(21)

Substitution of Eq.(21) into Eq.(10) and linear interpolation of pressure and displacement from nodal values lead to:

$$K(u^{k+1} - u^k) - Q(p^{k+1} - p^k) = f^{k+1}_u - \int V B^T \sigma^k dV.$$

(22)

Note that the equilibrium equation is expressed in terms of increments of displacements and pressures in this formulation (compare Eq.(22) with Eq.(16)).

With this formulation it is not necessary that the problem begins at $\sigma' = 0$, since the increments consider a solution relative to an arbitrary initial stress state. For this reason,
this formulation facilitates non-linear elasticity calculations, where difficulties can be circumvented by adopting an explicit formulation for tensor D_e. However, initial strain heterogeneities due to differences in the initial stress state are difficult to simulate with this formulation. Another objection to this method is the way the boundary conditions must be applied, as they represent stress increments with respect to the initial condition.

4.2 Fractures

Fractures act as discontinuities in the displacement field because their surfaces can move one with respect to the other causing fracture opening or shear. This relative displacement is not necessarily equally divided between the two surfaces, but it can be different because of distinct acting forces, distinct stiffness in the surrounding material or differences in the boundary conditions. Moreover, these relative displacements affect the fracture permeability and therefore pressure, which in turn affect deformations. This jump in displacements across both sides of the fracture is difficult to simulate using continuity-based numerical methods as FEM. Two main approaches have been traditionally used to overcome this problem with FEM: a) methods based in lower-dimensional interface elements, b) methods using extended or enriched FEM. The first ones consist on the representation of the fracture in the mesh by means of a lower-dimensional geometry (i.e., a 1D element in a 2D domain, or a 2D element in a 3D domain) with additional intermediate nodes in order to calculate a jump in displacements between these nodes. The latter ones add local enrichment functions, which introduce additional degrees of freedom to represent displacement discontinuity across the fracture without the need of a explicit representation in the mesh. In our code fractures are represented using a method belonging to the first group. Its governing equations, FEM formulation and implementation are presented below.

4.2.1 Fracture Formulation

The fracture is implemented in the code by means of a zero-thickness, double-node interface element (Goodman, 1968), which means that fracture elements are polygons with area...
equal to zero in a 2D domain (Fig. 1 a)), whereas they are polyhedra with zero volume in a 3D domain (Fig. 1 b)).

Figure 1: Interface element in (a) 2D domain and (b) 3D domain. On the left the deformed configuration is showed, whereas on the right the representation in the mesh is shown.

Fluid flow along a fracture is considered as a parallel plate model, so cubic law (Snow, 1969) is applied

\[q = -\frac{a^2}{12\mu} I (\nabla p^f + \rho g \nabla z) \] \hspace{1cm} (23)

where \(a \) is the fracture aperture.

We assume that there is no pressure variation across the fracture, so the fluid flow equation can be written as

\[a \beta \frac{\partial p^f}{\partial t} + a^f \frac{\partial a}{\partial t} + \nabla \cdot (a q) + \sum_{i=1}^{2} K_i \nabla h_i n_i = f^f, \] \hspace{1cm} (24)

where \(a^f \) can be considered equal to 1 and the last term includs the flux from the adjacent matrix. Notice that the storage term is represented by the variation of the fracture aperture and the compressibility of water stored within the fracture, as we assume a small presence of infill material in the fracture. Notice also that Eq.(24) is expressed by means of the fracture
aperture a, which depends on fluid pressure. At the same time, opening or closure of the fracture affects its permeability and storage, which exhibit the two-way coupling between the mechanical and the hydraulic process. If aperture variation is appreciable, flow equation (Eq.24) becomes highly nonlinear, which requires full coupling to the mechanical problem and iterative solutions. However, in the hypothesis of small variations, the value of the aperture can be updated at the end of each time step.

The mechanical equations for the fracture can be formulated following the same steps presented before for the porous medium. The starting point is the momentum balance (Eq.8) and the relationship between fluid pressure and effective stresses (Eq.9). The only difference in the fracture case is that the vector of stresses has just two components, tangential and normal to the fracture, $\boldsymbol{\sigma}^f = [\tau^f, \sigma^f_n]^T$, so the vector \boldsymbol{m} converts into $\boldsymbol{m}^f = [0, 1]^T$ in order to consider the effect of the fluid pressure only in the direction normal to the fracture. The constitutive law is expressed by increments and relates directly variations in effective stresses with variations in the relative displacement between the two faces of the fracture

$$d\boldsymbol{\sigma}^f = \boldsymbol{R}^f d\boldsymbol{u}_r,$$

where \boldsymbol{R}^f is the stiffness tensor of the fracture and \boldsymbol{u}_r is the relative displacement vector defined, respectively, as

$$\boldsymbol{R}^f = \begin{pmatrix} k_{tt} & k_{tn} \\ k_{nt} & k_{nn} \end{pmatrix}$$

and

$$\boldsymbol{u}_r = \begin{pmatrix} s \\ a \end{pmatrix} = \begin{pmatrix} u_t^+ - u_t^- \\ u_n^+ - u_n^- \end{pmatrix}$$

with k_{tt} and k_{nn} representing the stiffness in the tangential and normal direction respectively, and $k_{tn} = k_{nt}$ representing the dilatancy stiffness. Note that we refer to the relative displacements in the fracture, that is the difference of displacements at the two faces of the fracture.
fracture. Therefore, in the vector \(\mathbf{u}_r \), \(s \) represents the slip between the fracture faces and \(a \) is the fracture aperture due to the normal displacement of the fracture edges.

After applying spatial discretization, the relative displacement vector \(\mathbf{u}_r \) for a fracture element is defined in terms of nodal displacements as \((\text{Segura and Carol}, 2008b)\)

\[
\mathbf{u}_r = \begin{pmatrix} s \\ a \end{pmatrix} = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} N_l^u & 0 & N_r^u & 0 \\ 0 & N_l^u & 0 & N_r^u \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 1 & 1 \\ -1 & 1 \\ 1 & 1 \end{pmatrix} = \mathbf{T} \mathbf{N}_u \mathbf{I}_u \mathbf{u}_i \quad (28)
\]

where \(\mathbf{T} \) is the rotation matrix that transform the displacements in the fracture local coordinate system with inclination \(\theta \) into the global coordinate system, \(\mathbf{N}_u \) is a matrix of shape functions for the left and right tips of the fracture element, \(\mathbf{I}_4 \) is an identity matrix of dimension 4 and \(\mathbf{u}_i \) is the nodal displacement vector for the generic element \(i \).

Similarly, fluid pressure can be written for each fracture element as:

\[
p_f = \left(\begin{array}{cc} N_l^p & N_r^p \end{array} \right) \frac{1}{2} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \end{pmatrix} = \mathbf{N}_p \frac{1}{2} \mathbf{I}_2 \mathbf{p}_i \quad (29)
\]

where \(\mathbf{N}_p \) is the matrix of shape functions for the left and right tips of the fracture element, \(\mathbf{I}_2 \) is an identity matrix of dimension 2 and \(\mathbf{p}_i \) is the vector of nodal pressures for the element \(i \).

By applying this formulation to the equilibrium equation and the fluid balance equation, the governing equations for the HM problem in fractures are expressed in FEM for-
mulation as

\[S' \frac{dp}{dt} + Q' \frac{du}{dt} + H' p = f_p \] \hspace{1cm} (30) \]

\[K' u - Q' p = f_u \] \hspace{1cm} (31) \]

where

\[K' = \int_I \bar{I}_u^T \bar{N}^u \bar{T}^T \bar{R}^f \bar{T} \bar{N}^u \bar{I}_u \, dl , \] \hspace{1cm} (32) \]

\[S' = a \beta \int_I \bar{I}_p^T \bar{N}^p \bar{I}^p \, dl , \] \hspace{1cm} (33) \]

\[Q' = \int_I \bar{I}_u^T \bar{N}^u \bar{T}^T m^f \bar{N}^p \bar{I}_p \, dl , \] \hspace{1cm} (34) \]

\[H' = \int_I \bar{I}_p^T \frac{\partial}{\partial \bar{l}} \bar{N}^p \bar{T} \frac{a^3}{12\mu} \frac{\partial}{\partial \bar{l}} \bar{N}^p \bar{I}_p \, dl . \] \hspace{1cm} (35) \]

Notice that equations (30) and (31) are similar to equations (3) and (16) respectively, but the definition of the matrixes is different. Therefore, when we consider a problem with a fracture embedded in a continuum medium, we actually solve the governing equations of the HM problem, like Eq.(3) and Eq.(16), but considering matrixes that are built as an assembly of the matrixes presented for the fracture and for the continuum medium. This is possible because the fracture nodes will be shared with the porous medium and their state variables will be the same.

So far we have analysed the elastic behaviour of the fracture in which displacements are
small and reversible. This behaviour occurs as long as the stress tensor satisfies the equilibrium condition for tensile \(\sigma'_n \leq 0 \) (compression positive) or shear failure \(\tau \leq \mu \sigma'_n \) according to the Mohr-Coulomb criterion, where \(\tau \) is the tangential stress, \(\sigma'_n \) is the effective normal stress and \(\mu \) is the friction coefficient. Once the equilibrium condition is violated, elasticity is not valid because fracture displacements become irreversible. This movement releases the amount of energy necessary to bring the system back to the equilibrium. This process is usually called fracture failure and its simulation requires the development of special numerical methods. In fragile, stiff rocks failure does not follow the classical plasticity laws, but the irreversible displacement is instantaneous at the moment the equilibrium is violated. This displacement produces a redistribution of the stresses such that the equilibrium is recovered, as expressed by

\[
\tau_f + \Delta \tau = \mu (\sigma_{nf} + \Delta \sigma_n - p)
\]

(36)

for shear failure. Additionally,

\[
\sigma_{nf} + \Delta \sigma_n - p = 0
\]

(37)

for tensile failure, where \(\tau_f \) and \(\sigma_{nf} \) are the shear stress and the normal total stress of the fracture when it fails, and \(\Delta \tau \) and \(\Delta \sigma_n \) represent the shear stress variation and the normal total stress variation that take place while fracture is displacing and that return the system to the equilibrium.

Our aim is to calculate the displacement field associated to this stress variation that recovers the equilibrium. To this end, we have implemented two different methods, one is based on an analytical solution and the other applies a numerical procedure, as explained in the following sections.

4.2.2 Analytical Failure Formulation: Okada Solution

Okada (1992) presented a set of closed analytical equations to calculate the variation of the internal displacement field in the medium and the variation in stresses due to a rectangu-
lar source of displacement of magnitude U over an assigned area. Three different types of rectangular sources of displacement are considered: strike displacement, dip displacement and tensile displacement. The stress variation can be written as

$$\sigma_{mn} = U[2G f_{mn} + \lambda f_{kk} \delta_{mn}],$$

(38)

where δ_{mn} is the Kronecker delta and f_{mn} depends only on the fracture geometry and distance to the fracture. Making use of these analytical solutions we can calculate the inverse problem, that is, given the stress variation necessary to recover equilibrium, we can calculate the resulting displacement over the failing area.

On the other hand, if the fracture is discretized in n_e elements, the total fracture displacement during failure can be calculated as the sum of the displacements in each element. In order to do that properly, it is necessary to take into account that the displacement of each element will affect the stress state all around and will provoke displacement on other elements. The superposition of all these displacements is possible because, although failure itself is non linear, the impact in terms of displacements and stresses, results from the response of the matrix, which is assumed to remain linear. Non-linearity is restricted to the calculation of the extent of failure, so due to the influence of one displacement to the others, an iterative loop over all fracture elements is necessary to ensure that all of them are eventually in equilibrium. Therefore, recalling Eq.(36), we can write the equilibrium for element 1 as

$$\tau_{f1} - \mu \sigma'_{n_f1} + \sum_{e=1}^{n_e} \left(\frac{\partial \tau_1}{\partial U_e} - \mu_d \frac{\partial \sigma'_1}{\partial U_e} \right) \Delta U_e = 0$$

(39)

where τ_{f1} and σ'_{n_f1} are the shear and effective normal stresses in element 1 in the moment of failure, $\partial \tau_1 / \partial U_e$ and $\partial \sigma'_1 / \partial U_e$ represent the stresses variation in element 1 due to the displacements in each fracture element given by the Okada solutions, and ΔU_e is the displacement at the fracture element during failure. Notice that Eq.(39) needs to be formulated for each fracture element that fails, since a variation in the stress tensor will occur in
these elements due to failure.

In favor of efficiency in calculation and storage, Eq. (39) can be formulated in matrix notation

\[
\begin{pmatrix}
\frac{\partial \tau_1}{\partial U_1} - \mu \frac{\partial \sigma'_1}{\partial U_1} & \frac{\partial \tau_1}{\partial U_2} - \mu \frac{\partial \sigma'_1}{\partial U_2} & \frac{\partial \tau_1}{\partial U_3} - \mu \frac{\partial \sigma'_1}{\partial U_3} & \ldots & \frac{\partial \tau_1}{\partial U_{e_f}} - \mu \frac{\partial \sigma'_1}{\partial U_{e_f}} \\
\frac{\partial \tau_2}{\partial U_1} - \mu \frac{\partial \sigma'_2}{\partial U_1} & \frac{\partial \tau_2}{\partial U_2} - \mu \frac{\partial \sigma'_2}{\partial U_2} & \frac{\partial \tau_2}{\partial U_3} - \mu \frac{\partial \sigma'_2}{\partial U_3} & \ldots & \frac{\partial \tau_2}{\partial U_{e_f}} - \mu \frac{\partial \sigma'_2}{\partial U_{e_f}} \\
\frac{\partial \tau_3}{\partial U_1} - \mu \frac{\partial \sigma'_3}{\partial U_1} & \frac{\partial \tau_3}{\partial U_2} - \mu \frac{\partial \sigma'_3}{\partial U_2} & \frac{\partial \tau_3}{\partial U_3} - \mu \frac{\partial \sigma'_3}{\partial U_3} & \ldots & \frac{\partial \tau_3}{\partial U_{e_f}} - \mu \frac{\partial \sigma'_3}{\partial U_{e_f}} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\frac{\partial \tau_{e_f}}{\partial U_1} - \mu \frac{\partial \sigma'_{e_f}}{\partial U_1} & \frac{\partial \tau_{e_f}}{\partial U_2} - \mu \frac{\partial \sigma'_{e_f}}{\partial U_2} & \frac{\partial \tau_{e_f}}{\partial U_3} - \mu \frac{\partial \sigma'_{e_f}}{\partial U_3} & \ldots & \frac{\partial \tau_{e_f}}{\partial U_{e_f}} - \mu \frac{\partial \sigma'_{e_f}}{\partial U_{e_f}}
\end{pmatrix}
\begin{pmatrix}
\Delta U_1 \\
\Delta U_2 \\
\Delta U_3 \\
\vdots \\
\Delta U_{e_f}
\end{pmatrix}
=
\begin{pmatrix}
-\tau_{f_1} + \mu \sigma'_{f_1} \\
-\tau_{f_2} + \mu \sigma'_{f_2} \\
-\tau_{f_3} + \mu \sigma'_{f_3} \\
\vdots \\
-\tau_{f_{e_f}} + \mu \sigma'_{f_{e_f}}
\end{pmatrix},
\]

(40)

where \(e_f\) is the number of fracture elements that fail \((e_f \leq e)\), or in compact notation

\[
F_M \Delta \mathbf{U} = \mathbf{\sigma}_f .
\]

(41)

\(F_M\) is called Failure Matrix, which is built and solved in the hydromechanical application as part of an iterative process which works as follows

1. At each time step of the simulation the equilibrium conditions are checked in every fracture element.

2. In the case in which the failure condition is met, the components of the \(F_M\) matrix are calculated by means of the Okada solution and the system (41) is solved for the fracture elements in failure, obtaining the displacement of each of them \(\Delta U_e\).
3. ΔU_e represents the displacement of an element along the fracture axis. Therefore, this value is transformed into the global coordinate system and the result are the two components of displacement $\Delta u_x e$ and $\Delta u_y e$. For the sake of simplicity, these values are equally distributed between the upper and lower faces of the fracture element and they are imposed in the corresponding nodes.

4. The stress changes due to these imposed displacements are computed and the equilibrium in the fracture is checked again, since the displacements of the initially failed elements may have induced failure in others. If it occurs, the loop restart at step 2. If not, the simulation continues to the next time step.

This method is an efficient and straightforward manner to calculate the extension of the failure zone and the displacements originated. Usually, few iterations are needed to reach equilibrium and the analytical solution is computationally inexpensive. However, it has to be considered some drawbacks associated to the use of the analytical solutions: 1) The analytical expressions present singularities at the fault edges and 2) they are derived for a half-space, homogeneous and infinite medium so, 3) they don’t take into account the boundary conditions of the model, and 4) they don’t consider heterogeneities in the surrounding rock.

4.2.3 Numerical Failure Formulation: Lines of influence

In order to overcome the disadvantages of the analytical method, we also develop a numerical procedure to calculate a Failure Matrix. With this method, the Failure Matrix is specific for each model, considering its geometry, boundary conditions and the heterogeneities.

As already stated, when failure conditions are reached, the system yields with tensile aperture or shear slip, which causes a stress perturbation that recovers equilibrium (Eq.(36)). This stress perturbation, and the associated displacements, is therefore the unknown of the problem.

Furthermore, the variation of the stress tensor at a point is affected not only by the local failure, but also by the failure in the surrounding, which, in the context of FEM, means
that the stress field of a fracture element is affected by the failure of all the failing fracture elements. Thus, the superposition of the contribution of each fracture element should be applied, which is represented in the Failure Matrix. In order to build it, it is necessary to apply a perturbation to each fracture element to compute how this action would affect the variation of the stress state in all the rest. This procedure is performed before the simulation have started and the Failure Matrix is saved to be used, if necessary, during the simulation.

According to the principle of virtual work, the same stress variation can be provoked by the application of displacements or forces. The Failure Matrix can therefore be built by applying an unitary relative displacement or a pair of forces at the double-nodes of the fracture elements. Although both methods are equivalent, virtual forces are more suitable to implement numerically due to two main reasons: 1) applying a force only modifies the right hand side of the system matrix, whereas if a displacement is applied all the system matrix changes since displacements are state variables; 2) this method allows the nodes of the two surfaces of the fractures to displace independently, whereas the application of a relative displacement between the fracture’s faces requires a initial decision about how much each face will move.

Thus, we calculate the forces \(T_k \) necessary to recover equilibrium as a result of the equilibrium equation at each fracture element \(i \)

\[
\tau_{fi} - \mu \sigma_{nfi}' + \sum_{k=a}^{n_{ed}} \left(\frac{\partial \tau_i}{\partial T_k} - \mu_d \frac{\partial \sigma_{nli}'}{\partial T_k} \right) T_k = 0 ,
\]

(42)

where \(T_k \) is applied at each pair of double-nodes of the left edge of each fracture element.

The exact workflow of the implemented method is:

1. Step 0 (previous to the simulation the time loop): The Failure Matrix is built by applying fictitious unitary forces to each pair of the double-nodes \((k) \) of the fracture and calculating the variation of stresses at each fracture element \(i \) (Fig. 2). Therefore, \(\mathbf{F}_M \) has dimension \((n_e \times n_{ed}) \), where \(n_e \) is the number of fracture elements and \(n_{ed} \) is the number of left edges of each fracture element (the same number of fracture elements).
2. HM simulation starts. At each time step the Mohr-Coulomb failure condition \(\tau > \mu \sigma'_n \) is checked at any fracture element.

3. In case of violation of the Mohr-Coulomb criterion at one or more fracture elements, the part of the \(F_M \) corresponding to these failed elements is taken, and according to Eq. (42), the following system matrix is built and solved

\[
\begin{pmatrix}
\frac{\partial \tau_1}{\partial T_a} - \mu \frac{\partial \sigma'_1}{\partial T_a} & \frac{\partial \tau_1}{\partial T_b} - \mu \frac{\partial \sigma'_1}{\partial T_b} & \frac{\partial \tau_1}{\partial T_c} - \mu \frac{\partial \sigma'_1}{\partial T_c} & \ldots & \frac{\partial \tau_1}{\partial T_d} - \mu \frac{\partial \sigma'_1}{\partial T_d} \\
\frac{\partial \tau_2}{\partial T_a} - \mu \frac{\partial \sigma'_2}{\partial T_a} & \frac{\partial \tau_2}{\partial T_b} - \mu \frac{\partial \sigma'_2}{\partial T_b} & \frac{\partial \tau_2}{\partial T_c} - \mu \frac{\partial \sigma'_2}{\partial T_c} & \ldots & \frac{\partial \tau_2}{\partial T_d} - \mu \frac{\partial \sigma'_2}{\partial T_d} \\
\frac{\partial \tau_3}{\partial T_a} - \mu \frac{\partial \sigma'_3}{\partial T_a} & \frac{\partial \tau_3}{\partial T_b} - \mu \frac{\partial \sigma'_3}{\partial T_b} & \frac{\partial \tau_3}{\partial T_c} - \mu \frac{\partial \sigma'_3}{\partial T_c} & \ldots & \frac{\partial \tau_3}{\partial T_d} - \mu \frac{\partial \sigma'_3}{\partial T_d} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\frac{\partial \tau_{ef}}{\partial T_a} - \mu \frac{\partial \sigma'_{ef}}{\partial T_a} & \frac{\partial \tau_{ef}}{\partial T_b} - \mu \frac{\partial \sigma'_{ef}}{\partial T_b} & \frac{\partial \tau_{ef}}{\partial T_c} - \mu \frac{\partial \sigma'_{ef}}{\partial T_c} & \ldots & \frac{\partial \tau_{ef}}{\partial T_d} - \mu \frac{\partial \sigma'_{ef}}{\partial T_d}
\end{pmatrix}
\begin{pmatrix}
T_a \\
T_b \\
T_c \\
\vdots \\
T_{df}
\end{pmatrix}
=
\begin{pmatrix}
-\tau_{f1} + \mu \sigma'_{f1} \\
-\tau_{f2} + \mu \sigma'_{f2} \\
-\tau_{f3} + \mu \sigma'_{f3} \\
\vdots \\
-\tau_{f_{ef}} + \mu \sigma'_{f_{ef}}
\end{pmatrix}
\quad (43)

where \(e_f \) is the number of elements that fail and \(d_f \) is the number of pairs of double-nodes on the left edge of each fracture element that fail (the same number of fracture elements that fail). The solution of this system returns the forces \(T_k \) required at each pair of double-nodes of the left edge of each fracture element to return the system to the equilibrium.
4. The forces obtained as resolution of Eq. (43) are applied to the corresponding nodes and the Failure Matrix is used again to check if the failure condition is now satisfied. In this case, the failure zone is already determined and the displacements associated are computed by the code as a result of the applied forces. If not, Eq. (43) has to be solved again including the new failed elements. These virtual forces are kept throughout the simulation to acknowledge that failure is irreversible.

This numerical method is expected to be more accurate and straightforward than the analytical one based on the Okada solution because the Failure Matrix is built for each model considering its particular geometry, boundary conditions and on materials properties. The drawback is that it requires the construction of the F_M before starting the simulation, which slightly increases the computational time.

Both the analytical (section 4.2.2) and the numerical (section 4.2.3) methods return the shear slip or the aperture along the fracture associated to its failure.

In the case of tensile opening this allows us to predict the aperture of a fracture during hydraulic stimulation. In the case of shear slip we can calculate the magnitude of the associated seismic event by means of $M = GdA$, where d is the displacement and A is the failing area.

5 Results

We use some well- or less-known problems to verify the adequate programming of equations of the code and the validity of the presented formulations and methods. The different problems consider only the porous medium, only the fracture or the combination of porous medium and fractures. In the latter ones we separately check the elastic behaviour of the fracture considering only flow, only mechanical conditions or taking into account the HM coupling, besides one more test to prove the suitability of the analytical failure formulation. All the benchmarks are compared with analytical or numerical solutions and the plane strain condition is applied in all of them neglecting the gravity for fluid and solid.
5.1 Continuum Medium Benchmarks

5.1.1 Porous medium consolidation

The consolidation problem is a traditional benchmark for HM codes (Kolditz et al., 2016). It considers a column of fully saturated porous medium with impermeable and constrained lateral boundaries. A compressive load is applied on the top boundary, where fluid pressure is fixed to zero. The application of the load provokes the sudden increase of pressure in the whole domain (undrained response). As time goes on, the fluid flows out of the top boundary and the column consolidates vertically until the final settlement is reached. The geometry, mesh and boundary conditions considered are showed in Figure 3 and they are based in the example provided by Segura and Carol (2008a). The Young’s modulus is taken equal to 1000 kPa, Poisson coefficient is 0.3, hydraulic conductivity is constant and equal to 1 m/d and the applied load is 10 kPa.

![Figure 3: Geometry, mesh and mechanical (left) and hydraulic (right) boundary conditions for the porous medium consolidation problem.](image)

This problem can be treated as a 1D problem for which there is an analytical solution (Taylor, 1948). Results of pressure distribution obtained by the numerical simulation (Fig. 4) is compared with the analytical solution (Fig. 5) and demonstrate good accuracy. The same occurs with the numerical results of the vertical displacements (Fig. 6), which fit with the corresponding analytical solution (Fig. 7).
Figure 4: Pressure distribution of the consolidation problem for different times.

Figure 5: Results of the consolidation problem. Comparison between the pressure profile for the numerical simulation (solid line) and the analytical solution (markers) for different times.

Figure 6: Vertical displacement of the consolidation problem for different times.
5.2 Elastic Fracture Benchmarks

5.2.1 Fracture consolidation

The consolidation problem is now applied to a single horizontal fracture. The boundary conditions are based on (Segura and Carol, 2008a) and consist of three impermeable boundaries and one fixed-pressure boundary (Fig. 8). Analytical load of 10 kPa is applied on the top surface of the fracture, whereas the other boundaries are mechanically constrained. The mesh is composed by 10 linear elements and the normal fracture stiffness is equal to 20000 kPa/m whereas the tangential fracture stiffness is 1000 kPa/m. In this case, the permeability of the fracture is assumed as constant. The analytical solution in this example is the same than for the porous medium (problem of section 5.1.1) if the same consolidation coefficient is considered. To do that, fracture transmissivity has to be taken equal to 6.73×10^{-2} m2/d which means that, according to the cubic law, fracture aperture is 9.85×10^{-5} m. Comparison between the numerical results and the analytical solution (Fig. 9), proves that the fracture formulation implemented in the code works as expected.
Figure 8: Geometry and mechanical (left) and hydraulic (right) boundary conditions for the fracture consolidation problem.

Figure 9: Results of the consolidation problem applied to the fracture. Comparison between the pressure profile for the numerical simulation (solid line) and the analytical solution (markers) for different times.
5.2.2 Flow through a fractured medium

This problem is useful to test the accuracy of the code to flow in a fractured porous medium. It is taken from Watanabe (2011) and consists in a 2D porous domain with an inclined fracture (45° with respect to the horizontal) embedded at the center of the domain (Fig. 10), taken from. No flow condition is applied to the top and bottom surfaces, whereas differential pressure is applied at the left and right surfaces, so that steady state flow occurs uniformly from the left to the right. The hydraulic conductivity of the fracture is constant and equal to 1×10^{-3} m/s which corresponds to a fracture aperture of 0.05 m. The porous medium is less conductive than the fracture with a hydraulic conductivity equal to 1×10^{-5} m/s.

![Figure 10: Geometry and hydraulic boundary conditions for the problem of flow through a fractured porous medium.](image)

In order to compare with the analytical solution (Strack, 1982), which is formulated for an infinite domain, the prescribed values of pressures in the left and right boundaries of the model are derived from the analytical solution with a specific discharge $q_0 = 1 \times 10^{-4}$ m/s (Watanabe, 2011). The numerical results of pressure distribution are shown in Figure 11. The agreement between them and the analytical solution of pressure is presented in Figure 12, and it is quite good despite the simplification of the fracture geometry in the simulation with respect to the geometry considered in the analytical solution (penny shape).
Figure 11: Pressure distribution obtained by the numerical model for the problem of flow through a fractured porous medium.

Figure 12: Results of the problem of flow through a fractured porous medium. Pressure along the diagonal of the model (from the bottom-left to the top-right) for the numerical simulation (solid line) and the analytical solution (markers).
5.2.3 Fractured rock under uniaxial load

In this benchmark only the mechanical process is simulated with a domain composed by a column of rock with an horizontal fracture in the middle under uniaxial load applied at the top. The geometry, mesh and boundary conditions are taken from Watanabe et al. (2012) and they are depicted in Figure 13. we assume a Young’s modulus of 10 GPa, a Poisson coefficient of 0.25 and shear and normal stiffness of the fracture equal to 100 GPa/m. The applied load is equal to 1 MPa.

![Figure 13: Geometry, mesh and mechanical boundary conditions for the problem of a fractured rock under uniaxial load.](image)

Due to the load on the top, the column displaces vertically. The presence of the fracture produces a jump in the vertical displacement because it has different mechanical properties than the porous matrix, as shown in Figure 14. This numerical result is compared with the analytical solution (Fig. 15) derived by Deb and Das (2010). The two results are in good agreement, even though they slightly diverge as long as the top boundary is approached.
Figure 14: Vertical displacement obtained by the numerical model for the problem of a fractured rock under uniaxial load.

Figure 15: Results of the problem of a fractured rock under uniaxial load. Numerical (markers) and analytical (solid line) results for vertical displacement along the vertical line AA' crossing the center of the domain. Note that there is an horizontal fracture in the middle of the column.
5.2.4 Consolidation of a porous medium with a vertical fracture

This benchmark is equal to the one presented for a porous medium but a vertical fracture is included in the middle of the domain (Fig. 16). Two cases are considered: one with a constant fracture permeability and the other with variable fracture permeability, calculated by means of the cubic law. Since for these cases there are not analytical solutions, the verification is done by comparing with the numerical solutions provided by Segura and Carol (2008a). Moreover, we analyse the differences between the two cases and the case without fracture. The porous medium properties are the same presented in section 5.1.1, whereas the fracture has a normal stiffness equal to 20000 kPa/m and a tangential stiffness of 1000 kPa/m. The fracture transmissivity is 1 m²/d so, according to the cubic law, fracture aperture is initially 2.4×10^{-4} m.

![Figure 16: Geometry and mechanical (left) and hydraulic (right) boundary conditions for the consolidation problem in a porous block with a vertical fracture.](image-url)

Figure 17 shows the numerical results for three consolidation cases: without fracture (only porous medium), with a constant permeability fracture and with a variable permeability. It is observed that the excess of pore water pressure reduces faster in the case with constant permeability fracture (Fig. 18) than in the case without fractures. This occurs because the fracture acts as a preferential flow path for fluid that can rapidly reach the upper boundary and get out of the system. Nevertheless, if an aperture-dependent permeability is taken into account, fluid pressure along the fracture initially reduces rapidly but, due to this reduction, the fracture aperture diminishes, which reduces drainage toward the upper
boundary. This effect is mainly observed in the upper part of the fracture where the excess of pressure is greater than in the case without fracture. Since the lower part of the fracture is not closed yet, this part acts as a preferential flow path and depletes the system faster than in a homogeneous porous block, reducing more the fluid pressure.

Figure 17: Results of the consolidation problem in a porous block with a vertical fracture. Pore pressure profiles along the vertical fracture for different times. The cases without fracture (solid line), with constant permeability fracture (dotted line) and with variable permeability fracture (dashed line) are compared.

These results are reasonable and they are very similar to those obtained by Segura and Carol (2008a) (Fig. 19). The differences between them may be related with the residual value (the minimum value of aperture) allowed for the fracture aperture during the simulation.
Figure 18: Pressure distribution of the consolidation problem with a vertical fracture with constant permeability for different times.

Figure 19: Results of the consolidation problem in a porous block with a vertical fracture. Fluid pressure distributions at (a) 0.0007 d, (b) 0.0021 d, (c) 0.0035 d and (d) 0.007 d. (Segura and Carol, 2008a).
6 Discussion and conclusions

A fully coupled HM code able to solve 2D and 3D problems has been developed with FE methodology. Two different formulations are included, each one suitable for specific cases: the Non-Incremental and the Incremental formulation. The Non-Incremental formulation requires an initial calculation of initial displacements. Actually, this formulation assumes implicitly that stresses and strains are zero initially. Thus, this formulation allows the simulation of an initial heterogeneous strain field, that is the consequence of an initial heterogeneous stress field due to different materials and geological processes. On the other hand, the Incremental formulation (i.e. the one that uses incremental constitutive law) is more general, since the initial condition $\sigma' = 0$ is not necessary. However, heterogeneities in the initial stress field are difficult to model, as the history is not known or modelled, and the application of boundary conditions requires special care as they represent increments with respect to the initial condition. The combination of the fully coupled method (the most accurate, stable and robust (Dean et al., 2006)) with the Incremental/Non-Incremental formulations enables the computation of a big range of different problems in a very accurate way.

In addition to that, a specific formulation to include fractures in FEM is presented. This formulation is based on zero-thickness, double-node elements (Goodman, 1968). These elements allow the computation of HM processes in fractures using the same mesh used for the porous rock but adding the interface elements (one dimension lower than the domain) between faces of elements representing the porous material. Permeability may be considered constant or variable with fracture aperture depending on whether cubic law (Snow, 1969) is updated or not with the fracture aperture value.

Furthermore, in order to be able to simulate fracture failure and, i.e., fracture opening during hydraulic fracturing operations or shear slip due to induced seismcity, we propose two failure methods that are being implemented, one based on the analytical solutions of Okada (1992) and the other numerical and based on the concept of virtual work. These methods are specific for fragile materials and they calculate failure in a more straightfor-
ward manner than other codes, which usually consider plasticity laws. Moreover, their implementation is quite easier and more direct than other methods compatible with FEM, as XFEM methods. This is because both of the implemented methods consist on the construction of a failure matrix which takes into account how the stresses in all fracture elements vary due to a perturbation (displacement or force) in only one of these elements. These variations in stresses are such that the equilibrium condition for tensile or shear in each element is recovered.

The performance of the code has been checked against several benchmarks. The good agreement of results with analytical or numerical solutions demonstrates the accuracy of the code. Nevertheless, some aspects of the proposed failure methods are still being developed, modified and improved.

References

Biot, M. A. (1941), REPRINT SERIES GENERAL THEORY OF THREE-DIMENSIONAL CONSOLIDATION BY, 12(2), 155–164.

Caillabet, Y., P. Landereau, A. Ahmadi, P. Fabrie, B. Nötinger, and M. Quintard (1998), Use of the joint elements technique to calculate large scale properties for single-phase flow in naturally fractured media, in *ECMOR VI-6th European Conference on the Mathematics of Oil Recovery*.

Tran, D., L. Nghiem, L. Buchanan, et al. (2005), An overview of iterative coupling between geomechanical deformation and reservoir flow, in *SPE International Thermal Operations and Heavy Oil Symposium*, Society of Petroleum Engineers.

