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Abstract

This thesis is devoted to design a Takagi-Sugeno Fault Tolerant model for the longitudinal

and lateral control of autonomous vehicles. Employing the kinematic and dynamic non-linear

models of the vehicle, a gain-scheduling state-feedback controller for each model, as well as a

state observer for the dynamic model, have been designed to control both vehicle behaviors. The

design of the controllers and the observer has been implemented by solving LQR and Kalman

�lter formulated as linear matrix inequalities problems. Moreover, so as to achieve the desired

performance for tracking the references of position, orientation, linear and angular velocities, the

combination of both controllers is presented. Additionally, a trajectory planner that provides

the references to the kinematic model is used. The ultimate goal of this project, is to compensate

the faults of the actuators, which is achieved by employing various techniques, as the Unknown

Input Observer, Augmented State Observer and Least Square Parameter Estimation. The

performance of the speci�c control algorithm has presented remarkable simulation results, both

in the decoupled and the cascade manner. Taking into account these results, we could verify

that the complete control model can be used in real applications of autonomous vehicles.
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Chapter 1

Introduction

Nowadays, we are witnessing the technologies related to unmanned/autonomous vehicles to

become more and more conventional in our lives. A rapid increase in production of this kind of

vehicles like drones, autonomous mobile robots and autonomous cars, have been demonstrated

over the last decade. It can be observed that big companies, and mainly automotive producers

have increased their interest in such a way that it becomes their main research and developing

goal. The evolution of this kind of technology had been launched at �rst because of military

purposes, which pushed the research community to deal with that like never before. Recently,

the needs of the society have changed, and people require new services. These kind of needs like

safer and more relaxed transportation, as well as safety in dangerous working environments or

even better delivery services, have motivated the researchers to improve the autonomous vehicle

technologies.

An autonomous vehicle consists of four fundamental technologies: environment perception

and modeling, localization and map building, path planning and decision-making, and motion

control. The environment perception and modeling module is responsible for sensing environ-

ment structures in a multi-sensor way and providing a model of the surrounding environment.

Here, the environment model includes a list of moving objects, such that static obstacles, ve-

hicle position relative to the current road, the road shape, etc. Finally, this module provides

the environment model and the local map to the localization and map building module by

processing the original data, vision, LIDAR, and radar. The goal of the second module, vehicle

localization and map building is to generate a global map by combining the environment model,

a local map and global information so as to determine the vehicle's position, and to estimate

the locations of geometric features. The third module, path planning and decision-making is in
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charge of ensuring that the vehicle is moving according to the rules of the ground and environ-

ment frame, safety, comfortability and the vehicle dynamics. Therefore, this module improves

the e�ciency and the desired path generation. Finally, the motion control provides speci�c

commands, by translating the decision made by the previous modules, to the actuators of the

vehicle.

In this thesis the analysis of the motion control module is done, as well as the implementa-

tion of the control algorithm in order to control the movements of a bicycle-like vehicle. Vehicle

control can be broadly divided into two categories: lateral control and longitudinal control. The

longitudinal control is related to distance�velocity control between vehicles for safety and com-

fort purposes. Here some assumptions are made about the state of vehicles and the parameters

of models. The lateral control maintains the vehicle's position in the lane center, and it can be

used for vehicle guidance assistance. Moreover, it is well known that the lateral and longitu-

dinal dynamics of a vehicle are coupled in a combined lateral and longitudinal control, where

the coupling degree is a function of the tire and vehicle parameters. The construction of the

controller algorithm is done under some speci�c requirements, like the accuracy of following the

path receiving from the path planing module, as well as the smoothness of the movement and

the desired time of reaction to the new orders. In order to control the vehicle movement it is

needed to know the next position that the vehicle has to move, as well as the linear velocity and

steering angle of the wheels. Consequently, in order to achieve the desired performance of the

vehicle, two di�erent controllers are required, a kinematic and a dynamic one. The kinematic

controller is in charge of controlling the position, orientation and linear velocity by means of

actuating over the linear and angular velocities of the vehicle and the dynamic one addresses

the tracking of the linear and angular velocity references of the vehicle by applying force to the

rear wheels and an angle to the front wheels.

In order to control the vehicle behavior, a model which is constructed from the physical

characteristics and parameters is used. In general, this model is a non-linear model and normally

is quite complex to control it. In order to reduce the level of complexity it can be simpli�ed

with the aim of easing the computations.

The design of the controller is a process which consists of the vehicle mathematical model

and the control method which is chosen. The controller can be designed using linearization

of the original model by applying linear techniques. In this method, the very well-studied

classical control techniques can be applied although the non-linearities of the original model

are not taken into account which implies to non-desired behavior of the controller system out
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of the linearization point. Several nonlinear methods that solve these speci�c problems exist.

An alternative control approach is to consider the non-linearities of the system and apply some

of the existing non-linear methods. In this case the accuracy of the algorithm is the advantage

comparing to the forementioned method, although the complexity of these methods make them

not so appealing. The above methods required non-systematic tuning to guarantee stability

and robustness of a complex system. An alternative approach is the use of linear like techniques

which can address the nonlinear control problem in an e�cient way. This thesis employs one of

these methods, the Takagi-Sugeno (T-S) fuzzy logic control approach, in order to control the

vehicle kinematic and dynamic models in a robust manner. Using the Takagi-Sugeno method a

controller can be designed, capable of automatically varying its gains, and working in di�erent

regions of operating points and taking into account the nonlinear model. However, since this

method follows a parametric approach, the complexity of the problem is increased with the

number of varying parameters.

In order to solve the linear like models obtained from T-S method a linear optimization

algorithm is needed. This algorithm is the Linear Matrix Inequalities (LMI) technique which

can provide the desired controller and observer gains. The LMI method can be adjusted and

in order to obtain a stable controller, as well as under the desired performance.

The process of designing the controller consists of some steps. First, it is needed to obtain

the kinematic and dynamic models of the vehicle by its physical modelling. Second, the trans-

formation of these models in a T-S representation. The third step is the construction of the

controller and/or observer algorithms by means of LMI techniques. Speci�cally, in this thesis

there is a last step. The combination of the Kinematic and Dynamic controllers and Dynamic

observer in order to obtain the global cascade control algorithm.

Finally, another very important aspect of controlling an autonomous vehicle, is the fault

tolerant control. In general, technological systems are vulnerable to faults. Actuator faults

reduce the performance of control systems and may even cause a complete break-down of the

system. Erroneous sensor readings are the reason for operating points that are far from the

optimal ones. Wear reduces the e�ciency and quality of a system. In many faulty situations,

the system operation has to be stopped to avoid damage to machinery and humans.

As a consequence, the detection and handling of faults play an increasing role in modern

technology, where many highly automated components interact in a complex way such that a

fault in a single component may cause the malfunction of the whole system.

The classic way of fault diagnosis boils down to controlling the limits of single variables
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and then using the resulting knowledge for fault alarm purposes. Apart from the simplicity

of such an approach, the observed increasing complexity of modern systems necessitates the

development of new fault diagnosis techniques. On the other hand, the resulting fault diagnosis

system should be suitably integrated with the existing control system in order to prevent the

development of faults into failures, perceived as a complete breakdown of the system being

controlled and diagnosed.

Such a development can only be realized by taking into account the information hidden in all

measurements. One way to tackle such a challenging problem is to use the so-called model-based

approach. Indeed, the application of an adequate model of the system being supervised is very

pro�table with respect to gaining the knowledge regarding its behavior. A further and deeper

understanding of the current system behavior can be achieved by implementing parameter

and state estimation strategies. Then, the obtained estimates can be used for supporting

diagnostic decisions and increasing the control quality, while the resulting models (along with

the knowledge about their uncertainty) can be used for designing suitable control strategies.

In this thesis, to estimate the faults/disturbances that a�ect the actuators (longitudinal,

lateral) and compensate them to the system, various of the estimation methods are employed.

Firstly, the Unknown Input Observer technique is used to estimate these faults and some dis-

turbances of the actuators, as well as the dynamic states. Subsequently, the Augmented State

Observer method is employed, in order to estimate the faults as augmented states to the system

and the dynamic states as well. Ultimately, the Least Squares Parameter Estimation technique

is applied for estimating the faults. After investigating which of these methods provide reliable

performance/operation, the best ones are employed. Speci�cally, the combination of the Un-

known Input Observer with the Least Squares Parameter Estimation is used.
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Chapter 2

Background Theory

Fuzzy control systems is an important tool which allows representing and implementing human

heuristics to control systems. Fuzzy models, are designed for describing non-linear systems as a

collection of Linear Time Invariant (LTI) models blended together with system non-linearities.

These fuzzy logic functions, called weighting functions, depend on measurable premise variables

(inputs, outputs of the system or external variables). The Takagi�Sugeno (T�S) fuzzy struc-

ture, o�ers an e�cient representation of non-linear systems while remaining relatively simple

compared to general nonlinear models. Another advantage of this system representation is that

some results developed in the linear concept can be extended to T�S fuzzy models. Using the

T�S fuzzy models has caused research on fuzzy controller design to gain great interest in re-

cent years. These include stability analysis, incorporation of the performance index and others

such as robustness and numerical implementations. In order to design fuzzy control systems,

the process is based on the concept of Parallel Distributed Compensation (PDC). The main

idea of controller design is to derive each control rule in order to compensate each rule of the

fuzzy system. The stability of T�S fuzzy models and the design of T�S fuzzy control laws

are, in most cases, addressed using the direct Lyapunov approach leading to a set of Linear

Matrix Inequalities (LMIs), which can be solved e�ciently by using the existing optimization

techniques. To �nd a solution to the stabilization problem in T�S fuzzy control systems, the

standard approach is based on looking for a common quadratic function that satis�es su�cient

conditions to guarantee stability in the Lyapunov sense. Most of these conditions can be con-

verted into LMI constraints, solvable through convex optimization techniques. The inherent

�exibility of the LMI approach allows to obtain fuzzy controllers that guarantee both stability

and performance of closed-loop systems.



22 2.1. TAKAGI-SUGENO FUZZY MODEL

Bibliography [4].

2.1 Takagi-Sugeno Fuzzy Model

A fuzzy control system is a control system based on fuzzy logic - a mathematical system that

analyzes analog input values in terms of logical variables that take on continuous values between

0 and 1, in contrast to classical or digital logic, which operates on discrete values of either 1 or

0 (true or false, respectively).

The fuzzy model proposed by Takagi and Sugeno [19] is described by fuzzy IF-THEN rules

which represent local linear input-output relations of a nonlinear system. The main feature of a

Takagi-Sugeno fuzzy model is to express the local dynamics of each fuzzy implication (rule) by

a linear system model. The overall fuzzy model of the system is achieved by fuzzy "blending"

of the linear system models. In fact, it is proved that Takagi-Sugeno fuzzy models are universal

approximators.

2.1.1 Fuzzy Model design

Figure 2.1 illustrates the model-based fuzzy control design approach. To design a fuzzy con-

troller, we need a Takagi-Sugeno fuzzy model for a nonlinear system. Therefore the construction

of a fuzzy model represents an important and basic procedure in this approach. In this section,

it is discussed the procedure of how to construct such a fuzzy model.

In general there are two approaches for constructing fuzzy models:

1. Identi�cation (fuzzy modeling) using input-output data and

2. Derivation from given nonlinear system equations.

There has been an extensive literature on fuzzy modeling using input-output data following

Takagi's, Sugeno's, and Kang's excellent work [20, 21]. The procedure mainly consists of two

parts: structure identi�cation and parameter identi�cation. The identi�cation approach to

fuzzy modeling is suitable for plants that are unable or too di�cult to be represented by ana-

lytical and/or physical models. On the other hand, nonlinear dynamic models for mechanical

systems can be readily obtained by, for example, the Lagrange method and the Newton-Euler

method. In such cases, the second approach, which derives a fuzzy model from given nonlin-

ear dynamical models, is more appropriate. This thesis focuses on the second approach which

utilizes the idea of "sector non-linearity" to construct fuzzy models.
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Figure 2.1: Model-based fuzzy control design.

Sector Nonlinearity

Sector nonlinearity is based on the following idea. Consider a simple nonlinear system ẋ(t) =

f(x(t)), where f(0) = 0. The aim is to �nd the global sector such that ẋ(t) = f(x(t)) ∈
[a1 a2]x(t). Figure 2.2 illustrates the sector nonlinearity approach. This approach guarantees

an exact fuzzy model construction. However, it is sometimes di�cult to �nd global sectors

for general nonlinear systems. In this case, we can consider local sector nonlinearity. This is

reasonable as variables of physical systems are always bounded. Figure 2.3 shows the local

sector nonlinearity, where two lines become the local sectors under −d < x(t) < d. The fuzzy

model exactly represents the nonlinear system in the "local" region, that is, −d < x(t) < d.
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Figure 2.2: Global sector nonlinearity.

Figure 2.3: Local sector nonlinearity.

Remark 1 Prior to applying the sector nonlinearity approach, it is often a good practice to

simplify the original nonlinear model as much as possible. This step is important for practical

applications because it always leads to the reduction of the number of model rules, which reduces

the e�ort for analysis and design of control systems.
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2.1.2 T-S Fuzzy Model

The controller design procedure is based on the representation of a given nonlinear plant in

terms of the fuzzy model given by (eq.2.1). The antecedent part of each rule Ri contains fuzzy

linguistic descriptions M ji of the scheduling variables δj(t) and the consequent part contains a

local linear model of the nonlinear system

Ri: IF δ1 is M1i and...and δj(t) is M ji thenẋi(t) = Aix(t) +Biu(t)

yi(t) = Cix(t) +Diu(t)
(2.1)

The entire fuzzy model of the plant (eq.2.1) is obtained by fuzzy blending of the consequent

submodels. For a given pair of vectors x(t) and u(t), the �nal output of the fuzzy system is

inferred as a weighted sum of the contributing submodels

ẋ(t) =

r∑
i=1

wi(δ(t))[Aix(t) +Biu(t)]

r∑
i=1

wi(δ(t))

(2.2)

y(t) =

r∑
i=1

wi(δ(t))[Cix(t) +D‘iu(t)]

r∑
i=1

wi(δ(t))

(2.3)

with wi(δ(t)) = aggop[M1iδ1(t)... M jiδj(t)] where wi(δ(t)) ≥ 0 is the degree of ful�llment

of rule i, aggop(·) is the aggregation operator (for instance, the product or the minimum),
r∑
i=1

wi(δ(t)) ≥ 0 for all i = 1, 2, ..., r. With 0 ≤ hi(δ(t)) = wi(δ(t))
r∑

i=1
wi(δ(t))

≤ 1, (eq.2.2) and (eq.2.3)

can be written as

ẋ(t) =

r∑
i=1

hi(δ(t))[Aix(t) +Biu(t)] (2.4)

y(t) =

r∑
i=1

hi(δ(t))[Cix(t) +Diu(t)] (2.5)

The TS fuzzy model can also be regarded as a quasilinear system, i.e., a system linear in

both x(t) and u(t) whose matrices A(·), ..., D(·) are not constant, but varying:
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ẋ(t) = A(δ(t))x(t) +B(δ(t))u(t) (2.6)

y(t) = C(δ(t))x(t) +D(δ(t))u(t) (2.7)

From (eq.2.4) and (eq.2.5), one can see that for all possible values of δ(t), which are assumed

to be known online, these matrices are bounded within a polytope whose vertices are the

matrices of the individual rules:[
A(δ(t)) B(δ(t))

C(δ(t)) D(δ(t))

]
∈ Co

{[
Ai Bi

Ci Di

]
: i = 1, 2, ..., , r

}
(2.8)

where:

Co {Si : i = 1, 2, ..., r} =

{
r∑
i=1

hi(t)Si :

r∑
i=1

hi(t) = 1, hi(t) ≥ 0

}
and

Si =

[
Ai Bi

Ci Di

]
For the sake of simplicity, the direct transmission matrices Di are considered to be zero here.

This can be assumed without any restrictions to real systems because they have dynamic parts

between their inputs and outputs. Note, the presented design method is particularly intended

for control of nonlinear systems. Hence, the scheduling variables are usually a function of the

state; i.e., δ(t) = δ(x(t)) and (eq.2.6) yields ẋ(t) = A(x)x+B(x)u, etc.

2.1.3 Fuzzy Controller

PDC

The Parallel Distributed Compensation (PDC) o�ers a procedure to design a fuzzy controller

from a given T-S fuzzy model. To realize the PDC, a controlled object (nonlinear system) is

�rst represented by a T-S fuzzy model. It is emphasized that many real systems, for example,

mechanical systems and chaotic systems, can be and have been represented by T-S fuzzy models.

In the PDC design, each control rule is designed from the corresponding rule of a T-S fuzzy

model. The designed fuzzy controller shares the same fuzzy sets with the fuzzy model in the

premise parts.
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Controller design

The controller design by means of the described method begins with the determination of the

linear submodels in some operating regions of interest of the nonlinear system to be controlled.

Then, convex optimization techniques are used to design local controllers within a fuzzy gain-

scheduling scheme with the desired overall behavior. In this way, a wide-range stabilization

and control problems can be solved. In the continuous-time case, the simplest TS fuzzy control

rule being considered here, has the form:

Ri: IF δ1 is M1i and...and δj(t) is M ji then

ui(t) = −Fix(t) + Vir(t) (2.9)

where r(t) is a stepwise reference signal. The controller's output is inferred as the weighted

mean

u(t) =

r∑
i=1

wi(δ(t))[−Fix(t) + Vir(t)]

r∑
i=1

wi(δ(t))

(2.10)

which yields

u(t) =
r∑
i=1

hi(δ(t))[−Fix(t) + Vir(t)] = −F (δ(t))x(t) + V (δ(t))r(t) (2.11)

If the scheduling vector δ(t) is a function of the state vector x(t), u(t) represents a nonlinear

gain-scheduled control law.

The goal of the controller design is to determine the constant matrices Fi and Vi such that

the desired dynamics of the closed-loop system and some desired steady-state input�output

behavior are obtained. Designing the state-feedback gains Fi requires dealing with the system

dynamics and hence ensuring stability. This problem is solved by means of LMIs. For the TS

fuzzy controller (eq.2.9), the best values for the static feed-forward gains are given by

Vi = (Ci(−Ai +BiFi)
−1Bi)

−1 (2.12)

This ensures for each closed-loop subsystem a unit steady-state gain. However, a reasonable

requirement for the controller (eq.2.9) based on (eq.2.12) is rather to satisfy x(t) → 0 when

t → ∞. This implies the stabilization problem of the control system where r(t) = 0. In
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other words, this TS fuzzy controller cannot usually be used satisfactorily in tracking control

problems where a given reference trajectory r(t) 6= 0 is to be followed. The reasons for this are

the ever-present mismatch between the fuzzy model and the real plant and also the dynamic

of the reference signal resulting in steady-state errors.

Remark 2 Although the fuzzy controller (eq.2.11). is constructed using the local design struc-

ture, the feedback gains Fi should be determined using global design conditions. The global

design conditions are needed to guarantee the global stability and control performance.

Bibliography: [1, 3�5,11]

2.2 LMI Techniques for Analysis and Synthesis

Recently a class of numerical optimization problems called linear matrix inequality (LMI)

problems has received signi�cant attention. The origin of Linear Matrix Inequalities (LMIs)

goes back as far as 1890, although they were not called this way at that time, when Lyapunov

showed that the stability of a linear system ẋ = Ax is equivalent to the existence of a positive

de�nite matrix P , which satis�es the matrix inequality ATP + PA < 0 , expression which will

be clari�ed below. These optimization problems can be solved in polynomial time and hence

are tractable, at least in a theoretical sense. The recently developed interior-point methods for

these problems have been found to be extremely e�cient in practice. For systems and control,

the importance of LMI optimization stems from the fact that a wide variety of system and

control problems can be recast as LMI problems. Except for a few special cases these problems

do not have analytical solutions. However, the main point is that through the LMI framework

they can be e�ciently solved numerically in all cases. Therefore recasting a control problem as

an LMI problem is equivalent to �nding a "solution" to the original problem.

2.2.1 De�nition of an LMI

An LMI is a matrix inequality of the form

F (x) = F0 +

m∑
i=1

xiFix(t) > 0

where

• xT = (x1, x2, ..., xm) ∈ Rm is the vector of the m variables,
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• Fi = F Ti ∈ Rnxn are given symmetric matrices,

• The inequality symbol > 0 means that F (x) is positive de�nite

There are also nonstrict LMIs, of the form F (x) ≥ 0 , where ≥ means that the matrix

F (x) is positive semide�nite, and LMIs of the form F (x) < 0 which are obviously equivalent

to −F (x) > 0.

2.2.2 Standard Problems Involving LMIs

There are two main classes of optimization problems with constraints, expressed as LMIs.

LMI Feasibility Problems

This problem consists in �nding an x ∈ Rm solution to the LMI F (x) > 0, or to determine that

this LMI is infeasible, i.e. that no such x exists.

Eigenvalue Problems

The eigenvalue problem consists in minimizing the eigenvalue of a matrix, which depends

a�nely on some variable, subject to an LMI constraint:

minimize λ,

subject to λI −A(x) > 0, B(x) > 0

Such problems appear often in the equivalent form of minimizing a linear function of x

subject to an LMI:

minimize cTx,

subject to F (x) > 0

2.2.3 Closed-Loop System

The closed-loop system consisting of the fuzzy model and the fuzzy controller is obtained by

substituting the controller (eq.2.11) to the state equation of the fuzzy model (eq.2.4). The

closed-loop system is given by
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ẋ(t) =
r∑
i=1

r∑
j=1

hi(δ(t))hj(δ(t))× [[Ai −BiFj ]x(t) +BiVjr(t)] (2.13)

It is assumed that the weight of each rule in the fuzzy controller is equal to that of the

corresponding rule in the fuzzy model - we call this the shared rules principle. This assumption

is easy to satisfy since all weighting factors of the controller can be simply taken over from the

known fuzzy model. Then, (eq.2.13) can be rewritten as

ẋ(t) =
r∑
i=1

hi(δ(t))hi(δ(t))Gii + 2
r∑
i

r∑
j>i

hi(δ(t))hj(δ(t))
Gij+Gji

2 x(t)

+
r∑
i=1

r∑
j=1

hi(δ(t))hj(δ(t))BiVjr(t)
(2.14)

with

Gij = Ai −BiFj (2.15)

For the particular case of common matrices Bi, i.e., Bi = B for all submodels i = 1, 2, ..., r,

and for the shared rules, the following simpli�ed description of the entire closed-loop system

can be derived:

ẋ(t) =

r∑
i=1

hi(δ(t))[(Ai −BFi)x(t) +BVir(t)] (2.16)

The terms known from standard PDC controllers are given by (eq.2.15). They are respon-

sible for the stability of the control system-matrices Fj are calculated via LMIs such that an

appropriate quadratic Lyapunov function can be found. The remaining terms given by the

products BiVj do not a�ect the dynamics; they are in the feedforward channel. They represent

the steady-state gain of the control loop with Vj simple calculated as shown in (eq.2.12) so

that the unity steady-state gain is ensured for the dynamic fuzzy system (eq.2.3) to follow the

reference signal r(t) as closely as possible.

2.2.4 Stability Conditions for Closed-Loop TS Fuzzy System

The considered systems are characterized by matrices A(·), ..., D(·), F (·) and V (·) bounded in

polytopes like (eq.2.8). There is no need to distinguish between external and internal nature

of the time-varying parameters δ(·) (internal stands for δ(x) where δ depends on some state

variables x making the problem nonlinear) used for scheduling if the control system exhibits
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its trajectories within the considered polytopic di�erential inclusion (PDI). The main idea is

based on the fact that every trajectory of the considered system is also a trajectory of the PDI

for which some properties can be guaranteed if a common Lyapunov function is found. Then,

every trajectory of our (possibly nonlinear) system has these properties as well. Furthermore,

starting from the formalism of Lyapunov function stability, it is quite straightforward to prove

that using the presented design method for the considered class of control systems, BIBO

stability is also guaranteed.

The common problem for fuzzy controller design is solved numerically, i.e., the stability

conditions of the theorems are expressed in LMIs. The LMIs can then be solved to �nd a P or

to determine that no such P exists. This is either the convex feasibility problem or the general

eigenvalue problem. Numerically, these problems can be solved in polynomial time by means of

powerful tools that became available lately. Introducing additional constraints on the locations

of the eigenvalues of the underlying subsystems, some other useful performance criteria can be

satis�ed, e.g., the elimination of overshoots.

Theorem 1 The equilibrium of the continuous-time closed-loop fuzzy control system described

by (eq.2.16) is asymptotically stabilizable, if there are a common positive de�nite matrix Y and

a set of matrices Wi for i = 1, 2, .., r such that

LY,Wi(Ai, B) < 0, (2.17)

LY,γ > 0, (2.18)

The linear operators L are de�ned for any matrix variables Y ∈ Rn×n and Wi ∈ Rm×n as

shown in (eq.2.40),(2.41),(2.42). Then, the desired fuzzy state-feedback gain matrices Fi are

given by Fi = WiY
−1, i = 1, 2, ..., r. The common matrix P can be obtained as P = Y −1

It is easy to �nd Y > 0 and the corresponding Wi or to determine that no such Y,Wi exist.

LMI-based techniques can be used for systematic analysis and also for the design of TS fuzzy

control systems.

Bibliography: [1, 8, 9]
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2.3 Enhancements

2.3.1 Fuzzy State Estimator

In Sections 2.1 and 2.2, where the state-feedback controller is implemented, all states of the

plant have been implicitly assumed to be online available. However, in real processes, this is

not always the case. To overcome this problem, a fuzzy observer can be used. Based on the

plant's inputs and outputs, the observer estimates the states. The augmented fuzzy system

that contains the observer and the controller is regarded as a dynamic output-feedback fuzzy

controller. Thus, the demand for fuzzy observers is well motivated. Observers are known to

satisfy the requirement e(t) → 0 when t → ∞, where e(t) = x(t) − x̂(t) means the deviation

between the plant's state vector x(t) and the state vector x̂(t) estimated by the observer. This

requirement can be satis�ed by a fuzzy observer based on the same model of the plant as the

controller with an additional time-varying state injection matrix L(· )
Ri: IF δ1 is M1i and...and δj(t) is M ji then ˙̂xi(t) = Aix(t) +Biu(t)− Li[y(t)− ŷ(t)]

ŷi(t) = Cix̂(t)
(2.19)

where i = 1, 2, ..., r. For further considerations, the aforementioned fuzzy system can be ex-

pressed as

˙̂xi(t) =

r∑
i=1

wi(δ(t))[Aix(t)+Biu(t)−Li(y(t)−ŷ(t))]
r∑

i=1
wi(δ(t))

=
r∑
i=1

hi(δ(t))[Aix(t) +Biu(t)− Li(y(t)− ŷ(t))]

(2.20)

ŷi(t) =

r∑
i=1

wi(δ(t))Cix̂(t)

r∑
i=1

wi(δ(t))

=

r∑
i=1

hi(δ(t))Cix̂(t) (2.21)

The weights wi generally depend either on the measured scheduling vector δ only, or on the

scheduling vector δ̂ estimated by the observer itself or on some of its components. However,

the weights of the contributing local observers are assumed to be the same as the weights used

for the fuzzy model (the shared-rules principle). Note that the analysis of the augmented fuzzy

system is straightforward only if the real states and the estimated ones can be assumed to
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reside in the same fuzzy region. If they reside in di�erent regions, the problem is much more

di�cult � the discrepancy becomes unstructured. The separation principle holds only if the

scheduling variables do not depend on the estimated state. The above fact is a di�cult problem

and there is no clear solution yet. For the sake of simplicity, it is assumed that δ̂(t) = δ(t)

for ∀t. In other words, the state-estimation is required to converge fast enough such that x

can be replaced by x̂ in the control loop. This fast convergence can be achieved by a suitable

choice of the state-injection matrix L(· ), which is responsible, similarly to the controller design,

not only for a convergence, but rather for a convergence with some minimal decay rate. This

decay rate should be slightly faster than the desired performance of the control loop. Bearing in

mind the previous assumptions, the stability analysis of the augmented fuzzy system containing

the fuzzy observer (eq.2.19) and an estimated-state based extended fuzzy scheduler (eq.2.22)

becomes straightforward

u = −

r∑
i=1

wi(δ(t))Fix̃(t)

r∑
i=1

wi(δ(t))

= −
r∑
i=1

hi(δ(t))Fix̃

(2.22)

Combining the fuzzy controller (eq.2.22) and the fuzzy observer (eq.2.20)(eq.2.21), we obtain

the following system representations:

ẋ(t) =
r∑
i=1

r∑
j=1

hi(δ(t))hj(δ(t))

×[(Ai +BiFi)x(t) +BiFje(t)]

(2.23)

ė(t) =
r∑
i=1

r∑
j=1

hi(δ(t))hj(δ(t))[Ai + LiCj ]e(t) (2.24)

By combining these equations into one, we get

ẋa(t) =
r∑
i=1

r∑
j=1

hi(δ(t))hj(δ(t))Gijxa(t)

=
r∑
j=1

hi(δ(t))hj(δ(t)))Gijxa(t)

+2
r∑
i=1

r∑
j>i

hi(δ(t))hj(δ(t))
Gij+Gji

2 xα(t)

(2.25)

with
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xa(t) =

[
x(t)

e(t)

]
(2.26)

and

Gij =

 Ai +BiFj
BiFj

0

0 Ai + LiCj

 (2.27)

Note the form of the Gij matrix in (eq.2.27) showing that under the considered assumptions

the separation property holds. In other words, the controller given by Fi and the observer given

by Li can be designed separately. The stability theorems for the augmented system and for

the convergence of the observer can be derived by means of the Lyapunov direct method and a

quadratic function that can be solved by an LMI tool in a way similar to the FS fuzzy controller.

Theorem 2 The equilibrium of the continuous-time fuzzy observer system described by (eq.2.20)

is asymptotically stabilizable, if there are a common positive de�nite matrix Y and a set of ma-

trices Wi for i = 1, 2, .., r such that

LY,Wi(Ai, C) < 0, (2.28)

LY,γ > 0, (2.29)

The linear operators L are de�ned for any matrix variables Y ∈ Rn×n and Wi ∈ Rm×n as

shown in eq.(2.40),(2.41),(2.42). The desired fuzzy observer gain matrices Li are then given by

Li = (WiY
−1)T , i = 1, 2, ..., r.

It is easy to �nd Y > 0 and the corresponding Wi or to determine that no such Y,Wi exist.

2.3.2 Performance

In the synthesis of controllers and observers, in addition to the stability requirements some

performance of the closed-loop system is to be considered. The synthesis based on a quadratic

Lyapunov function enables representing certain performance speci�cations, such as decay rates

or constraints on the control input, in the form of LMIs. The performance speci�cations are

introduced via exponential stability of the control system. Another useful requirement such

as suppressing overshoots (damping) can be derived via so-called LMI regions. LMI regions,



CHAPTER 2. BACKGROUND THEORY 35

although based on the de�nition of eigenvalues de�ned for LTI systems, can also �nd some

practical use for fuzzy systems. Similarities have been found between an LMI region and a

performance criterion based on the exponential stability combined with a quadratic Lyapunov

function. Such a multiobjective approach has proven to be useful in practice when coping

with some implementation constraints and desired performance speci�cations for the closed-

loop dynamics. In this respect, this approach is superior to other known synthesis techniques

where the desired control performance is achieved by a trial and error tuning which not only

involves a great deal of time, but eventually neither the stability nor the performance of the

entire closed-loop fuzzy system are guaranteed.

Exponential Stability�Decay Rates:

Proposition 1 : The condition that

V̇ (x(t)) ≤ 2αV (x(t)) (2.30)

for all trajectories of x(t) of a continuous-time closed-loop TS fuzzy system is equivalent to

ATP + PA+ 2αP ≤ 0 (2.31)

Therefore, the largest lower bound on the decay rate that we can �nd using a quadratic Lya-

punov function can be found by solving the following generalized eigenvalue problem (GEVP)

in P and α:

maximize α

subject to P > 0
(2.32)

Decay rates in the synthesis of T-S fuzzy controllers: The approach based on the decay

rates of the exponential stability and LMI techniques can be used for the synthesis of TS fuzzy

controllers with prespeci�ed closed-loop damping. As in the case of simple stability analysis

shown in Section 2.2, the conditions that guarantee the desired decay rate α must be based on

linear operators with respect to all their variables. Then, the GEVP can be solved by existing

LMI solvers with respect to the minimization of α subject to those LMIs.

Theorem 3 The equilibrium of the continuous-time fuzzy control systems described by (eq.2.14)

is asymptotically stabilizable with closed-loop damping α, performance index γ, if there exist

common positive�de�nite matrices X, Y and a set of matrices Wi for i = 1, 2, ...r such that
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LX,Wi,α(Ai, B) < 0 (2.33)

LX,Y,γ < 0 (2.34)

LX,Y,Wi < 0 (2.35)

The linear operators L are de�ned for any matrix variables X ∈ Sn, Y ∈ Sr and W ∈ Rr×n

and the scalar variable α as shown in (eq.2.55). The desired fuzzy state-feedback gain matrices

Ki are then given by Ki = WiX
−1, i = 1, 2, ..., r. The common matrix P can be obtained as

P = X−1.

Bibliography: [1, 2, 5]

2.4 LMI Selection

There are numerous LMI approaches for solving diverse problems, and �nding controller and

observer gains. In our case, the Linear Quadratic Controller problem and the Linear Quadratic

Regulation via H2 Control are solved with speci�c LMIs.

Thereinafter the two methods, and the used LMIs, are described analytically.

2.4.1 LQC Problem

Given a linear system, de�ned by

ẋ(t) = Ax(t) +Bu(t) A ∈ Rn×n and B ∈ Rn×p

with x(t0) = x0 speci�ed, �nd a state feedback u(t) = −Lx(t) which minimizes the following

quadratic criterion:

J =

∫ ∞
0

[
xT (t)Qx(t) + uTRu(t)

]
dt

where Q = HTH ≥ 0 and R = RT > 0, with H ∈ Rq×n, q = rank(Q), and R ∈ Rp×p. In

the following, we will be looking for a state feedback u(t) = −Lx(t) which guarantees that the

criterion J is inferior to some given number γ. Since uTRu = xTLTRLx, let us introduce the

function V (x) = xTPx, with P = P T > 0, satisfying the two following conditions:
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{
V (x0) < 0

V̇ (x) + xTQx+ xTLTRLx
(2.36)

Such a function V (x) is a Lyapunov function, since it satis�es all three conditions:

1. V (0) = 0 ,

2. V (x) > 0,∀x 6= 0 ,

3. V (x) is decreasing, for any x 6= 0

Furthermore,

∫ ∞
0

V̇ (x) +

∫ ∞
0

(xTQx+ xTLTRLx)dt < 0 (2.37)

which we can rewrite as

∫ ∞
0

(xTQx+ xTLTRLx)dt︸ ︷︷ ︸
J

< V (x0) = xT0 Px0 < γ (2.38)

If there exist a matrix L and a function V (x) satisfying (eq.2.36), then L solves this problem.

By recalling that V̇ (x) = ẋTPx+xTP ẋ and taking into account the closed-loop state equation,

these two inequalities are equivalent to{
xT0 Px0 < γ

(A−BL)TP + P (A−BL) +Q+ LTRL < 0
(2.39)

By left and right multiplying the second inequality by Y = P−1 and introducing W = LY

, we obtain successively the following inequalities:

Y (A−BL)T + (A−BL)Y + Y QY + Y LTRLY < 0,

Y AT +AY −BW −W TBT + Y HTHY +W TRW < 0,

Y AT +AY −BW −W TBT +
(
Y HT W T

)
+

(
In 0

0 R

)
+

(
HY

W

)
< 0

By applying the Schur Lemma, this inequality becomes the following LMI:
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
Y ATi +AiY −BWi −W T

i B
T Y HT W T

i

HY −In 0

Wi 0 −R−1

 < 0 (2.40)

with i = 1, 2, ..., r, where r is the number of fuzzy rules.

The �rst of the inequalities (eq.2.39) becomes, successively:

γ − xT0 Px0 > 0

γ − xT0 Y −1x0 > 0(
γ xT0

x0 Y

)
> 0

(2.41)

with the use of the Schur Lemma again. Note that the initial constraint P > 0 , i.e. Y > 0,

is contained in (2.41). A state feedback matrix L, solution of the problem, is thus obtained by

solving the LMIs (eq.2.40) and (eq.2.41), and letting L = WY −1.

In order to get rid of the knowledge of x0 , the condition (eq.2.41) can be replaced by the

condition P − γIn < 0. This guarantees that, for any x0, J < xT0 Px0 < γxT0 x0 . The previous

condition becomes then γIn − Y −1 > 0, i.e.,(
γIn In

In Y

)
> 0 (2.42)

If it is desired to minimize the value of the performance index γ, the following optimization

problem, which is a typical eigenvalue problem, should be solved:

min
γ,Y=Y T ,W

γ

subject to (2.40),(2.42)
(2.43)

Remark 3 In the case of the observer, the LMIs are shown in eq.(2.40),(2.41),(2.42) are

changed, and the matrix B is substituted by CT .

2.4.2 LQ Regulation via H2 Control

Consider the constant linear multivariable system

ẋ = Ax+Bu, x(0) = x0 (2.44)
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where x ∈ Rn and u ∈ Rr are the state vector and input vector, respectively A and B are the

system coe�cient matrices of appropriate dimensions.

The well-known linear quadratic optimal regulation problem for the aforementioned system

is stated as follows

J(x, u) =

∫ ∞
0

(
xTQx+ uTRu‘

)
dt (2.45)

is minimized, where

Q = QT ≥ 0, R = RT > 0 (2.46)

Normally, the Q and R matrices are chosen as diagonal matrices such that the quadratic

performance index is a weighted integral of squared error. The sizes of Q and R matrices

depend on the number of state variables and input variables, respectively.

For a traditional solution to this problem we have a basic result which is based on the

following two typical assumptions:

A1. (A, B) is stabilizable.

A2. (A, L) is observable, with L = Q1/2.

Theorem 4 Let assumptions A1 and A2 hold, then the following algebraic Riccati equation

ATP + PA− PBR−1BTP +Q = 0

has a unique symmetric positive de�nite solution P , and in this case the optimal solution to the

aforementioned LQR problem is given, in terms of this positive de�nite matrix P , as follows:

u(t) = −R−1BTPx(t) (2.47)

The corresponding closed-loop system is given by

ẋ(t) = (A−BR−1BTP )x(t) (2.48)

and the minimum value of the performance index is
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γ = min
u
J(x, u) = xT0 Px0 (2.49)

Relation to H2 Performance

Introduce the following auxiliary system{
ẋ = Ax+Bu+ x0ω

y = Cx+Du
(2.50)

where

C =

[
Q

1
2

0

]
, D =

[
0

R
1
2

]
(2.51)

and ω represents an impulse disturbance. With the state feedback controller u = Kx applied

to the auxiliary system (eq.2.50), the closed-loop system is obtained as{
ẋ = (A+BK)x+ x0ω

y = (C +DK)x
(2.52)

Thus, the transfer function of the aforementioned system (eq.2.52) from the disturbance ω

to the output y is

Gyω(s) = (C +DK)− [sI − (A+BK)]−1x0 (2.53)

The following theorem tells us that the LQR performance for system (eq.2.44) can be re-

formulated into an H2 performance for the auxiliary system (eq.2.50) and (eq.2.51).

Theorem 5 Given the linear system (eq.2.44) and the quadratic performance index (eq.2.45)

satisfying (eq.2.46) and assumptions A1 and A2, then

J(x, u) =
∥∥Gyω(s)

∥∥2
2

(2.54)

where Gyω(s) is the transfer function given by (eq.2.53).

Let assumptions A1 and A2 hold, then a state feedback control in the form of u = Kx

exists such that J(x, u) < γ if and only if there exist X ∈ Sn, Y ∈ Sr and W ∈ Rr×n satisfying
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(AX +BW ) + (AX +BW )T + 2αX < 0

trace(Q
1
2X(Q

1
2 )T ) + trace(Y ) < γ[

−Y R
1
2W

(R
1
2W )T −X

]
< 0,

(2.55)

where α is the closed-loop damping parameter.

In this case, a feedback gain is given by

K = WX−1 (2.56)

It clearly follows from the earlier problem can be solved via the following optimization

problem:

min γ

subject to (2.55)
(2.57)

the produced optimal γ is then the minimum value of the performance index.

Bibliography: [2, 3]

2.5 Fault Tolerant Control

A permanent increase in the complexity, e�ciency, and reliability of modern controlled systems

necessitates a continuous development in Fault Diagnosis (FD) theory and practice. A moder-

ate combination of these two paradigms is intensively studied under the name Fault-Tolerant

Control (FTC). FTC is one of the most important research directions underlying contempo-

rary automatic control. It can also be perceived as an optimized integration of advanced fault

diagnosis and control techniques. It has been investigated the occurrence and impact of faults

for a long time, due to their potential to cause substantial damage to machinery and risk for

human health or life. Early detection and maintenance of faults can help avoid system shut-

down, breakdowns and even catastrophes involving human fatalities and material damage. A

rough scheme of the modern control system that is able to tackle such a challenging problem is

presented in Fig.2.4. As can be observed, the controlled system is the main part of the scheme,

and it is composed of actuators, process dynamics and sensors.
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Figure 2.4: Fault Tolerant Control System.

Each of these parts is a�ected by the so-called unknown inputs, which can be perceived as

process and measurement noise as well as external disturbances acting on the system. When

model-based control and analytical redundancy-based fault diagnosis are utilised, then the

unknown input can also be extended by model uncertainty, i.e., the mismatch between the

model and the system being considered. The system may also be a�ected by faults. A fault

can generally be de�ned as an unpermitted deviation of at least one characteristic property

or parameter of the system from the normal condition, e.g. a sensor malfunction. All the

unexpected variations that tend to degrade the overall performance of a system can also be

interpreted as faults. Contrary to the term failure, which suggests a complete breakdown of

the system, the term fault is used to denote a malfunction rather than a catastrophe. Indeed,

failure can be de�ned as a permanent interruption in the system ability to perform a required

function under speci�ed operating conditions. Since a system can be split into three parts

(�g. 2.4), i.e., actuators, the process, and sensors, such a decomposition leads directly to three

classes of faults:

• Actuator faults, which can be viewed as any malfunction of the equipment that actuates the

system.

• Process faults (or component faults), which occur when some changes in the system make

the dynamic relation invalid.

• Sensor faults, which can be viewed as serious measurements variations.

The role of the fault diagnosis part is to monitor the behaviour of the system and to provide
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all possible information regarding the abnormal functioning of its components. As a result, the

overall task of fault diagnosis consists of three subtasks:

- Fault detection: to make a decision regarding the system stage�either that something is

wrong or that everything works under the normal conditions;

- Fault isolation: to determine the location of the fault, e.g., which sensor or actuator is faulty;

- Fault identi�cation: to determine the size and type or nature of the fault.

However, from the practical viewpoint, to pursue a complete fault diagnosis the following

three steps have to be realized:

- Residual generation: generation of the signals that re�ect the fault. Typically, the residual

is de�ned as a di�erence between the outputs of the system and its estimate obtained

with the mathematical model;

- Residual evaluation: logical decision making on the time of occurrence and the location of

faults;

- Fault identi�cation: determination of the type of fault, its size and cause.

The knowledge resulting from these steps is then provided to the controller re-design part,

which is responsible for changing the control law in such a way as to maintain the required

system performance.

2.5.1 Unknown Input Observer

One of the re-design strategies is the so-called Unknown Input Observer (UIO) for both deter-

ministic and stochastic non-linear systems. As has already been mentioned, the unknown input

may represent noise, disturbances as well as model uncertainty. This means that one way to

achieve robustness is to decouple the unknown input from the residual. This can be realized

with the UIO or �lter.

As can be observed in the literature, observers (or �lters in a stochastic framework) are

commonly used in both control and fault diagnosis schemes of non-linear systems. Undoubtedly,

the most common approach is to use robust observers, such as the UIO, which can tolerate a

degree of model uncertainty and hence increase the reliability of fault diagnosis. One of the

standard methods of observer design consists in using a non-linear change of coordinates to
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turn the original system into a linear one (or a pseudo linear one). Such approaches can be

applied for FD and FTC.

Unknown Input Decoupling

Let us consider a non-linear stochastic system given by the following equations

ẋ = g(x) + h(u) + Ed+ Lf + w (2.58)

ẏ = Cẋ+ v̇ (2.59)

Note that the unknown input and fault distribution matrices, denoted by E and L, are

assumed (for the sake of simplicity) constant in this section. It should be mentioned that this

section focuses on faults that can in�uence the state equation (2.58), such as actuator faults.

The main problem is to design a �lter which is insensitive to the in�uence of the unknown

input (external disturbances and modeling errors) while being sensitive to faults. The necessary

condition for the existence of a solution to the unknown input decoupling problem is as follows:

rank(CE) = rank(E) = q (2.60)

If the condition (2.60) is satis�ed, then it is possible to calculate

H = (CE)+ = [(CE)TCE]−1(CE)T (2.61)

Thus, by inserting (eq.2.58) into (eq.2.59) and then multiplying (eq.2.59) by H it is straight-

forward to show that

d = H [ẏ − C[g(x) + h(u) + Lf + w]− v̇] (2.62)

Substituting (eq.2.62) into (eq.2.58) for dk gives

ẋ = ḡ(x) + h̄(u) + Ēẏ + L̄f + w̄ (2.63)

where

ḡ(·) = Gg(·), h̄(·) = Gh(·)
Ē = EH, w̄ = Gw − EHv̇
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and

G = I − EHC

Consequently, the general observer structure is

˙̂x = ḡ(x̂) + h̄(·) + Ēẏ +K(·) (2.64)

where K(·) is the state correction term. In order to make further deliberations more general,

no particular form of K(·) is assumed. Let us de�ne a residual as a di�erence between the

output of the system and its estimate:

ż = ẏ − C ˙̂x

= C(ḡ(x)− ḡ(x̂)−K(·)) + f̄ + Cw̄ + v̇
(2.65)

where the faults/disturbances can be obtained as

f̄ = CL̄f = C
[
In − E

[
(CE)TCE

]−1
(CE)T

]
Lf (2.66)

Bibliography: [14,15]

2.5.2 Augmented State Observer

The Augmented State Observer (ASO) is a method which augments the system states with

the faults/disturbances considering the latter ones as states, and it is used to estimate them as

being a regular state observer. Let us consider a linear form state-space system given by the

following equations:

ẋaug = Aaugxaug +Baugu (2.67)

yaug = Caugxaug (2.68)

where

Aaug =

[
A Factuator O

O O O

]
, Baug =

[
B

O

]



46 2.5. FAULT TOLERANT CONTROL

Caug =
[
C O Fsensor

]
, xaug =


x

factuator

fsensor


F is the fault distribution matrices and f the faults.

Consequently, the states and faults/disturbances can be estimated via an augmented state

observer which has the following form: ˙̂xaug = Aaugxaug +Baugu− L[yaug − ŷaug]

ŷaug = Caugx̂aug

(2.69)

L is the state injection matrix.

Bibliography: [14,16]

2.5.3 Least Squares Parameter Estimation

Under the condition that the faults a�ect the system parameters, the fault estimation can be

formulated as a parameter estimation problem in such a way that any parameter estimation

algorithms (such as least squares, generalized/extended least squares, instrumental variables,

maximum likelihood, extended Kalman �lter and others) could be used. In general, least-square

algorithms can be formulated either in block or recursive online forms. Once the equation is

put in regression form, the recursive formulation and the block formulation are interchangeable.

In the following, the fault estimation procedure is explained for the case of actuator faults

(a�ecting matrix B) for clarity of the presentation. Similar approach can be applied for esti-

mating faults a�ecting the plant dynamics (matrix A) and sensor dynamics (matrix C). Let

us consider that the model for fault estimation of the system in state-space form including the

actuator faults:

ẋf = Axf +Bf (φ)uf + Φfu (2.70)

y = Cxf (2.71)

where xf ∈ Rnx represents the state vector, uf ∈ Rnu denotes the control inputs. fu ∈ Rnu

denotes the additive actuator faults and Φ ∈ Rnx×nu represents the actuator fault distribution
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matrix. The multiplicative actuator faults are embedded in the input matrix Bf (φ) as follows:

Bf (φ) = Bdiag(φ1, φ2, ..., φnu , 0 ≤ φi ≤ 1) (2.72)

where B denotes the faultless input matrix. φi represents the e�ectiveness of the ith actuator,

such that the extreme values φi = 0 and φi = 1 represent a total failure of the ith actuator and

the healthy ith actuator, respectively.

Typically, the assumption that Φ = Bf is performed. Cases di�erent from this could be

handled by adding more complexity to the mathematical formulation.

Actuator fault estimation: The procedure starts from the hypothesis that it is possible to

�nd a state of the system that is directly in�uenced by the faulty actuator. For example,

consider that the ith actuator in�uences the jth state of the system and that the model for the

jth state is given by the discrete-time equation:

ẋj =

nx∑
i=1

ajlxl + bjiui (2.73)

Equation (2.73) can be written including the multiplicative and additive faults

ẋj =

nx∑
i=1

ajlxl + φibji(ui + fui) (2.74)

where φi is the multiplicative fault and fui is the additive fault. This equation can be brought

to the regression form z = θv by considering the following:

z =
∑nx

i=1 ajlxl

θ =
[
φi νi

]
v =

[
bjiui bji

]
νi = φifui

(2.75)

and solving the least squares problem for θ:

θ̂ =
[
v(N)T · v(N)

]−1
v(N)T z(N) (2.76)

the additive fault estimation can be obtained as follows:

f̂ui =
ν̂i

φ̂i
(2.77)
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Note that N is the size of the moving horizon window of data.

Bibliography: [17,18]
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Chapter 3

Kinematic and Dynamic Vehicle

Models

The movement of a vehicle can be described by using equations which represent the kinematic

and dynamic behaviors. In contrast with common mobile robots, urban autonomous vehicles

are systems with larger mass and higher operational velocity. Consequently, the use of dynamic

models is necessary. In dynamic models, the sum of forces over the vehicle are taken into account

so as to compute the vehicle acceleration. The motion is generated by applying forces over the

wheels and mass, as well as inertia and tire parameters are taken into consideration. The

kinematic models are based on the velocity vector movement, aiming to compute longitudinal

and lateral velocities referenced to a global inertial frame. External forces are not considered in

this case. For both the kinematic and dynamic models, the bicycle model has been employed

(Fig.3.1). At this point, it is needed to specify that the roll, pitch and z motion are not

considered, and only yaw, x and y movements are taken into account. In this thesis, at �rst

the two models are built in a separated way. It means that, both model behaviors will be

controlled in a decoupled way by using two control loops. Subsequently, the two models will

be combined in order to track the desired behavior of the vehicle in a suitable way. In Table

3.1, the characteristic vehicle parameters which are used in the models are depicted.
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Figure 3.1: Bicycle model for vehicle dynamics.
{W} global inertial frame {B} body frame located in the centre of gravity (CoG) of the vehicle.

Parameter Description Value

a Distance from CoG to front axle 0.758 m

b Distance from CoG to rear axle 1.036 m

M Vehicle mass 683 kg

g Gravity of Earth 9.80665 m
s2

I Vehicle yaw inertia 560.94 kg m2

Cd Drag coe�cient 0.36

Ar Vehicle frontal area 4 m2

ρ Air density at 25oC 1.2 kg
m3

µ Nominal friction coe�cient 0.5

Cx Tire sti�ness coe�cient 25000 N
rad

F xF Longitudinal front force 0

Table 3.1: Kinematic and Dynamic Model Parameters

3.1 Kinematic non-liner model

The kinematic model of the vehicle is widely used due to its low parameter dependency. It is

assumed to have zero skidding and is considered that lateral force is so small that it can be

neglected. Basically, it is a geometric mode to compute vehicle position and orientation using

the linear and angular velocities. The kinematic equations are introduced below:
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
ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ = ω

(3.1)

where:

• x, y and θ represent the current position and orientation of the vehicle in meters (m) and

radians (rad), respectively, with respect to the inertial frame (W ).

• v is the linear velocity in m
s .

• ω is the angular velocity in rad
s .

3.2 Dynamic non-liner model

The dynamical behavior of a vehicle is generally complicated to represent it in a detailed

manner. In real applications, usually simpli�ed models are used and in our case as well. The

dynamic model we use is based on the second Newton's law. Hence, the dynamic model of the

vehicle can be written as:

u̇ =
FxR cos(α) + FyF sin(α− δ) + FyR sin(α)− Fdrag − Ffriction

m
(3.2a)

α̇ =
−FxF sin(α− δ))− FxR sin(α) + FyF cos(α− δ) + FyR cos(α)−mvω

mv
(3.2b)

ω̇ =
FxFα sin(δ) + FyFα cos(δ) + FyRb

I
(3.2c)

Fdrag =
1

2
CdArv

2 (3.3)

Ffriction = µMg (3.4)

FyF = Cx(δ − α− αω

v
) (3.5)

FyR = Cx(−α− bω

v
) (3.6)
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where:

• v represents the vehicle linear velocity (m/s).

• ω represents the vehicle angular velocity (rad/sec).

• α represents the vehicle slip angle (rad).

• δ is the steering angle and one of the inputs of the system (rad).

• F xR is the longitudinal rear force and the other input of the system (N).

• F yR is the lateral rear force (N).

• F yF is the lateral frontal force (N).

• F drag represents drag force that opposes to the forward movement (N).

• F friction is the friction force that also opposes to the longitudinal vehicle movement (N).

It is needed to note that the polar representation has been adopted, by considering the

variables v and α, instead of using the states x and y. Note that the dynamic model variables

refer to the vehicle body frame B while the kinematic set of variables refer to the global �xed

coordinate system W in order to represent the trajectory from a relative point of view (�g.3.1).

Bibliography: [6]
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Chapter 4

Takagi-Sugeno Modelling

The Takagi-Sugeno control technique in order to control the non-linear model employs a linear-

like representation. This gain-scheduling method consists of incorporating the model non-

linearities in the parameters of the model which depend on some scheduling variables, which

have some prede�ned bounds. The kinematic and dynamic nonlinear models are adjusted,

using the gain-scheduling method. For the kinematic state-space modelling, a model has been

developed beforehand (eq.3.1), while for the dynamic, the model will be developed in this

chapter. Two separated T-S models will be built in order to control the kinematic and dynamic

parts of the vehicle, as well as a T-S model for a dynamic observer will be obtained.

4.1 Kinematic Gain-Scheduling Modelling

The model which is described in previous chapter (eq.3.1), depends on the measurements (x,

y and θ) from the real system and the desired values (xd, yd and θd), and it is de�ned as the

di�erence (errors) between them. These errors are expressed with respect to the global frame

{W}. Although, in order to control the vehicle it is essential to express the errors with respect

to the frame {B}, such that the lateral error is always measured in the lateral axis of the

vehicle. For this reason, a rotation over the global orthogonal axis is considered to represent

the errors in the body vehicle frame {B} (Fig.3.1):
xe

ye

θe

 =


cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1



xd − x
yd − y
θd − θ

 (4.1)
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where xd, yd, θd are the desired values of the positions and orientation, and xe, ye, θe are the

errors with respect to the real values. In order to develop the model of the error we have to

take into account the rear wheels non-holonomic constraint:

ẋ sin(θ) = ẏ cos(θ) (4.2)

Therefore, by derivating (eq.4.1) and using (eq.3.1), (eq.4.2) and some trigonometric iden-

tities, the following open-loop error system is obtained:

ẋe = ωye + vd cos(θe)− v (4.3a)

ẏe = −ωxe + vd sin(θe) (4.3b)

θ̇e = ωd − ω (4.3c)

The state, input and output vectors are the following:

x =


xe

ye

θe

 , u =

[
v

ω

]
, y =


xe

ye

θe

 (4.4)

Bearing in mind that ω, vd, θe ∈ R are the scheduling variables, the gain-scheduling state-space

representation for the kinematic model (eq.4.3) is the following:ẋ = A(ω, vd, θe)x+BuK + r

y = Cx
(4.5)

where r is the reference vector and matrices A, B, C have the form:

A(ω, vd) =


0 ω 0

−ω 0 vd
sin(θe)
θe

0 0 0

 (4.6a)

B =


−1 0

0 0

0 −1

 (4.6b)
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C =


1 0 0

0 1 0

0 0 1

 (4.6c)

r =

[
vd cos(θe)

ωd

]
(4.6d)

Remark 4.1: The vector r for the reference will be added directly to the control law.

Hence, the resulting global kinematic controller has the following form:

u = −Fx+ r (4.7)

where F is the controller gain.

Trajectory Planner

The reference r is provided by a trajectory planner which is in charge on generating a feasible

trajectory by means of using a polynomial curve generation method [10]. The trajectory planner

is an o�ine mode, that arranges the linear and angular velocity references vd, ωd and calculates

the desired positions and orientations xd, yd, θd. This algorithm uses the following equations:

xd(t) = vd(t) cos(θd(t))Ts + xd(t− 1) (4.8a)

yd(t) = vd(t) cos(θd(t))Ts + yd(t− 1) (4.8b)

θd(t) = θd(t− 1) + ωd(t)Ts (4.8c)

where Ts is the control sample time.

4.2 Dynamic Gain-Scheduling Modelling

4.2.1 Controller

As it is presented in previous chapter the dynamic non-linear model is rather complicated

comparing to the kinematic one. For this reason its construction in a gain-scheduling form will

be presented progressively. Denoting the state, input, and output vectors, respectively as
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x =


v

α

ω

 , u =

[
F xR

δ

]
, y =

[
v

ω

]
(4.9)

the dynamic model has the following state space representation:ẋ = Ax+Bu

y = Cx
(4.10)

where

A =


A11 A12 A13

0 A22 A23

0 A32 A33

 (4.11a)

B =


B11 B12

B21 B22

0 B32

 (4.11b)

C =

[
1 0 0

0 0 1

]
(4.11c)

and

A11 =
−(Fdrag + Ffriction)

Mv
,A12 =

Cx(sin(δ) cos(α)− sin(α) cos(δ)− sin(α))

M
(4.12a)

A13 =
Cx(a(sin(δ) cos(α)− sin(α) cos(α))− b sin(α))

Mv
(4.12b)

A22 =
−Cx(cos(α) cos(δ) + sin(α) sin(δ) + cos(α))

Mv
(4.12c)

A23 =
−Cxa(cos(δ)cos(α) + sin(α) sin(δ)) + Cfb cos(α)

Mv2
− 1 (4.12d)

A32 =
Cx(b− a cos(δ))

I
, A33 =

−Cx(a2 cos(δ) + b2)

Iv
(4.12e)

B11 =
cos(α)

M
,B12 =

Cx(sin(δ) cos(α)− sin(α) cos(δ))

M
(4.12f)
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B21 =
− sin(α)

Mv
,B22 =

Cx(cos(α) cos(δ) + sin(α) sin(δ))

Mv
(4.12g)

B32 =
Cxa cos(δ)

I
(4.12h)

A and B are time varying matrices. However, in order to avoid the dependency on a varying

matrix B, the system has been adjusted by adding a fast dynamic �lter [7] in the form:

ẋf = Afxf +Bfuf (4.13)

[
ḞxR

δ̇

]
=

[
−γ 0

0 −γ

][
FxR

δ

]
+

[
γ 0

0 γ

][
uF

uδ

]
where γ represents the �lter gain, uF is the new longitudinal behaviour input and uδ is the

new lateral behaviour input. This �lter characterized by fast dynamics, so it will not disturb

the dynamic model.

Hence, the system (eq.4.11) becomes a �fth order system with state and input vectors in

the form:

x =



v

α

ω

FxR

δ


, uf =

[
uF

uδ

]
(4.14a)

with A and B matrices as

A =



A11 A12 A13 B11 B12

0 A22 A23 B21 B22

0 A32 A33 0 B32

0 0 0 −γ 0

0 0 0 0 −γ


(4.14b)
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B =



0 0

0 0

0 0

γ 0

0 γ


(4.14c)

Nevertheless, the model still presents some features that will di�cult the control design.

One of them is that the input δ = 0 has been identi�ed as a singular point. Therefore, in order

to avoid it, a change of variable has been done by shifting the δ interval:

δ ∈
[
δ, δ
]
→ σ ∈

[
δ + ε, δ + ε

]
(4.15)

where σ is the new scheduling variable and ε is a constant value greater than δ.

Another issue that makes di�cult the control design is the steady state error that appears

in linear and angular velocities channels. In order to solve this problem, it is proposed the

addition of integral actions through the controller. Then, two new states (iω) ans (iv) have

been added as the integral of the states ω and v:

iω = −ω iv = −v (4.16)

Hence, taking into account the previous arrangements and denoting the scheduling variables

as σ, v and α ∈ R, the dynamic gain-scheduling model is presented as:ẋ = A(σ, v, α)xD +Buf

y = CxD

(4.17)

with state and input vectors:
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xD =



v

α

ω

FxR

σ

iω

iv


, uf =

[
uF

uδ

]
(4.18a)

and:

A =



A11 A12 A13 B11 B12 0 0

0 A22 A23 B21 B22 0 0

0 A32 A33 0 B32 0 0

0 0 0 −γ 0 0 0

0 0 0 0 −γ 0 0

0 0 −1 0 0 0 0

−1 0 0 0 0 0 0


(4.18b)

B =



0 0

0 0

0 0

γ 0

0 γ

0 0

0 0


(4.18c)

The above model (eq.4.18) will be used for designing the dynamic state feedback controller.

Hence, the chosen control scheme for the dynamic loop has the following expression

uf = KDxD +NffrD (4.19)

where KD is the dynamic controller gain, Nff is a feed-forward matrix (reference scale factor)

[3], xD is the dynamic state vector, rD represents the reference vector which corresponds to the

kinematic control signal uK (eq.4.7), and uf is control input to the added �lter (eq.4.13). At

this point, the dynamic control action uD that is applied over the vehicle will be the output

of applying uf to the �lter. The feedforward matrix has been computed using the following
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expression:

Nff = [C − (BK −A)−1B]−1 (4.20)

where matrices A and B are the ones presented in (eq.4.14) (i.e., without considering the

added integrators), K is a sub-block of KD in which the last two columns have been omitted

and matrix C is of the form

C =

[
1 0 0 0 0

0 0 1 0 0

]
(4.21)

4.2.2 Observer

Due to the fact that the measurable states of the dynamic model are the linear and angular

velocity v, ω and there is a state that is di�cult to be measured, the slip angle α, an observer

is recommended to be used for estimating the dynamic states.

At this point, denoting the state, estimated state, input, output and estimated output

vectors, respectively, as

x =


v

α

ω

 , x̂ =


v̂

α̂

ω̂

 , u =

[
F xR

δ

]
, y =

[
v

ω

]
ŷ =

[
v̂

ω̂

]
(4.22)

the state space model for the dynamic representation can be obtained as: ˙̂x(t) = Aobsx(t) +Bobsu(t)− L[y(t)− ŷ(t)]

ŷ(t) = Cobsx̂(t)
(4.23)

where

Aobs =


A11 A12 A13

0 A22 A23

0 A32 A33

 (4.24a)

Bobs =


B11 B12

B21 B22

0 B32

 (4.24b)
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where Aobs and Bobs elements come from (eq.4.12)

Cobs =

[
1 0 0

0 0 1

]
(4.24c)

The above model (eq.4.24) will be used for designing the dynamic state observer.

Therefore, the complete control law is obtained by substituting in (eq.4.19) the state esti-

mation x̂ from (eq.4.23), instead of the real state x:

uf = KD



x̂

FxR

σ

iω

iv


+NffrD (4.25)

4.3 Fault Tolerance Gain-Scheduling Modelling

In the case of the actuator faults (longitudinal, lateral) appearance to the system, it is needed

to detect and estimate the fault, in order to compensate it. The most common methods so as to

accomplish this challenge are analyzed and the adjustment of the speci�c system is presented.

4.3.1 Unknown Input Observer

State Space Model

In the case of the fault/disturbance existence, some modi�cations to the system will be needed.

In order to compensate the faults of the actuators by using the UIO method, it is needed to

adjust the dynamic state space model (eq.4.17) by adding the extra term due to the fault:ẋ = A(σ, v, α)xD +Buf + EFault

y = CxD

(4.26)

where E is the fault distribution matrix.

In the case of longitudinal actuator fault FxRfault, the matrix E has the form:
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Elongitudinal =



−B11

−B21

0

0

0

0

0


(4.27)

In the case of lateral actuator fault δfault, the matrix E has the form:

Elateral =



−B12

−B22

−B32

0

0

0

0


(4.28)

Fault and State Estimation

In order to compensate the fault/disturbance in the system the estimation of this is needed.

The proposed UIO estimation scheme is developed for Takagi-Sugeno gain scheduling systems

a�ected by faults. Such a procedure is based on computing the di�erence between the real

system and the model used for observation

CobsEFault = ẏ − Cobs(Aobsx̂uio +Bobsu) (4.29)
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where
Aobs, Bobs, Cobs come from (eq.4.24),

ẏ = Cobsẋ+ v̇,

x̂uio =


v̂

α̂

ω̂


E is: Elongitudinal =


−B11

−B21

0

 or Elateral =


−B12

−B22

−B32


Thus, considering H = (CE)+, the fault can be obtained as

Fault = H
(
ẏ − Cobs(Aobsx̂uio +Bobsu)

)
(4.30)

Consequently, the state estimation can be obtained as follows:

˙̂xuio = Auiox̂uio +Buiou− EHẏ (4.31)

where
Auio = (I − EHCobs)A
Buio = (I − EHCobs)B

and A,B come from (eq.4.11).

Then, the state estimation will depend on the unknown input observer gain Luio and

presents the form

˙̂xuio = (Auio − LuioCobs)x̂uio +Buiou− EHẏ + Luioy (4.32)

Therefore, the complete control law is obtained by substituting in (eq.4.19) the state esti-

mation x̂ from (eq.4.32), instead of the real state xuio:

uf = KD



x̂uio

FxR

σ

iω

iv


+NffrD (4.33)
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At this point, the dynamic control action uD that is applied over the vehicle will be the

output of applying uf to the �lter (eq.4.13) and adding the vector generated by the fault

compensator in (eq.4.30).

- with longitudinal actuator fault: uD =

[
F xR

δ

]
+

[
FxRfault

0

]
(4.34)

- with lateral actuator fault: uD =

[
F xR

δ

]
+

[
0

δfault

]
(4.35)

4.3.2 Augmented State Observer

State Space Model

In order to compensate the faults of the actuators by using the ASO, it is needed to adjust the

dynamic state space model (eq.4.10) by augmenting the faults as states to the system:ẋaug = Aaugxaug +Baugu

yaug = Caugxaug

(4.36)

where, for the longitudinal actuator fault (FxRfault) the states and inputs vectors from (eq.4.9)

take the form:

xaug =


v

α

ω

FxRfault

 , u =

[
F xR

δ

]
(4.37a)

and matrices A, B and C from (eq.4.11) take the form:

Aaug =


A11 A12 A13 −B11

0 A22 A23 −B21

0 A32 A33 0

0 0 0 0

 , Baug =


B11 B12

B21 B22

0 B32

0 0

 , Caug =

[
1 0 0 0

0 0 1 0

]

(4.37b)

Respectively, for the lateral actuator fault (δfault) we have:
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the states and inputs vectors

xaug =


v

α

ω

δfault

 , u =

[
F xR

δ

]
(4.38a)

and matrices A, B and C

Aaug =


A11 A12 A13 −B12

0 A22 A23 −B22

0 A32 A33 −B32

0 0 0 0

 , Baug =


B11 B12

B21 B22

0 B32

0 0

 , Caug =

[
1 0 0 0

0 0 1 0

]

(4.38b)

Consequently, for the equations (4.14, 4.18 and 4.21) have to be adjusted adequately.

Fault and State Estimation

In order to estimate the states of the system, and consequently the faults we have to use the

representation from Section 4.2.2. Adjusting the observer parts from the above augmented

state space model, the ASO takes the form: ˙̂xaug(t) = Aaugxaug(t) +Baugu(t)− L[yaug(t)− ŷaug(t)]

ŷaug(t) = Caugx̂aug(t)
(4.39)

Therefore, the complete control law is obtained by substituting in (eq.4.19) the state esti-

mation x̂aug from (eq.4.39), instead of the real state x:

uf = KD



x̂aug

FxR

σ

iω

iv


+NffrD (4.40)

At this point, the dynamic control action uD that is applied over the vehicle will be the

output of applying uf to the �lter (eq.4.13).
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4.3.3 Least Squares Parameter Estimation

Fault Estimation

As the faults a�ect the system parameters, the fault estimation can be formulated as a param-

eter estimation problem. The least-square algorithm can be formulated in a recursive online

form.

In the following, the fault estimation procedure is explained for the case of actuator faults

(a�ecting matrix B). The model for fault estimation of the system in state-space form (eq.4.10)

including the additive actuator faults is given:ẋ = Ax+Bu+ Φfu

y = Cx
(4.41)

where fu ∈ Rnu denotes the additive actuator faults and Φ ∈ Rnx×nu represents the actuator

fault distribution matrix.

Taking into account Section 2.5.3, the states of the system that are directly in�uenced by

the faulty actuators can be shown.

Consider that the lateral actuator δ in�uences the ω state of the system, the model for the

ω state is given by the following equation:

ẋω =

nx∑
i=1

aωlxl + bωδuδ + bωδfuδ (4.42)

This equation can be brought to the discrete-time regression form z = θv by considering

the following expressions:

xω(k) = ω

ẋω(k) = xω(k)−xω(k−1)
Ts

z = ẋω(k)− (A32xω(k) +A33xω(k)) +B32δ

θ = fuδ

v = B32

(4.43)

and solving the least squares problem for θ:

θ̂ =
[
v(N)T · v(N)

]−1
v(N)T z(N) (4.44)
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δfault = θ̂ can be estimated.

Note that N is the size of the moving horizon window of data and for the speci�c case for

the lateral actuator fault δfault a�ecting state ω is arranged equal to 10.

At this point, the dynamic control action uD (eq.4.19) that is applied over the vehicle,

adding the vector generated by using the fault estimation in (eq.4.44) has the form.

uD =

[
F xR

δ

]
+

[
0

δfault

]
(4.45)

In order to avoid the redundant information, the rest of the cases where the actuators faults

a�ect the other states are not presented, as the estimation of these faults is not realizable. The

problem arises because in all the other cases the states depend on the state α (slip angle) which

is not measurable. Hence, some numerical issues a�ect the estimation.

Bibliography: [3, 6, 7, 12�18]
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Chapter 5

Control Design using Takagi-Sugeno

Fuzzy Model

5.1 Description of the Design Method

The Takagi-Sugeno technique allows to use a family of systems for designing the controller.

Speci�cally at each operating point, the system to be controlled is directly de�ned by the

scheduling variables z and thus the system is denoted by:

Γ(z) = h(z) (5.1)

In order to stabilize the system at each operating point for a set of arbitrary values of δ ∈
[z, z] it is essential to stabilize h(z) at the extremes of the scheduling variables. Consequently,

being n the number of scheduling variables, 2n subsystems have to be stabilized so as to stabilize

the global system in all operating points

Γ = h(zi), i = 1, 2, ..., 2n (5.2)

which for simplicity it can be written as

Γ = hi, i = 1, ..., 2n (5.3)

where hi denotes the ith vertices of the corresponding polytope. It has to be noted that the

system does not depend on matrix B due to the fact that it is constant and common for all

subsystems inside the family. Therefore, the controller design problem, where only the state
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feedback control is taken into account, is formulated as:

Let hi, i = 1, ..., 2n , be de�ned by (eq.5.3), �nd a set of controllers Ki that stabilizes and

provides satisfactory level of performance for the family of subsystems de�ned by (eq.5.3) using

the state feedback control law u = Kx or u = −Kx (depending on the LMIs are used), where

K is the interpolated matrix depending on Ki.

Remark 4 After careful consideration of the LMIs that have been used in Takagi-Sugeno's

implementations, and after applying them to the speci�c autonomous vehicle model, we have

come up with two techniques which match better than the others to our problem. Speci�cally, for

the kinematic controller and the dynamic observer optimization problems, the LQC(sec.2.4.1)

technique is used. While this method works quite well regarding the stability of the system, the

drawback is that the performance of the system cannot be adjusted in a satisfactory way. Apart

from the case that the controller performance cannot be adjusted, if the system is combined with

an observer, it cannot perform reliable, as the observer needs to be faster than the controller.

Hence, an alternative to the LQC is the LQR(sec.2.4.2) technique via LMI for the H2 problem

is used, in order to adjust the performance of the controller via the decay rate parameter.

5.2 Kinematic Controller Takagi-Sugeno Design

The kinematic controller is in charge of controlling the position, orientation and linear veloc-

ity by means of actuating over the linear and angular velocities of the vehicle. The chosen

scheduling variables are vd, ω and θe bounded in the following intervals:

vd ∈ [1, 18]
m

s

ω ∈ [−1.417, 1.417]
rad

s

θe ∈ [−0.139, 0.139]rad

Remark 5 In order to control the vehicle in the interval vd ∈ [0, 1], a translation has been

applied. This means that when computing the controller at vd = 0ms , we are actually computing

the controller at vd = 1ms and using it as we are in vd = 0ms . In this way, we avoid to develop

a hybrid control for this reduced velocity interval.
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Consequently we approximate the nonlinear plant by eight Takagi-Sugeno fuzzy rules.

• Plant rule (1): if vd = 1, ω = −1.417 and θe = −0.139 then ẋ = A1x+Bu

• Plant rule (2): if vd = 1, ω = −1.417 and θe = 0.139 then ẋ = A2x+Bu

• Plant rule (3): if vd = 1, ω = 1.417 and θe = −0.139 then ẋ = A3x+Bu

• Plant rule (4): if vd = 1, ω = 1.417 and θe = 0.139 then ẋ = A4x+Bu

• Plant rule (5): if vd = 18, ω = −1.417 and θe = −0.139 then ẋ = A5x+Bu

• Plant rule (6): if vd = 18, ω = −1.417 and θe = 0.139 then ẋ = A6x+Bu

• Plant rule (7): if vd = 18, ω = 1.417 and θe = −0.139 then ẋ = A7x+Bu

• Plant rule (8): if vd = 18, ω = 1.417 and θe = 0.139 then ẋ = A8x+Bu

The controller rules are de�ned by:

• Controller rule (1): if vd = 1, ω = −1.417 and θe = −0.139 then u = −F 1x+ r

• Controller rule (2): if vd = 1, ω = −1.417 and θe = 0.139 then u = −F 2x+ r

• Controller rule (3): if vd = 1, ω = 1.417 and θe = −0.139 then u = −F 3x+ r

• Controller rule (4): if vd = 1, ω = 1.417 and θe = 0.139 then u = −F 4x+ r

• Controller rule (5): if vd = 18, ω = −1.417 and θe = −0.139 then u = −F 5x+ r

• Controller rule (6): if vd = 18, ω = −1.417 and θe = 0.139 then u = −F 6x+ r

• Controller rule (7): if vd = 18, ω = 1.417 and θe = −0.139 then u = −F 7x+ r

• Controller rule (8): if vd = 18, ω = 1.417 and θe = 0.139 then u = −F 8x+ r

The controller gains F can be obtained by solving the following LMI (eq.5.4) optimization

problem, applying the linear-quadratic control (LQC − sec.2.4.1) technique.


Y ATi +AiY −BWi −W T

i B
T Y HT W T

i

HY −In 0

Wi 0 −R−1

 < 0

 γIn In

In Y

 > 0

(5.4)
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where H = Q1/2 ≥ 0 and R = RT > 0, with H ∈ Rq×n, q = rank(Q), R ∈ Rp×p and γ > 0 are

the LQC tuning variables.

The desired fuzzy state-feedback gain matrices F i are then given by:

F i = W iY
-1 (5.5)

and the interpolated control matrix F is obtained by:

F =
n=8∑
i=1

µiF i (5.6)

where µi provides the weighting variables in function of the scheduling variables as follows

µ1 = MvdMωM θe (5.7a)

µ2 = MvdMωM θe (5.7b)

µ3 = MvdMωM θe (5.7c)

µ4 = MvdMωM θe (5.7d)

µ5 = MvdMωM θe
(5.7e)

µ6 = MvdMωM θe
(5.7f)

µ7 = MvdMωM θe
(5.7g)

µ8 = MvdMωM θe
(5.7h)

and

Mvd =
vd − vd
vd − vd

(5.8a)

Mω =
ω − ω
ω − ω

(5.8b)

M θe =
θe − θe
θe − θe

(5.8c)

Mvd = 1−Mvd (5.8d)

Mω = 1−Mω (5.8e)



CHAPTER 5. CONTROL DESIGN USING TAKAGI-SUGENO FUZZY MODEL 73

M θe
= 1−M θe (5.8f)

Finally, the kinematic controller gains F1 to F8 for every case of the plants are respectively:

F1 =

[
−0.3275 −0.0096 −0.1953

−0.0668 −0.4210 −5.6997

]
F1 =

[
−0.3275 −0.0096 −0.1953

−0.0668 −0.4210 −5.6988

]

F3 =

[
−0.3276 −0.0227 −0.2074

−0.0672 −1.5822 −6.6147

]
F4 =

[
−0.3276 −0.0227 −0.2074

−0.0672 −1.5822 −6.6147

]

F5 =

[
−0.3276 0.0100 0.2001

0.0667 −0.4210 −5.6982

]
F6 =

[
−0.3276 0.0100 0.2001

0.0667 −0.4210 −5.6982

]

F7 =

[
−0.3274 0.0233 0.2100

0.0667 −1.5820 −6.6229

]
F8 =

[
−0.3274 0.0233 0.2100

0.0667 −1.5820 −6.6229

]

5.3 Dynamic Controller Takagi-Sugeno Design

The dynamic controller addresses the tracking of the linear and angular velocity references

of the vehicle by applying force to the wheels and an angle to the front wheels. The chosen

scheduling variables are v, δ, and α bounded in the following intervals:

v ∈ [1, 18]
m

s

δ ∈ [−0.4363, 0.4363]rad→ σ ∈ [0.0873, 0.9599]rad

α ∈ [−0.1, 0.1]rad

Consequently we approximate the nonlinear plant by eight Takagi-Sugeno fuzzy rules.

• Plant rule (1): if v = 1 and δ = −0.4363 α = −0.1 then ẋ = A1x+Bu

• Plant rule (2): if v = 1 and δ = 0.4363 α = −0.1 then ẋ = A2x+Bu

• Plant rule (3): if v = 18 and δ = −0.4363 α = −0.1 then ẋ = A3x+B3u

• Plant rule (4): if v = 18 and δ = 0.4363 α = −0.1 then ẋ = A4x+Bu

• Plant rule (5): if v = 1 and δ = −0.4363 α = 0.1 then ẋ = A5x+Bu

• Plant rule (6): if v = 1 and δ = 0.4363 α = 0.1 then ẋ = A6x+Bu

• Plant rule (7): if v = 18 and δ = −0.4363 α = 0.1 then ẋ = A7x+Bu
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• Plant rule (8): if v = 18 and δ = 0.4363 α = 0.1 then ẋ = A8x+Bu

The controller rules are de�ned by:

• Controller rule (1): if v = 1 and δ = −0.4363 α = −0.1 then u = K1x

• Controller rule (2): if v = 1 and δ = 0.4363 α = −0.1 then u = K2x

• Controller rule (3): if v = 18 and δ = −0.4363 α = −0.1 then u = K3x

• Controller rule (4): if v = 18 and δ = 0.4363 α = −0.1 then u = K4x

• Controller rule (5): if v = 1 and δ = −0.4363 α = 0.1 then u = K5x

• Controller rule (6): if v = 1 and δ = 0.4363 α = 0.1 then u = K6x

• Controller rule (7): if v = 18 and δ = −0.4363 α = 0.1 then u = K7x

• Controller rule (8): if v = 18 and δ = 0.4363 α = 0.1 then u = K8x

The controller gains K can be obtained, by solving the following LMI (eq.5.9) optimization

problem, where the linear-quadratic regulation (LQR−sec.2.4.2) technique for the H2 problem,

is used. 

(AiP +BW i) + (AiP +BW i)
T + 2nP < 0 −Y R

1
2W i

(R
1
2W i)

T −P

 < 0, i = 1, ..., 8

trace(Q
1
2P (Q

1
2 )T ) + trace(Y ) < γ

(5.9)

where Q = QT > 0, R = RT > 0, and γ > 0 are the LQR tuning variables, and n is the decay

rate (performance) parameter.

The desired fuzzy state-feedback gain matrices K i are then given by:

K i = W iP
-1 (5.10)

and the interpolated control matrix K is obtained by:

K =

n=8∑
i=1

µiK i (5.11)
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where µi provides the weighting variables in function of the scheduling variables as follows

µ1 = MvM δMα (5.12a)

µ2 = MvM δMα (5.12b)

µ3 = MvM δMα (5.12c)

µ4 = MvM δMα (5.12d)

µ5 = MvM δMα (5.12e)

µ6 = MvM δMα (5.12f)

µ7 = MvM δMα (5.12g)

µ8 = MvM δMα (5.12h)

and

Mv =
v − v
v − v

(5.13a)

M δ =
δ − δ
δ − δ

(5.13b)

Mα =
α− α
α− α

(5.13c)

Mv = 1−Mv (5.13d)

M δ = 1−M δ (5.13e)

Mα = 1−Mα (5.13f)

Finally, the dynamic controller gains K1 to K8 for every case of the plants are the following:
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K1 = 10000

[
−0.8702 −0.1147 −0.0126 −0.0001 −0.0052 1.3751 2.7299

0.0003 −0.0027 −0.0021 0.0000 −0.0018 0.0430 −0.0010

]

K2 = 10000

[
−0.8706 0.1223 −0.0867 −0.0001 −0.0106 2.6050 2.7324

0.0004 −0.0026 −0.0021 0.0000 −0.0018 0.0425 −0.0015

]

K3 = 10000

[
−0.6076 −0.0242 −0.0327 −0.0000 −0.0054 0.6706 1.7203

0.0004 −0.0011 −0.0029 0.0000 −0.0018 0.0391 −0.0012

]

K4 = 10000

[
−0.6079 0.0336 −0.0613 −0.0000 −0.0078 0.9535 1.7211

0.0005 −0.0011 −0.0028 0.0000 −0.0018 0.0386 −0.0017

]

K5 = 10000

[
−0.8695 −0.1242 0.0879 −0.0001 0.0107 −2.6224 2.7300

−0.0004 −0.0026 −0.0021 −0.0000 −0.0018 0.0425 0.0015

]

K6 = 10000

[
−0.8729 0.1126 0.0133 −0.0001 0.0053 −1.3607 2.7380

−0.0003 −0.0027 −0.0021 −0.0000 −0.0018 0.0430 0.0010

]

K7 = 10000

[
−0.6094 −0.0334 0.0594 −0.0000 0.0080 −0.9182 1.7263

−0.0005 −0.0011 −0.0028 −0.0000 −0.0018 0.0386 0.0017

]

K8 = 10000

[
−0.6066 0.0246 0.0329 −0.0000 0.0054 −0.6752 1.7163

−0.0003 −0.0011 −0.0029 −0.0000 −0.0018 0.0391 0.0012

]

5.4 Dynamic Observer Takagi-Sugeno Design

The dynamic observer is responsible for the estimation of the linear, angular velocity and slip

angle states of the vehicle. The chosen scheduling variables are v, δ, and α bounded in the

following intervals:

v ∈ [1, 18]
m

s

δ ∈ [−0.4363, 0.4363]rad→ σ ∈ [0.0873, 0.9599]rad

α ∈ [−0.1, 0.1]rad

Consequently we approximate the nonlinear plant by eight Takagi-Sugeno fuzzy rules, which

give the state estimation for each case.

• Observer rule (1): if v = 1 and δ = −0.4363 α = −0.1 then

˙̂x(t) = Aobs1x(t) +Bobs1u(t)− L1[y(t)− ŷ(t)]

• Observer rule (2): if v = 1 and δ = 0.4363 α = −0.1 then

˙̂x(t) = Aobs2x(t) +Bobs2u(t)− L2[y(t)− ŷ(t)]
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• Observer rule (3): if v = 18 and δ = −0.4363 α = −0.1 then

˙̂x(t) = Aobs3x(t) +Bobs3u(t)− L3[y(t)− ŷ(t)]

• Observer rule (4): if v = 18 and δ = 0.4363 α = −0.1 then

˙̂x(t) = Aobs4x(t) +Bobs4u(t)− L4[y(t)− ŷ(t)]

• Observer rule (5): if v = 1 and δ = −0.4363 α = 0.1 then

˙̂x(t) = Aobs5x(t) +Bobs5u(t)− L5[y(t)− ŷ(t)]

• Observer rule (6): if v = 1 and δ = 0.4363 α = 0.1 then

˙̂x(t) = Aobs6x(t) +Bobs6u(t)− L6[y(t)− ŷ(t)]

• Observer rule (7): if v = 18 and δ = −0.4363 α = 0.1 then

˙̂x(t) = Aobs7x(t) +Bobs7u(t)− L7[y(t)− ŷ(t)]

• Observer rule (8): if v = 18 and δ = 0.4363 α = 0.1 then

˙̂x(t) = Aobs8x(t) +Bobs8u(t)− L8[y(t)− ŷ(t)]

The observer gains L can be obtained by solving the following LMI (eq.5.14) optimization

problem, applying duality to the linear-quadratic control (LQC − sec.2.4.1) technique.




Y ATi +AiY − CTobsWi −W T

i Cobs Y HT W T
i

HY −In 0

Wi 0 −R−1

 < 0

 γIn In

In Y

 > 0

i = 1, 2, ..., r (5.14)

where H = Q1/2 ≥ 0 and R = RT > 0, with H ∈ Rq×n, q = rank(Q), R ∈ Rp×p and γ > 0 are

the LQC tuning variables.

The desired fuzzy state-feedback gain matrices Li are then given by:

Li = (W iY
-1)T (5.15)

and the interpolated observer gain matrix L is obtained by:

L =

n=8∑
i=1

µiLi (5.16)
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where µi provides the weighting variables of the observer in function of the scheduling variables

as follows

µ1 = MvM δMα (5.17a)

µ2 = MvM δMα (5.17b)

µ3 = MvM δMα (5.17c)

µ4 = MvM δMα (5.17d)

µ5 = MvM δMα (5.17e)

µ6 = MvM δMα (5.17f)

µ7 = MvM δMα (5.17g)

µ8 = MvM δMα (5.17h)

and

Mv =
v − v
v − v

(5.18a)

M δ =
δ − δ
δ − δ

(5.18b)

Mα =
α− α
α− α

(5.18c)

Mv = 1−Mv (5.18d)

M δ = 1−M δ (5.18e)

Mα = 1−Mα (5.18f)

Finally, the dynamic observer gains L1 to L8 for every case of the plants are respectively:
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L1 = 10000


0.0170 −0.3451

−0.0013 1.0828

−0.0002 0.1473

 L2 = 10000


0.1750 −2.2448

−0.0153 9.0538

−0.0018 1.2836


L3 = 10000


0.1757 1.2634

0.0028 7.8525

0.0005 1.2024

 L4 = 10000


0.1695 2.5326

−0.0052 9.1159

−0.0005 1.2871


L5 = 10000


0.0169 0.2119

−0.0012 1.2320

−0.0002 0.1497

 L6 = 10000


0.0179 0.1250

−0.0022 1.1581

−0.0004 0.1465


L7 = 10000


0.0179 −0.1779

−0.0006 1.0485

−0.0000 0.1310

 L8 = 10000


0.0169 −0.2736

−0.0018 1.2058

−0.0002 0.1533


5.5 Unknown Input Observer Takagi-Sugeno Design

The dynamic UIO is responsible for the estimation of the linear, angular velocity and slip angle

states, as well as the faults of actuators of the vehicle. The chosen scheduling variables v, δ,

and α are bounded in the following intervals:

v ∈ [1, 18]
m

s

δ ∈ [−0.4363, 0.4363]rad→ σ ∈ [0.0873, 0.9599]rad

α ∈ [−0.1, 0.1]rad

Consequently we approximate the nonlinear plant by eight Takagi-Sugeno fuzzy rules, which

give the state estimation for each case.

• Observer rule (1): if v = 1 and δ = −0.4363 α = −0.1 then

˙̂xuio = (Auio1 − Luio1Cobs)x̂uio +Buio1u− E1Hẏ + Luio1y

• Observer rule (2): if v = 1 and δ = 0.4363 α = −0.1 then

˙̂xuio = (Auio2 − Luio2Cobs)x̂uio +Buio2u− E2Hẏ + Luio2y

• Observer rule (3): if v = 18 and δ = −0.4363 α = −0.1 then

˙̂xuio = (Auio3 − Luio3Cobs)x̂uio +Buio3u− E3Hẏ + Luio3y
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• Observer rule (4): if v = 18 and δ = 0.4363 α = −0.1 then

˙̂xuio = (Auio4 − Luio4Cobs)x̂uio +Buio4u− E4Hẏ + Luio4y

• Observer rule (5): if v = 1 and δ = −0.4363 α = 0.1 then

˙̂xuio = (Auio5 − Luio5Cobs)x̂uio +Buio5u− E5Hẏ + Luio5y

• Observer rule (6): if v = 1 and δ = 0.4363 α = 0.1 then

˙̂xuio = (Auio6 − Luio6Cobs)x̂uio +Buio6u− E6Hẏ + Luio6y

• Observer rule (7): if v = 18 and δ = −0.4363 α = 0.1 then

˙̂xuio = (Auio7 − Luio7Cobs)x̂uio +Buio7u− E7Hẏ + Luio7y

• Observer rule (8): if v = 18 and δ = 0.4363 α = 0.1 then

˙̂xuio = (Auio8 − Luio8Cobs)x̂uio +Buio8u− E8Hẏ + Luio8y

The observer gains Luio can be obtained by solving the following LMI (5.19) optimization

problem, applying duality to the linear-quadratic control (LQC − 2.4.1) technique in the same

way as it is used in the previous section (eq.5.14). Although, because of some stability and

performance problems, it is needed the addition of some additional LMIs (5.20) that was taken

from ( [1] chapter 4).




Y ATi +AiY − CTobsWi −W T

i Cobs Y HT W T
i

HY −In 0

Wi 0 −R−1

 < 0

 γIn In

In Y

 > 0

i = 1, 2, ..., r (5.19)

where H = Q1/2 ≥ 0 and R = RT > 0, with H ∈ Rq×n, q = rank(Q), R ∈ Rp×p and γ > 0 are

the LQC tuning variables.

ATi Y − CTobsWi + Y Ai −W T
i Cobs + (s+ 1)X + 2αY < 0

ATi Y − CTobsWi + Y Ai −W T
i Cobs − 2X + 4αY +ATj Y − CTobsWj + Y Aj −W T

j Cobs < 0

(5.20)
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where α is the decay rate parameter, 1 < s ≤ r where r is the number of rules, and i = 1, 2, ..., r

and i < j s.t.hi ∩ hj 6= Φ

The desired fuzzy state-feedback gain matrices Li are then given by:

Luioi = (W iY
-1)T (5.21)

and the interpolated observer gain matrix Luio is obtained by:

Luio =

n=8∑
i=1

µiLuioi (5.22)

where µi provides the weighting variables of the observer in function of the scheduling variables

as follows

µ1 = MvM δMα (5.23a)

µ2 = MvM δMα (5.23b)

µ3 = MvM δMα (5.23c)

µ4 = MvM δMα (5.23d)

µ5 = MvM δMα (5.23e)

µ6 = MvM δMα (5.23f)

µ7 = MvM δMα (5.23g)

µ8 = MvM δMα (5.23h)

where

Mv =
v − v
v − v

(5.24a)

M δ =
δ − δ
δ − δ

(5.24b)

Mα =
α− α
α− α

(5.24c)

Mv = 1−Mv (5.24d)
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M δ = 1−M δ (5.24e)

Mα = 1−Mα (5.24f)

Finally, the UIO gains Luio1 to Luio8 for every case of the plants are respectively:

with longitudinal actuator fault FxRfault:

Luio1 = 1000


0.2324 −0.0040

−0.2388 7.4585

−0.0330 1.3179

 Luio2 = 1000


0.2324 0.0040

0.2253 7.4155

0.0320 1.3150


Luio3 = 1000


0.2321 −0.0010

−0.0997 9.5243

−0.0176 1.7195

 Luio4 = 1000


0.2321 0.0010

0.1000 9.4884

0.0177 1.7131


Luio5 = 1000


0.2325 −0.0035

−0.2182 8.6456

−0.0303 1.5088

 Luio6 = 1000


0.2325 0.0035

0.2302 8.6492

0.0311 1.5074


Luio7 = 10000


0.0232 −0.0003

−0.0217 1.0724

−0.0028 0.1883

 Luio8 = 10000


0.0232 0.0003

0.0216 1.0745

0.0028 0.1889



5.6 Augmented Controller and Observer Takagi-Sugeno Design

The dynamic Augmented Controller design is obtained following the same procedure with

Section 5.3 and only adjusting the state space model as:

ẋaug = Aaugxaug +Baugu (5.25)

The dynamic Augmented Observer design is obtained following the same procedure with

Section 5.5 and only adjusting the observer state space model as:

˙̂xaug(t) = Aaugxaug(t) +Baugu(t)− L[yaug(t)− ŷaug(t)] (5.26)
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Chapter 6

Results

6.1 Introduction

The simulation results of the Kinematic and Dynamic Controllers and Dynamic Observer are

presented in this Chapter. In Section 6.2 the simulation of each model is performed separated

from one another. As the experiments progress the models are combined. First the Dynamic

Controller and Observer are tested together. In Section 6.3 the Kinematic and Dynamic con-

trollers are combined and subsequently the Cascade control is implemented with all the three

models combined. Finally, in Section 6.4, the Fault Tolerant Control experiments take place

employing the Cascade control scheme, and using Unknown Input Observer, Augmented Ob-

server and Least Squares Parameter Estimation methods so as to compensate the faults. In

order to check the Kinematic and Dynamic behavior of the vehicle, variable driving situations

are covered. The simulation is arranged so as to have di�erent values of the desired linear and

angular velocities, as well as di�erent values of the desired longitudinal and lateral position and

orientation. Also it is arranged, the vehicle to accelerate, and reduce velocity on curves and

slow down at the end of the route.

Remark 6 The simulation is carried out by using MATLAB software, YALMIP optimization

toolbox and SEDUMI solver.
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6.2 Decoupled Models Simulation

6.2.1 Kinematic Controller Simulation

In order to perform the Kinematic Controller simulation, it is need the suitable selection of

the LMI parameters Q and R. The selection is done by using the root mean square error

(RMSE) (Table 6.1). This index allows us to choose suitable Q and R parameters. The lower

the values of RMSE is, the better the controller behavior. Longitudinal, lateral position and

orientation errors are chosen for performing the comparison of the experiments. The results of

the simulation are presented in Fig.6.1 and Fig.6.2.

Figure 6.1: Kinematic Controler - Trajectory of the Vehicle
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Figure 6.2: Kinematic Controller Position and Orientation Errors

We can observe that the controller works quite e�ciently, as it follows the planned trajectory

without deviating. Although, checking the Figure 6.2 and Table 6.1 there are some errors ralated

with longitudinal, lateral position and orientation. It can be justi�ed, as during the experiment

the desired velocities and positions obtain miscellaneous values in an abrupt manner and this

is why the vehicle reacts in this way. The most signi�cant of these errors, is the lateral one Ye

as it is the one that shows if the vehicle follows the straight trajectory. As we can see the error

Ye is small, almost 5cm the biggest value. On the other hand, Xe the longitudinal error has

about 0.5m as biggest value but it is only during the initial state where the vehicle accelerates.

Q R XRMSE YRMSE θRMSE 0.1 0 0
0 0.001 0
0 0 1

 [
3 0
0 0.1

]
0.1038 0.0149 0.0043 1 0 0

0 1 0
0 0 1

 [
1 0
0 1

]
0.0924 0.0536 0.0687 0.1 0 0

0 0.1 0
0 0 0.1

 [
0.1 0
0 0.1

]
0.0316 0.0131 0.0045

Table 6.1: Kinematic Controller RMSE

In Table 6.1 above, some di�erent values of Q and R parameters are presented among many

choices during the performed experiments. The chosen parameters with the lowest RMSE, are

presented in bolt.
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Remark 7 At this point it is needed to note some information for the references of the Kine-

matic Controller. These desired values of the states are �rst processed o�ine in the trajectory

planner, which is in charge of generating the feasible position and orientation references and

provide them to the Kinematic Controller.

6.2.2 Dynamic Controller Simulation

Similar to the previous experiment, for Dynamic Controller tuning, it is needed the suitable

selection of the LMI parameters Q and R. Additionally, the decay rate parameter, which is

presented in the (eq.5.9), is arranged to be equal to 1.8. Performing the experiments it was

realized that the lateral behavior of the vehicle is hard to be controlled. For this reason the

values of Q matrix correspond to angular velocity as well as angular velocity integral is needed

to have larger than the others. The selection is done similarly to the Section 6.2.1, by using

the RMSE from Table 6.2, as much lower its value is, the better the controller behavior. Linear

and angular velocity errors are chosen for performing the comparison of the experiments . The

results of the simulation are presented in Fig.6.3.

Figure 6.3: Dynamic Controller States

It can be seen that the dynamic controller works almost perfectly, as it follows the ref-

erences of linear and angular velocities without deviating, throughout the experiment. The

only deviation exists for the angular velocity at about 0.02 rad/s during the �rst second of

the movement. This error can be justi�ed as the vehicle has to change direction in order to
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follow the planned trajectory. Additionally we can observe the RMSEs in Table 6.2 where the

ω error is equal to 0.0028 rad/s, and we could say that it is an accepted value. Regarding the

linear velocity error, the RMSE is equal to 0.0406 km/h and we can say again that this error

is negligible.

Q R vRMSE ωRMSE

0.05 0 0 0 0 0 0
0 0.01 0 0 0 0 0
0 0 0.01 0 0 0 0
0 0 0 0.01 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0


[

0.01 0
0 10

]
0.2404 0.4968



0.05 0 0 0 0 0 0
0 0.01 0 0 0 0 0
0 0 0.01 0 0 0 0
0 0 0 0.01 0 0 0
0 0 0 0 1000 0 0
0 0 0 0 0 1000 0
0 0 0 0 0 0 0


[

0.01 0
0 1

]
0.0636 0.4329



0.05 0 0 0 0 0 0
0 0.01 0 0 0 0 0
0 0 0.01 0 0 0 0
0 0 0 0.01 0 0 0
0 0 0 0 100000 0 0
0 0 0 0 0 100000 0
0 0 0 0 0 0 0


[

0.01 0
0 100

]
0.0406 0.0028

Table 6.2: Dynamic Controller RMSE

In Table 6.2 above, some di�erent values of Q and R parameters are presented among many

choices during the performed experiments. The chosen parameters with the lowest RMSE, are

presented in bolt.

6.2.3 Dynamic Observer Simulation

As it was discussed in previous chapters, the observer is used for estimating the states in the

case that we cannot measure them. In our case this state is the slip angle α. In addition we

estimate the linear and angular velocity states. The selection of the LMI parameters Q and

R is done in the same way as in previous sections, by using the RMSE from Table 6.3. The

results of the dynamic observer simulation are presented in Fig.6.4.
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Figure 6.4: Dynamic Observer State Estimation

As we can see, the estimation of the states of linear and angular velocities follows the

references in an almost absolute way. Nevertheless, the estimation of the slip angle can give

some additional information. We can observe, that the estimated value of the slip angle, is no

more than 0.01 rad. According to the bibliography and the range of the slip angle arranged in

the construction of the control system (see Section5.4), it is in the permitted range so as vehicle

not to slip away. Using this estimation and providing the values to the dynamic controller (see

Section6.2.4), we can prevent the vehicle to have undesired behavior.

Q R vRMSE ωRMSE 0.01 0 0
0 0.01 0
0 0 0.01

 [
0.01 0

0 0.1

]
0.0041 6.5410e-05 1 0 0

0 1 0
0 0 1

 [
1 0
0 1

]
0.0034 4.2187e-05 1 0 0

0 1 0
0 0 1

 [
1 0
0 0.005

]
0.0034 4.2035e-05

Table 6.3: Dynamic Observer RMSE

In Table 6.3 above, some various values of Q and R parameters among many choices during

the performed experiments, are presented. The chosen parameters with the lowest RMSE, are

indicated in bold.
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6.2.4 Dynamic Controller and Observer Combination

The estimated dynamic observer states are provided to the dynamic controller so as to control

the vehicle properly. The Q an R parameters are taken from Table 6.2 for the controller and

from Table 6.3 for the observer.

Figure 6.5: Dynamic Controller and Observer States

We can see that the behavior of the system has the same response as the in previous

experiments. The real values of the linear and angular velocities follow the references, as well

as the estimation of the states. Additionally, the estimation of slip angle is the similar with the

decoupled observer simulation, Fig.6.4, and it does not take large values.

QcontrollerD RcontrollerD vRMSE ωRMSE

0.05 0 0 0 0 0 0
0 0.01 0 0 0 0 0
0 0 0.01 0 0 0 0
0 0 0 0.01 0 0 0
0 0 0 0 100000 0 0
0 0 0 0 0 100000 0
0 0 0 0 0 0 0


[

0.01 0
0 100

]
0.0407 0.0028

QobserverD RobserverD 1 0 0
0 1 0
0 0 1

 [
1 0
0 0.005

]

Table 6.4: Dynamic Controller and Observer RMSE

In the above Table 6.4, the choice of Q and R parameters is done by taking the best values

of them, obtained in previous experiments. As it can be seen, the RMSEs have the same

values as in the Dynamic Controller experiment (Table 6.2), which are insigni�cant to a�ect
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the behavior of the vehicle. It means that the observer usage, has not a�ected the behavior of

the control scheme.

6.3 Cascade Control Simulation

The simulation of the combined Kinematic and Dynamic Controllers and Dynamic Observer,

is shown in this section. In the �rst experiment, the Observer is not used. Subsequently, the

Observer is added and the Complete Control scheme as it is shown in Fig.6.6 is simulated. At

this point, it is needed to note that the Dynamic Controller has to be faster than the Kinematic

Controller, and as it is well known, the Dynamic Observer has to be faster than the Dynamic

Controller. It can be veri�ed by checking the poles of the system in Fig.6.7.

Figure 6.6: Cascade Control Block Diagram

In order to simulate the Cascade Control system the desired values have to be arranged.

These values (references) are processed in a trajectory planner, which is in charge of generating

the feasible trajectory and velocities references. The process takes place in an o�ine mode,

before the control algorithm starts. In the next step, the planner provides the references of

position and orientation, from which the real values are subtracted, and the result (error) is the

input to the kinematic controller. The kinematic controller in combination with the reference of

the velocities from the trajectory planner provides the references (linear and angular velocity)

to the dynamic controller and to the reference scale factor. The combination of the dynamic

controller and the reference scale factor gives the input (force and steering angle) to a �lter,

from which it is obtained the input (force and steering angle �ltered) to control the vehicle.
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The output of the vehicle is its current position, orientation and velocities. As it is noted in

previous chapters, there is a state that cannot be measured, the slip angle α. For this reason

the measured velocities v and ω are provided to the observer, alongside with the vehicle input,

so as all the states to be estimated. The observer provides the estimated states to the dynamic

controller, in parallel with the integration of the error between the desired velocities and real

velocities of the vehicle.

Figure 6.7: Cascade Control Poles

Remark 8 The references for the Dynamic Controller are proceeded online in the Kinematic

Controller.

6.3.1 Kinematic and Dynamic Control Combination

In order to control the vehicle Kinematic and Dynamic behavior the combination of Kinematic

and Dynamic Control loops is needed. The Q and R LMI parameters are taken from the

previous simulations of each control scheme, selecting the best results as presented in Table

6.5. The simulation results are presented in Figures 6.8, 6.9, 6.10 and 6.11.
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Figure 6.8: Kinematic and Dynamic Control - Trajectory of the Vehicle

As we can see in the above Figure 6.8, the trajectory of the the vehicle has miscellaneous

features. However, the vehicle behavior is satisfactory, as it follows the planned trajectory

without deviation. Although, in order to check more carefully its behavior, we have to check

the errors of the positions and orientation in the next Figure 6.9.

Figure 6.9: Kinematic and Dynamic Control - Position and Orientation Errors

We can observe from the above Figure 6.9, that we have some small errors in the longitudinal
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and lateral position, and orientation of the vehicle. The error regarding the longitudinal position

is small and it does not a�ect signi�cantly the vehicle behavior. On the other hand, as we

already know the lateral error is more signi�cant as it keeps the vehicle to a straight line. It

is observed that the lateral error presents some raise at particular times. These time instants

correspond to the case when the vehicle increases its angular velocity suddenly. This fact can

be checked in next Figure 6.10. The orientation error depends on angular velocity changes as

well, since as one can observe, has similar shape with the lateral error plot.

Figure 6.10: Kinematic and Dynamic Control - Linear and Angular Velocities States

The evolution of the linear and angular velocities states is presented in the above Figure

6.10. We can realize that both velocities follow the references in a very good manner. As we

can see there is no deviation from the desired values except from the �rst moment, where the

angular velocity has a very small insigni�cant deviation from the reference. It is normal and it

can be explained as in this simulation the vehicle is arranged to start its movement from zero

state of the velocities, and it needs more force in order to start the movement. This conclusion

can be con�rmed in next Figure 6.11.
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Figure 6.11: Kinematic and Dynamic Control - Inputs of the Vehicle

In order to control the vehicle behavior two input variables are needed, the force for the

rear wheels and the steering angle of the front wheels. We can observe the evolution of these

inputs in the above Figure 6.11. As we can see the force depends on the desired values of linear

velocity. When we need to accelerate the vehicle, it is needed to apply force to the rear wheels

abruptly, while when we have to decelerate it, the force has to be reduced suddenly. As it is

logical, if the vehicle has to follow some speci�c values of velocity, we have to apply some force

or reduce this force.

QcontrollerK RcontrollerK vRMSE ωRMSE Xe Ye θe 0.1 0 0
0 0.1 0
0 0 0.1

 [
0.1 0
0 0.1

]
QcontrollerD RcontrollerD 0.0336 0.0011 0.2988 0.1569 0.0129

0.05 0 0 0 0 0 0
0 0.01 0 0 0 0 0
0 0 0.01 0 0 0 0
0 0 0 0.01 0 0 0
0 0 0 0 100000 0 0
0 0 0 0 0 100000 0
0 0 0 0 0 0 0


[

0.01 0
0 100

]

Table 6.5: Kinematic and Dynamic Control RMSE

Generally, the behavior of the vehicle can be judged by the RMSEs which depicted in the

above Table 6.5. As we can see the velocities, positions and orientation errors dot not have big

values which can a�ect the vehicle behavior. Although, following a more complex trajectory,

the vehicle behavior could be a�ected.
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6.3.2 Complete Control Scheme

As it is analyzed in this thesis, the employment of a dynamic observer is necessary, as there

is a state that it cannot be measured. This state, the slip angle, can a�ect the behavior of a

vehicle signi�cantly, if it has large values. For this reason, its value is bounded in the controller

and observer loop, in order not to obtain undesired values. Providing the observer estimation

of the states to the controller, and using the implementation of the previous Section 6.3.1, the

complete cascade control scheme is built. The Q and R LMI parameters, for the controllers

are the same as in Section 6.3.1, and for the observer are taken from the simulation in Section

6.2.3, selecting the best results as presented in Table 6.6. The results of this experiment are

presented in Figures 6.12, 6.13, 6.14, 6.15.

Figure 6.12: Complete Control Scheme - Trajectory of the Vehicle

As it is observed in the above Figure 6.12, the vehicle follows the desired trajectory in a

satisfactory way, without deviating from the references. The results seem to be the same as in

Section 6.3.1.
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Figure 6.13: Complete Control Scheme - Position and Orientation Errors

The behavior of the vehicle can be judged in a better way by checking the position and

orientation errors in the above Figure 6.13. We can see that the vehicle operates in a same way

as before we add the observer. Speci�cally, we can see that the lateral and orientation errors

have some increases when the vehicle steers, despite the good path tracking observed in Figure

6.12.

Figure 6.14: Complete Control Scheme - Dynamic States
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As in this experiment we take into account the slip angle state, the vehicle has a slightly

di�erent behavior comparing with the experiment without the observer. We can observe it in

the above Figure 6.14, and speci�cally in the points that the slip angle is estimated with some

oscillations. This behavior appears when the velocities change abruptly. As we can see, the

response of angular velocity at these time instants, presents some very small oscillations, as

the controller tries to compensate the slip angle intense occurrence, and to prevent the vehicle

from slipping away. On the other hand, we can see that the estimation of linear and angular

velocity states is almost perfect, as they follow the references without deviating.

Figure 6.15: Complete Control Scheme - Inputs of the Vehicle

The previous consideration, that the controller tries to compensate the undesirable values

of slip angle, can be observed in the above Figure 6.15. The compensation is achieved by the

steering angle input of the vehicle. The oscillation of the steering angle, in the points that the

angular velocity changes abruptly can con�rm the previous ascertainment.
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QcontrollerK RcontrollerK vRMSE ωRMSE Xe Ye θe 0.1 0 0
0 0.1 0
0 0 0.1

 [
0.1 0
0 0.1

]
QcontrollerD RcontrollerD

0.05 0 0 0 0 0 0
0 0.01 0 0 0 0 0
0 0 0.01 0 0 0 0
0 0 0 0.01 0 0 0
0 0 0 0 100000 0 0
0 0 0 0 0 100000 0
0 0 0 0 0 0 0


[

0.01 0
0 100

]
0.0338 0.0014 0.2981 0.1313 0.0128

QobserverD RobserverD 1 0 0
0 1 0
0 0 1

 [
1 0
0 0.005

]

Table 6.6: Complete Control Scheme - RMSE

The RMSEs of the vehicle states are shown in the above Table 6.6. As we can see the errors

are almost the same as before the state estimation was added (Table 6.5). Consequently, one

could say that the vehicle operates in the same way with or without the observer. Although it

is not true, as the use of the observer can prevent undesirable values of the unmeasured states

and in the real world it is very important.

6.4 Fault Tolerant Control Simulation

The simulation of the FTC, for longitudinal and lateral actuator faults, takes place in this sec-

tion. The experiments are carried out by using miscellaneous fault estimation techniques. In

the �rst experiment the Unknown Input Observer method is used to estimate the longitudinal

and lateral actuator faults, in a separate manner. Subsequently, the Augmented State Ob-

server technique is employed, in order to estimate the same faults. Afterwards, the Parameter

Estimation method is used by employing the Least Squares technique, so as to estimate the

faults. Thereafter, the combination of the UIO and LSPE is employed so as to compensate the

disturbances and faults. Eventually, the combination of UIO and LSPE methods is used, so as

to estimate both faults concurrently.

6.4.1 Fault Estimation with Unknown Input Observer

In this section, the combined Kinematic and Dynamic Controllers are employed, along with the

Unknown Input Observer. The implementation of the Cascade Control scheme from previous

section (Fig. 6.6) is used, and with some minor alterations the Fault Tolerant Control scheme

is implemented.
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Longitudinal Actuator Fault

Subsequently, the Fault Tolerant Control scheme, taking into account the longitudinal actuator

fault (FxRfault) is simulated, as it is shown in Fig.6.16

Figure 6.16: FTC with UIO - Block Diagram

Similarly to the previous experiments, Dynamic Controller has to be faster than the Kine-

matic Controller, and the Unknown Input Observer has to be faster than the Dynamic Con-

troller. It can be veri�ed by checking the poles of the system in the next Figure 6.17.

Figure 6.17: Longitudinal FTC with UIO - Poles
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As it has previously analyzed, the employment of an UIO is necessary, so as to estimate the

faults and disturbances, however it is used at the same time to estimate the states of the system.

Apart from providing the observer estimation of the states, to the controller, the actuator fault

estimation is used in order to compensate the fault. The best chosen LMI parameters Q and

R for the controllers and the observer are depicted in Table 6.7. The results of this experiment

are presented in Figures 6.18, 6.19, 6.20 , 6.21 and 6.22.

Figure 6.18: Longitudinal FTC with UIO - Trajectory of the Vehicle

As it is observed in the above Figure 6.18, the vehicle behaves in an ideal manner, as it

follows the position and orientation references, despite the existence of actuator faults.
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Figure 6.19: Longitudinal FTC with UIO - Position and Orientation Errors

It can be seen in the above Figure 6.19, that the lateral and orientation errors have some

increases when the vehicle steers. This observation is the same as in previous experiment (eq.

6.13), having no actuator faults. Although, we can see that the longitudinal error, has some

signi�cant raise, comparing it with the experiment without the actuator faults, despite the

good path tracking observed in Figure 6.18.

Figure 6.20: Longitudinal FTC with UIO - States of the Vehicle
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In the previous Figure 6.20, we can realize the incidents when the actuator faults a�ect

the vehicle behavior. Speci�cally, the faults a�ect both the linear and angular velocities of

the vehicle, as well as the slip angle. The linear velocity is a�ected whenever the condition of

the fault changes abruptly, and makes its response to depart from the reference. On the other

hand, the angular velocity is a�ected at those incidents but only if the angular velocity at this

time is di�erent from zero, although it does not depart from its reference. Additionally, we

can see that the slip angle is a�ected at these moments. However, the overall behavior of the

vehicle is quite satisfactory, and only in the linear velocity plot we observe the departure from

the reference, but it returns to the desired values very fast. The incidents, when the faults

appear, can be seen more clearly in the following Figures 6.21 and 6.22.

Figure 6.21: Longitudinal FTC with UIO - Inputs of the Vehicle

In the previous Figure 6.21, we can observe the behavior of the longitudinal and lateral

actuators. Comparing the longitudinal force with the experiment where there is no actuator

fault in Figure 6.15, we can realize that the force fault is compensated. It means that the

estimation of the fault and consequently its compensation is done in an quite e�ective way.

The latter consideration can be con�rmed, observing the next Figure 6.22.
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Figure 6.22: Longitudinal Actuator Fault Estimation with UIO

In the above Figure 6.22, the estimation of the longitudinal actuator fault is depicted. As

we can see, except for some minor incidents, the estimation of the fault is done in a satisfactory

way, following the value of the real fault.

QcontrollerK RcontrollerK vRMSE ωRMSE Xe Ye θe 0.1 0 0
0 0.1 0
0 0 0.1

 [
0.1 0
0 0.1

]
QcontrollerD RcontrollerD

0.05 0 0 0 0 0 0
0 0.01 0 0 0 0 0
0 0 0.01 0 0 0 0
0 0 0 0.01 0 0 0
0 0 0 0 100000 0 0
0 0 0 0 0 100000 0
0 0 0 0 0 0 1


[

0.01 0
0 100

]
0.1555 0.0031 0.3584 0.1320 0.0132

QUIO RUIO 1 0 0
0 1 0
0 0 1

 [
1 0
0 1

]

Table 6.7: Longitudinal FTC with UIO - RMSE

The RMSEs of the vehicle states are shown in the above Table 6.7. We can con�rm the

previous considerations by comparing these results with the experiment without the presence

of actuator faults (Table 6.6). As it can be seen, the only state of the vehicle which is a�ected

signi�cantly, is the linear velocity. Speci�cally, in the case without the occurrence of fault the

linear velocity RMSE is equal to 0.0338m, while with the existence of fault the RMSE is equal

to 0.155m. Eventually, one could say that the vehicle operates reliably, despite the existence
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of the actuator fault and its e�ects.

Lateral Actuator Fault

Similarly to the previous experiment (see Section 6.4.1), the UIO is used for the fault estimation.

The lateral actuator fault (δfault) is considered in this experiment. In order to compensate the

fault to the controlled system, it is needed to have satisfactory estimation of it. Although, in

this speci�c case, where the fault (δfault) is estimated by the UIO, some issues have arisen.

Speci�cally, the system presents stability problems, since the UIO has two positive poles. It

can be veri�ed in the following Figure 6.24, where the poles of the controllers and the observer

are depicted. It is needed to be mentioned that this result is the best obtained, as in the rest of

the experiments the system had greater number of positive poles with much faster dynamics.

Figure 6.23: Lateral FTC with UIO - Poles

Obviously, the main reason for which a stable system cannot be obtained in this experiment,

is that there is a state (α) of the vehicle, that is not measurable. In order to con�rm this

assumption, an experiment in which the state α is arranged to be measured is carried out,

despite the fact that in the real world it cannot be measured. The results from this experiment

are depicted in the next Figures 6.24, 6.25 and 6.26.
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Figure 6.24: Lateral FTC with UIO (State α Measured) - Poles

As it can be seen in Figure 6.24, the poles of the system are negative so it is stable, and

the control system dynamics are properly arranged as it is discussed in Section 6.3.

Figure 6.25: Lateral FTC with UIO (State α Measured) - States of the Vehicle
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Figure 6.26: Lateral Actuator Fault Estimation with UIO (State α Measured)

As we can see in Figures 6.25 and 6.26, the compensation of the lateral fault, as well as

the states estimation, present satisfactory results. The states of the system depart from the

references, only in the cases the lateral error appears. The fault is compensated quickly even if

we take into account the fact, that the lateral actuator dynamics are very fast. The e�ect of the

fast actuator dynamics can be con�rmed by checking the Figure 6.26. As we can see the fault

estimation has satisfactory performance. However there are some incidents where it departs

from the real fault value. It can been veri�ed, if we observe the Figure 6.25 and speci�cally the

angular velocity plot. We can ascertain that when there are abrupt or large value changes of

the angular velocity, the estimation of the lateral actuator fault is a�ected signi�cantly without

compensating very fast. This is the con�rmation of the previous assumption that the fault

estimation is a�ected by the fast dynamics of the lateral actuator.

6.4.2 Fault Estimation with Augmented State Observer

Despite the good results, from the experiment where the state α is measurable, it is required

the usage of another method which takes into account the real characteristics of the controlled

system, without the α being measured. Hence in this section, the ASO fault estimation tech-

nique is employed. Speci�cally, the actuator fault is arranged to be a state of the system and it

is estimated via the ASO. It has been tried to obtain stable controller scheme, with the proper

dynamics. Although, there were some issues to obtain such a control scheme and basically the
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issue arose with the observer dynamics. In the following �gures 6.27 and 6.28 the poles of the

system with longitudinal and lateral faults are depicted.

Figure 6.27: Longitudinal FTC with Augmented State Observer - Poles

Figure 6.28: Lateral FTC with Augmented State Observer - Poles

As we can see, the poles of the observer in both cases present some fast dynamics. It is

needed to mention that, the above results are the best among all the trials that have been done,

since the rest of the experiments had much bigger pole values or even positive poles. For this
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reason, the system had some singularities and it could not be simulated. Additionally, some

experiments with the state α to be measurable have been carried out. Although, the results

were similar with the former ones. It means that this method (Augmented State Observer),

arranging the faults as states, is not suitable for the speci�c vehicle system.

6.4.3 Fault Estimation with Least Squares Parameter Estimation

In this experiment the, LSPE technique is used in combination with the system simulated in

Section 6.3.2. This method is di�erent from the previous ones. In order to estimate the faults,

it is taken into account that the actuator faults a�ect the system parameters. The procedure

starts from the hypothesis that it is possible to �nd a state of the system that is directly

in�uenced by the faulty actuator. Consequently, the faults can be estimated in di�erent ways

by using the system equations. Speci�cally, in our case, for the longitudinal fault there are

two di�erent formulas that a�ect the states v and α respectively, and for lateral fault there

are three di�erent formulas that a�ect states v, α and ω. During the experimental procedure,

all these formulas have been used to estimate the faults, as part of the LSPE method. These

di�erent cases have been tested whether they are suitable to be used for the faults estimation.

Although, only one of them it was used, the case where the lateral fault a�ects the state ω.

It has been ascertained, that for all the other cases, the system has singularities which make

the simulation to shut down. In order to explain why is this happening, we have to check the

(eq.4.11)-(eq.4.12) and to realize that the cases that have singularities, depend on the state α

which cannot be measured. The following Figures 6.29 and 6.30 present the states with the

lateral fault (δfault) compensated, as well as the fault estimation by the LSPE.
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Figure 6.29: Lateral FTC with LSPE - States of the Vehicle

As we can see in the above �gure 6.29, the lateral fault is compensated in a e�ective way

in state ω which is mainly a�ected. Although, we can observe that there are some oscillations

before the fault is compensated completely. These oscillations are justi�ed similarly to the

previous experiments, because of the fast dynamics of the lateral actuator. This conjecture can

be con�rmed by checking the Figure 6.30 as well. We can observe in the fault estimation plot,

that the oscillations occur at the same time with the oscillations of the states (Figure 6.29),

which depend on the fast lateral actuator dynamics in the presence of the fault. Additionally

there are some more oscillations which depend on the abrupt change of state ω. Although,

if someone observe carefully, they can see an abrupt big change of state α and the estimated

fault approximately at iteration 1950, as well as change to the value of states v and ω at the

same time. Additionally, they can see a shut down of the simulation around the iteration

2350 (in both �gures). After careful consideration, it has been ascertained that even if the

lateral actuator fault is equal to zero, we have the same incidents at the same time instants.

Investigating the reason why we have these, it has been found that they depend on some

disturbances that come from the longitudinal actuator. This ascertainment is analyzed and

depicted in the next Section 6.4.4.
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Figure 6.30: Lateral Actuator Fault Estimation with LSPE

6.4.4 Complete Fault Tolerant Control Scheme

FTC for Lateral Actuator Fault and Longitudinal Actuator Disturbances

In this section, the lateral actuator fault (δfault) estimation as well as the longitudinal distur-

bance estimation are used, in order to compensate the lateral actuator fault to the system. In

order to perform this experiment, the UIO control scheme simulated in Section 6.4.1 (Figure

6.16), combined with the LSPE method are employed, and the new control scheme is depicted

in Figure 6.31. In order to detect the disturbances that come from the longitudinal actuator,

the same UIO which is used for the longitudinal actuator fault (FxRfault) is employed. The

only di�erence from the simulation in Section 6.4.1 is that the real longitudinal actuator fault

is arranged to be equal to zero. The results of this experiment, are presented in the following

Figures 6.32, 6.33, 6.34, 6.35, 6.36 and 6.37.
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Figure 6.31: FTC with LSPE and UIO - Block Diagram

As it is analyzed in Section 6.4.3, in order to compensate the lateral actuator fault, it is

needed to estimate the longitudinal actuator disturbances through the UIO, and simultaneously

to estimate lateral actuator fault via the LSPE. The result of the disturbance estimation is

presented in the following Figure 6.32.

Figure 6.32: Longitudinal Actuator Disturbance Estimation with UIO

We can observe that the longitudinal actuator disturbance incidents occur when there are

some abrupt changes to the lateral actuator fault (Figure 6.33), as well as when the states v

and ω have abrupt changes (Figure 6.34). Compensating the longitudinal actuator disturbance
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to the system, the lateral actuator fault estimation is done more e�ectively, and it is presented

in the next Figure 6.33.

Figure 6.33: Lateral Actuator Fault Estimation with LSPE

As we can observe (Figure 6.33), the lateral fault estimation, is quite satisfactory. The

only problems (oscillations, overshoots) arise, when the the state ω have abrupt changes, as

it can be seen in the next Figure 6.34, and it happens because of the fast dynamics of the

lateral actuator. Additionally, the simulation does not shut down because of the singularities,

as before (Section 6.4.3) and thus the experiment is performed for all the desired values of the

position, orientation and velocities.
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Figure 6.34: Lateral FTC with LSPE and UIO - States of the Vehicle

In the above Figure 6.34, we can observe that the response and the estimation of the states

follow the references in a proper way. The only adverse issue is when the fault value changes

and so some oscillations appear. However, these oscillations follow the generated references

from the kinematic controller, in order to follow the desired position and orientation values

and they are depreciated quite quickly. Another, important issue, is the increase of the slip

angle value. It appears when there is change to the ω state, but it is not so signi�cant as it is

depreciated quickly and also, does not take big values (it is in the desired range [-0.1, 0.1]).

In order to evaluate the behavior of the vehicle in a better way, we can check the following

Figures 6.35 and 6.36. The �rst �gure depicts the desired trajectory of the vehicle and its

real response, and the second one shows the errors of positions and orientation response with

respect to the reference.
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Figure 6.35: Lateral FTC with LSPE and UIO - Trajectory of the Vehicle

Observing the above Figure 6.36, one could say that the vehicle follows the trajectory

reference properly. It seems that it does not depart from the desired positions. Although, it is

not clear what happens with the orientation. For this reason we have to check the plot of the

errors (see Figure6.36).

Figure 6.36: Lateral FTC with LSPE and UIO - Position and Orientation Errors

As we can see in Figure 6.36, the longitudinal position and orientation errors do not have
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such values that a�ect the behavior of the vehicle. Although, the lateral position values in some

cases have some values which are undesirable (almost 0.5 m) which could a�ect the behavior of

a real vehicle to follow the desired trajectory. In order to understand better the errors e�ect to

the vehicle behavior we have to check the root mean square value of these errors in Table 6.8.

Figure 6.37: Lateral FTC with LSPE and UIO - Inputs of the Vehicle

In the above Figure 6.37 we can observe the values of the actuators during the experiment.

We can see that the lateral actuator values change abruptly and have big values in some

cases, which happens because of the actuator fault, and this is actually the way the fault is

compensated.

QcontrollerK RcontrollerK vRMSE ωRMSE Xe Ye θe 0.1 0 0
0 0.1 0
0 0 0.1

 [
0.1 0
0 0.1

]
QcontrollerD RcontrollerD

0.05 0 0 0 0 0 0
0 0.01 0 0 0 0 0
0 0 0.01 0 0 0 0
0 0 0 0.01 0 0 0
0 0 0 0 100000 0 0
0 0 0 0 0 100000 0
0 0 0 0 0 0 1


[

0.01 0
0 100

]
0.0441 0.0058 0.3287 0.1314 0.0132

QUIO RUIO 1 0 0
0 1 0
0 0 1

 [
1 0
0 1

]

Table 6.8: Lateral FTC with UIO and LSPE - RMSE

So as to understand better the errors with the in�uence of the actuator fault, we have to
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compare the RMSE values of the previous Table 6.8 with the RMSE of the experiment in which

the actuator fault does not exist (see Table 6.6). Through this comparison we can say that

the results in both cases are almost the same, except a minor di�erence in the angular velocity

error, which is 0.0044 rad/s bigger when there is lateral actuator fault. However, this minor

di�erence does not a�ect in a signi�cant manner the behavior of the vehicle.

FTC with Simultaneous Presence of Longitudinal and Lateral Actuator Faults

In this experiment, the system (vehicle) has faults to both its actuators (longitudinal, lateral).

It has been arranged for both the faults to emerge at the same time instants. In order to detect

and estimate the faults, the techniques that have been used in the previous experiment are

employed. Speci�cally, exactly the same control scheme from Figure 6.31 is used. The only

di�erence is that instead of setting zero longitudinal actuator fault, it is arranged to have the

existence of it, in the same way as in Section 6.4.1 (see Figure 6.22). The lateral actuator fault,

is arranged to have the same values as in Section 6.4.4 (see Figure 6.33). The results of this

experiment, are presented in the following Figures 6.38, 6.39, 6.40, 6.41, 6.42 and 6.43.

Figure 6.38: Complete FTC - Longitudinal Actuator Fault Estimation with UIO

In the above Figure 6.38, we can observe the longitudinal fault estimation (FxRfault) using

the UIO. Comparing it with the experiment where the lateral fault (δfault) is not taken into

account (Figure 6.22), we can say that the estimation is the same except some tiny di�er-

ences which are insigni�cant to a�ect the behavior of the vehicle. The existence of these tiny
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oscillations depend on the presence of δfault.

Figure 6.39: Complete FTC - Lateral Actuator Fault Estimation with LSPE

The estimation of the lateral actuator fault δfault is depicted in the previous Figure 6.39.

Comparing it with the estimation in the experiment where the longitudinal actuator fault

(FxRfault) is not taken into account (see Figure 6.33), we can say that the estimation is the

same despite the presence of FxRfault. Hence, one could assume that the vehicle should have

satisfactory behavior, without deviating from the references. In order to con�rm the latter

assumption it is needed to check the states of the vehicle in the next Figure 6.40.
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Figure 6.40: Complete FTC with LSPE and UIO - States of the Vehicle

We can observe in the above Figure 6.40 that the presence of both faults a�ects all the

three states v, α, ω. The faults are compensated is a very e�cient way, almost the same as in

the experiments where the presence of the faults is arranged separately (see Figures 6.20 and

6.34) and so the behavior of the vehicle is satisfactory without departing from the references

or having undesired slip angle values. This ascertainment is con�rmed by checking the next

Figure 6.41.
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Figure 6.41: Complete FTC with LSPE and UIO - Trajectory of the Vehicle

In the previous �gure where the desired trajectory is depicted, as well as the estimation of

it, we can con�rm that the behavior of the vehicle is satisfactory, as it follows the desired path.

This ascertainment veri�es the previous testimony (see Figure 6.40) that the vehicle follows the

references. Although, in order to investigate it in a better way, it is needed to check the next

Figure 6.42 where the position and orientation errors are presented.

Figure 6.42: Complete FTC with LSPE and UIO - Position and Orientation Errors
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As it can be seen in the above Figure 6.42 the errors have similar values with the experiments

where the faults are arranged separately (see Figures 6.19 and 6.36). One could assume that

with the simultaneously presence of faults, these errors would be larger or di�erent. Although,

both the faults are compensated properly, even in their concurrent existence, which can be

veri�ed in the next Figure 6.43.

Figure 6.43: Complete FTC with LSPE and UIO - Inputs of the Vehicle

Observing the above �gure were the values of the actuators are presented we can con�rm

that the faults are compensated e�ectively. We can verify it by checking the simulation without

the faults (see Figure 6.15). As we can see, the values of the actuator increments, is exactly the

value of the estimated faults (see Figures 6.38 and 6.39), which con�rm the satisfactory fault

compensation.

QcontrollerK RcontrollerK vRMSE ωRMSE Xe Ye θe 0.1 0 0
0 0.1 0
0 0 0.1

 [
0.1 0
0 0.1

]
QcontrollerD RcontrollerD

0.05 0 0 0 0 0 0
0 0.01 0 0 0 0 0
0 0 0.01 0 0 0 0
0 0 0 0.01 0 0 0
0 0 0 0 100000 0 0
0 0 0 0 0 100000 0
0 0 0 0 0 0 1


[

0.01 0
0 100

]
0.1573 0.0055 0.3594 0.1320 0.0132

QUIO RUIO 1 0 0
0 1 0
0 0 1

 [
1 0
0 1

]

Table 6.9: Complete FTC with UIO and LSPE - RMSE
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In the previous Table 6.9, we can see that the RMSEs are a�ected by the presence of the

faults. Speci�cally, the two states that are in�uenced are the linear and angular velocity. It can

be con�rmed by comparing these results with the ones without the presence of faults (Table

6.6). The di�erence between them, is for the vRMSE 0.1235 km/h and for ωRMSE 0.0041

rad/s. It means that in the case where there are actuator faults and the one without them

the di�erence between the errors is not so signi�cant to a�ect the behavior of the vehicle. The

latter ascertainment means that the compensation of the faults by the system is quite e�ective

and consequently the vehicle has the desired behavior.
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Chapter 7

Conclusions and Future work

This thesis has proposed gain-scheduling Takagi-Sugeno control strategies, so as to handle the

stability and performance of the system (vehicle), as well as to compensate the actuators dis-

turbances and faults. The T-S models obtained from sector non-linearity approach has been

proven to be a suitable choice to control the vehicle behavior. In order to design the con-

trollers, the selection of the appropriate LMIs was needed, although it is not a straightforward

process. The correct choice of them has been attained by following the experimental proce-

dure. Consequently, as one can ascertain, for each part of the control scheme (Controllers and

Observers) di�erent LMI techniques have been employed. Eventually, the complete cascade

control scheme has shown remarkable performance. Going further, and taking into account the

actuators disturbances and faults, the FTC scheme was constructed. In order to attain this,

many techniques have been tested and the more appropriate ones, for each di�erent case of

faults and disturbances, have been adopted. Speci�cally, the UIO suits better than the other

methods for the longitudinal actuator fault and disturbance estimation. For the lateral actua-

tor fault estimation, the most appropriate technique is the LSPE. Consequently, the complete

FTC scheme, for the concurrent existence of longitudinal and lateral actuator faults, combine

the UIO and LSPE methods. The ultimate implementation has been proven to be reliable and

quite e�ective, concerning the faults estimation and compensation, and in general the behavior

of the vehicle.

Continuing the work in this thesis one would improve of the FTC implementation. Specif-

ically, they could investigate better why the singularity and numerical issues arose in some of

fault estimation methods. In addition, some other methods which are not developed in this

work could be tested, and �nally the best combination of some of them could be examined.
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Finally, the implementation of the ideas developed in this work in a real system/environment,

would be another case study.



Takagi-Sugeno Fault Tolerant Control of an Autonomous Vehicle 125

Bibliography

[1] Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. Kazuo

Tanaka, Hua O.Wang

[2] LMIs in Control Systems: Analysis, Design and Applications. Guang-Ren Duan, Hai-Hua

Yu

[3] Mono- and Multivariable Control and Estimation Linear, Quadratic and LMI Methods.

Ostertag, Eric

[4] Advanced Takagi�Sugeno Fuzzy Systems Delay and Saturation. Benzaouia, Abdellah, El

Hajjaji, Ahmed

[5] Fuzzy Gain Scheduling: Controller and Observer Design Based on Lyapunov Method and

Convex Optimization. Petr Korba, Robert Babuska, Henk B. Verbruggen, and Paul M.

Frank

[6] Gain Scheduling LPV Control Scheme for the Autonomous Guidance Problem using a

Dynamic Modelling Approach. E.Alcala1 V. Puig1 J. Quevedo1 T. Escobet1

[7] P. Apkarian, P. Gahinet, G. Becker, Self-Scheduled H∞ Control of Linear Parameter-

Varying Systems: A Design Example Automatica, vol. 31, no. 9, pp. 1251-1261, 1995.

[8] An approach to fuzzy control of nonlinear systems: Stability and design issues. HO Wang,

K Tanaka, MF Gri�n IEEE transactions on fuzzy systems 4 (1), 14-23 1996

[9] S. Boyd, L. E. Ghaoui, E. Feron, and V. Belakrishnan, �Linear matrix inequalities in system

and control theory,� in SIAM: Studies In Applied Mathematics. Philadelphia, PA: SIAM,

1994, vol. 15.



126 BIBLIOGRAPHY

[10] C. G. L. Bianco, A. Piazzi, M. Romano, Velocity planning for autonomous vehicles, IEEE

Intelligent Vehicles Symposium.

[11] Autonomous Intelligent Vehicles Theory, Algorithms, and Implementation Authors: Cheng

Hong, 2011

[12] Nonlinear Control of Wheeled Mobile Robots Authors: Dixon, W.E., Dawson, D.M., Zerg-

eroglu, E., Behal, A. 2001

[13] A Mathematical Introduction to Robotic Manipulation Authors: Richard M. Murray, Zex-

iang Li,S. Shankar Sastry, 1994

[14] Diagnosis and Fault-Tolerant Control Authors: Blanke, M., Kinnaert, M., Lunze, J.,

Staroswiecki, M., 2006

[15] Fault Diagnosis and Fault-Tolerant Control Strategies for Non-Linear Systems Analytical

and Soft Computing Approaches Authors: Witczak, Marcin, 2014

[16] Fault Estimation using a Takagi-Sugeno Interval Observer: Application to a PEM Fuel

Cell Authors: C. Mart�nez Garc�a, V. Puig, C.Astorga Zaragoza

[17] Fault-tolerant control design using the linear parameter varying approach Authors: Saúl

Montes de Oca, Sebastian Tornil-Sin, Vicenç Puig, Didier Theilliol

[18] A Fault-Hiding Approach for the Switching Quasi-LPV Fault-Tolerant Control of a Four-

Wheeled Omnidirectional Mobile Robot Authors: Damiano Rotondo, Vicenç Puig, Fatiha

Nejjari, Juli Romera

[19] T. Takagi and M. Sugeno, �Fuzzy identi�cation of systems and its applications to modeling

and control,� IEEE Trans. Syst., Man, Cybern., vol. SMC-15, no. 1, pp. 116�132, Jan./Feb.

1985.

[20] M. Sugeno, Fuzzy Control. North-Holland, 1988.

[21] M. Sugeno and G. Kang, �Structure identi�cation of fuzzy model,� Fuzzy Sets and Systems,

vol. 28, no. 1, pp. 15�33, 1988.


	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Background Theory
	Takagi-Sugeno Fuzzy Model
	Fuzzy Model design
	T-S Fuzzy Model
	Fuzzy Controller

	LMI Techniques for Analysis and Synthesis 
	Definition of an LMI
	Standard Problems Involving LMIs
	Closed-Loop System
	Stability Conditions for Closed-Loop TS Fuzzy System

	Enhancements
	Fuzzy State Estimator
	Performance

	LMI Selection
	LQC Problem
	LQ Regulation via H2 Control

	Fault Tolerant Control 
	Unknown Input Observer
	Augmented State Observer
	Least Squares Parameter Estimation


	Kinematic and Dynamic Vehicle Models
	Kinematic non-liner model
	Dynamic non-liner model

	Takagi-Sugeno Modelling
	Kinematic Gain-Scheduling Modelling
	Dynamic Gain-Scheduling Modelling
	Controller
	Observer

	Fault Tolerance Gain-Scheduling Modelling
	Unknown Input Observer
	Augmented State Observer
	Least Squares Parameter Estimation


	Control Design using Takagi-Sugeno Fuzzy Model
	Description of the Design Method
	Kinematic Controller Takagi-Sugeno Design
	Dynamic Controller Takagi-Sugeno Design
	Dynamic Observer Takagi-Sugeno Design
	Unknown Input Observer Takagi-Sugeno Design
	Augmented Controller and Observer Takagi-Sugeno Design

	Results
	Introduction
	Decoupled Models Simulation
	Kinematic Controller Simulation
	Dynamic Controller Simulation
	Dynamic Observer Simulation
	Dynamic Controller and Observer Combination

	Cascade Control Simulation
	Kinematic and Dynamic Control Combination
	Complete Control Scheme

	Fault Tolerant Control Simulation
	Fault Estimation with Unknown Input Observer
	Fault Estimation with Augmented State Observer
	Fault Estimation with Least Squares Parameter Estimation
	Complete Fault Tolerant Control Scheme


	Conclusions and Future work
	Bibliography

