Remodelació del sistema energètic a Llinars del Vallès amb ús d'energies renovables

MEMÒRIA

Autor: Alex Jornet Mallafré
Director/s: Carme Pretel
Convocatòria: Abril 2018

Escola Tècnica Superior d’Enginyeria Industrial de Barcelona
Resum

Aquest treball és l’estudi de la remodelació energètica del municipi de Llinars del Vallès, situat a la comarca del Vallès Oriental. Així doncs, l’objectiu d’aquest projecte és, en primer lloc, l’estudi del context energètic en el qual es troba el municipi actualment i, a continuació, estudiar la viabilitat de reduir la demanda energètica. Finalment, el darrer pas de l’estudi serà la optimització del sistema energètic cap a un entorn més sostenible, maximitzant l’ús d’energies renovables com a alternativa a les fonts energètiques tradicionals.

S’entén que l’optimització energètica de qualsevol edifici s’aconsegueix des del moment en què es construeix fins al seu ús quotidiat. Amb això, es pretén remarcar la importància d’implementar tècniques per reduir la demanda a l’hora de construir qualsevol edifici, ja que aquestes, en el futur, es traduiran en una disminució important del consum. No obstant això, cal tenir en compte que el fet que s’estudii un municipi ja establert implica que moltes de les mesures tècniques que es podrien implementar paral·lelament a la construcció dels edificis o habitatges quedaràn descartades pel cost d’instal·lació.

D’altra banda, un cop s’hagin estudiat les tècniques de reducció de la demanda energètica, s’analitzarà com serà la cobertura d’aquesta demanda, és a dir, de quina font s’obtindrà l’energia necessària per a la quotidianitat dels habitants. Per les condicions climatològiques de l’emplaçament, es considera que Llinars del Vallès és un bon candidat per efectuar els estudis desitjats. Els aspectes a estudiar previstos inicialment eren el subministrament d’aigua calenta sanitària, calefacció i electricitat a partir d’energies renovables. Tot i així, finalment, el treball s’ha centrat en el subministrament d’electricitat. En aquest sentit, s’ha decidit que l’ús de l’energia provenint del Sol és idònia per satisfer la majoria de necessitats dels habitants. Per segon terme, i com a proposta de treball futur, es podrien estudiar també altres fonts d’energies renovables com l’energia geotèrmica i la biomassa per complementar la demanda energètica.

Per tant, amb el treball s’intentarà optimitzar l’ús de l’energia, prioritzant les renovables, en el camp de l’electricitat. D’aquesta manera, es vol demostrar l’interès d’utilitzar totes aquestes tècniques i tecnologies en la construcció o modificació d’edificis amb la finalitat de reduir l’impacte i la petjada ecològica, alhora que s’aconsegueix una reducció del consum energètic.

Així doncs, al llarg del projecte s’estudiarà el funcionament, els principis i l’abast d’aquestes tècniques i, posteriorment, es dissenyarà el dimensionament de les instal·lacions solars per satisfer les necessitats energètiques en termes d’electricitat.

Finalment, un cop dimensionats els sistemes i estudiades les possibilitats d’aquestes tècniques, s’efectuarà un estudi econòmic i mediambiental, fet que verificarà si el projecte és beneficiós en tots els sentits.
Índex

RESUM ... 1
ÍDEX ... 3
1. PREFACI ... 5
2. PRESENTACIÓ DEL TREBALL .. 7
 2.1. OBJECTUS I ESTRUCTURA DEL TREBALL ... 7
 2.2. ABAST DEL TREBALL .. 7
3. CONTEXT I ÀNALISI DEL MUNICIPI ... 9
 3.1. ENCAIX TERRITORIAL ... 9
 3.2. ESTUDI DEL MEDI .. 11
 3.2.1. Medi físic .. 11
 3.2.2. Medi natural .. 12
 3.2.3. Medi territorial .. 13
 3.2.4. Climatologia .. 15
 3.3. DEMOGRAFIA I EDIFICS ... 16
 3.3.1. Població .. 16
 3.3.2. Les llars ... 18
 3.3.3. Estimacions de població i llars ... 20
 3.3.4. Els habitatges .. 22
 3.4. ESTUDI DEL CONSUM ENERGÈTIC .. 27
 3.4.1. Evolució del consum d’energia primària i final a Catalunya 27
 3.4.2. Estimació de les emissions de contaminants en base al consum d’energia de Llinars .. 28
 3.4.3. Consum d’energia i emissió de contaminants segons tipologia edificatòria 30
4. REDUCCIÓ DE LA DEMANDA .. 33
 4.1. METODOLOGIA: REDUCCIÓ EN TRES FASES .. 35
 4.1.1. Llançament i diagnòstic .. 35
 4.1.2. Pla d’actuacions a curt termini per a la reducció del consum 36
 4.1.3. Selecció d’inversions ... 37
 4.2. MESURES TÈCNIQUES DE REDUCCIÓ DE LA DEMANDA 37
 4.2.1. Climatització .. 38
 4.2.2. Il·luminació ... 45
 4.2.3. Equipament i aparells elèctrics ... 47
 4.2.4. Tècniques de reducció en la construcció ... 48
5. FONTS D’ENERGIA. COBERTURA DE LA DEMANDA ... 53
 5.1. ENERGIA SOLAR FOTOVOLTAICA ... 53
 5.1.1. Principi bàsic de funcionament ... 53
 5.1.2. Sistema fotovoltaic .. 55
 5.1.3. Connexió dels mòduis fotovoltaics ... 56
6. GESTIÓ DE LA DEMANDA ENERGÈTICA ... 59
 6.1. PROPOSTA ENERGÈTICA SEGONS TIPOLOGIA ... 59
 6.1.1. Habitatge unifamiliar .. 60
 6.1.2. Habitatge plurifamiliar .. 60
 6.1.3. Edificis del sector terciari ... 60
 6.2. ESTUDI DEL DIMENSIONAMENT DE LES INSTAL-LACIONS FOTOVOLTAIQUES ... 61
 6.2.1. Angle d’orientació i inclinació dels panells solars ... 61
 6.2.2. Perdues del sistema .. 66
 6.2.3. Reglamentació vigent .. 66
6.2.4. Dimensionament de la superfície de les plaques solars segons tipologia edificatòria 66
6.2.5. Dimensionament de les bateries d’acumulació per a les instal·lacions en coberta 81
6.2.6. Dimensionament de l’inversor per a les instal·lacions en coberta .. 83

7. **ANÀLISI DE LA VIABILITAT ECONÒMICA** .. 85

7.1. ANÀLISI ECONÒMIC DE LES INSTAL·LACIONS EN COBERTA D’HABITATGES .. 86
7.1.1. Anàlisi econòmic de la instal·lació solar en habitatge unifamiliar ... 86
7.1.2. Anàlisi econòmic de la instal·lació solar en habitatge plurifamiliar .. 89
7.2. ANÀLISI ECONÒMIC DE LA PLANTA SOLAR .. 90

8. **AVALUACIÓ DE L’IMPACTE AMBIENTAL** ... 94

8.1. IDENTIFICACIÓ I VALORACIÓ D’IMPACTE EN LA FASE DE CONSTRUCCIÓ ... 94
8.2. IDENTIFICACIÓ I VALORACIÓ D’IMPACTES EN LA FASE D’EXPLOTACIÓ .. 95
8.3. IDENTIFICACIÓ I VALORACIÓ D’IMPACTES EN LA FASE DE DESMANTELLAMENT 97

9. **CONCLUSIONS** .. 98

10. **BIBLIOGRAFIA** ... 100
1. Prefaci

Abans d’entrar en matèria, és necessari situar el projecte en un context. L’interès en les energies renovables i la confiança en la creació d’un nou model energètic, han donat peu a iniciar aquest projecte.

El motiu pel qual s’ha escollit estudiar la remodelació energètica d’un municipi sencer s’explica perquè és el pas següent als estudis prèviament realitzats. Fa dos anys, vaig realitzar l’estudi d’un cas real de model energètic força innovador a Espanya, en el qual es vaig tenir la oportunitat d’introduir-me al 2009, i en el qual vaig començar a participar-hi de manera més activa a principis de 2014, i que va consolidar-se amb la redacció del Treball de Fi de Grau. És el cas d’un restaurant que ha apostat des de la seva construcció en la inversió en energies renovables. Si bé és cert que el camp de les energies renovables ha estat molt estudiat a nivell teòric, pocs edificis actualment han implementat aquest tipus de font d’energia, ja que experimentalment, no hi ha molts casos que assegurin la rendibilitat, i no perquè el model fracasssi, sinó perquè està poc explotat.

Per tant, davant de la oportunitat de demostrar que és possible un model energètic diferent, vaig decidir encarar aquest treball en aquest sentit, i el resultat va ser molt positiu. Arrel del Treball de Fi de Grau van implementar-se moltes mesures de reducció de la demanda, es va monitoritzar el consum elèctric del restaurant i efectivament, el resultat va ser molt similar a l’estudiat.

D’aquesta manera, pretenc en aquest treball partir de la mateixa base, però encarant l’objectiu a un abast major, per tal que el major nombre de persones i l’entorn es vein afavorides pel nou sistema energètic proposat.
2. Presentació del treball

2.1. Objectius i estructura del treball

El forat a la capa d’ozó, l’extinció d’espècies vegetals i animals, la desforestació, l’esgotament dels recursos energètics renovables i no renovables, l’eliminació i la degradació dels territoris i pobles indígenes,... aquesta és una llarga llista d’impactes negatius sobre les poblacions, sobre l’hàbitat i, en termes generals, sobre el planeta Terra. L’ús desmesurat dels recursos naturals per satisfacer l’actual elevat consum que el sistema econòmic promou com a model de vida genera greus impactes socials i mediambientals.

Darrerament, la preocupació per la recerca de solucions a tots els desastres ecològics ha anat in crescendo. N’és un exemple la preocupació de la humanitat envers el canvi climàtic, que s’ha vist reflectida en l’impuls de campanyes, cimeres, i protocols liderats per organitzacions mediambientals – com el Protocol de Kyoto –.

Per tots aquests motius, l’objectiu principal d’aquest projecte és dissenyar un model energètic sostenible amb el medi ambient, essent aquest el més autosuficient possible. Per aconseguir aquest nou model, es considera essencial la introducció de tècniques i mesures per disminuir la demanda energètica global del municipi, i en segon lloc, es contempla l’ús de les energies renovables per cobrir aquestes necessitats energètiques.

Tanmateix, l’altre objectiu del projecte és demostrar que la introducció d’aquest nou model energètic és rentable no tan sols a nivell mediambiental i social, sinó també a nivell econòmic.

2.2. Abast del treball

Tal com s’ha comentat anteriorment, el treball és un projecte d’optimització energètica del municipi de Llinars del Vallès. Durant tot el projecte, es descriurà les tècniques i metodologies proposades per a la millora del sistema energètic actual i es justificarà quines d’aquestes millores s’implementaran a curt o a llarg termini, i quines no s’implementaran, sigui perquè no són prou eficients, perquè el territori no és suficient per abastir totes les instal·lacions necessàries o perquè no són rentables econòmicament.

No obstant, el projecte no entra en la consideració de la cobertura i la reducció de la demanda respecte als usos industrials i els equipaments i serveis públics. En el primer cas, perquè els usos industrials tenen una forquilla de demanda molt variada en funció de les activitats productives i dels diferents processos de transformació que es donen en cadaempresa. En el segon cas, la individualitat i singularitat de cada servei (educatius, esportius, culturals, socials, administratius,...) fan recomanable que la solució de cada servei es faci de forma específica i particularitzada per a cada cas concret.

Finalment, tot i que l’objectiu inicial del projecte era l’estudi del subministrament d’aigua calenta sanitària, calefacció i electricitat a partir de fonts renovables, els dos primers han quedat fora de l’abast del projecte per l’extensió que suposaria l’estudi global dels tres aspectes citats.
3. Context i anàlisi del municipi

3.1. Encaix territorial

El Vallès Oriental, conjuntament amb l’Occidental, formen la gran comarca natural del Vallès. Geogràficament, el Vallès i el Penedès formen la Fossa tectònica del Vallès-Penedès, dins de la Depressió Prelitoral Catalana.

El Vallès Oriental, la part més a l’est d’aquesta Depressió Prelitoral, limita a nord amb el Massís del Montseny, (1712 m), la serra més elevada de la Serralada Prelitoral, a est i sud amb el Massís del Montnegre (760 m), la serra amb més altitud de la Serralada Litoral, i a oest, a manca d’un límit geogràfic d’igual claredat per la condició de vall contínua, amb el límit administratiu dels municipis que històricament han estat adscrits a un o altre Vallès per motius d’atracció i relació amb les seves capitals de comarca.

El municipi de Llinars del Vallès es situa a est del Vallès Oriental, formant part de la zona geogràfica del baix Montseny, limitant amb la comarca veïna del Maresme mitjançant la vessant de la Serralada Litoral, i al centre de l’eix format entre els municipis de Granollers i Sant Celoni. Aquest corredor de comunicació, relació i atracció, forma part alhora del pas natural que entre les Serralades Litoral i Prelitoral dóna sortida al Barcelonès cap al nord direcció França.

El seu terme, de 27,74 km² d’extensió, presenta una població d’uns 9.570 habitants (any 2015, 2,39% del conjunt de comarca), repartida entre el nucli principal de població (aproximadament el 86% del total), les urbanitzacions de Sant Josep i Sant Carles (11%), i els petits nuclis disseminats de El Coll, Collsabadell i el pla Morató (3%). Aquestes dades comporten una densitat de població en conjunt de 3,45 habitants per hectàrea.

Estadísticament, segons l’IDESCAT [2] (Institut d’Estadística de Catalunya), es computen un total de 4.396 habitatges dels quals 3.408 (el 77,53%) són principals, 311 secundaris (el 7,08%) i 677 buits (el 15,40%).
Remodelació del sistema energètic de Llinars del Vallès amb l’ús d’energies renovables

El principal curs d’aigua del terme és el riu Mogent que, tot recollint aigües tant provinents del vessant sud del Montseny com del vessant nord de la serralada del Montnegre, travessa tot el terme municipal longitudinalment en les seves cotes més baixes, a sud del nucli principal de població.

A nivell de mobilitat (viària i ferroviària), es detecta al municipi una clara sobreposició d’escales; des del pas d’infraestructures d’alta capacitat com l’autopista AP-7, l’AVE o el ferrocarril convencional, passant per l’escala supracomarcal de la carretera C-35, l’escala comarcal de la carretera C-251, l’escala pròpiament local de connexió amb els municipis veïns que representen les carreteres B-510, BP-5107 i BV-5103 i acabant en l’escala dels camins i vies locals de connexió directa amb l’entorn.

Les xarxes de comunicació que es sumen seguint l’eix longitudinal central del terme municipal (AP-7, C-35, AVE i Ferrocarril convencional) conjuntament amb el pas del riu Mogent i dels seus espais d’entorn marquen una clara empremta en el municipi, separant el nucli principal de població al pla central de l’inici de les primeres rampes del Massís del Montnegre. En aquest sentit, mentre que les infraestructures citades suposen un tall, una barrera de separació franquejable únicament en determinats passos fixats per aquestes (ponts elevats, túnels), el pas del riu suposa una àmbit longitudinal de transició i recollida de recorreguts transversals i d’encaminament cap als diferents punts de permeabilitat de les infraestructures.

Per altra banda, és especialment destacable l’efecte de la construcció de la carretera variant C-35 per fora del nucli principal de població (concretament per l’eix longitudinal central de cotes més baixes indicat al paràgraf anterior) sobre el caràcter de la carretera C-251 que si travessa el nucli urbà. La carretera C-35 ha fet que en gran mesura les relacions de caràcter supramunicipal...
no passin ja pel nucli poblat, mantenint únicament les més properes directes amb els municipis veïns de Sant Antoni de Vilamajor i Cardedeu. Alhora, com a derivada, l’enllaç entre ambdues carreteres que travessa el nucli urbà, l’avinguda de Comas i Masferrer, ha adquirit una major sol·licitació.

El fet de disposar de parada del ferrocarril convencional, essent aquesta a més a tocar de l’accés a la carretera C-35, fa que Llinars del Vallès continuï sent un pol d’atracció dels municipis de l’entorn proper sense aquesta infraestructura.

3.2. Estudi del medi

La documentació que segueix a continuació s’ha obtingut principalment dels documents ambientals del pla urbanístic de Llinars del Vallès. El terme de Llinars del Vallès, comprèn una superfície de 27,7 km². Es troba situat entre la plana del Vallès i els contraforts de la Serralada Litoral, concretament sota el turó del Vent (388 m.s.n.m) a la capçalera de diversos torrents de petit recorregut que davallen de la Serralada Litoral (torrent d’en Rossellet, torrent d’en Bacs, torrent del Molinar). El terme municipal limita amb la Roca del Vallès (W), Cardedeu (NW), Sant Antoni de Vilamajor (N), Santa Maria de Palautordera (NE), Vilalba Saserra (E) i Dosrius (S) en la comarca del Maresme.

3.2.1. Medi físic

Orogràficament el terme municipal de Llinars del Vallès s’emplaça a la fondalada de la Depressió Prelitoral, al nord de la Serralada litoral, amb alçades que es situen entre els 140 ms.n.m a la plana i el turó dels Castellans (378 ms.n.m), on coincideixen els termes de la Roca, Llinars, Dosrius i Argentona, el Puigpedrós (341 ms.n.m), el turó del Vent (384 ms.n.m) i el turó de la Pera. Hidrogràficament el torrent d’Arenes (capçalera de la riera del riu Mogent), limita per llevant amb Vilalba Saserra. Cap al nord el municipi limita amb els contraforts del massís del Montseny. La part central del municipi, ocupada per la vall del riu Mogent, configura un dels eixos de comunicació principals de la comarca del Vallès, amb l’autopista AP7.
Remodelació del sistema energètic de Llinars del Vallès amb l’ús d’energies renovables

Donat que es situa en una zona de tipus industrial i creuat per infraestructures significatives, el municipi de Llinars del Vallès i l’àrea del Vallès Oriental superen (per alguns contaminants) els valors límit. Concretament a l’estació més propera a Llinars del Vallès (Granollers) durant els darrers anys s’han superat els nivells màxims de diòxid de nitrogen (NO2).

Les principals fonts de contaminació acústica de l’àmbit del planejament són el trànsit de vehicles per les principals vies de comunicació (AP-7, B-510, C-251, C-35) i per les infraestructures ferroviàries (Tren de Gran Velocitat, Ferrocarril de Barcelona a Portbou, Barcelona – Maçanet Massanes). Llinars del Vallès disposa de Mapa de capacitat Acústica, adaptat a les prescripcions del Decret 176/2009 del 10 de novembre.

3.2.2. Medi natural

La coberta principal del municipi de Llinars del Vallès és de boscosa (64,1 %), que juntament amb les cobertes de tipus urbà i d’infraestructures (19,9%) ocupen una superfície total del 84%. Les cobertes de caràcter agrícola es situen en un 15,8% de la superfície del municipi i es troben en un clar retrocés.

En el municipi hi ha l’espai PEIN del Parc Natural del Corredor-Montnegre, espai forestal amb alzinar, pinedes i suredes, i un dels pocs llocs amb roureda de roure africana. En aquest espai tan pròxim al mar hi ha ambients de caràcter clarament mediterrani, i al vessant nord elements centreuropeus i fins i tot atlàntics.

En el municipi també s’hi pot trobar l’espai de Serres del Litoral Septentrional, incloses a àmbits de Xarxa Natura 2000, on tenen una gran importància les pinedes litorals de pi pinyoner. La fauna és la característica dels ambients mediterranis, només amb algunes penetracions extramediterrànies en els enclavaments més humits.
Les zones de vegetació més natural es localitzen preferentment a les àrees de major relleu (puigs, barrancs), on són dominants, i tenen, per contra, un caràcter residual, en forma de petites "illes" a les àrees planes del Vallès. L’agricultura ha modificat completament la vegetació de la zona, fent desaparèixer gairebé del tot els boscos.

La vegetació dominant és l’associada als conreus. Conreus de cereals i farratges. Relacionada amb aquests conreus hi ha una vegetació amb barreja d’espècies de matollar i de zones ruderales.

El Pla territorial identifica que gran part del sòl no urbanitzable de la superfície del municipi es contempla com a sòl de protecció especial (1.957,3 ha), per 309,7 ha de sòl de tipus preventiu.

Els principals connectors del municipi es situen a les proximitats de Vilalba Sasserra, entre els torrents de Can Pinell i el de Can Divuit. I tot i que pel bosc de Can Marquès hi ha una elevada presència de fauna, la manca de connectivitat cap al sud situa aquesta parcel·la com a cul-de-sac. Es necessitaria un condicionament important de la carretera C-35 i l’autopista AP-7 per a permetre el pas de fauna a través d’aquestes infraestructures.

La Serra de Marina i el Corredor-Montnegre, configuren una connexió entre la serralada litoral, únicament interceptada per vies de comunicació (B-510, BV 5103) i activitats extractives a cel obert (Can Cortès i Can Torres).

3.2.3. Medi territorial

Tan Llinars del Vallès com tota la comarca del Vallès oriental presenten un creixement net de més del 26,43% durant el període 2.001 – 2.011. Aquesta tendència a l’alça es deu, en bona part, a un moviment migratori.

Al municipi de Llinars del Vallès el pes econòmic més important està representat pel sector de la indústria (51,7%), tot i que el sector serveis es situa en segon terme amb un 44,3%. Disposa
d’una indústria en expansió, especialitzada en teixits i gèneres de punt, material de construcció i plàstics. La seva industrialització, en els últims anys, ha fet augmentar el seu nombre d’habitants. L’agricultura presenta un pes molt Petit i els últims anys ha anat disminuint. Destaquen els conreus de cereals, llegums i farratges. Ha estat des de sempre un centre tradicional d’estiueig.

Les cobertes de Llinars del Vallès han evolucionat d’una forma semblant a les cobertures d’altres indrets del Vallès Oriental. Els camps de conreu han sofert un forta davallada arreu del municipi, afavorint les superfícies impro ductives (vials, aparcaments, zones industrials i zones residencials) així com la superfície forestal.

L’estructura territorial del municipi de Llinars del Vallès és caracteritzada pel domini de la coberta forestal (64,1%) per sobre les altres, destacant que la superfície urbana ocupa un 19,9% del municipi i la superfície agrícola (15,8%) és la que té una menor proporció, juntament amb la superfície d’aigües continentals (0,2%).

Es distingeixen tres tipus de zones urbanitzades: els nuclis tradicionals, els seus eixamples i les zones urbanes de baixa densitat. Com a zones urbanitzades consolidades tradicionals hi ha el nucli urbà de Llinars del Vallès. El creixement natural d’aquest és cap el nord del municipi (Can Boatell), formant petits eixamples del municipi tradicional. Cap al sud, el municipi queda interceptat pel riu Mogent i el corredor d’infraestructures viàries i ferroviàries.

El municipi de Llinars del Vallès té una oferta de llocs de treball similar al nombre de persones ocupades dins del municipi, a diferència d’altres poblacions properes a Llinars on l’oferta de treball a dins del municipi és inferior als residents ocupats a dins de la població (Carde deu, Sant Antoni de Vilamajor i Sant Pere de Vilamajor).

Aquesta tendència diferencia aquestes poblacions que tenen una tipologia de ciutats dormitori, que les que no ho són com Llinars del Vallès. La distància per arribar al lloc de treball doncs, és inferior a Llinars que a les altres poblacions properes, les quals han de desplaçar-se més quilòmetres.
3.2.4. Climatologia

Un altre dels factors a analitzar és la climatologia local. Un estudi previ del clima permet identificar a priori algunes de les necessitats de l’edifici que es poden solucionar durant la construcció de l’edifici o durant una rehabilitació quant a eficiència. Per exemple, situar un emplaçament a un clima canari implica tenir temperatures càlides durant tot l’any. Per tant, seria òptim instaurar un criteri de construcció sostenible que redueixi la demanda energètica de l’aire condicionat, com podria ser la ventilació creuada per climatitzar de manera natural l’interior del bastiment.

En el cas que ocupa, el municipi de Llinars està est del Vallès Oriental, formant part de la zona geogràfica del baix Montseny. El clima de la zona –clima mediterrani – se situa entre els 30º i els 45º de latitud, tant nord com sud. Els centres d’acció principals i dominants d’aquest clima són els anticiclons tropicals i els que provenen del Front Polar\(^1\). D’aquesta manera, les masses d’aire que provenen de la zona tropical són marítimes càlides i relativament humides. L’època d’aridesa –sequera– es manté entre tres i cinc mesos, en els que la evapotranspiració deguda a la calor supera a les precipitacions, fet que provoca sequeres recurrents. D’altra banda, les que provenen del Front Polar són també marítimes, però fredes i significativament humides. A l’hivern, per tant, poden arribar aquelles masses d’aire polar continental fredes, provenents del centre dels continents.

No obstant això, el clima mediterrani es caracteritza per tenir unes temperatures suaus al llarg de tot l’any. L’estiu és la època més calorosa. Tot i això, les temperatures en aquesta època de l’any no són molt elevades degut a la influència del mar. D’altra banda, les temperatures a l’hivern són molt benignes. Més concretament, pel que a Llinars respecta, la temperatura màxima mitjana té una mitjana de 24ºC i la temperatura mínima, també en mitjana, és de 9ºC. Per tant, el que se’n pot extreure d’aquestes condicions és que el gradient tèrmic no és molt elevat, com es pot observar en les il·lustració següent.

![Figura 3.7: Amplitud tèrmica anual a Llinars del Vallès. Font: ICGC \[1\]](image)

\(^1\) Front Polar: Important front meteorològic que separa els vents del nord-est, d’origen polar, dels del sud-oest procedents de les baixes latituds.
Pel que fa a les pluges del clima mediterrani, les dominants tenen origen en la posició del Front Polar. El pas del Front Polar per aquestes zones es produeix durant la primavera, en sentit sud-nord, i a la tardor, en sentit contrari. Així, les èpoques de pluja apareixen a la tardor i a la primavera. A les zones de costa del clima mediterrani, com és el cas d’estudi, però, aquestes sovint es manifesten en forma de xàfecs degut a l’escalfament del mar. En general, les pluges a Llinars oscil·len entre els 550 mm fins als 800 mm, i tenen lloc sobretot en setembre i juny, amb alguna tempesta a l’agost.

3.3. Demografia i edificis

3.3.1. Població

I. Distribució de la població

El municipi de Llinars del Vallès està format per 3 nuclis i 5 unitats en disseminat (població no resident en nucli de població). El nucli de Llinars del Vallès és el que concentra el major volum de població, tot i que ha perdut una mica de pes en els darrers 15 anys.

Sant Josep guanya pes i té un creixement relatiu superior al nucli de Llinars i la mitjana del municipi, i tot i que és inferior als de Sant Carles i Pla de Morató, el fet és que es consolida com a segon nucli del municipi. D’altra banda, el creixement relatiu superior de Sant Josep i el Pla de Morató és a causa de ser dues entitats amb poc volum de població, cosa que suposa que qualsevol variació adquireixi major magnitud.

<table>
<thead>
<tr>
<th>Entitats de població</th>
<th>2001</th>
<th>2016</th>
<th>Variació 2001-2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Llinars del Vallès</td>
<td>6.160</td>
<td>8.350</td>
<td>2.190, 35,6%</td>
</tr>
<tr>
<td>Disseminat de Llinars del Vallès</td>
<td>74</td>
<td>65</td>
<td>-9, -12,2%</td>
</tr>
</tbody>
</table>
Remodelació del sistema energètic de Llinars del Vallès amb l’ús d’energies renovables

La resta d’unitats en disseminat han perdut població, destacant el de Sanata, que n’ha perdut quasi un terç.

II. Evolució de la població

<table>
<thead>
<tr>
<th>Any</th>
<th>Homes</th>
<th>Dones</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>3.262</td>
<td>3.206</td>
<td>6.468</td>
</tr>
<tr>
<td>1999</td>
<td>3.395</td>
<td>3.315</td>
<td>6.710</td>
</tr>
<tr>
<td>2000</td>
<td>3.469</td>
<td>3.408</td>
<td>6.877</td>
</tr>
<tr>
<td>2001</td>
<td>3.600</td>
<td>3.535</td>
<td>7.135</td>
</tr>
<tr>
<td>2002</td>
<td>3.695</td>
<td>3.668</td>
<td>7.363</td>
</tr>
<tr>
<td>2003</td>
<td>3.833</td>
<td>3.798</td>
<td>7.631</td>
</tr>
</tbody>
</table>

A l’igual que bona part dels municipis catalans, la crisi va afectar les dinàmiques demogràfiques, tot i que amb més dilacions. En el cas de Llinars, va seguir creixent fins el 2013, i durant els 2 anys passà a tenir un creixement quasi zero (petita pèrdua/pepit guany). Recentment, al 2016, va tornar a experimentar un guany de població considerable; això podria indicar una recuperació del creixement. No obstant, el creixement és massa recent per a acabar-ho de confirmar.
3.3.2. Les llars

Entre el 1991 i el 2011 el nombre de llars va anar en augment, en consonància amb l’augment de la població. Ara com ara no es tenen dades més actuals i no se sap si a Llinars hi ha hagut contracció en el nombre de llars sense estar associat a pèrdua de població, com ha esdevingut en altres municipis a causa de la crisi, o ha seguit augmentant el seu nombre.

![Nombre de llars](image)

La dimensió mitjana de la llar s’ha anat reduint en el transcurso dels anys, d’igual forma que ha passat a la resta de municipis. De les 3,30 persones/llar de l’any 1991, es passa a les 2,75 del 2011. Val a dir que la seva dimensió és superior a la mitjana catalana, de 2,54 i de la seva comarca, de 2,68 persones/llar, podent-se afirmar que l’estructura familiar (convencional o no), és la dominant al municipi.

I. Relació entre l’augment de població i la formació de noves llars

Abans d’entrar a l’anàlisi de les llars, es vol fer una ullada a l’evolució dels 3 components: persones, llars i habitatges, i veure si mantenen una relació. Abans de continuar, val la pena puntualitzar la diferència entre el concepte llar i el concepte habitatge; el terme llar fa referència a aquell edifici o habitatge en el que un individu o grup d’individus habiten. En canvi, un habitatge és una unitat constructiva on pot viure una unitat familiar. De fet, com es veurà més endavant, els habitatges es classifiquen en principals (o llars) i no-principals, que per la seva part es divideixen en secundaris i buits.
Tornant a l’anàlisi, tots tres factors augmenten en els 3 darrers anys censals. No obstant, l’augment del nombre de llars va ser superior al creixement de població i també nombre de nous habitatges.

El creixement relatiu de població va ser del 69%, el d’habitatges quasi del 70% i el de les llars de gairebé el 98%. Així, menys persones necessiten més habitatges; ara, donat que l’augment en el nombre d’habitacions és similar al de la població i menor al de les llars, es pot pressuposar que Llinars del Vallès disposava d’un estoc d’habitacions suficient.

Taula 3.4: Evolució demogràfica del municipi en termes de població, llars i habitatges. Font: IDESCAT [2]

II. Les llars segons el nombre de persones

La reducció de la dimensió de la llar així com l’aument del nombre de llars per damunt del de població es veu millor prenent l’evolució de les llars segons el nombre de persones. Entre el 1991 i el 2011:

- les llars de dues persones són les que més han augmentat, en quasi 7 punts;
- les llars unipersonals també augmenten tot i que amb menor pes;

els de 4 i 5 persones han reduït volum i pes, i les de 6 i més al 2011 ha reduït pes en relació el 1991 però n’ha guanyat en relació al 2001 i en volum té un nombre igual al de 1991. Entre els 3 grups han perdut un 16% del pes en relació el 1991;

L’augment de les llars unipersonals i de 2 persones, reflecteixen el procés de maduració de la població: emancipació dels fills, viduïtat tot i que també hi haurà llars unipersonals joves, etc. En paral·lel, el petit augment de les llars de 6 i més persones és possible que sigui un reflex del procés de contracció de les llars derivat de la crisi.

Taula 3.5: Evolució de les llars segons la ocupació. Font: IDESCAT [2]
A Llinars les llars de 3 i més persones són una mica més de la meitat, quan al 1991 eren quasi els dos terços de les llars del municipi. Si el creixement s’estanca o redueix, les llars unipersonals i de 2 persones poden passar a ser les dominants.

III. Les llars segons el tipus de nucli

Per al 2011 no es té informació completa de les llars segons el tipus de nucli de Llinars ja que hi manca informació sobre les llars sense nuclis de dues i més persones (persones que conviuen sense ligam familiar) i les llars amb 2 o més nuclis (en una llar hi conviuen dos nuclis familiars). Tot amb tot, cap de les dues són el tipus de llars més nombrosos al municipi (entre les dues, el 6% de les llars).

<table>
<thead>
<tr>
<th>Cens 2011</th>
<th>Unipersonals</th>
<th>Parelles sense fills</th>
<th>Monoparentals pare</th>
<th>Monoparentals mare</th>
<th>Sense dades</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre</td>
<td>606</td>
<td>779</td>
<td>1.359</td>
<td>63</td>
<td>363</td>
<td>204</td>
</tr>
<tr>
<td>Pes (%)</td>
<td>18,0</td>
<td>23,1</td>
<td>40,3</td>
<td>1,9</td>
<td>10,8</td>
<td>6,0</td>
</tr>
</tbody>
</table>

_Taula 3.6: Distribució de llars segons el nucli familiar. Font: IDESCAT [2]

Al 2011, el 40% de les llars estaven formades per parelles amb fills i un 12’6% per llars monoparentals, dominant les femenines (el 85% d’aquestes).

Sobre les llars unipersonals en el punt anterior s’hi ha fet referència. Pel que fa a les de 2 persones, donat que el cens dóna informació sobre les llars de parelles sense fills, es podria pressuposar que el resultat de la diferència entre el nombre total de les unes i altres serien les formades per persones sense vincle familiar. Això significaria que el 6% de les llars de les quals no se sap quin tipus de nucli tenen serien únicament d’aquest grup i que a Llinars no hi haurien llars de 2 nuclis o més.

En aquest punt s’ha de fer l’advertiment que les dades no són exactes ja que provenen d’enquestes i que els arrodoniments fan que els parciaus en ser sumats no coincideixin amb el total, com és el cas: la diferència entre llars de dues persones i llars formades per parelles sense fills és de 240 mentre que les llars no assignades són 204.

Igualment, indicar que hi podria haver llars formades per parelles sense fills amb una altra persona (per exemple, elsavis) però el cens del 2011 no proporciona aquesta informació. Així doncs, es podrien atribuir les 204 llars que no tenen tipus de nucli assignat a llars sense nucli amb 2 o més persones, però seria pressuposar massa. Es pot apuntar que al 2001 eren el 2,8% de les llars, però en el mateix any, les llars amb 2 nuclis i més suposaven el 2,7% de les llars.

En relació el 2001 destaca la reducció en gairebé el 8% el pes de les llars formades per parelles amb fills, tot i que en nombre han augmentat; l’augment en nombre i pes de les llars monoparentals, en un 4’4%, i el menor augment de les llars de les llars formades per parelles sense fills; queda el dubte si les llars formades per dues persones i més sense vincle han augmentat tot i que el major volum de llars de dues persones fa pensar que sí.

3.3.3. Estimacions de població i llars

Ja s’ha publicat la població per a l’any 2016 i Llinars ha tornat a guanyar en població. Es té informació sobre el total però no sobre quins grups d’edat creixen. Igualment, s’intentarà poder
treballar amb informació del padró del 2017 per a intentar escatir si l’augment del 2016 ha estat aïllat o al 2017 segueix.

Les estimacions de població han estat elaborades pel mètode de pes, el qual es basa en el càlcul de l’evolució del pes del municipi en un àmbit territorial major del qual es disposin projeccions –la comarca en aquest cas, que disposa de les projeccions elaborades pel mètode de components per l’IDESCAT–. Atès que aquestes només abasten fins l’any 2026 i el període temporal per a Llinars del Vallès arriba fins el 2034, per al període 2027 a 2034 les estimacions s’han completat pel mètode d’extrapolació de taxes.

Llinars del Vallès parteix d’una població d’una mica més de 9.500 persones al 2015 i podria passar per una reducció del volum de població segons l’escenari baix, en el primer sexenni. La natalitat es manté però la mortalitat s’ha estabilitzat a l’alta, els saldos migratoris interiors són positives tot i que han reduït el volum i els exteriors han estat negatius i tot i que al 2015 torna a ser positiu, el volum és baix.

Aquest escenari indica que el volum inicial no es recupera en tota la durada del pla. És un escenari que mostra de manera clara els efectes de la crisi en les dinàmiques demogràfiques i que es perllonguen en tot el període: a la gran pèrdua que es podria produir en el primer sexenni, el canvi de tendència dels 2 següents no el compensaria.

<table>
<thead>
<tr>
<th>Estimacions població (provisionals)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baix</td>
</tr>
<tr>
<td>2015</td>
</tr>
<tr>
<td>2022</td>
</tr>
<tr>
<td>2028</td>
</tr>
</tbody>
</table>

és de 2015-2022	-370	30	390
2022-2028	70	300	740
2028-2034	15	160	500
2015-2034	-285	490	1.630

Taula 3.7: Estimació futura de l’evolució de la població. Confecció pròpia

El segon escenari mostra com afectaria al creixement de la població la situació d’alentiment identificada en els darrers 3 o 4 anys; d’aquí que al primer sexenni tindria un creixement positiu però molt baix, mentre que al segon la recuperació és ja més clara. A l’igual que en l’escenari baix, el tercer sexenni mostra la possibilitat d’un creixement ja més atenuat.

L’escenari alt contempla la possibilitat que se segueixi creixent tot amb tot amb un ritme molt menor que els dels darrers 6 anys de màxim creixement al municipi en el primer sexenni mentre que el segon ja el situa més proper als anteriors ritmes. El tercer sexenni indicaria un creixement menor.

En tot cas, Llinars del Vallès podria veure augmentada la seva població en 490 a 1.630 noves persones segons l’escenari mitjà o alt, mentre que l’escenari baix mostra una pèrdua de població de gairebé 300 persones. S’insisteix però, que aquestes estimacions són provisionals i que caldrà actualitzar-les més endavant.
Respecte les estimacions de llars s’empra el mètode de la dimensió mitjana de la llar estimada. El cens del 2011 indicava una dimensió mitja de 2’75 persones / llar i l’estructura d’edats mostra una població madura i amb possibilitats d’envelliment.

Les tendències de futur tant poden anar per a una compressió de la llar mentre duri la crisi com a una nova reducció de la llar conseqüència tant per emancipació dels joves (dins o fora del municipi), i per tant augment de les llars de dues persones adultes i també de les llars unipersonals grans, com per recuperar l’atracció de persones joves en edat de formar família, com per la combinació d’ambdues. D’entrada es proposa una evolució de la dimensió mitjana de les llars en una forquilla que pot anar entre els 2’73 persones/llar al 2022, 2.71 al 2028 i 2’69 al 2034: en les 3 es considera la reducció de la llar però també la possibilitat que l’augment de les llars unipersonals i de dues persones puguin ser compensades per l’entrada de nova població.

A l’igual que en el cas de les estimacions de població, aquestes són provisionals i caldrà revisar-les.

Llinars podria augmentar el nombre de llars inclús en l’escenari regressiu. La forquilla aniria de les 90 noves llars a les 780 de l’escenari alt.

3.3.4. Els habitatges

Anteriorment, es posava en relació població, llars i habitatges i es veia que augmentaven més les llars que la població i el nombre d’habitatges, pressuposant que havia estat possible perquè Llinars del Vallès disposava dels habitatges suficients per absorbir-ho. En aquest punt es podrà veure si això ha estat així.

![Gràfic 3.3: Evolució del nombre d’habitatges. Font: IDESCAT [2]](image)

El major increment es produeix en la dècada dels anys 80, amb un augment del 89%; en les dues dècades següents segueixen produint-se augments, però ja menors, del 27% en la dels 90 i del 33% en la primera dècada del segle XXI.
I. Els habitatges segons tipus

Els habitatges segons tipus indiquen que l’augment de la dècada dels anys 80 va ser a causa de l’elecció de Llinars del Vallès com a municipi de segona residència: de suposar el 8% dels habitatges al 1981 passen a ser una quarta part de l’habitatge total al 1991. Al 2001 ja va reduir el nombre i pes però seguien sent encara nombrosos, una cinquena part dels habitatges.

<table>
<thead>
<tr>
<th>Any</th>
<th>Nombre</th>
<th>Principals</th>
<th>Secundaris</th>
<th>Buits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981</td>
<td>1.252</td>
<td>103</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>1.714</td>
<td>669</td>
<td>179</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>2.480</td>
<td>648</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>3.374</td>
<td>308</td>
<td>670</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Any</th>
<th>Pes</th>
<th>Principals</th>
<th>Secundaris</th>
<th>Buits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981</td>
<td>92%</td>
<td>8%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>67%</td>
<td>26%</td>
<td>7%</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>76%</td>
<td>20%</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>78%</td>
<td>7%</td>
<td>15%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variació</th>
<th>Principals</th>
<th>Secundaris</th>
<th>Buits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981-1991</td>
<td>37%</td>
<td>550%</td>
<td>--</td>
</tr>
<tr>
<td>1991-2001</td>
<td>45%</td>
<td>-3%</td>
<td>-34%</td>
</tr>
<tr>
<td>2001-2011</td>
<td>36%</td>
<td>-52%</td>
<td>463%</td>
</tr>
</tbody>
</table>

Taula 3.8: Evolució dels habitatges segons la tipologia. Font: IDESCAT [2]

La major reducció es produeix al 2011, quan passen a ser el 7%, però el fet que l’habitatge buit augmenti fins a un 15%, que és possible ja que el cens es va fer en plena crisi, suposa que pocs habitatges amb d’altres usos hagin passat a ser de primera residència. De fet, al 2011 la primera residència és del 78%, una mica més de les ¾ parts del l’habitatge del municipi.

En qualsevol cas, no es pot descartar que part de l’aument del nombre de llars es produeix per transformació de la segona residència a principal atès que l’habitatge principal ha augmentat mentre que els habitatges amb d’altres usos, han anat reduint el seu pes, tot i que no el seu volum.

Si es compara el percentatge d’habitatges buits de Llinars del Vallès en relació a la seva comarca i Catalunya, Llinars segueix una dinàmica diferent: al 1981 no té habitatge buit però al 1991 ja en té un 7%, cosa que indica un augment; contràriament al Vallès Oriental i Catalunya es redueix; a les dues següents dècades s’inverteixen els signes; quan a Llinars es redueix, a la comarca i Catalunya augmenta, quan en aquests dos darrers torna a disminuir el percentatge d’habitatge buit, a Llinars augmenta i molt, multiplicant per 5’6 el seu volum en 10 anys.

Una altra classificació possible dels habitatges és diferenciar segons el nombre d’immobles. Segons el cens del 2011, l’edifici dominant era el d’1 immoble amb el 81% dels edificis, seguit pels plurifamiliars amb l’11% dels edificis i els bifamiliars.

Fent una translació en el nombre d’habitatges segons el cens del 2011, resulta que efectivament l’habitatge unifamiliar és el dominant però el seu pes relatiu es reduceix força, fins quasi el 49% mentre que els habitatges en edifici plurifamiliar quasi els igualen (42%).
Si es consideren les dues darreres dècades, el tipus d’habitatge que més s’ha construït al municipi ha estat l’unifamiliar: al 1991 el plurifamiliar era quasi la meitat dels immobles totals, el 2001 el 40% i al 2011 el 42%.

Igualment destacable és la reducció del nombre d’immobles en edifici bifamiliar; es desconeix si per enderroc o remunta.

II. Característiques dels habitatges

II.1. Règim de tenença de l’habitatge principal

L’habitatge en propietat és el dominant en la tenença de l’habitatge principal, amb quasi tres quartes parts, però entre el 2001 i el 2011 el seu pes es redueix augmentant el de l’habitatge en lloguer.

Malgrat que en volum, el nombre d’habitatges en propietat ha seguit engrossint-se, la variació de l’habitatge posat en lloguer en la darrera dècada ha estat més notable, tenint en compte que en la dècada anterior va reduir-se. No obstant, en 20 anys és l’habitatge en propietat el que s’ha expandit. Això ha estat possible recorrent a l’endeutament familiar: al 1991 els habitatges amb pagaments pendents suposava el 22% de l’habitatge en propietat (el 30% en relació el pagat) i al 2011 el 58% (el 158% respecte el pagat).

II.2. L’alçada dels edificis i els ascensors

El 41% dels immobles se situen en edificis de dues plantes sobre rasant i el 44% de 3 i més. Dels emplaçats en edificis de 3 plantes una cinquena part disposava d’ascensor.

El nombre d’edificis amb ascensor augmenta amb el nombre de plantes, tot amb tot, en els de 4 just superen el terç, en els de 5 la meitat i només els edificis de 6 plantes tenen tots ascensors.
II.3. Antiguitat dels immobles i estat de conservació

El gruix dels habitatges de Llinars del Vallès ha estat construït a partir dels anys 50, suposant el 93% del total d’immobles. La distribució en els darrers 60 anys és relativament homogènia tot i despuntar la primera dècada del s.XXI amb una mica més d’una cinquena part de l’habitatge construït i la dels 80 del passat segle amb una mica menys de la cinquena part.

<table>
<thead>
<tr>
<th>Antiguitat dels immobles, 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nre</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>Abans de 1900</td>
</tr>
<tr>
<td>De 1900 a 1920</td>
</tr>
<tr>
<td>De 1921 a 1940</td>
</tr>
<tr>
<td>De 1941 a 1950</td>
</tr>
<tr>
<td>De 1951 a 1960</td>
</tr>
<tr>
<td>De 1961 a 1970</td>
</tr>
<tr>
<td>De 1971 a 1980</td>
</tr>
<tr>
<td>De 1981 a 1990</td>
</tr>
<tr>
<td>De 1991 a 2001</td>
</tr>
<tr>
<td>De 2002 a 2011</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Tot i que una mica menys d’un terç dels immobles són anteriors als anys 70 i un 15% es corresponen a la dècada dels 70, majoritàriament se situen en edificis en bon estat de conservació (97%). En estat ruïnós s’hi troben un 0,3% dels immobles, en mal estat un 0,4% i en estat deficient el 2,3%.

Segons l’antiguitat de l’edifici, la meitat dels immobles en estat ruïnós es corresponen a la dècada dels anys 80 i un terç són anteriors als anys 40 del passat segle. Dels que estan en mal estat, una mica més de la meitat són també d’aquella època, un 20% de la dècada dels 50, un 13% dels anys 80 i un 7% dels 60.

En relació els edificis en estat deficient (segons el cens, edificis en què les baixades de pluja o el sistema d’aigües residuals estan en mal estat, hi ha humitats a la part baixa de l’edifici o té filtracions a les teulades o cobertes), el 38% són anteriors als 40, el 21% són en edificis construïts als anys 50 i el 15% als anys 70.

Dit de manera resumida: el gruix d’edificis que no estan en bon estat són anteriors a la dècada dels anys 40 amb el 40% dels immobles, si bé només suposa el 23% dels immobles construïts en aquell període.

Les dècades dels cinquanta i setanta destaquen també tot i que no arriben a ser el 20% i en relació els immobles construïts en aquelles dècades, se situen entre el 5 i 4% respectivament.

II.4. Dinàmiques constructives i tipus d’habitatge construït

Les dinàmiques constructives dels darrers 25 anys posen de manifest dos aspectes:

- El període amb majors dinàmiques comprèn del 2003 al 2008, tot i que al 2007 ja hi ha un primer punt d’inflexió (s’inicen menys d’un centenar d’habitatges) i si bé al 2008 es recupera, ja són menys de 200;
- S’han iniciat més habitatges dels que s’han acabat (per cada habitatge acabat se n’iniciava 1/4).
Remodelació del sistema energètic de Llinars del Vallès amb l’ús d’energies renovables

A partir del 2009 es reduïx considerablement el nombre d’habitatges iniciats, dels quals el 78% són HPO (Habitatges de Protecció Oficial), i els acabats. Al 2010 segueix disminuint el nombre d’habitatges iniciats i el 88% són amb protecció oficial i també els acabats, i al 2011 la reducció és encara més forta, destacant que al 2011 el 75% dels habitatges acabats són amb protecció oficial.

Al 2016, fins al tercer trimestre es van iniciar 10 habitatges i se’n van finalitzar 7, seguint doncs la tònica dels darrers 7 anys.

Segons tipologia, el 59% dels habitatges acabats són en edificis plurifamiliars en bloc. Ara, a partir de l’any 2013 els pocs habitatges que es finalitzen són unifamiliars, dominant els aïllats.

També és interessant el canvi de tendència que es va produir a principis dels anys 2000: fins al 2003 dominava l’habitatge unifamiliar sobre el plurifamiliar i entre els primers el gruix es va desplaçar de l’aïllat a l’adossat.

A partir del 2004 l’habitatge en edifici plurifamiliar prenen el relleu i suposen el 62% dels habitatges acabats. Al 2008, darrer any amb més de 100 habitatges acabats, els habitatges en edifici plurifamiliar es reduïxen fins al 48% dels habitatges acabats, si bé al 2010 suposen el 92% del total. Com ha estat anteriorment indicat, en els darrers 4 anys només s’han construït habitatges en edificis unifamiliars.

Segons superfície construïda, dominen els habitatges de grans dimensions, de més de 150 m², amb el 37%, seguits dels de dimensions mitjanes−petites, d’entre 76 i 100 m² amb una mica menys d’un quart dels habitatges acabats.

Els habitatges de reduïdes dimensions (< 50 m²) tenen molt poc pes entre els habitatges acabats des del 2001, de l’1,6%, tot i que destaca l’any 2007 en què es van acabar el 78% dels habitatges amb aquestes dimensions, cosa la qual fa pensar en una promoció.

3.4. Estudi del consum energètic

3.4.1. Evolució del consum d’energia primària i final a Catalunya

A l’any 2014, darrer any en què es recolliren les dades energètiques, segons l’ICAEN i l’IDESCAT, el consum total de l’energia primària i final a Catalunya es va situar en 23.198 ktep i 12.990,9 ktep, respectivament. El diferencial entre ambdues tipologies es troba en les pèrdues per generació elèctrica, pèrdues en refineries i plantes d’olefines, pèrdues en el transport i la distribució de l’energia, consums propis del sector energètic, i finalment també per a usos no energètics.

Espanya i Catalunya mostren una gran dependència de les importacions d’energia. Espanya no és un país ric en fonts energètiques, i per tant no és autosuficient pel que fa a les seves necessitats d’energia. Només un 26,9% i un 24,6% de l’energia consumida és produïda a Espanya i a Catalunya, respectivament. S’han d’importar recursos com el petroli, el gas natural o els combustibles radioactius procedents d’altres països.

El consum d’energia primària a Catalunya s’ha caracteritzat per una reducció significativa en el període 2010-2014 de l’11,1%, que en termes absoluts representa una disminució de 2.882,7 ktep. Respecte el màxim del consum d’energia primària a Catalunya, que es va produir l’any 2007, la disminució del consum d’energia primària fins l’any 2014 ha estat del 13,3%, situant el consum d’energia primària d’aquest any en un nivell equivalent a l’any 2000.

L’any 2014, el consum principal d’energia primària és degut al petroli amb un 44,4% del consum total, mentre que el gas natural i l’energia nuclear representen un 21,5% i un 25,9%, respectivament.

El consum total de les energies renovables s’ha duplicat aproximadament en el període 2005-2014 (increment de 672,3 ktep) com a conseqüència, fonamentalment, de l’augment de la producció eòlica, que s’ha incrementat en 231,6 ktep en aquest període.

D’altra banda, el consum de petroli i de gas natural en els darrers deu anys ha experimentat un descens de 2.826,2 ktep i de 1.657,2 ktep, respectivament, que representen un 21,5% i un 24,9% de reducció.

En relació amb el consum d’energia final, el comportament en el període 2010-2014 també es caracteritza, tal com passa en el cas del consum en termes d’energia primària, per una reducció important del consum d’energia. Així, el consum d’energia final va disminuir un 12,4% (1.831,8 ktep) en aquest període, assolint l’any 2014 un nivell de consum d’energia final lleugerament inferior al de l’any 1999.

Els productes petrolífers representen gairebé la meitat del consum final (48,4%). D’altra banda, l’energia elèctrica i el gas natural representen el 27,2% i el 20,8%, respectivament, del consum d’energia final.

La disminució del consum d’energia final a Catalunya és deguda fonamentalment a la reducció del consum de combustibles, que ha experimentat una reducció del 13,7% en el període 2010-2014, mentre que el consum d’energia elèctrica ha disminuït un 8,6%, contribuint així a l’aument del pes de l’energia elèctrica sobre el consum d’energia final i, per tant, del nivell d’electrificació del sector energètic.

Pel que fa a l’evolució dels productes petrolífers, resulta especialment significativa la reducció del consum de gasolines i gasoil d’automoció, associat al sector transport, i del coc de petroli associat al consum de les fàbriques de ciment catalanes (sector industrial). Resulta destacable també el lleuger increment del consum de querosè d’aviació, essent l’única forma d’energia d’origen fòssil que incrementa el seu consum en els darrers cinc anys.

Cal destacar també la reducció del consum final de gas natural a Catalunya en el període 2010-2014, que ha estat de 434 ktep (13,8%).

Pel que fa a l’estructura de consum d’energia final per sectors, el consum més elevat correspon als sectors del transport i a l’industrial, que representen un 42,3% i un 26,3%, respectivament, del consum final d’energia l’any 2014. D’una banda, cal destacar que el consum energètic del sector transport l’any 2014 (5.492,9 ktep), malgrat la seva reducció en els darrers anys en termes absoluts, és el més elevat de la sèrie en termes de contribució respecte el consum total d’energia final. D’altra banda, cal destacar també la reducció de la contribució del sector industrial en el consum d’energia final (27,3% l’any 2014), com a conseqüència de la crisi econòmica, que havia representat un 31,8% en l’any 2005. Finalment, els sectors domèstic, serveis i primari representen, en conjunt, un 30,5% del consum final d’energia a Catalunya.

3.4.2. Estimació de les emissions de contaminants en base al consum d’energia de Llinars

Catalunya es situa a nivell de consum d’energia per sobre de la resta de l’estat espanyol (2,5 tep/habitant) i per sota de la zona euro (3,4 tep/habitant), amb 3,1 tep/habitant segons dades de l’Institut Català de l’Energia de l’any 2.014.

A partir del consum energètic per habitant a Catalunya s’ha estimat el consum del municipi de Llinars del Vallès. De la proporció de les diferents fonts d’energia utilitzades a Catalunya (consum final d’energia) i el parc automobilístic de la població s’ha pogut realitzar una estimació de les emissions de contaminants dels sectors domèstic i serveis. El procediment metodològic i els càlculs s’han extret de l’Annex A: Guia de càlcul d’emissions contaminants a l’atmosfera 2013, de la Direcció General de Qualitat Ambiental de la Generalitat.
El document estipula que les emissions degudes al consum de combustibles en petites combustions dependen del consum de cada tipus de combustible. Dins d’aquest tipus de font emissora es distingeixen dos grans grups amb factors d’emissió diferenciates: Les emissions del sector domèstic (com podria ser el cas d’un habitatge familiar) i les emissions del sector institucional o comercial (per exemple, un hospital).

L’estimació d’emissions de contaminants es pot extreure a partir del consum d’energia o del consum de combustible. En el cas que ocupa, les emissions es calculen a partir del consum. En aquest cas, els factors d’emissió estan expressats en g/GJ, i el càlcul de les emissions es realitza fent ús de la següent equació:

\[E = Q \cdot FE \quad (Eq. 3.1) \]

On,

- \(E \) Emissió del contaminant [g]
- \(Q \) Consum de combustible [GJ]
- \(FE \) Factor d’emissió [g/GJ], valor que s’extreu de les taules que es presenten a la guia, i que varia segons el tipus de contaminant i el tipus de combustible.

D’altra banda, també és possible realitzar una estimació de les emissions de contaminants derivades del transport terrestre. Segons la quantitat d’informació recopilada, la Guia presenta diverses metodologies. En el present cas, s’ha utilitzat la següent expressió:

\[E = N \cdot M \cdot FE \quad (Eq. 3.2) \]

On,

- \(E \) Emissió del contaminant [g]
- \(N \) Nombre de vehicles
- \(M \) Distància mitjana recorreguda pel vehicles del municipi [km]
- \(FE \) Factor d’emissió [g/km], valor que s’extreu de les taules que es presenten a la guia, i que varia segons el tipus de contaminant i el tipus de combustible.

Així doncs, en base a la guia del Càlcul d’Emissions de Contaminants a l’Atmosfera. 2.013 (Annex A) de la Direcció de la Qualitat Ambiental de la Generalitat de Catalunya es calcula les emissions de contaminants del municipi de Llinars del Vallès en base als esmentats sectors:

- Sector domèstic
- Sector terciari i comercial
- Transport terrestre

Amb el nombre d’habitants del municipi i el consum d’energia per habitant a Catalunya (dades obtingudes a través de l’Institut Català de l’Energia) es calculen les emissions a partir dels factors d’emissió que defineixen els diferents sectors que ha elaborat la guia de Càlcul d’Emissions.

Segons el sectors caracteritzats a la guia (domèstic, terciari i transport terrestre) s’ha pogut calcular les emissions de contaminants a l’atmosfera:
El monòxid de carboni és el major compost que s’emet a l’atmosfera (2.936 Tn).

Els òxids de nitrogen són els compostos que s’alliberen a l’atmosfera, després del monòxid de carboni amb 2.899,4 Tn.

Finalment els òxids de sofre (SO\textsubscript{2}), compostos orgànics volàtils (NMVOC), les partícules sòlides (PM\textsubscript{10} i PM\textsubscript{2,5}) i l’amoníac (NH\textsubscript{3}) que es situen en tercera posició en quant a emissió de contaminants amb (623.7, 579.0, 510.1, 499.6 i 45 Tn).

3.4.3. Consum d’energia i emissió de contaminants segons tipologia edificatòria

Resultat de la certificació energètica en nous edificis, o d’aquells en els que hi hagut transaccions per compra-venda o lloguer, s’ha obtingut una bona mostra de locals o habitatges, de ls quals es disposa la demanda energètica (kWh/m2 any d’energia primària) i les emissions (kg CO\textsubscript{2}/m2·any).

En total es disposa d’una mostra de fins a 580 habitatges i locals.

No obstant això, a la taula 3.12 es mostra l’energia primària requerida per cobrir les necessitats energètiques del municipi. Expressat en altres paraules, els valors de la taula no representen el consum final dels habitants del municipi. Per tant, cal aplicar una factor de conversió per estimar els consums finals segons tipologia edificatòria, valors que són necessaris abans d’aplicar qualsevol mesura de remodelació energètica.

![Taula 3.13: Factors de conversió energia final - energia primària a Espanya. Font: IDAE [5]](image)

Aplicant el factor de conversió, de 2,35, a la taula 16, es pot obtenir el consum d’energia final estimada segons cada tipologia edificatòria.

<table>
<thead>
<tr>
<th>Tipologia</th>
<th>Energia primària [kWh/m2·any]</th>
<th>Energia final [kg CO2/m2·any]</th>
<th>Nombre d’habitatges</th>
</tr>
</thead>
<tbody>
<tr>
<td>HABITATGE UNIFAMILIAR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>74,21</td>
<td>31,58</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>123,61</td>
<td>52,60</td>
<td>21</td>
</tr>
<tr>
<td>E</td>
<td>199,49</td>
<td>84,89</td>
<td>114</td>
</tr>
<tr>
<td>F</td>
<td>278,28</td>
<td>118,42</td>
<td>33</td>
</tr>
<tr>
<td>G</td>
<td>385,38</td>
<td>163,99</td>
<td>59</td>
</tr>
<tr>
<td>TOTAL</td>
<td>249,92</td>
<td>106,35</td>
<td>230</td>
</tr>
</tbody>
</table>
Remodelació del sistema energètic de Llinars del Vallès amb l’ús d’energies renovables

Taula 3.14: Energia primària i energia final mitjanes segons tipologia i certificació energètica. Font: ICAEN [4]

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>TOTAL</th>
<th>AL</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>HABITATGE INDIVIDUAL EN BLOC D'HABITATGES</td>
<td></td>
<td>34,30</td>
<td>14,60</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>168,77</td>
<td>71,82</td>
<td>373</td>
</tr>
<tr>
<td></td>
<td>57,80</td>
<td>24,60</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>76,08</td>
<td>32,37</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>143,33</td>
<td>60,99</td>
<td>209</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>216,56</td>
<td>92,15</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>275,33</td>
<td>117,16</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>168,77</td>
<td>71,82</td>
<td>373</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TERCIARI</td>
<td>477,69</td>
<td>86,20</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>283,16</td>
<td>65,62</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>85,60</td>
<td>17,84</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>300,24</td>
<td>59,62</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>244,53</td>
<td>53,08</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>276,38</td>
<td>66,12</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>261,37</td>
<td>81,81</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>287,28</td>
<td>77,33</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>283,16</td>
<td>65,62</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. Reducció de la demanda

La reducció de la demanda energètica segueix constituïnt un dels pilars essencials de la política energètica d’un país. Aquesta reducció pot permetre aconseguir de forma simultània els objectius de minimització del cost, maximització de la seguretat de subministrament, i reducció de l’impacte ambiental de l’energia, tal com s’expressa en nombrosos documents d’institucions Internacionals (IEA, 2010a; EC 2011a).

La Unió Europea (UE), que ha estat molt activa en aquest àmbit, també presenta diversos arguments per recolzar l’eficiència energètica. En el seu 'Iniciativa emblemàtica de l’Estratègia Europa 2020' [6] per aconseguir una Europa que utilitzi eficaçment els seus recursos, s’ofereixen les següents raons pels quals l’eficiència energètica és desitjable:

- La millora en l’eficiència energètica redueix la necessitat de generar energia i la necessitat d’infraestructures. Això, al seu torn, redueix la pressió sobre l’ús del sòl. Per exemple, reduint l’1% del consum energètic de la UE es podria prescindir de 50 centrals elèctriques de carbó o 25.000 turbines eòliques.

- La lluita contra el canvi climàtic i la millora en l’eficiència energètica pot augmentar la Seguretat energètica i reduir la vulnerabilitat als xocs del petroli.

- Els impostos i les subvencions de l’ús de l’energia o altres recursos es poden emprar per incentivar un consum més eficient de l’energia i per reduir la pressió fiscal sobre el treball, el que beneficiaria la creació de llocs de treball i el creixement econòmic.

- Els llocs de treball generats en aquells sectors vinculats al creixement sostenible són generalment més segurs, amb un alt potencial per a les exportacions i d’alt valor afegit.

Sota el nom "Europa 2020: la nova estratègia per a un creixement intel·ligent, sostenible i inclusiu", els estats membres de la UE, entre d’altres objectius socials i climàtics, s’han compromès a millorar l’eficiència energètica un 20% per 2020. No obstant això, els països de la UE no es troben actualment en el camí que permeti acomplir amb els objectius acordats. Per això, al juny de 2011 la UE va llançar una nova directiva que, entre altres coses, exigeix a tots els seus membres un estalvi energètic d’un 1,5% anual entre els consumidors finals, i així poder complir amb els objectius inicials per al 2020. aquest fet deixa palesa la importància i la necessitat de millores en eficiència energètica entre els països de la UE.

Pel que fa a Espanya, si bé se sap que la intensitat energètica espanyola havia millorat en els últims anys, seguia situant-se per sota de la mitjana europea. En particular, gran part de la millora experimentada en els últims anys a Espanya va tenir lloc a nivell estructural, mitjançant canvis en el model productiu. No obstant això, encara hi ha grans diferències amb Europa a nivell intersectorial, és a dir, pel que fa a l’eficiència dels processos productius o dels consumes dins de cada sector.

Així, si bé el sector elèctric mostra una alta eficiència, i la indústria millora significativament, els sectors terciari i residencial presenten tendències d’empitjorament de la seva eficiència, davant les notables millores experimentades en la Unió Europea. A més, el sector residencial és el major
consumidor d’energia a Espanya (31% del total), a través del consum en habitatge i en el transport.

Per tant, en el cas espanyol sembla especialment apropiat seguir incidint en la necessitat de reduir la demanda d’energia, en particular en els sectors de transport i d’edificació. Les diferents administracions vénen reconeixent en els últims anys la rellevància d’aquestes polítiques, i tant el Govern central com les Administracions autonòmiques i locals han desenvolupat diferents programes i estratègies per a això. Per exemple, a nivell estatal l’Estratègia d’Eficiència Energètica (E4), el Pla d’Acció 2005-2007 i el Pla d’Acció 2008-2012 analitza cada sector detalladament, detallant quines mesures es poden aplicar a cada sector per millorar l’eficiència energètica i complir amb els ambiciosos objectius plantegjats.

Un dels elements imprescindibles per al disseny d’aquest tipus de polítiques és l’avaluació correcta del potencial de reducció disponible i del seu cost. Tradicionalment s’ha considerat que l’estalvi i eficiència energètica suposen un cost negatiu, és a dir, que la implantació d’aquest tipus de mesures implica sempre un benefici econòmic. Això és el que es coneix com la paradoxa de l’eficiència energètica: el fet que mesures apparentment rendibles no siguin portades a la pràctica. S’han donat diferents respostes a aquesta paradoxa, però entre les més importants hi ha el fet que moltes vegades les estimacions subestimen el cost de les mesures d’eficiència, en no incloure primes de risc, costos ocults, o les majors rendibilitats exigides pels consumidors privats –que al seu torn s’expliquen per diferents raons–.

La no consideració d’aquestes despeses fa que, en general, es maneguin potencials majors que els realment disponibles des d’un punt de vista econòmic. Un altre problema habitual en les estimacions del cost i potencial d’aquestes actuacions és que no es té en compte la interacció entre les diferents mesures: algunes d’elles es poden solapar entre si, resultant en un potencial global de reducció inferior a la simple suma de les mesures. De nou, el resultat és una sobreestimació del potencial i una subestimació del cost.

Independentment de la rendibilitat econòmica –que s’estudiarà posteriorment–, és necessari saber que el consum d’energia associada a un edifici es pot desglossar en tres grans blocs: l’energia d’ús (funcions actives), l’energia associada a la pròpia estructura de l’immoble, i la relacionada amb els fluxos màssics. L’energia d’utilització és la que es consumeix diàriament per als diferents usos que ofereix l’edifici (calefacció, ACS, electrodomèstics, ascensors, il·luminació, etc.). L’energia associada a la seva estructura és la que s’ha utilitzat per construir, mantenir i en el seu dia enderrocar l’edifici. Finalment, l’energia dels fluxos màssics és aquella que porta incorporats els fluxos materials de tipus no energètic (aigua i residus principalment) que entren o surten de l’edifici. Aquests materials necessiten energia, tant per a ser subministrats com per ser extrets.

Almenys un 50% del consum energètic que es dóna en un edifici respon a necessitats que deriven de la seva configuració. Això succeixeix, primer, perquè l’edifici pot aportar energia passiva i estalvi (especialment en l’àmbit de la climatització) i, en segon lloc, perquè cada edifici pot actuar com un sistema de captació actiu d’energia.

La demanda final d’energia d’un edifici depèn de dues variables fonamentals: l’estalvi i l’eficiència. La primera implica renunciar a la utilització de recursos energètics que no siguin estrictament necessaris per cobrir unes determinades funcions. L’eficiència es refereix a
maximitzar la prestació d’un servei com la calefacció, refrigeració o il·luminació, amb el mínim consum possible.

Cadascuna d’aquestes variables depenen al seu torn d’altres sobre els quals és possible incidir per modificar els seus paràmeters i reduir el consum. Dins l’estalvi, els dos elements clau són els hàbits dels ciutadans i els sistemes passius incorporats en la mateixa construcció (orientació, materials, etc.). L’eficiència, per la seva banda, depèn del bon funcionament dels sistemes actius, que està en relació amb les prestacions tecnològiques d’aquests sistemes i les limitacions del marc físic en què operen.

Així doncs, gran part de la reducció de la demanda s’aconsegueix a l’hora de construir qualsevol emplaçament. Precisament, l’arquitectura bioclimàtica consisteix en el disseny d’edificacions tenint en compte les condicions climàtiques de la ubicació, valorant els aspectes que resulten més rellevants des del punt de vista mediambiental i sobretot adoptant mesures d’aprofitament dels recursos disponibles, amb l’objectiu de reduir els consums d’energia i, conseqüentment, la demanda energètica. De fet, el conjunt de solucions que ofereix l’arquitectura bioclimàtica, sobretot pel que fa a climatització, té un pes substancial en l’assoliment dels objectius, ja que la no consideració de les estratègies de disseny sostenible, comporta errors –en termes d’eficiència energètica i reducció de la demanda– que després dificilment es poden corregir.

En el cas d’aquest projecte, és clar que la reducció de la demanda energètica fruït de dissenys constructius seguint patrons de l’arquitectura bioclimàtica, no són possibles. No obstant això, existeixen mesures tècniques aplicables a construccions ja existents que poden reduir considerablement les necessitats energètiques. A més a més, com pot veure’s a la taula d’estimació de consums i emissions, la majoria dels habitatges estan dotats d’una certificació energètica de nivell “E”, fet que exposa el gran marge de millora en termes d’eficiència energètica i, conseqüentment, reducció de la demanda (un canvi del nivell “E” al nivell “C” o “B” representaria una reducció del 60% i el 75%, respectivament, de manera aproximada).

4.1. Metodologia: Reducció en tres fases

Així doncs, el primer pas cap a la remodelació del sistema energètic del municipi és aplicar mesures tècniques per assegurar la reducció del consum energètic. Un mètode que s’ajusta correctament a la realitat tècnica i econòmica d’edificis operatius es podria desenvolupar en tres fases: La fase de llançament i diagnòstic, el pla d’actuacions a curt termini per a la reducció del consum i la selecció d’inversions.

4.1.1. Llançament i diagnòstic

En aquesta fase es realitza un estudi del perfil o, en el cas que ocupa, perfils de consum dels edificis per deduir amb una bona base de fets, el conjunt d’actuacions d’eficiència energètica més adequades per a cada cas.

A l’hora de determinar les dades que s’han d’utilitzar en aquesta primer fase, cal tenir en compte diversos paràmeters o variables:

En primer lloc, és necessari conèixer la font de les dades proporcionades. Les dades de consum es poden obtenir a partir d’un comptador electrònic, en cas que la companyia elèctrica en
permeti l’accés. D’altra banda, si l’edifici disposa d’un sistema de monitorització es poden obtenir les dades del mateix. En cas contrari, caldrà instal·lar analitzadors de xarxes, bé siguin portàtils o permanents.

En segon lloc, és necessari escollir la freqüència de registre de dades a analitzar. En general, i en cas que no sigui imprescindible l’anàlisi de transitoris, les dades horàries són suficients. D’igual forma el període analitzat ha d’essser significatiu de l’ús de l’edifici. En edificis d’ús uniforme, és a dir, on s’espera que els perfiles de demanda variin poc entre dies, és habitual prendre dades durant un o dos mesos. D’altra banda, en aquells habitatges en els que l’ús és marcadament estacional —per exemple, en habitatges d’estiueig o segones residències— convé centrar-se en els mesos de temporada alta. En els casos d’ús irregular o vàries temporades d’ús a l’any, és altament recomanable abastar tot l’any.

Finalment, un altre paràmetre important és el número de punts de mesura; almenys és necessari obtenir informació en el/els punts de subministrament o CUPS. Sobretot quan es tracta d’edificis o complexes grans en termes de superfície, és habitual, en aquesta fase i en fases posteriors, controlar les dades a nivell de circuits. La submesura, en canvi, pot plantejar-se per zones o per usos –il·luminació, climatització, punts de corrent, etc.–. Per a la selecció de circuits a mesurar cal tenir en compte els següents aspectes:

- Importància del circuit consum del qual es vol analitzar.
- Facilitat tècnica per a la recopilació de dades.
- Potencial estimat d’estalvi.

Tenint en ment tots els paràmètres descrits, és recomanable que la selecció principal de circuits comprengui un número significatiu però no exhaustiu. Així mateix, el període escollit en aquesta primera fase ha de cercar l’equilibri entre practicitat i rellevància. Convé complementar i contrastar tota la informació recollida amb d’altra com pot ser la informació de factures, per exemple, que és molt més limitada però que abasta un període de temps més extens. També es pot contrastar amb dades sobre pràctiques i necessitats en l’ús de l’energia elèctrica, que es pot obtenir a través d’un qüestionari a mode de guia.

En conclusió, el resultat d’aquesta fase hauria d’ésser un informe amb l’estudi de perfils de consum i oportunitats d’estalvi, amb anàlisis basats en dades del edifici en sí. L’esmentat estudi aportarà robustesa enfront d’estimacions basades exclusivament en comportaments de les mateixes solucions en altres edificis o amb perfils de demanda completament diferents.

4.1.2. Pla d’actuacions a curt termini per a la reducció del consum

En aquesta segona fase arranca un projecte per a la identificació d’actuacions d’estalvi, prioritzant i implementant les mesures més immediates, amb una inversió de capital reduïda –i, en la majoria de casos, amb un període de retorn menor a tres anys–, i en alguns casos nul·la.

La duració d’aquesta fase és variable segons la dedicació estimada de l’assessor o gestor energètic i d’altres col·laboradors (personal intern o extern de manteniment, fabricants d’equips existents en l’edifici) que han de formar part de l’equip de millora que s’estableixi per al projecte. En general aquesta fase pot comportar entre dos i quatre mesos de duració si s’inverteix el temps adequat. Més endavant, a l’apartat 5.2. Mesures tècniques de reducció de la
demanda, s’explicaran diverses actuacions respecte els tres grans factors de la demanda energètica; climatització, aigua i electricitat.

Com a resultat en aquesta fase, s’obté l’ajustament del consum de l’edifici a les possibilitats de les instal·lacions i usos actuals del mateix. En els casos que ho mereixin, es realitzen proves quantificades de diversos modes d’operació fins a trobar l’actuació més adequada, fet que suposa la realització d’una o vàries campanyes de mesura de perfiles de circuits específics, per zones o per usos. A tall d’exemple, pot implementar-se una actuació d’eficiència com podria ser la millora de l’aïllament en la una planta d’un edifici plurifamiliar, que és la que en la fase de llançament o diagnòstic determinava que posseïa el major potencial d’estalvi.

4.1.3. Selecció d’inversions

Finalment, conseqüència de les fases anteriors i de les condicions dels edificis, s’analitzen les inversions que poden ésser factibles econòmicament i tècnica i que tenen un major impacte en la reducció dels consums. A grans trets, les possibles inversions es poden classificar des de dues dimensions o dos punts de vista: segons el paràmetre d’inversió conegut com ROI o TIR (a certs anys), i per la seva facilitat d’implantació.

A continuació es presenten alguns exemples d’actuacions que requereixen un anàlisi per decidir si finalment s’implanten o no:

- Tècniques per a l’optimització de l’aprofitament de la llum natural.
- Incorporació de millores en circuits o sistemes de control de climatització de fred comercial o industrial.
- Sistemes de telegestió o de domòtica.
- La millora i substitució (si escau) selectiva de part de l’enllumenat.
- El condicionament de les xarxes, en ocasions denominats “estalviadors d’energia”.

Un cop seleccionades aquelles actuacions preferencials, s’inicia un procés de selecció de subministradors a partir d’un abast predefinit. Aquest procés és molt més eficaç que la recepció de propostes de subministradors no basades en l’anàlisi del propi edifici. Així mateix, facilita la realització de proves i assajos abans d’escometre inversions completres, fet que minimitza l’assimilació de riscos en la implantació.

Per concloure aquesta fase, és oportú puntualitzar que l’ordre lògic de les fases no ha de complir una disposició temporal estricta. Per exemple, és possible realitzar la darrera fase amb cert solapament amb la fase del pla d’actuacions. D’altra banda, en casos obvis, també és possible analitzar directament una inversió mentre s’està duent a terme la fase de llançament i diagnòstic. Per tant, és perfectament compatible i fins i tot complementària amb altres actuacions en curs que es puguin estar duent a terme per a la rehabilitació energètica dels edificis.

4.2. Mesures tècniques de reducció de la demanda

Tal i com s’ha explicat, el primer pas per a la remodelació energètica de qualsevol edifici ha de començar, de primer, en la construcció del mateix. No obstant això, com en el cas que ocupa aquest projecte és un cas real de municipi consolidat en termes constructius, el següent pas és aplicar la metodologia de les tres fase per a la reducció de la demanda. Tot i que, com s’ha
explicit, cada actuació dependrà directament de les característiques de l’edifici, el ventall de mesures tècniques a impulsar és tan nombrós que es considera rellevant presentar una sèrie de mesures comunament conegudes per la seva facilitat d’implantació o pel seu baix retorn de la inversió.

A continuació, s’exposen alguns exemples encarats a l’eficiència energètica agrupats en tres blocs de demanada ben diferenciats; climatització, il·luminació i equipament i aparells elèctrics. Finalment, també s’hi inclouen una sèrie de mesures que cal tenir en consideració a l’hora d’establir noves edificacions.

4.2.1. Climatització

1. Ventilació creuada

Un concepte interessant a esmentar és la ventilació creuada. Tot i que les obertures dels habitatges romanguin tancades, en la majoria d’edificis es produeix un intercanvi tèrmic degut al flux de l’aire. Aquest fenomen es deu al fet que quasi tots els components constructius tenen nombroses fissures –en ocasions microscòpiques–, que permeten la penetració de l’aire a través dels mateixos donant lloc al que es coneix com infiltració, i el que és el mateix, ventilació no controlada, i en ocasions no desitjada.

D’altra banda, el terme ventilació natural es refereix a aquella ventilació propiciada voluntàriament per mitjà d’obertures dissenyades específicament. En termes estrictes, en el moment en què s’instal·la una simple finestra practicable –és a dir, que permet que es pugui obrir – s’estarà concedint ventilació natural a l’edifici. No obstant això, aconseguir una ventilació eficient implica el coneixement de les condicions climàtiques del lloc així com un estudi meticulós de la orientació, de les dimensions i de les ubicacions de les obertures. En altres paraules, la dimensió de les obertures i la ventilació eficient no són directament proporcionals – no és pot assegurar que una obertura gran permeti una ventilació natural útil.

Així doncs, l’estratègia a prendre per tal d’obtenir una ventilació natural eficient, sempre que les condicions ho permetin, és la ventilació creuada. Aquesta es basa en la instal·lació d’obertures estratègicament posicionades que facilitin l’entrada i la sortida del vent a través dels espais interiors dels edificis, considerant de manera acurada la direcció del flux del flux de vent, i el que és el mateix, tenint en compte les zones del voltant de l’edifici amb altes i baixes pressions del vent.

Figura 4.1: Representació del funcionament de la ventilació creuada
En el cas que ocupa, la ventilació creuada seria possible mitjançant la instal·lació de finestres, situades a la part superior dels diversos tancaments longitudinals, que crearien una ventilació natural tancada. A l’ hivern les franges facilitarien la ventilació, amb petites obertures per evitar condensacions i la regeneració de l’ ambient interior. D’ altra banda, a l’estiu les franges permetrien gaudir millor dels corrents d’aire.

II. Protecció solar

Per tal que la protecció solar sigui eficient, és necessari col·locar els elements de protecció a l’exterior de l’edifici, de manera que s’eviti que la radiació penetri els vidres. D’aquesta manera, s’aconsegueix reflectir i dissipar l’energia lluny de l’interior de la construcció. Aquests elements han de ser mòbils per tal d’adaptar-se a les condicions solars, que varia en funció de l’estació de l’any.

En la mateixa línia, és important tenir present l’altura i la posició del Sol, que canvia durant tot el dia. Per exemple, a l’estiu cal impedir l’entrada de raigs directes, sense interceptar l’entrada de llum. D’aquesta manera s’assegura mantenir uns bons nivell d’il·luminació natural.

III. Aïllament tèrmic

La majoria dels edificis construïts amb anterioritat a l'any 2000 no incorporen un aïllament tèrmic adequat i l’actuació més senzilla, de menor cost i més ràpida que es pot realitzar a l’envoltant de l’edifici, és la reposició de les finestres i/o canvi de els envidraments.

En general, la renovació dels vidres i marcs és una de les accions més eficaces per a la millora de l’eficiència energètica de l’edifici, augmentant el confort tèrmic dels habitatges.
La utilització de vidres de baixa emissivitat o d'aïllament tèrmic reforçat (ATR) pot arribar a suposar un estalvi energètic d’un 60-70%, si es combina amb una fusteria adequada i una càmara de més de 10 mm. Entre el doble vidre i el doble vidre amb aïllament tèrmic reforçat (ATR) (2,6-2,7 W / m² K) l’estalvi energètic pot ser del 20-40%. Mentre que la reducció de les pèrdues entre un vidre senzill i un ATR arriba a ser de 54-70%.

Un doble vidre baix emissiu juntament amb tancaments metàl·lics de trencament de pont tèrmic (RPT) conforma una tipologia d’alta gamma d’aïllament tèrmic, normalment present en edificacions modernes. El seu vidre, a més d’incorporar vidres de baixa emissivitat, té gruixos de cambra mitjans i alts.

A la taula que es mostra a continuació es resumeixen els envirdaments que aporten millors prestacions tèrmiques. En base a aquesta taula, s’ha escollit quin és el millor vidre a instal·lar.

Taula 4.1: Estalvi energètic per diferents solucions d’envidraments. Font: IDAE [7]

<table>
<thead>
<tr>
<th>Situació</th>
<th>Acristalamiento</th>
<th>Espessor càmara</th>
<th>Carpinteria</th>
<th>Pérdidas (*) (%)</th>
<th>Ahorro (**) (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inicial</td>
<td>Vidrio monolítico</td>
<td>-</td>
<td>Madera</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>Doble</td>
<td>6</td>
<td>Metálica</td>
<td>85</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>Doble</td>
<td>12</td>
<td>Metálica</td>
<td>79</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>Doble</td>
<td>6</td>
<td>Metálica RPT</td>
<td>74</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>Doble bajo emissivo</td>
<td>6</td>
<td>Metálica</td>
<td>74</td>
<td>26</td>
</tr>
<tr>
<td>5</td>
<td>Doble bajo emissivo</td>
<td>12</td>
<td>Metálica RPT</td>
<td>68</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>Doble bajo emissivo</td>
<td>6</td>
<td>Madera</td>
<td>64</td>
<td>36</td>
</tr>
<tr>
<td>7</td>
<td>Doble</td>
<td>12</td>
<td>Metálica</td>
<td>62</td>
<td>38</td>
</tr>
<tr>
<td>8</td>
<td>Doble</td>
<td>6</td>
<td>PVC</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>9</td>
<td>Doble</td>
<td>12</td>
<td>PVC</td>
<td>53</td>
<td>47</td>
</tr>
<tr>
<td>10</td>
<td>Doble bajo emissivo</td>
<td>6</td>
<td>Madera</td>
<td>53</td>
<td>47</td>
</tr>
<tr>
<td>11</td>
<td>Doble bajo emissivo</td>
<td>12</td>
<td>Metálica RPT</td>
<td>51</td>
<td>49</td>
</tr>
<tr>
<td>12</td>
<td>Doble bajo emissivo</td>
<td>6</td>
<td>PVC</td>
<td>49</td>
<td>51</td>
</tr>
<tr>
<td>13</td>
<td>Doble bajo emissivo</td>
<td>12</td>
<td>Madera</td>
<td>40</td>
<td>60</td>
</tr>
</tbody>
</table>
| (*) % de pérdidas energètiques a través del cerramiento tomando como referencia (100%) la situación inicial
| (**) % de ahorros (reducción de pérdidas energéticas) logrados a través del cerramiento respecto a la situación inicial

Cálculos realizados para participación de 30% marco y 70% acristalamiento

Abans d’explicar l’envidrament escollit és necessari saber que els vidres dobles amb baix poder emissiu són recomanables per a ubicacions i orientacions fredes (Nord), perquè si bé tenen un comportament molt favorable pel que fa a la reducció de transmissió tèrmica, oferint un aïllament òptim enfront de gradients de temperatura, no és recomanable instal·lar-los en zones dissenyades per a la captació solar a l’hivern.

Així doncs, per les condicions climàtiques del municipi, una bona opció seria modificar, de manera, progressiva, les portes i les finestres per unes noves amb un doble vidre de 6mm, amb càmara d’aire d’espressor de 12mm, i amb ruptura de pont tèrmic, amb marc de PVC. Aquests aïllaments permeten retenir la calor que es produeix per terra radiant a l’hivern, i el fred que es manté durant l’estiu per ventilació creuada. Aquests aïllaments suposen un estalvi d’energia fins al 47%, segons les taules.
Remodelació del sistema energètic de Llinars del Vallès amb l’ús d’energies renovables

Per tal d’obtenir l’estalvi energètic teòric, es procedeix al càlcul del coeficient de transmissió de calor \(U(W/m^2K) \) per a dos tipus de vidre; un primer simple i convencional amb un espessor de 6mm, i l’altre com l’escollit prèviament, un envidrament doble amb espessor de vidre de 6mm i espessor de càmera d’aire de 12mm.

Per a un envidrament simple, format per un material homogeni de conductivitat tèrmica \(\lambda (W/(m\cdot K)) \) i espessor \(L (m) \), amb coeficients de convecció \(h_i \) i \(h_e(W/m^2K) \), interior i exterior, respectivament, el coeficient de transmissió de calor \(U \) ve donat per l’expressió:

\[
\frac{1}{U} = \frac{1}{h_i} + \frac{L}{\lambda} + \frac{1}{h_e} \quad \text{(Eq. 4.1)}
\]

D’altra banda, el coeficient de transmissió de calor \(U \) dels envidraments dobles amb càmera d’aire es calcula com:

\[
\frac{1}{U} = \frac{1}{h_i} + Ri + Rc + Re + \frac{1}{he} \quad \text{on} \quad Ri = \frac{L}{\lambda_i} \quad Rc = \frac{L}{\lambda_c} \quad Re = \frac{L}{\lambda_e} \quad \text{; (Eq. 4.2)}
\]

Els valors \(R_i, Rc \), i \(Re \), fan referència a la resistència tèrmica (per conducció) de la fulla interior, de la càmera d’aire i de la fulla exterior, respectivament.

Els valors de les resistències tèrmiques corresponents es poden observar a les taules següents:

![Diagrama de finestra amb doble vidre](image)

Figura 4.3: Estructura d’una finestra amb doble vidre

<table>
<thead>
<tr>
<th>Posició del cierrement y sentí del fluxo de calor</th>
<th>Situació del cierrement De separació con espai exterior o local abierto</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/hi</td>
<td>1/hb</td>
</tr>
<tr>
<td>1/hb + 1/hb</td>
<td></td>
</tr>
</tbody>
</table>

Taula 4.2: Resistència tèrmica superficial interior i exterior

<table>
<thead>
<tr>
<th>Espesor de la càmera, en mm</th>
<th>Càmera de aire vertical y flujo horizontal</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>(0.14) (0.16) (0.18) (0.17) (0.16)</td>
</tr>
<tr>
<td>20</td>
<td>(0.19) (0.20) (0.21) (0.18) (0.17)</td>
</tr>
<tr>
<td>30</td>
<td>(0.16) (0.17) (0.18) (0.19) (0.19)</td>
</tr>
<tr>
<td>50</td>
<td>(0.19) (0.19) (0.21) (0.20) (0.16)</td>
</tr>
<tr>
<td>100</td>
<td>(0.19) (0.19) (0.21) (0.20) (0.16)</td>
</tr>
<tr>
<td>150</td>
<td>(0.19) (0.19) (0.21) (0.20) (0.16)</td>
</tr>
</tbody>
</table>

Taula 4.3: Valors de resistència tèrmica de la càmera d’aire

De la taula 4.2, es poden extreure els valor de \(1/hi \) i \(1/he \). Aquests dos valors serveixen en ambdues equacions. D’altra banda, els valors aportats a la taula 4.3 fan referència al terme \(Rc \) de l’equació 4.2. Finalment, la resta de dades són conegudes.

\(\lambda_{vidre} \): Conductivitat tèrmica del vidre pla per envadir que té un valor de 0.95W/m\(^2\)-K.
L: Espessor del material a través del qual hi passa el flux de calor. En el cas de l’envidrament simple, el valor és de 6mm. En canvi, el vidre doble amb càmera d’aire té espessors de 6-12-6(mm), per la fulla interior, la càmera d’aire i la fulla exterior.

Un cop es coneixen totes les dades, es pot calcular el coeficient de transmissió per cada cas, obtenint-se un valor de \(U = \frac{W}{m^2 \cdot K} \), aplicant la primera equació, i \(U = \frac{W}{m^2 \cdot K} \). Així doncs, l’estalvi energètic teòric és d’un 52,71%. Tot i que els resultats s’aproximen força, el valor teòric és més elevat respecte el 47% anterior ja que en el valor de les taules es considera també el material del marc de les finestres, que redueix l’eficiència de la mateixa.

IV. Calefacció per terra radiant

Aquest és un sistema de calefacció que emet la calor a través de la superfície del sòl. El principal avantatge és que es realitza l’emissió de la calor per radiació, que principalment deriva en una pèrdua de calor menor pels murs, sostres o sòls, amb el conseqüent estalvi energètic. L’ús d’aquesta tècnica assegura un estalvi d’entre un 15% i un 20% d’energia en els mètodes de calefacció.

El funcionament d’aquesta tècnica es basa en el fet que la calor es produeix sota del sòl, i aquest escalfament permet l’augment de temperatura de l’aire inferior a tota la superfície en què s’instal·la. L’aire calent ascendeix fins al sostre. En aquest procés s’escalfarà tota l’habitació. També aprofita l’alt factor d’absorció de calor del cos humà que, en desprendre’s la calor just per sota de la persona, el seu cos absorbirà directament la calor.

La calor que es necessita per aconseguir uns 22ºC en l’ambient és més baixa que en altres sistemes de calefacció. Així, la major temperatura que s'usa és sempre menor de 50ºC en tot el procés.

Dependent de l’energia que fan servir, hi ha tres tipus de calefacció mitjançant terra radiant.

- Calefacció elèctrica: L’electricitat escalfa el sistema que està sota el paviment, el que produeix la calor en l’estada.
- Calefacció per aigua calenta: És el clàssic sistema de calderes més canonades, però en aquest cas estan col·locades sota del sòl en comptes d’en radiadors a les parets.
- Calefacció per fibra de carboni: És el més innovador, la calor es transmet per filaments de fibra de carbonis instal·lats sota terra.

A l'hora d'instal·lar calefacció mitjançant terra radiant el tipus de paviment no sol presentar un problema. Hi ha multitud de materials que són afins a aquest tipus d'instal·lacions; la ceràmica, el marbre, el terratzo i similars presenten unes característiques que els fan idonis per a terres radiants. La fusta també es pot usar, encara que és menys aconsellable.

El sistema de calefacció consta de les canonades d'aigua, cables elèctrics o de fibra de carboni, com ja s’ha citat anteriorment. Aquests estan situats sobre el forjat, al qual se’l complementa amb un aïllant per evitar que la calor fluixi cap avall. Sobre aquest sistema de canonades o cables, es posa una capa de morter i després la el propi material del sòl.
Cal tenir en compte que, com més aïllat estigui l’edifici de l’exterior, menor haurà de ser la instal·lació, per la qual cosa en molts casos només és necessari cobrir una part de la superfície del sòl.

![Diagrames](image)

Figura 4.4: Esquema de la calefacció per terra radiant

Pel que fa a les calderes utilitzades per a la calefacció mitjançant terra radiant, es recomanable l’ús de calderes de condensació de Gas Natural. Aquest tipus de calderes incrementen notablement el rendiment respecte a les calderes convencionals perquè estan dissenyades per a la condensació permanent d’una part important del vapor d’aigua contingut en els gasos de combustió, aprofitant la calor latent de vaporització. No obstant, aquest tipus de calderes maximitzen el rendiment en els sistemes de baixa temperatura, com precisament el terra radiant, o els fan-coils a 50º. L’estalvi mitjà que es pot assolir amb una caldera de condensació se situa entre un 12% i un 20%.

En resum, si s’analitzen els avantatges i inconvenients de la calefacció per terra radiant, a grans trets es pot observar que el sistema permet un estalvi energètic important enfront dels sistemes convencionalos. Tanmateix, és important destacar que aquesta tècnica és la calefacció més saluda segon la OMS (Organització Mundial de la Salut). Un altre dels aspectes a destacar del terra radiant és que, a més de no modificar l’estètica dels habitatges, gairebé no necessita manteniment. Pel que fa a inconvenients, cal dir que és un sistema d’instal·lació prèvia a la construcció de l’habitacle, ja que aquesta es simplifica significativament quan el propi sòl del terra no s’ha muntat. En la mateixa línia, cal assegurar un cert aïllament de l’habitacle per tal d’optimitzar el seu rendiment.

V. Recomanacions per calefacció mitjançant radiadors tèrmics

Tal i com s’ha explicat en el subapartat anterior, un dels principals inconvenients de la calefacció per terra radiant és la seva instal·lació, en cas que aquesta no es dugui a terme durant la construcció de la casa o habitatge. En cas que la mesura no es pugui implementar també existeixen una sèrie d’accions per tal de reduir el consum de calefacció, en cas que s’utilitzin radiadors tèrmics d’aigua calenta convencionalos. Se’n poden destacar dos:

- **Optimització del rendiment de les calderes:** El procés de combustió, que és una reacció química d’oxidació d’un combustible, requereix l’aportació d’aire al cremador de la caldera. Des d’un marc teòric, per a aconseguir una combustió perfecta, caldria utilitzar
16,84kg d’aire per a cada kg de Gas Natural – o 13,90kg d’aire/kg de gasoil, o 15,62kg d’aire/kg de propà. S’està parllant de l’aire estequiomètric.

A la pràctica, la combustió no és perfecta; es produeixen incremats com monòxid de carboni i d’altres, i per tant l’eficiència en la combustió disminueix. Amb l’objectiu d’incrementar l’eficiència de les calderes, una mesura pot ser analitzar de manera periòdica els paràmetres de la combustió mitjançant un analitzador electrònic. En funció dels resultats de l’anàlisi caldria intentar regular l’aire del cremador per tal de situar l’aportació entre un 2% i un 4% superior a l’aire estequiomètric.

Aquesta mesura pot arribar a suposar un estalvi d’entre el 3% i el 10%, valor que depèn directament del valor inicial d’O₂ que s’obtingui.

- **Instal·lació de vàlvules termostàtiques**: La sectorització de calefacció habitualment és molt deficient, fet que produeix manca de confort per defecte i per excés en diferents zones de qualsevol habitatge, segons quina sigui la seva orientació o situació. Un bona alternativa a l’hora de corregir aquests gradiens tèrmics que es produeixen en els sistemes convencionals és col·locar vàlvules termostàtiques als radiadors dels espais més calents.

Les vàlvules termostàtiques modifiquen el cabal entrant d’aigua que circula pel radiador per mantenir la temperatura ambient desitjada. Quan la temperatura ambient baixa, la vàlvula termostàtica augmenta el pas de l’aigua calenta pel radiador. L’estalvi mitjà d’aquests elements se situa entre un 8% i un 13%.

![Diagrama de una vàlvula termostàtica](image-url) **Figura 4.5**: Components d’una vàlvula termostàtica. Confecció pròpia
4.2.2. Il·luminació

I. Il·luminació natural

Tot i que pugui semblar evident, la il·luminació natural durant les hores de Sol, pot traduir-se en un estalvi energètic de fins el 50%. Paral·lelament, és una mesura totalment gratuïta, i que és especialment eficient en els habitatges que s’orienten cap al sud. Per tant, una possible mesura d’estalvi és sectoritzar les zones d’enllumenat en funció de la il·luminació natural entrant, tenint en compte al mateix temps l’ús que se’n fa de les sales de cada equipament.

II. Valor límit d’eficiència energètica de la instal·lació (VEEI)

Pel que fa a la instal·lació de la il·luminació, cal dur a terme un anàlisi de les condicions de confort visual per tal que els paràmetres de la luminància mitja horitzontal mantinguda (Em), l’índex d’enllumenament unificat (UGR) i l’índex de rendiment del color (Ra) s’adéquen a les necessitats d’il·luminació dels usuaris en totes les zones.

L’eficiència energètica es garanteix limitant el valor de VEEI a un valor determinat segons quina sigui la zona de l’habitatge (W/m² x 100lux), tal i com es mostra a la següent taula, extreta del Codi Tècnic d’Edificació [9]:

<table>
<thead>
<tr>
<th>grup</th>
<th>zones d’activitat diferenciada</th>
<th>VEEI límit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>zones de no representació o espais on el criteri de disseny, la imatge o l’estat anímic que es vol transmetre a l’usuari amb l’enllumenat, quedi relegat a un segon pla front d’altres criteris</td>
<td>administratiu en general 3.5 andanes d’estacions de transport 3.5 sales de diagnòstic (4) 3.5 pavellons d’exposicions o fairs 3.5 aules i laboratoris (2) 4.0 habitacions d’hospitals (1) 4.5 zones comuns (1) 4.5 magatzems, així, sales tècniques i cuines 5 aparcaments 5 espais esportius (3) 5 recintes interiors assolables. com a grup 1 no descrits a la llista anterior 4.5</td>
</tr>
<tr>
<td>2</td>
<td>zones de representació o espais on el criteri de disseny, imatge o l’estat anímic que es vol transmetre a l’usuari amb l’enllumenat són preponderants front dels criteris d’eficiència energètica</td>
<td>administratiu en general 6 estacions de transport (3) 6 supermercats, hipermercats i grans magatzems 6 biblioteques, museus i galeries d’art 6 zones comuns a edificis residencials 7.5 centres comercials (exclosos botigues) (6) 8 hoteleria i restauració (8) 10 religiós en general 10 sales d’actes, auditoris i sales d’usos múltiples i convencions, sales d’oci o espectacle, sales de reunions i sales de conferències (7) 10 botigues i petit comerç 10 zones comuns (1) 10 habitacions d’hoteles, hostals etc. 12 recintes interiors assolables a grup 2 no descrits a la llista anterior 10</td>
</tr>
</tbody>
</table>

![Taula 4.4: Valors límit d’eficiència energètica de la instal·lació (VEEI) quant a il·luminació](image)

El Valor de la Eficiència Energètica de la Instal·lació es defineix com:

\[
VEEI = \frac{P \cdot 100}{S \cdot E_m} \quad \text{(Eq.4.3)}
\]

on P és la potència total instal·lada, és a dir, la de la llum i la consumida pels equips auxiliars que siguin necessaris per al seu funcionament (W); S és la superfície il·luminada (m²) i E_m, és la luminància mitja mantinguda (lux), i es defineix com aquella per sota de la qual no es permet que caigui la il·luminació mitjana en la superfície especificada independentment de l’antiguitat.
o l'estat de la instal·lació. El valor de il·luminació \(E_m \) cal calcular-lo amb softwares de simulació, com per exemple el Dialux, que a més també permet la simulació de l'efecte de la llum del Sol.

III. Tecnologies d’enllumenat eficients

En l’actualitat, hi ha vàries vies per optimitzar l’ús de l’energia en la il·luminació. La primera, que ja s’ha citat anteriorment, és gaudir de la possibilitat de gestionar la il·luminació dels espais (sectorització). No obstant això, en les zones o espais no gestionables (il·luminació permanent, zones sense aportació suficient de llum natural, etc.) cal incidir en la tecnologia de l’enllumenat. Els criteris a seguir se citen a continuació, per ordre de rellevància:

- **Substitució de bombetes incandescents per bombetes de baix consum o de tecnologia LED**: La majoria d’instal·lacions de llum actual es basen en l’ús de bombetes de incandescents, que converteixen la meitat de la seva energia en calor i no llum. D’altra banda, els llums de baix consum necessiten menys de la meitat del consum d’energia que les bombetes tradicionals per generar la mateixa llum, concretament entre un 50 i un 80% menys, de manera que l’estalvi en el consum d’aquestes bombetes és molt més gran que en les tradicionals. Gran part de l’energia d’aquestes bombetes es transforma en llum, no com passa en les normals. Si es parla de potència, una bombeta de baix consum o ecològica de 22 W equival a una de 100 W tradicional o incandescent.

Paral·lelament, la durabilitat d’una bombeta de baix consum és de fins a 12.000 hores, el que suposa una vida fins a 10 vegades més llarga que una incandescent, la durada de la qual ronda les 1.000 hores. En la línia de la sostenibilitat, és important destacar que bombetes fluorescentes emeten menys emissions de \(\text{CO}_2 \) a l’atmosfera a causa del baix consum i l’estalvi durant tota la seva vida.

No obstant això, cal saber que quan es trenca una bombeta de baix consum s’han d’usar guants per canviar-la per una altra perquè té mercuri i cal prendre precaucions.

El darrer inconvenient d’aquestes bombetes és que triguen més a arribar al seu punt alt de llum, per això és recomanable que s’encenguin amb antelació.

- **Substitució de làmpades halògenes dicroiques per làmpades d’alt rendiment**: En termes de potència, les làmpades halògenes són de 50W enfront els 35W de les làmpades d’alt rendiment. Per tant, les segones aporten menys llum, un 20% menys, de manera aproximada, però en canvi, s’aconsegueix un 30% d’estalvi energètic i, a més, un augment respecte a la vida útil de l’aparell, que vora el 65%. També és recomanable passar aquestes làmpades al sistema GU10 (230V) enlloc de les tradicionals MR16 (12V), que funcionen amb transformador.

Cada cop la substitució de les làmpades halògenes per làmpades d’alt rendiment (dicroiques LED) és més competitiva, pel que s’ha explicat anteriorment (vida més llarga i per tant un estalvi que pot arribar fins al 80%). No obstant això, l’angle d’emissió del feix de llum és un paràmetre que pot conduir a la utilització de les làmpades halògenes. En el cas de les primeres, aquest angle arriba al 60º i les LED solen tenir un angle inferior (entre 30º i 45º) i per tant caldrà tenir en compte l’espai o zona a il·luminar.
- **Substitució del balast convencional per balast electrònic**: El balast convencional dels fluorescents demanda el que equival a un 30% de la potència total consumida pel fluorescent. En canvi, el balast electrònic pràcticament no afegeix potència. Per tant, l’estalvi energètic resultant arriba a ordres del 25%.

El principal inconveni de substituir el balast és que requereix desmuntar la il·luminària, la qual cosa implica un temps d’operació realitzada per un professional. Per tant, és molt probable que, en termes econòmics i de temps, resulti més rentable substituir directament els fluorescents per una làmpada tipus LED sense que es requereixi desmuntar toda la il·luminària.

IV. Sistemes de control automàtics

En l’actualitat, existeixen sistemes de cost reduït molt interessants per a l’aturada automàtica de l’enllumenat. Els esmentats sistemes són aplicables arreu però és especialment interessant implementar aquesta tecnologia en espais de difícil gestió d’ús d’il·luminació com poden ser els espais comuns (passadissos, menjador, lavabos, etc.). D’entre els diversos sistemes de control existents actualment en el mercat destaquen els següents:

- Detectors de presència, que actuen en funció de la detecció de moviment a l’entorn.
- Cèl·lules fotoelèctriques, que activen o desactiven el sistema elèctric connectat en funció de la claror natural.
- Rellotges programadors, en els que és possible programar el funcionament diari del sistema d’enllumenat.

La instal·lació d’aquests sistemes als habitatges pot traduir-se en un estalvi d’entre un 20% i un 40%, si s’apliquen de manera eficaç (poden instal·lar-se de manera combinada en sèrie, en cas que sigui necessari.

Tanmateix, a part dels sistemes de control de cost reduït, existeixen altres opcions de control més complexes, com els balasts regulables, que aporten una variació progressiva i adaptable d’il·luminació artificial en funció de la il·luminació natural entrant. Aquests sistemes, combinats amb sistemes de detecció de presència poden arribar a aportar un estalvi d’entre un 30% fins un 50%.

És important destacar que els sistemes de control automàtics requereixen de cert coneixement per part dels usuaris que els utilitzen, ja que en cas de mal funcionament dels automatismes és probable que ningú sàpiga com actuar o fins i tot que ni es detecti una anomalia en l’ús. En aquests casos, l’eficiència energètica es veuria afectada i podrien produir-se increments de consum mentre les anomalies no quedin resoltes.

4.2.3. Equipament i aparells elèctrics

El conjunt d’aparells elèctrics de continu funcionament representen aproximadament el 25% del consum global d’energia d’un habitatge. D’entre els equipaments i aparells elèctrics propis d’un habitatge, en destaquen, per ordre de consum energètic, els següents:

- Neveres i congeladors
- Rentadores
Remodelació del sistema energètic de Llinars del Vallès amb l’ús d’energies renovables

- Rentaplats
- Secadores
- Sistemes informàtics, ordinadors i pantalles
- Acumuladors elèctrics d’aigua calenta
- Sistemes de ventilació forçada
- Forns
- Aire condicionat

El que destaca d’aquests aparells és que, al contrari del que sol succeir amb la calefacció o el sistema de subministrament d’aigua, l’adquisició depèn de l’usuari. Per aquest motiu, és important substituir el més aviat possible els aparells per d’altres de màxima eficiència energètica. També és convenient valorar l’oportunitat d’utilitzar fonts d’energia alternatives, com pot ser la biomassa, en aquells casos en els que es requereixi una aportació de calor. Així doncs, comprar equipaments eficients és important i fàcilment identifiable, gràcies l’etiqueta energètica.

L’àmbit d’aplicació de l’etiqueta energètica és europeu i constitueix una eina informativa al servei dels compradors d’aparells consumidors d’electricitat. Permet doncs, el coneixement de l’eficiència energètica de qualsevol electrodomèstic. Les etiquetes energètiques tenen una part comuna, que fa referència a la marca, denominació de l’aparell i nivell d’eficiència energètica; per exemple, la capacitat de congelació per a frigorífics o el consum d’aigua per a rentadores.

Existeixen 7 classes d’eficiència, identificades per un codi de colors i lletres que van des del color verd i la lletra A per als aparells més eficients, fins al color vermell i la lletra G, per als aparells menys eficients. Aquests nivells estan regulats a nivell europeu per una àmplia normativa de directrius. En el marc espanyol, aquestes directrius han donat peu a la creació de reals decrets que regulen l’obligatorietat legal de l’etiqueta per als diversos tipus d’electrodomèstics que es llencin al mercat.

És molt important saber que el consum energètic, per a prestacions similars, pot arribar a ser tres vegades superior en els electrodomèstics de classe G. Si a tot això afegim que la vida mitjana útil de la majoria d’aparells elèctrics és de 10 anys, s’obté que l’estalvi en la factura elèctrica dels més eficients respecte als de classe G pot superar els 800€ al llarg de la seva vida en ús.

Per tots aquests motius, a l’hora de comprar, cal fixar-se en el consum d’energia i optar preferentment pels de classe A, tot i que el cost inicial sigui més elevat que en els de classes més baixes.

De la mateixa manera, però, és molt important reduir el funcionament anual d’aquests aparells i apagar-los sempre que sigui possible, sobretot durant les vacances i als caps de setmana. En la mateixa línia, un sistema de monitorització de les dades de consum pot ajudar a interpretar els consums base, que es poden optimitzar mitjançant sistemes de control de funcionament tipus relotge o dispositius d’aturada automàtica, com en el cas de l’eficiència en l’enllumenat.

4.2.4. Tècniques de reducció en la construcció

Tal com s’ha mencionat anteriorment, almenys un 50% del consum energètic que es dóna en un edifici respon a necessitats que deriven de la seva configuració. Per aquest motiu, tot i que l’anàlisi d’aquest projecte es centri en l’estat actual del municipi, és important destacar diverses
tècniques a implementar amb la construcció dels edificis futurs per tal de maximitzar l’estalvi energètic. A continuació es presenten les mesures tècniques més destacades.

I. Arquitectura bioclimàtica

Els nous edificis han de ser projectats i construïts sota tècniques bioclimàtiques que proporcionaran unes òptimes mesures d’estalvi energètic a l’habitatge, optimitzant al màxim una sèrie de paràmetres que, en funció del seu emplaçament, el seu entorn i les característiques climàtiques de la zona, permetin un comportament òptim i adequat del mateix per aconseguir una major eficiència energètica i minimitzar l’impacte ambiental sobre el seu entorn. També té com a objectiu dissenyar l’edifici per aconseguir escalfament passiu a l’hivern i el refredament passiu a l’estiu. Les tècniques d’arquitectura bioclimàtica mes importants són les següents:

I.1. Emplaçament i orientació de l’edifici

El nou edifici s’ha d’adequar al clima local de la zona on s’ubica, ja que determina la seva exposició al Sol i als vents. Per això és convenient i recomanable valorar la radiació solar, les temperatures, la humitat relativa, les precipitacions i el vent, tant a l’estiu com a l’hivern. També cal valorar la topografia, la vegetació del lloc i els possibles focus de contaminació acústica en les proximitats.

I.2. Disseny senzill i compacte de l’edifici

Es requereix un edifici de forma compacta, de manera que es reduexi la superfície de l’envoltant en relació al volum de l’edifici –a menor superfície d’envoltant, menors pèrdues tèrmiques –, ja que una excessiva quantitat de voladissos o zones amb mirador, podrien augmentar la demanda i el cost energètic. Essent el factor de forma el quocient entre la superfície de l’edifici i el seu volum, com menor sigui aquest, major és la capacitat de l’edifici per retenir la calor i per tant en climes freds convé que aquest factor variï entre 0,5 i 0,8, mentre que per a climes càlids convé que sigui superior a 1,2. També és convenient una distribució d’espais adequada disposant al nord les zones de menor ús.

I.3. Disseny de buits segons orientació

Aquest punt fa referència al disseny de les superfícies envidrades en cada façana en funció de la seva orientació, és a dir, segons l’energia solar proporcionada. Es recomana entre un 40% i un 60% en façanes sud, entre un 10% i un 15% en façana nord, i menys del 20% en les façanes est i oest.

I.4. Inèrcia tèrmica dels elements constructius de l’envoltant

L’objectiu d’aquesta mesura és la construcció de parets i terres d’alta inèrcia per suavitzar la variació de temperatura entre l’ambient interior i exterior, aconseguint així un adequat nivell de confort.

II. Sistemes constructius, materials i vegetació

La Política de Productes Integrada de la Unió Europea l’any 2001, que tenia com a objectiu reorientar la política mediambiental relativa als productes, plantejava la necessitat d’establir un nou paradigma del creixement i una major qualitat de vida, mitjançant la creació de riquesa i competitivitat sobre la base de productes més ecològics, i afirmava que “els productes del futur consumeixen menys recursos, tenen menys efectes i riscs pel medi ambient i eviten la generació de residus des del moment en què es conceben”.

Remodelació del sistema energètic de Llinars del Vallès amb l’ús d’energies renovables 49
Per tal de construir edificis sostenibles és necessari recórrer a certes estratègies configurades en base a criteris mediambientals i també econòmics i socials, i en el cas dels materials de construcció, cal tenir en compte que si el cicle de vida d’aquests es defineix pel consum de molta matèria prima – aigua i energia –, s’emeten substàncies nocives al medi i per tant, es trastornen els ecosistemes naturals.

En resum, a l’hora de triar els materials de qualsevol construcció, s’hauria d’analitzar el cicle de vida d’aquests. El cicle de vida es compon de set fases diferents: extracció o preparació de la matèria primera, transformació, transports, ús i manteniment, demolició o desconstrucció i reutilització o reciclatge. L’anàlisi del cicle de vida d’un material és una eina, doncs, per avaluar l’impacte ambiental d’un producte de construcció des de la seva fabricació fins al seu tractament com a residu, sense tenir en compte aspectes econòmics o socials. Per tal de definir l’impacte ambiental potencial d’un sistema a través del seu cicle de vida, es defineix la norma UNE-EN ISO 14040:2006, que contempla les següents etapes metodològiques:

- Etapa 1: Definició dels objectius i abast (Unitat funcional).
- Etapa 2: Anàlisi general d’inventari del cicle de vida.
- Etapa 3: Avaluació de l’impacte ambiental del cicle de vida.
- Etapa 4: Interpretació dels resultats.

En la mateixa línia, cal assegurar que els materials ecològics utilitzats aportin bones condicions d’aïllament i estanqueïtat, per reduir la demanda energètica associada a la climatització. Per tal de reforçar l’aïllament i la estanqueïtat a l’aire, és recomanable usar certs sistemes com els que s’exposen seguidament.

II.1. Cobertes ecològiques enjardinades.
Aquest sistema presenta molts avantatges, tant des del punt de vista arquitectònic com estètic i mediambiental. La vegetació absorbeix contaminants i produeix oxigen amb el consequent efecte positiu sobre el medi ambient. També millora l’aïllament tèrmic total de la coberta així com el seu aïllament acústic, aconseguint ajudar a aconseguir condicions importants de confort a l’interior.

II.2. Façanes vegetals
Aquest tipus de façanes poden arribar a assolir una reducció de l’aportació solar de fins a un 20%, mitjançant façanes vegetals o plantant una fila d’arbres de fulla caduca que ajudin a reduir l’aportació d’energia solar a l’estiu i a incrementar-lo en hivern.

II.3. Façanes ventilades
Es realitzen amb plaques ceràmiques o de pedra sobre una subestructura de perfils metàl·lics normalment d’alumini, deixant una cambra d’aire que ventila per convecció natural amb el tancament principal, a través del qual es dissipa gran part de l’energia absorbida per la capa exterior. També hi ha solucions integrals similars amb panells solars tèrmics i fotovoltaics integrats en el tancament exterior de façana.

II.4. Façanes de doble pell de vidre
Aquest sistema està format per dues superfícies de vidre, separades entre sí per una cambra d’aire continuament ventilada, de manera que es crea una segona pell exterior fixada al mur per un sistema d’ ancoratges. Amb l’objectiu de controlar la radiació solar exterior i reduir la seva
transmitència tèrmica, aquests vidres es tracten mitjançant un procés de pigmentació o serigrafiat.

II.5. Vidres amb propietats especials
Poden ser vidres amb addició de primes capes dinàmiques, vidres cromogènics capaços de canviar el seu color o transparència o vidres amb càmera amb fluids circulants, en què la reductió de càrregues tèrmiques s'obté gràcies a la circulació d'un fluid per la seva càmera, ja que alguns d'ells són capaços d'absorbir part de la radiació infraroja incident.

II.6. Elements de protecció passiva
Per tal d’evitar l’excessiu escalfament d’algunes façanes amb major incidència de radiació solar a l’estiu s’han de projectar elements per controlar aquesta radiació, essent exemples d’aquests voladissos, balcons, marquesines, estructures amb elements mòbils de lames orientables, persianes, etc. Són mesures d’estalvi que no impliquen una despesa important i proporcionen beneficis eficients.

II.7. Color de la façana
Un altre aspecte que intervé en el mecanisme d’intercanvi energètic entre l’habitatge i l’exterior, és el color de la façana. Els colors clars a la façana d’un edifici faciliten la reflexió de la llum natural i, per tant, ajuden a repel·lar la calor de la insolació. Contràriament, els colors foscos faciliten la captació solar. Encara que aparentment no sigui una qüestió d’importància, el color de la façana millora l’eficiència energètica de l’habitatge i aporta uns beneficis notables.
5. Fonts d’energia. Cobertura de la demanda

En aquest apartat s’explica quines fonts d’energia s’utilitzaran als habitatges del municipi. Tal com s’ha comentat anteriorment, s’apostarà per l’ús de les energies renovables, més concretament, l’energia solar. A l’Annex B: Importància de les energies renovables i conceptes generals sobre l’energia Solar es destaca la importància de l’ús d’aquestes i s’expliquen els conceptes bàsics de l’energia solar.

5.1. Energia solar fotovoltaica

L’energia solar es pot transformar directament en electricitat de baixa tensió mitjançant l’ús de cèl·lules fotovoltaiques o panells solars. L’energia solar fotovoltaica és una tecnologia que genera corrent continu —potència mesurada normalment en kWh — per mitjà de semiconductors quan aquests són il·luminats per un feix de fotons. Mentre el feix incideixi sobre la placa solar, es genera potència elèctrica; quan la llum desapareix, l’electricitat també. Aquestes cèl·lules, que no han d’ésser carregades com a bateries, tenen una vida útil aproximada de 30 anys.

L’energia solar fotovoltaica presenta certs avantatges i inconvenients. Sovint, aquests són diametralment opositats a les centrals convencionals que basen el seu funcionament en l’ús de combustibles fòssils. Per exemple, les centrals convencionals, com s’ha comentat ja en apartats anteriors, provoquen emissions perilloses per al medi ambient, usant una font limitada, amb la qual cosa el preu tendeix a augmentar. En canvi, l’energia solar fotovoltaica no té cap d’aquests inconvenients però sí que és esmenable la dificultat d’emmagatzemar l’energia aprofitada.

Existeixen fonamentalment dos tipus d'instal·lacions d’energia solar fotovoltaica: instal·lacions aïllades de la xarxa elèctrica i instal·lacions d’interconnexió a la xarxa.

Les instal·lacions aïllades de la xarxa elèctrica no presenten cap tipus de connexió a la xarxa. Gràcies a aquesta tecnologia es pot disposar d'electricitat en llocs allunyats de la xarxa de distribució elèctrica. D'aquesta manera, és possible subministrar electricitat a cases de camp, refugis de muntanya, bombaments d'aigua, instal·lacions ramaderes, sistemes d’il·luminació, sistemes de comunicacions, que necessitin poc corrent elèctric i que estiguin suficientment allunyats de la xarxa com perquè sigui més rentable instal·lar aquest tipus de sistema. Es componen principalment de captació d’energia solar mitjançant panells solars fotovoltaics i emmagatzematge de l’energia elèctrica generada pels panells en bateries.

Per altra part, els sistemes fotovoltaics connectats a la xarxa consisteixen en generar electricitat mitjançant panells solars fotovoltaics i injectar directament a la xarxa de distribució elèctrica. Actualment, a països com Espanya, Alemanya o el Japó, les companyies de distribució elèctrica estan obligades per llei a comprar l'energia injectada a la seva xarxa per aquestes centrals fotovoltaiques.

5.1.1. Principi bàsic de funcionament

Els panells solars basen el seu funcionament en l’efecte fotovoltaic, que per la seva banda està molt relacionat amb l’efecte fotoelèctric. Aquest darrer consisteix en l’emissió d’electrons que neix de la incidència de la llum sobre certes superfícies. Quan els raigs del Sol arriben a aquest
tipus de superfície, es genera una diferència de potencial entre els seus contactes que
precisament permeten la circulació dels electrons a través de la càrrega. En el cas de l'energia
solar fotovoltaica, aquestes superfícies són cèl·lules formades per una o diverses làmines de
materials semiconductors, en la majoria dels casos de silici, i estan recobertes per un vidre
transparent que deixa passar la radiació solar i minimitza les pèrdues. Per tant, en aquestes
condicions, la cèl·lula fotovoltaica funciona com un generador de corrent.

Un àtom de silici té 14 electrons disposats en tres capes diferents. Les primeres dues capes, les més properes al centre, estan completament plenes. La capa exterior només està semi plena, ja que té només quatre electrons. Un àtom de silici sempre buscarà omplir la seva última capa amb 8 electrons. Per fer-ho, compartirà quatre electrons de l’àtom veí. Aquest procés forma l'estructura cristal·lina i aquesta estructura resulta ser important per a aquest tipus de cel·les fotovoltaiques. El silici pur no és òptim com a conductor. No obstant, la conductivitat dels semiconductors pot ser fàcilment modificada mitjançant la introducció d'impureses en la seva xarxa cristal·lina.

El procés d'addició d'impureses controlades per a un semiconductor es coneix amb el nom de dopatge. Els semiconductors dopats reben el nom d'extrínsecs. Mitjançant l'addició d'impureses als semiconductors purs, la conductivitat elèctrica es pot variar en factors de milers o milions.

Els materials escollits com a dopants adequats depenen de les propietats atòmiques del dopant i del material dopat. En general, els dopants que produeixen els canvis controlats desitjats es classifiquen com aceptors d'electrons o donants.

Els semiconductors dopats amb impureses donants s'anomenen de tipus N. Normalment s'utilitzen estructures de silici amb fòsfor, ja que aquest, en tenir 5 electrons, allibera un electró no lligat a l'estructura. En aplicar energia, per exemple en forma de calor, aquest electró és alliberat de la seva posició més fàcilment que en una estructura de silici pur, fet que explica l'augment de la conductivitat.

Quant als semiconductors dopats amb impureses acceptores, –coneguts com de tipus P– es fa un dopatge amb elements que tenen 3 electrons a l'última capa, com el bor. El silici tipus P, en lloc de tenir electrons lliures, té forats lliures. Els forats són absència d'electrons que porten donc càrrega oposada a la de l'electró, és a dir, càrrega positiva. Aquests es mouen igual que els electrons però en sentit contrari.

En tots dos casos, el moviment dels electrons o dels buits són les càrregues elèctriques. Per a que aquestes càrregues tinguin un moviment regular, és necessari la presència d’un camp elèctric amb polaritat constant. Aquest camp elèctric actua com una bomba que impulsa els electrons i els forats en sentits oposats.

Un cop descrit el procés d’addició d’impureses, es pot entendre els funcionament de les cèl·lules fotovoltaiques. Aquestes estan formades per la unió de dos materials semiconductors; un de tipus N i l’altre de tipus P. A causa de la diferència de càrrega que es genera en el materials, es
produeix un camp elèctric que te la funció d’impulsar els moviment dels electrons cap a la zona dels forats. Aquest fenomen implica l’establiment d’un corrent elèctric que en el cas de l’energia solar fotovoltaica és continu. És important destacar que el camp elèctric produeix per la unió PN separa els portadors abans que es puguin donar recombinacions. És d’aquesta manera que es genera un corrent elèctric satisfactori pel que fa a les necessitats del consum.

![Figura 5.2: Representació de l’efecte solar fotovoltaic](image)

5.1.2. Sistema fotovoltaic

Una instal·lació d’energia solar fotovoltaica ha d’incloure una sèrie d’elements indispensables per al correcte funcionament i control de la instal·lació, els quals s’observen a la Figura 5.3 i es descriuen a continuació:

- **Mòdul fotovoltaic** (generador fotovoltaic): Com ja s’ha descrit anteriorment, la seva funció és captar i convertir la radiació solar en corrent elèctric. Aquests mòduls es poden connectar en sèrie o en paral·lel, com s’explicarà posteriorment.

- **Bateries** (acumuladors): la naturalesa variable de la radiació solar i, per tant, de l’energia elèctrica generada, fa que en els sistemes fotovoltaics sigui necessari un emmagatzematge d’energia que permeti disposar d’aquesta en períodes en els que no és possible la generació. En els sistemes fotovoltaics, aquest paper el realitza la bateria. Les propietats de la bateria que es triïn per a un sistema fotovoltaic influeixen en gran mesura el disseny d’alguns elements de la instal·lació, de manera que cal prestar una atenció especial a les característiques més convenients per a la condicions del sistema a alimentar, com ara els tipus de càrregues per a les quals es destina, la potència total i els cicles de consum previstos, entre d’altres.

- **Inversor** (condicionador, convertidor): bàsicament, realitzen una conversió de corrent continu en corrent altern, amb la possibilitat de poder controlar tant la freqüència com el valor eficaç de la tensió o intensitat de sortida, el que els fa fonamentals per al disseny d’accionaments basats en màquines asíncrones i síncrones. Atès que normalment la distribució d’energia es realitza en corrent altern, solen anar associats a un rectificador. En el cas de l’energia solar fotovoltaica s’encarrega d’adaptar el corrent continu produïda pel generador fotovoltaic a les característiques elèctriques requerides per les càrregues a alimentar.

- **Regulador de càrrega**: és l’equip que controla els processos de càrrega i descàrrega de la bateria. Controla el procés de càrrega evitant que, amb la bateria a plena capacitat, els mòduls fotovoltaics segueixin injectant càrrega a la mateixa. Es porta a terme anul·lant o reduint el pas de corrent del camp fotovoltaic. Controla el procés
de descàrrega evitant que l'estat de càrrega de la bateria assoleixi un valor massa baix quan s'està consumint l'energia emmagatzemada. Això es porta a terme desconnectant la bateria dels circuits de consum. El regulador també és una font d'informació dels paràmetres elèctrics de la instal·lació fotovoltaica. Pot proporcionar dades de la tensió, intensitat, estat de càrrega de les bateries, etc.

- **Elements de protecció del circuit**: són elements com diodes de bloqueig, interruptors per desconexió, terra, etc., disposats entre diferents parts del sistema, per protegir la descàrrega i derivació d'elements en cas de falla o situacions de sobrecàrrega.

![Figura 5.3: Sistema fotovoltaic d’interconnexió a la xarxa](image)

5.1.3. Connexió dels mòduls fotovoltaics

Els panells fotovoltaics es poden connectar de diverses maneres. Els panells solars estan dissenyats per poder formar una estructura modular, és a dir, per poder connectar diverses unitats en un sistema. Per tant, podem combinar-los entre si en sèrie, en paral·lel o de forma mixta.

La cèl·lula solar només és capaç de generar tensions de dècimes de volt, i una potència d’entre 1 i 2 W. Per tant. La connexió en sèrie, paral·lela o mixta és necessària per aconseguir tensions més elevades. El conjunt format per unes quantes cèl·les fotovoltaiques constitueix el mòdul fotovoltaic. Aquests mòduls es classifiquen segons la potència que poden produir. Els valors de la potència nominal van des de 1 fins a 900 W. Quan es parla de potència nominal, el terme es refereix a la potència que el fabricant assegura, sota unes condicions de radiació i temperatura.

Quan es connecten els mòduls en sèrie, el voltatge total serà la suma dels voltatges individuals de cada un dels mòduls. El corrent de sortida serà igual a la corrent d’un mòdul. En aquest cas, es connecta el terminal positiu d’un mòdul al terminal negatiu del següent, i així de manera successiva. Un dels inconvenients d’aquest tipus de connexió és que si un dels mòduls falla, es converteix en una càrrega resistiva que dificulta el pas del corrent generat per la resta de mòduls. Per tant, tota la fila quedaria fora de servei, perjudicant el rendiment de la instal·lació.

En connectar-los en paral·lel el corrent total serà la suma dels corrents individuals de cada mòdul i el voltatge serà el mateix que el d’un de sol. La instal·lació en paral·lel es basa en connectar els
terminal positius entre sí, i també els terminals negatius. El que s’aconsegueix és que la sortida del conjunt serà la mateixa en qualsevol mòdul.

La unió de diversos panells com una unitat permet al seu torn que es puguin combinar per formar estructures majors, el que es coneix com arrays. Es poden combinar aquests arrays entre si en sèrie o en paral·lel per poder obtenir la tensió adequada per a l’aplicació que necessitem. Fins i tot es poden tenir grups en sèrie que es connecten a altres grups en paral·lel i viceversa segons les necessitats.

![Diagrama de connexió en paral·lel i sèrie](image)

Figura 5.4: Esquema de la connexió en paral·lel i sèrie
6. Gestió de la demanda energètica

A l’Annex C: Introducció a la optimització de la demanda energètica s’expliquen els motius de la importància de la optimització energètica. En aquest capítol es descriuràn les tècniques i tecnologies, a curt i llarg termini, que s’han pres amb l’objectiu d’optimitzar l’ús d’energia.

6.1. Proposta energètica segons tipologia

Un cop analitzat el consum energètic i les emissions del municipi de Llinars del Vallès, és possible plantear diverses estratègies quant a optimització energètica. No obstant, el que sembla evident és que no és possible presentar una única estratègia per a tot el municipi, ja que les característiques dels diversos tipus d’edificis (bloc d’habitatges, habitatges unifamiliars i edificis del sector terciari), això ho impossibiliten.

No obstant això, el que sí que es presenta com una bona opció per tal de reduir el consum energètic –en els tres casos –, és la disminució de l’ús de fonts d’energia provinents de combustibles fòssils. Per tal de contrarestar l’esmentat ús, cal trobar una alternativa renovable. I no només això, d’entre totes les energies renovables, caldria trobar aquella font que impliqui una transformació de l’entorn mínima per evitar afectacions al sistema natural.

D’entre totes les alternatives netes, es considera que l’energia solar és la millor opció per tal de cobrir la demanda energètica tal com s’ha exposat en apartats anteriors.

Abans però d’explicar les diverses estratègies segons la tipologia edificatòria, també és de vital rellevància destacar que la remodelació energètica de qualsevol habitatge o territori no es pot encapsular únicament en la millora de la cobertura energètica. Amb això es pretén donar valor a un principi bàsic i previ al canvi cap a un entorn renovable, i que en repetides ocasions es passa per alt; el principi de la reducció de la demanda. El principi s’ha descrit anteriorment, a l’apartat 4. Reducció de la demanda i, en aquest cas, pot ésser aplicable d’igual manera a totes les edificacions de Llinars del Vallès. Si bé és cert que moltes de les mesures per reduir la demanda energètica cal aplicar-les amb la construcció de les edificacions, moltes d’altres es poden emprar en qualsevol moment de la vida dels edificis. Darrerament, la reducció de la demanda ha anat adquirint un pes destacat ja que es representa en el nivell de la certificació energètica dels edificis, i cada cop la normativa s’està tornant més restrictiva en favor d’aquest postulat.

Tal com s’ha explicat, la reducció de la demanda es basa en una sèrie d’accions que permeten la disminució del conjunt energètic. Aquestes accions es poden aplicar de la mateixa manera sigui quin sigui el tipus d’edifici. No obstant això, en el cas de la cobertura de la demanda en forma d’energia solar, es preveu que caldrà prendre accions adaptades a les característiques dels diversos tipus de construccions. Per aquest motiu, s’han identificat tres tipologies edificatòries (cal recordar que queden fora de l’abast d’aquest projecte els equipaments i serveis públics i els edificis industrials):

- Habitatge unifamiliar
- Habitatge plurifamiliar
- Edificis del sector terciari (oficines, restaurants, comerç, serveis a les persones,...).
En tots tres casos s’instal·larien les plaques solars a la coberta disponible. És en aquest punt on cal preveure les característiques dels tres tipus d’edificis.

6.1.1. Habitatge unifamiliar

Tal com s’observa a la taula 3.14 de consums, els habitatges unifamiliars tenen un consum per metre quadrat superior als habitatges plurifamiliars. Tot i això, cal tenir en compte que aquest tipus d’habitatges seran normalment d’un sol pis, i per tant probablement amb la superfície de coberta útil es podrà cobrir tota o gran part de la demanda energètica.

Per tant, caldrà realitzar un estudi de les instal·lacions solars que es podrien instal·lar als esmentats edificis. L’objectiu serà trobar quin percentatge de la demanda (si no tota) podrà cobrir-se amb aquestes instal·lacions solars.

6.1.2. Habitatge plurifamiliar

En el cas dels habitatges plurifamiliars o els blocs d’edificis, l’objectiu serà cobrir el mateix percentatge de demanda que en el cas dels habitatges unifamiliars.

En aquests casos caldrà tenir en compte el nombre de pisos per edificació. D’entrada, fonts expertes destaquen que, en pisos en els que el principi bàsic de reducció de la demanda es respecti, amb una instal·lació solar a la coberta és possible arribar a cobrir la demanda de fins a tres pisos.

Per a aquells blocs en els que no s’asseoleixi al valor objectiu de cobertura, s’estudiarà també la viabilitat d’instal·lar un camp solar fotovoltaic per cobrir la demanda restants. És per aquest motiu que caldrà realitzar un estudi dels sòls no urbanitzables disponibles i propers al municipi per tal de reduir al màxim les pèrdues per transport.

6.1.3. Edificis del sector terciari

A diferència de les dues classes anteriors, el sector terciari presenta un consum energètic força superior als habitatges. És important destacar, però, que la majoria d’aquests edificis (oficines, restaurants, comerços, etc.) mostren el pic de consum aproximadament similar a les hores de captació solar. Així doncs, és possible que la demanda es cobreixi íntegrament, tot i que d’entrada no es pot assegurar res.

Per altra banda, s’ha realitzat un estudi per conèixer la proporció d’edificis que pertanyen a aquest sector i els resultats obtinguts són molt inferiors als esperats inicialment. Només en un 5% dels habitatges s’hi presenta un negoci o un empresa del sector terciari. A més a més, una quantiosa majoria d’aquests edificis es troben integrats en els propis edificis plurifamiliars.

És per tots aquests motius que es considerarà que els edificis del sector terciari s’inclouen en els plurifamiliars. Per tant, en aquest cas s’unificarà l’estudi i d’ara en endavant es parlarà d’edificis plurifamiliars, entenent que en aquest grup també s’hi inclouran els esmentats negocis de serveis.

Per tant, en el cas que no es pogués cobrir tota la demanda, l’estratègia a seguir serà exactament la mateixa que en els habitatges plurifamiliars (dimensionament d’un camp solar proper per minimitzar les pèrdues per transport).
6.2. Estudi del dimensionament de les instal·lacions fotovoltaiques

Tal com s’ha comentat a l’inici de l’apartat 6.1, des d’un bon principi, la voluntat és aprofitar al màxim les energies renovables. Al llarg del projecte s’han diferenciat els diversos tipus d’edifici presents al municipi, bàsicament per la diferència existent en els consums elèctrics.

Així doncs, per tal de dimensionar les instal·lacions fotovoltaiques segons el tipus d’edifici (unifamiliar, plurifamiliar i edificis del sector terciari), el procediment a seguir serà definir i estudiar, indistintament del tipus d’edifici:

- L’angle d’orientació i inclinació dels panells
- Les pèrdues del sistema
- Revisió de la reglamentació vigent

Finalment, un cop definits els paràmetres més importants de la instal·lació i revisada la legislació normativa vigent, que potser imposa alguna acció o mesura, el darrer pas serà realitzar un cas d’estudi del dimensionament per a cadascun dels tipus d’edificis citats. Quan es fa referència a dimensionament, el terme inclou la selecció de les plaques solars a instal·lar així com el nombre de què es compondrà la instal·lació –que segurament quedarà limitada per la superfície de coberta disponible–, el disseny de la capacitat dels acumuladors i, en últim terme, la selecció del convertidor. Els dos darrers dissenys es realitzaran només per al cas de les instal·lacions solars fotovoltaiques a les cobertes dels habitatges. Així doncs, en cas que sigui necessària una planta solar, en l’hipotètic cas no s’estudiaria el disseny de les bateries i l’inversor.

Per fer els tres estudis, es prendran com a dades de partida les mitjanes de la ocupació del sòl, la superfície mitjana de sostre, el nombre d’edificis de cada tipologia i el consum energètic mitjà per a cada tipologia d’edifici. Totes aquestes dades s’extreuen dels apartats 3.3. Demografia i edificis i 3.4. Estudi del consum energètic. Així doncs, es realitzarà un estudi per a cada tipus d’edifici, i finalment s’extrapolarà el resultat a la resta dels edificis que conformen el municipi.

6.2.1. Angle d’orientació i inclinació dels panells solars

Com s’ha explicat detalladament a l’apartat 5 i a l’Annex B: Importància de les energies renovables i conceptes generals sobre energia Solar, les instal·lacions solars no poden aprofitar la totalitat de l’energia incident provenint del Sol. No obstant això, sí que es pot triar l’angle d’inclinació i la orientació dels panells per tal de minimitzar aquestes pèrdues i optimitzar el rendiment de tota la instal·lació.

Per la fiabilitat de les dades, s’usa l’”Atlas de Radiació Solar a Catalunya” [8], que ofereix un extens nombre de dades d’irradiació solar a Catalunya. Entre la immensitat de dades que aporta, pren important interès les que relacionen la radiació global diària amb els angles d’inclinació i orientació a diverses ciutats de Catalunya.

Per proximitat, s’utilitzen per al cas les dades esmentades a la ciutat de Barcelona, extretes de l’”Atlas de radiació solar a Catalunya” com es pot observar a continuació.
Remodelació del sistema energètic de Llinars del Vallès amb l’ús d’energies renovables

Pel que fa a orientació, l’òptima per a aprofitar la radiació solar és el sud, ja que durant les estacions de tardor, primavera i sobretot hivern es rep la incidència directa del Sol. A l’estiu, d’altra banda, cal recordar que el Sol incidirà de manera més vertical, a la coberta, on s’hi situaran les plaques solars.

Un cop escollida la orientació de les plaques, cal decidir amb quin angle respecte a la coberta es posicionar els col·lectors. A les taules de l’Atles apareixen les dades de radiació per a superfícies inclinades de 0 a 90° amb intervals de 5°. En línies generals, la inclinació òptima permetrà una major intensitat de radiació.

Diversos estudis assenyalen que la latitud geogràfica de la ubicació, que en el cas és 41,63°, és una bona referència de partida, de manera que s’aconsella que els angles d’inclinació prenguin valors de ±20°.

Existeixen diverses formes de calcular la inclinació òptima de les plaques solars fotovoltaiques, prenen la latitud com a valor de referència. El mètode de la inclinació òptima anual, per exemple, basat en l’anàlisi estadístic de la radiació solar anual sobre superfícies amb diverses inclinacions situades en llocs de diferents latituds, proposa la següent fórmula:

\[\beta_{optim} = 3,7 + 0.69 \cdot |\phi| \]

(\text{Eq. 6.1})

On,

\[\beta_{optim} \] Angle d’inclinació òptima [°]

\[|\phi| \] Latitud de la ubicació [°]

En el cas que ocupa, si es partís d’aquesta equació l’angle d’inclinació òptim hauria de ser de 32,425°.

D’altra banda, existeixen altres estudis que estipulen que l’angle exacte dependrà de l’ús que se’n faci del sistema solar. Així doncs, si se suposa que l’ús de la instal·lació solar fotovoltaica serà contínua al llarg de tot l’any, l’angle d’inclinació ha de ser igual a la latitud -10°. D’altra banda, si el seu ús és fonamental per al funcionament dels aparells a l’hivern, l’angle d’inclinació ha de ser igual a la latitud +10°. Finalment, si és necessari a l’estiu l’angle convé que sigui igual a la latitud -20°.

Tenint en compte que en el cas dels domicilis particulars la demanda serà més o menys constant al llarg de l’any, caldrà adaptar angles al voltant del 30° o 35° (angle òptim per a una demanda

<table>
<thead>
<tr>
<th>Inclinació</th>
<th>Gen</th>
<th>Feb</th>
<th>Mar</th>
<th>Abr</th>
<th>Mai</th>
<th>Jun</th>
<th>Jul</th>
<th>Ago</th>
<th>Set</th>
<th>Oct</th>
<th>Nov</th>
<th>Des</th>
<th>Anual</th>
</tr>
</thead>
<tbody>
<tr>
<td>25°</td>
<td>10.81</td>
<td>13.52</td>
<td>17.17</td>
<td>20.51</td>
<td>22.60</td>
<td>23.48</td>
<td>23.24</td>
<td>21.80</td>
<td>18.98</td>
<td>15.23</td>
<td>11.85</td>
<td>10.07</td>
<td>17.46</td>
</tr>
<tr>
<td>30°</td>
<td>11.43</td>
<td>14.07</td>
<td>17.52</td>
<td>20.54</td>
<td>22.32</td>
<td>23.02</td>
<td>22.86</td>
<td>21.71</td>
<td>19.23</td>
<td>15.73</td>
<td>12.47</td>
<td>10.71</td>
<td>17.65</td>
</tr>
<tr>
<td>35°</td>
<td>11.97</td>
<td>14.52</td>
<td>17.77</td>
<td>20.45</td>
<td>21.90</td>
<td>22.43</td>
<td>22.34</td>
<td>21.48</td>
<td>19.36</td>
<td>16.13</td>
<td>13.01</td>
<td>11.28</td>
<td>17.73</td>
</tr>
</tbody>
</table>
constant al llarg de tot l’any i pòrxi a l’angle de màxima captació solar). Cal tenir present que petites variacions de ±10° respecte l’angle considerat òptim no afecten de manera substancial al rendiment de la instal·lació. Es durà a terme l’estudi per angles de 30, 35 i 40°.

Precisament, l’angle i la orientació dels col·lectors també s’escull de manera que les pèrdues es minimitzin. Com s’ha explicat anteriorment, la fracció d’energia que no s’aconsegueix aprofitar és deu a pèrdues per orientació, inclinació iombres. A la il·lustració següent pot observar-se, en percentatge, l’aprofitament solar en funció de la orientació oangle azimutal α i l’angle d’inclinació β.

![Diagrama de l’aprofitament solar](image)

Figura 6.1: Percentatge d’energia aprofitable respecte les pèrdues per inclinació i orientació. Font: Codi Tècnic d’Edificació [9]

El que s’extreu del gràfic és que a mesura que augmenta l’angle d’inclinació β, les pèrdues també augmenten. Amb els angles escollits prèviament, les pèrdues prenen el valor d’entre 0-5% pels angles estudiats.

Aquests intervals són força aproximats, i per tal de dimensionar la instal·lació solar seria correcte prendre els valors de les pèrdues més concretes possibles. El Codi Tècnic d’Edificació [9] ofereix la possibilitat de realitzar els càlculs directament mitjançant la següent expressió.

\[
Pèrdues(\%) = 100 \cdot [1,2 \cdot 10^{-4} \cdot (β - β_{optim})^2 + 3,5 \cdot 10^{-5} \cdot α^2] \quad \text{per} \quad 15° < β < 90° \quad (\text{Eq. 6.2})
\]

On α, β, β\text{optim} són l’angle azimutal, l’angle d’inclinació i la l’angle òptim (32,425°), respectivament.

El que mostra aquesta equació són les pèrdues que s’obtenen en variar l’angle d’inclinació respecte l’angle òptim. Pel que fa les pèrdues que es produeixen amb una inclinació β_{optim} es pot observar a través de l’equació que seran nul·les. És per aquest motiu que s’assumeix aquest valor de pèrdues per a l’angle òptim d’inclinació. També es pot observar que les pèrdues no varien significativament.

Si es calculen les pèrdues per a cada possible configuració s’obté la següent taula. Com l’angle azimutal sempre és el mateix, les pèrdues només varien en funció de l’angle d’inclinació.
En definitiva, si el que cal és situar les plaques solars de manera que es maximitzi l’energia solar incident al llarg de tot l’any i que posteriorment serà transformada, l’”Atlas de Radiació Solar a Catalunya” [8] recomana que la orientació de les plaques sigui al Sud i que l’angle d’inclinació sigui pròxim a la latitud menys 10°. Per a aquestes configuracions, a més a més, les pèrdues per inclinació i orientació seran les mínimes possibles.

Un altre aspecte a tenir en compte respecte a les instal·lacions fotovoltaiques és que és gairebé impossible que la corba de demanda d’electricitat s’adapte a les hores de Sol en què l’aportació d’energia serà màxim. Per això, també serà important el dimensionament dels acumuladors – especialment per al consum energètic a les nits–, i també caldrà tenir en consideració la possibilitat d’injectar l’electricitat sobrant a la xarxa a canvi d’un preu, és a dir, la venda de l’energia sobrant produïda. De totes maneres, cal tenir present que la última voluntat d’aquest projecte no és vendre l’energia que es produirà de la instal·lació fotovoltaica, sinó optimitzar l’emmagatzematge.

Així doncs, amb les dades de radiació que aporta l’atles, es pot calcular la radiació solar absorbida anualment per unitat de superfície. Tal com s’ha vist anteriorment, es recomana que l’angle d’inclinació estigui en el rang de la configuració òptima que recomana l’atles, ±10° – en el cas dels habitatges del municipi, com ja s’ha explicat, és recomanable instal·lar amb α Є [20°,40°]. Cal recordar que per cada configuració hi ha unes pèrdues diferents.

El procediment que cal seguir per calcular la radiació solar que arriba a les plaques solars anualment és, en primer lloc, trobar la radiació mensual incident a la placa. En aquesta expressió que segueix a continuació també s’hi inclouen les pèrdues per orientació i inclinació (OI) de les plaques solars, en forma de factor corrector en tant per u.

\[E_{mensual} = [1 - OI] \cdot Ed_i \cdot N_i \] \hspace{1cm} (Eq. 6.3)

On,

\(OI \) Factor, en tant per u, de pèrdues per inclinació i orientació

\(E_{mensual} \) Radiació mensual incident a la placa [MJ/m²]

\(Ed_i \) Radiació solar diària mitjana incident sobre superfícies inclinades per al mes i [MJ/m²]

\(N_i \) Número de dies del mes i

Finalment, simplement cal sumar la radiació mensual obtinguda per a cada mes, obtenint-se la radiació anual per a tots els angles recomanats amb una interval de pas de 5°, tal com es mostra a la taula adjunta. A l’Annex D: Estudi del dimensionament de la instal·lació solar fotovoltaica per a les diferents alternatives es poden observar tots els resultats obtinguts.
De la taula es pot deduir que la inclinació òptima es troba, tal com s’havia deduït anteriorment, entre els 30° i els 35°, perquè amb aquestes configuracions s’aconsegueix maximitzar la radiació a l’hivern –quan la radiació solar és menor– i a més a més són les configuracions que tenen un valor de radiació anual per unitat de superfície més elevada. L’angle d’inclinació escollit és el de 30° perquè, tot i que la radiació anual és superior anualment i durant l’hivern en el cas dels 35°, les diferències entre les dues configuracions és poc substancial però d’altra banda com menor sigui l’angle d’inclinació de les plaques solars, menys alçada tindrà la instal·lació i conseqüentment, menys distància entre les plaques caldrà imposar.

Es fa la conversió de [MJ/m²] a [kWh/m²] perquè amb aquest valor es troba el paràmetre HSP (hora solar pic) que es correspon amb la conversió. Per tant, en aquest cas, l’HSP òptim és de 1788,37 hores.

Aquesta unitat denominada hora solar pic és molt usada en el camp de l’energia solar fotovoltaica i el seu coneixement és útil en l’anàlisi de sistemes. L’HSP és una unitat que mesura la irradiació solar i es defineix com el temps en hores d’una hipotètica irradiació solar constant de 1000 W/m². Una hora solar pic equival a 3,6 MJ/m² o , el que és el mateix , 1 kWh/m². Una vegada obtingut el valor de les HSP , és possible calcular teòricament tota potència diària que s’obtindrà dels panells, multiplicant la potència d’aquests per les HSP, sense oblidar les pèrdues energètiques del sistema.

<table>
<thead>
<tr>
<th>Mes</th>
<th>20°</th>
<th>25°</th>
<th>30°</th>
<th>35°</th>
<th>40°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gener</td>
<td>313,72</td>
<td>335,11</td>
<td>354,33</td>
<td>371,07</td>
<td>385,64</td>
</tr>
<tr>
<td>Febrer</td>
<td>354,51</td>
<td>376,06</td>
<td>393,68</td>
<td>406,24</td>
<td>413,77</td>
</tr>
<tr>
<td>Març</td>
<td>508,11</td>
<td>528,75</td>
<td>542,74</td>
<td>550,43</td>
<td>551,39</td>
</tr>
<tr>
<td>Abril</td>
<td>599,19</td>
<td>611,23</td>
<td>615,77</td>
<td>613,01</td>
<td>602,72</td>
</tr>
<tr>
<td>Maig</td>
<td>692,49</td>
<td>695,97</td>
<td>691,43</td>
<td>678,36</td>
<td>657,29</td>
</tr>
<tr>
<td>Juny</td>
<td>702,83</td>
<td>699,74</td>
<td>690,11</td>
<td>672,36</td>
<td>646,52</td>
</tr>
<tr>
<td>Juliol</td>
<td>715,61</td>
<td>715,67</td>
<td>708,16</td>
<td>691,99</td>
<td>667,76</td>
</tr>
<tr>
<td>Agost</td>
<td>662,06</td>
<td>671,33</td>
<td>672,54</td>
<td>665,35</td>
<td>650,21</td>
</tr>
<tr>
<td>Setembre</td>
<td>547,96</td>
<td>565,63</td>
<td>576,49</td>
<td>580,34</td>
<td>577,10</td>
</tr>
<tr>
<td>Octubre</td>
<td>445,13</td>
<td>469,01</td>
<td>487,29</td>
<td>499,63</td>
<td>505,82</td>
</tr>
<tr>
<td>Novembre</td>
<td>328,30</td>
<td>353,15</td>
<td>373,84</td>
<td>389,99</td>
<td>401,32</td>
</tr>
<tr>
<td>Desembre</td>
<td>285,09</td>
<td>310,10</td>
<td>331,78</td>
<td>349,40</td>
<td>362,36</td>
</tr>
<tr>
<td>Radiació anual a la plaça [MJ/m²]</td>
<td>6155,00</td>
<td>6331,74</td>
<td>6438,14</td>
<td>6468,17</td>
<td>6421,90</td>
</tr>
<tr>
<td>Radiació anual a la plaça [kWh/m²]</td>
<td>1709,72</td>
<td>1758,82</td>
<td>1788,37</td>
<td>1796,72</td>
<td>1783,86</td>
</tr>
</tbody>
</table>

| Taula 6.3: Energia solar anual incident en superfícies inclinades en forma de radiació |
6.2.2. Pèrdues del sistema

A més de les pèrdues que es produeixen per inclinació i orientació dels col·lectors, també és necessari recordar, que els panells fotovoltaics no són capaços d’absorbir i transformar tota l’energia solar incident en electricitat.

A grans trets, des que l’energia solar incideix a les plaques fins que es transforma en energia elèctrica, hi ha molts elements al sistema que no permeten l’aproximament al 100% de l’energia solar. Aquestes pèrdues es produeixen, com s’ha explicat anteriorment, a la pròpia placa solar, a l’inversor, al cablejat i a les interrupcions del servei.

El càlcul de les pèrdues per cadascun d’aquests elements és excessiu com per tractar-lo en aquest treball. Tot i això el factor anomenat *Performance Ratio* o PR recull totes les pèrdues del sistema. Més concretament, és el valor que s’utilitza per mesurar el rendiment d’una instal·lació un cop descomptades les pèrdues de potència inherents a un sistema fotovoltaic, i per tant, és un paràmetre completament independent de la irració. El que interessà, doncs, és que PR sigui màxim o les pèrdues mínimes. Normalment es troba entre el 70% i el 85%. Per als càlculs es prendrà el valor del PR alt, és a dir, d’un 0,80 tenint en compte que cal buscar al mercat una instal·lació de màxima eficiència.

6.2.3. Reglamentació vigent

Pel que fa a reglamentació quant a dimensionament de les plaques, les instal·lacions solars fotovoltaiques estan regulades pel Codi Tècnic d’Edificació [9] i pel Decret d’Ecoeficiència [10], com en l’anterior cas. En el cas dels habitatges, tant pel cas dels unifamiliars com pels plurifamiliars, els edificis de petites dimensions estan exclosos de la obligació d’incorporar sistemes de captació i transformació d’energia solar en energia elèctrica per procediments fotovoltaics.

6.2.4. Dimensionament de la superfície de les plaques solars segons tipologia edificatòria

Abans de dimensionar la instal·lació fotovoltaica, es fa un estudi de mercat de les plaques solars òptimes.

Les característiques dels tres candidats es troben adjuntades a l’Annex E: *Característiques tècniques de les plaques solars fotovoltaiques*. A continuació s’inclou una taula que resumeix aquestes característiques de les plaques solars fotovoltaiques possibles.

<table>
<thead>
<tr>
<th>Model</th>
<th>Conergy</th>
<th>SolarWorld</th>
<th>IBC SOLAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power-Plus 240P</td>
<td>SW285-300 MONO</td>
<td>Yingli PANDA275-30b</td>
<td></td>
</tr>
<tr>
<td>Àrea [m²]</td>
<td>1,63</td>
<td>1,68</td>
<td>1,617</td>
</tr>
<tr>
<td>Dimensions [mm]</td>
<td>1651x986x46</td>
<td>1675x1001x33</td>
<td>1650x980x40</td>
</tr>
<tr>
<td>Potència nominal [W]</td>
<td>240</td>
<td>290</td>
<td>275</td>
</tr>
<tr>
<td>Eficiència mòdul</td>
<td>14,74%</td>
<td>17,3%</td>
<td>16,8%</td>
</tr>
</tbody>
</table>
Remodelació del sistema energètic de Llinars del Vallès amb l’ús d’energies renovables

Per tal d’escollir la millor opció es tindran en compte dos aspectes; d’una banda, la producció elèctrica anual de tota la instal·lació, per garantir un subministrament d’electricitat adequat, i d’altra banda, la superfície disponible per als diversos tipus d’edificis, que restringirà el número de plaques solars de la instal·lació. Finalment, el preu serà una variable important que també ajudarà a escollir el model final.

Així doncs, el primer pas per al procediment serà calcular, per a cada model i per a cada tipologia edificatòria, el nombre de plaques solars que es podrien instal·lar a la coberta d’un edifici tipus, prenent un pendent del 0%.

I. Instal·lació fotovoltaica per a edificis unifamiliars

Tal com s’ha explicat anteriorment, per tal de realitzar el dimensionament de les instal·lacions solars, cal partir d’un conjunt de dades necessàries per estimar el nombre de plaques a instal·lar a un habitatge tipus, característiques del qual s’obtindran de les mitjanes d’ocupació del sòl i ocupació del sostre. Les dades utilitzades per al prototip d’habitatge unifamiliar són les que es mostren a la següent taula:

<table>
<thead>
<tr>
<th>Habitatges unifamiliars</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Ocupació sòl [m²sòl]</td>
</tr>
<tr>
<td>Superfície sostre [m²st]</td>
</tr>
<tr>
<td>Planta Baixa</td>
</tr>
<tr>
<td>109.752</td>
</tr>
<tr>
<td>109.752</td>
</tr>
<tr>
<td>Planta Baixa +1 planta</td>
</tr>
<tr>
<td>120.627</td>
</tr>
<tr>
<td>241.254</td>
</tr>
<tr>
<td>Planta Baixa +2 plantes</td>
</tr>
<tr>
<td>31.498</td>
</tr>
<tr>
<td>94.494</td>
</tr>
<tr>
<td>Planta Baixa +3 plantes</td>
</tr>
<tr>
<td>3.770</td>
</tr>
<tr>
<td>15.080</td>
</tr>
<tr>
<td>Planta Baixa +4 plantes</td>
</tr>
<tr>
<td>704</td>
</tr>
<tr>
<td>3.520</td>
</tr>
<tr>
<td>Planta Baixa +5 plantes</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>Planta Baixa +6 plantes</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>266.351</td>
</tr>
<tr>
<td>464.100</td>
</tr>
</tbody>
</table>

En aquest cas, també cal recuperar el valor mitjà de consum elèctric obtingut a l’apartat 4.1.3. \textit{Consum d’energia i emissió de contaminants segons tipologia edificatòria}. Aquest valor, de \textbf{106,35 kWh/m²·any}, servirà per calcular el percentatge de demanda energètica coberta per la instal·lació solar fotovoltaica.
Tenint en compte que el nombre d’habitatges unifamiliars al municipi de Llinars del Vallès – comptant dins d’aquest grup també els habitatges bifamiliars –, és de 2.520, es pot obtenir un edifici prototip sorgit de les mitjanes. Les característiques de l’habitatge mitjà són:

- **Ocupació mitjana de sòl**: 105,69 m2
- **Ocupació mitjana de sostre**: 184,16 m2
- **Consum energètic anual**: 249,92 kWh/m2·any · 184,16 m2 = 19585,51 kWh/any

Com es pot observar a la a la taula anterior, la superfície de coberta disponible per a la instal·lació de les plaques és de 105,69 m2. No obstant això, no són conegudes les dimensions de la coberta, i per tant s’establirà que per al cas base, la coberta d’estudi serà quadrada, ja que el més habitual en construcció és abaratir el cost de les façanes –o el que seria similar, minimitzar el perímetre per a una superfície màxima– i el quadrat és la forma geomètrica en construcció que permet aquesta relació (és conegut que la forma geomètrica que amb mínim perímetre aconsegueix una major superfície és la circumferència, però en construcció no és habitual que s’utilitzi en planta). Així doncs, les dimensions de la coberta per a aquest cas d’estudi seran de 10,28 m x 10,28 m.

No obstant això, no tota la superfície podrà estar ocupada pels panells fotovoltaics. Els panells es disposaran en files, per tant, entre files ha d’existir una certa distància per a que la radiació solar arribi d’igual forma a tots els mòduls. Per calcular la distància que ha d’haver-hi entre cada fila:

$$d'_{\text{min}} = \frac{l \cdot \sin \beta}{\tan H} \quad \text{(Eq. 6.4)}$$

On,

- d'_{min} Distància mínima entre plaques, en el pla horitzontal [m]
- l Longitud del mòdul, que dependrà de cada opció [m]
- β Angle d’inclinació del panell respecte la coberta, amb un valor de 30$^\circ$
- H Altura solar al migdia en el cas més desfavorable [$^\circ$]

Com que la disposició de les plaques depèn directament de les dimensions de cada model, a continuació es presenta el càlcul per a la placa de la marca SolarWorld, model SW285-300 MONO, i la resta d’estudis es troben a l’Annex D: Estudi del dimensionament de la instal·lació solar fotovoltaica per a les diferents alternatives.

En aquest cas, les plaques es col·locarien horitzontalment, és a dir, que el valor de la longitud del mòdul seria 1001 mm (1,001 m). L’angle d’inclinació ja és conegut, i per tant l’únic que cal és trobar el valor de l’altura solar al migdia en el cas més desfavorable. Segons diversos estudis, l’angle de radiació en el cas més desfavorable es produceix el 21 de desembre i té un valor de 23,5$^\circ$. Per tant, l’altura solar ve donada per l’expressió següent:

$$H = 90^\circ - (\text{latitud}) - 23,5^\circ = 24,87^\circ \quad \text{(Eq. 6.5)}$$
Remodelació del sistema energètic de Llinars del Vallès amb l’ús d’energies renovables

No obstant això, com s’ha explicat anteriorment, la producció d’electricitat s’ha de maximitzar al llarg de tot l’any, i per tant, el fet que la posició solar a l’hivern sigui tant baixa, faria disminuir molt el rendiment de la instal·lació, si es dimensionés només tenint en compte aquest aspecte. Per tant, es pren com a altura del Sol més desfavorable a 50°, ja que els resultats no varien excessivament i es permet que la distància entre les plaques sigui molt menor.

Així doncs, ja es podria calcular la distància mínima que ha d’haver-hi entre cada fila de plaques. En el cas de l’exemple que s’està estudiant:

\[d'_{\text{min}} = \frac{1,001 \cdot \sin(30^\circ)}{\tan(50^\circ)} = 0,42 \, m \]

El valor \(d'_{\text{min}} \) trobat és un valor que restringeix enormement la instal·lació solar fotovoltaica – ja que pràcticament un terç de la superfície disponible s’hauria de dedicar a la separació entre les plaques solars. És per aquest motiu que es proposa realitzar la instal·lació de les plaques solar construïdes en un suport amb cert pendent per tal d’eliminar aquesta distància mínima. En la mateixa línia, a més, el fet d’instal·lar un suport amb pendent igual a l’angle d’inclinació de les plaques permetria cobrir una major superfície de coberta. El suport a instal·lar permetria una configuració similar al que s’observa a la següent imatge:
En la mateixa línia, s’intentarà que el suport o suports instal·lats per a la subjecció de les plaques solar no tingui una alçada superior al 35% de la base sobre la qual es suporta, per assegurar l’estabilitat. Per tant, l’alçada màxima del suport no podrà superar els 3,6 m. Per tal d’optimitzar l’espai disponible a la coberta, la instal·lació solar fotovoltaica podrà excedir els límits de la superfície a raó de 0,5 m per cada costat, de manera que s’asseguri l’estabilitat de la instal·lació.

Per tal d’optimitzar la disposició de les plaques solars es proposa col·locar tres suports que agrupin un conjunt de plaques solars, com es pot veure a la imatge anterior. D’aquesta manera, s’aconsegueix eliminar la separació entre cada fila de plaques solars, i només caldrà introduir una separació entre cadascun dels suports. En la mateixa línia, els suports no s’instal·laran a la mateixa alçada, sinó que s’ubicaran esglaonadament. El següent esquema representa la disposició en files de la instal·lació solar, a partir del qual es poden extreure les equacions necessàries per obtenir els paràmeters més importants de la instal·lació (número de files per suport, alçada inicial de cadascun dels suports, distància entre els mateixos, punt d’alçada màxima de la instal·lació, etc.):

\[
\begin{align*}
2 \cdot d_{\text{min}} + \text{files}_{\text{totals}} \cdot 1,001 \cdot \cos(30^\circ) &= 11,28 \text{ m} \\
 h' &= d_{\text{min}} \cdot \tan(24,87^\circ) \\
 h' + h_1 &= 1,001 \cdot \text{files}_{1\text{r suport}} \cdot \sin(30^\circ) + 0,2 \\
 h' + h_2 &= 1,001 \cdot \text{files}_{2\text{n suport}} \cdot \sin(30^\circ) + h_1 \\
 h_{\text{max}} &= h_2 + \text{files}_{3\text{r suport}} \cdot 1,001 \cdot \sin(30^\circ) \leq 3,5 \text{ m} \\
 \text{files}_{\text{totals}} &= \text{files}_{1\text{r suport}} + \text{files}_{2\text{n suport}} + \text{files}_{3\text{r suport}}
\end{align*}
\]

Per resoldre el sistema anterior, s’ha efectuat un procediment iteratiu amb el suport d’una taula d’Excel per trobar, en primer lloc, el nombre de files de plaques solars per suport que optimitzi...
l’espai en coberta. Els resultats òptims són la instal·lació de 3 files de plaques per al primer suport, 3 per al segon i, finalment, 2 per al tercer. Per tant, el nombre de total de files serà 8.

Resolent el sistema d’equacions, conegudes les files de plaques per suport, els valors que s’obtenen per a la configuració de la instal·lació:

\[d_{\text{min}} = 2,17 \ m; \quad h' = 1,00 \ m; \quad h_1 = 0,69 \ m; \quad h_2 = 1,19 \ m; \quad h_{\text{max}} = 2,19 \ m \leq 3,5 \ m \]

Pel que fa a columnes, el càlcul és més senzill, ja que no existeix la possibilitat que les plaques es tapin unes a altres. Per al càlcul de les columnes només cal dividir l’amplada de la coberta entre l’amplada dels panells. En resum:

\[\text{columnes} = \frac{b_{\text{coberta unifamiliar}}}{b_{\text{placa}}} = \frac{10,28 + 0,5 \cdot 2}{1,675} = 6,73 \cong 6 \quad (\text{Eq. 6.12}) \]

Aquesta configuració per columnes permetrà introduir una distància entre cada grup de plaques solars. Es decideix que cada grup o suport de plaques tindrà dues columnes. Per tant, en el cas de l’exemple que s’està estudiant s’instal·larien 9 suports, 6 dels quals estarien formats per 2 columnes de plaques i 3 files, i 3 de 2 columnes i 2 files. D’aquesta manera, la instal·lació per al cas d’exemple comptaria amb un total de 48 plaques solars. La vista en planta de la instal·lació solar fotovoltaica calculada seria similar a la que es mostra tot seguit:

![Diagrama de disposició de suports solar](image-url)
Remodelació del sistema energètic de Llinars del Vallès amb l’ús d’energies renovables

Tot el procediment de càlcul s’ha realitzat en un cas ideal, en una coberta no inclinada —és possible que la coberta tingui inclinació i no estigui orientada al sud—, i sense obstacles, com podrien ser sortides de fums o instal·lacions i aparells tècnics que dificultin la instal·lació completària del sistema fotovoltaic ideal. Per aquest motiu, s’aplica un factor corrector que intentarà lidiar amb aquests problemes. Així doncs, el factor corrector de posició de plaques es fixa en un valor de 0,8. En conclusió, per al càlcul de l’energia total produïda, es tindrà en compte que, de mitjana, només es podran instal·lar el 80% del nombre de plaques previstes al càlcul ideal. En el cas del cas exemple, per tant, 38 plaques solars (=80% de les 48 previstes inicialment).

En últim terme, un cop corregit el nombre de plaques solars, ja es podria efectuar el càlcul de l’electricitat produïda anualment.

\[E_{tot} = P_N \cdot HSP \cdot PR \cdot N \] \hspace{1cm} (Eq. 6.13)

On,

- \(E_{tot} \) Potència total anual de la instal·lació [kWh]
- \(P_N \) Potència nominal de cada placa [kW]
- \(HSP \) Hores de Sol pic [h]
- \(N \) Número de plaques
- \(PR \) Performance Ratio (pèrdues del sistema) en percentatge, amb valor de 0,8

Pel que fa al cas, s’obté una energia anual total de 15766,27 kWh, que suposaria un 80,5% de la demanda elèctrica total de l’habitatge unifamiliar. A continuació es mostra una taula on es resumeixen els resultats obtinguts per a les altres plaques solars. Aquesta ajudarà a decidir quina de les opcions és la més factible.

<table>
<thead>
<tr>
<th>Electricitat transformada[kWh]</th>
<th>Conergy</th>
<th>SolarWorld</th>
<th>IBC SOLAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>13047,95</td>
<td>15.766,27</td>
<td>14.950,77</td>
<td></td>
</tr>
<tr>
<td>Nº col·lectors</td>
<td>38</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>Aportació solar (%)</td>
<td>66,62</td>
<td>80,50</td>
<td>76,34</td>
</tr>
<tr>
<td>Preu instal·lació [€]</td>
<td>14.592,00</td>
<td>7.334,00</td>
<td>9.842,00</td>
</tr>
<tr>
<td>Preu/kWp</td>
<td>1,6</td>
<td>0,6655</td>
<td>0,9418</td>
</tr>
</tbody>
</table>

Taula 6.6: Resum dels diferents models i diferents configuracions

A la taula anterior, s’observa clarament que el model SW285-300 MONO de la marca SolarWorld és la millor opció en tots els aspectes estudiats, en la quantitat d’electricitat transformada i per tant en aportació solar, en preu d’instal·lació, etc. Per tant, s’instal·larien les 38 plaques d’aquest model en el cas d’exemple.

Cal recordar que l’aportació solar depèn directament del consum associat a cada edifici, i en el cas de l’exemple s’ha realitzat l’estudi amb un edifici amb certificació energètica de nivell F. A continuació es recupera la taula de consums de l’apartat 3.4.3 i s’incorpora una columna que fa referència a l’aportació solar de la instal·lació en funció del nivell de certificació energètica, i una
altra columna amb el número de plaques necessàries per a la cobertura total de la demanda energètica, partint de l’edifici del cas d’estudi:

<table>
<thead>
<tr>
<th>Tipologia</th>
<th>Energia final [kWh/m2·any]</th>
<th>Aportació Solar (%)</th>
<th>Plaques solars necessàries per cobertura total</th>
<th>Nombre d’habitatges</th>
</tr>
</thead>
<tbody>
<tr>
<td>HABITATGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNIFAMILIAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>74,21</td>
<td>271,11%</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>123,61</td>
<td>162,76%</td>
<td>23</td>
<td>21</td>
</tr>
<tr>
<td>E</td>
<td>199,49</td>
<td>100,85%</td>
<td>38</td>
<td>114</td>
</tr>
<tr>
<td>F</td>
<td>278,28</td>
<td>72,30%</td>
<td>53</td>
<td>33</td>
</tr>
<tr>
<td>G</td>
<td>385,38</td>
<td>52,21%</td>
<td>73</td>
<td>59</td>
</tr>
<tr>
<td>TOTAL</td>
<td>249,92</td>
<td>80,50%</td>
<td>47</td>
<td>230</td>
</tr>
</tbody>
</table>

Taula 6.7: Aportació solar i nombre de plaques necessàries per satisfer la demanda energètica d’un edifici unifamiliar tipus integrament. Font: Confecció pròpia

De la taula anterior se n’extreu la importància d’un concepte del qual s’ha anat remarcant al llarg de tot el projecte; la reducció de la demanda. Es pot observar que en tots els edificis amb una certificació energètica de nivell E o superior, es podria cobrir de manera íntegra la demanda energètica amb l’ús d’energia solar fotovoltaica.

Així doncs, de cara a la consecució dels objectius del present projecte, l’estratègia amb més sentit per cobrir íntegrament la demanda energètica amb energies renovables seria aplicar les mesures explicades a l’apartat de reducció de la demanda. Una altra opció seria cobrir la demanda restant instal-lant un camp solar, que també servirà per cobrir totalment la demanda dels edificis plurifamiliars. Caldrà veure la superfície necessària per cobrir totes les necessitats energètiques. Una altra possibilitat, que queda fora de l’abast del projecte, però, també podria ser cobrir l’energia necessària restant amb altres fonts d’energia renovable. L’energia eòlica es presentaria com una alternativa molt viable a la instal·lació d’un camp solar.

Finalment, és important destacar la importància d’un concepte innovador; l’emmagatzematge d’energia mitjançant bateries de liti. Per al dimensionament de les bateries s’utilitzaria el software *SolarTradex* (software de monitoratge de les dades de consum elèctric) per tal de dimensionar les bateries de liti amb l’objectiu que emmagatzemin l’energia sobrant produïda sobre tot al migdia. Aquest és el problema més important de les instal·lacions fotovoltaiques, i solucionar-lo seria tot un pas endavant. De fet, a mode d’exemple, es pot observar a continuació una instal·lació fotovoltaica real amb excedents energètics.
II. Instal·lació fotovoltaica per a edificis plurifamiliars

Pel que fa a la instal·lació solar fotovoltaica per a edificis plurifamiliars, el procediment serà exactament el mateix que pel cas dels habitatges unifamiliars. Les dades utilitzades per al prototip d’habitatge plurifamiliar són les que es mostren a la següent taula:

<table>
<thead>
<tr>
<th>Habitatges plurifamiliars</th>
<th>Ocupació sòl [m²sòl]</th>
<th>Superfície sostre [m²st]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planta Baixa</td>
<td>6.106</td>
<td>6.106</td>
</tr>
<tr>
<td>Planta Baixa +1 planta</td>
<td>10.634</td>
<td>21.268</td>
</tr>
<tr>
<td>Planta Baixa +2 plantes</td>
<td>23.382</td>
<td>70.146</td>
</tr>
<tr>
<td>Planta Baixa +3 plantes</td>
<td>18.130</td>
<td>72.520</td>
</tr>
<tr>
<td>Planta Baixa +4 plantes</td>
<td>5.855</td>
<td>29.275</td>
</tr>
<tr>
<td>Planta Baixa +5 plantes</td>
<td>852</td>
<td>5.112</td>
</tr>
<tr>
<td>Planta Baixa +6 plantes</td>
<td>35</td>
<td>245</td>
</tr>
<tr>
<td>Total</td>
<td>64.994</td>
<td>204.672</td>
</tr>
</tbody>
</table>

Taula 6.8: Superfícies ocupades pels habitatges plurifamiliars del municipi. Font: Confecció pròpia

Cal recuperar també el valor mitjà de consum energètic obtingut a l’apartat 4.1.3. *Consum d’energia i emissió de contaminants segons tipologia edificatòria*, de 71,82 kWh/m²·any.

Tenint en compte els 1832 habitatges plurifamiliars al municipi de Llinars del Vallès, es pot obtenir un edifici prototip sorgit de les mitjanes, com en el cas d’estudi anterior. Les característiques de l’habitatge mitjà són:

- **Ocupació mitjana de sòl**: 35,47 m²
- **Ocupació mitjana de sostre**: 111,72 m²
- **Consum energètic anual**: 71,82 kWh/m²·any · 111,72 m² = 8023,40 kWh/any
Com es pot observar a la taula anterior, la superfície de coberta disponible per a la instal·lació de les plaques és de 35,47 m². D'igual forma que en el cas dels habitatges plurifamiliars, es prendrejan dimensions quadrades de la coberta per efectuar l’estudi. D’aquesta manera, les dimensions de la coberta per al cas d’estudi seran de 5,96 m x 5,96 m.

Tal com s’ha estudiat al cas d’estudi d’habitatges unifamiliars, s’utilitzaran els mateixos panells solars, el model SW285-300 MONO de la marca SolarWorld, que presenten unes característiques més favorables respecte als altres competidors. En aquest cas, per tal d’optimitzar la superfície disponible d’instal·lació, les plaques es col·locarien verticalment, és a dir, que el valor de la longitud del mòdul seria 1675 mm (1,675 m).

També s’utilitzaran suports per agrupar les plaques solars, amb una disposició similar a l’estudi anterior, i mirant de limitar l’alçada màxima de la instal·lació a un 35% de la longitud d’un dels costats de la coberta, és a dir, a 2,1 m aproximadament. Finalment, per tal d’optimitzar l’espai disponible a la coberta, la instal·lació solar fotovoltaica podrà excedir els límits de la superfície a raó de 0,25 m per cada costat de profunditat, de manera que s’asseguri l’estabilitat de la instal·lació.

En la següent il·lustració poden observar-se els suports que sostindran les plaques solars, a partir de la qual es poden extreure les equacions necessàries per obtenir els paràmetres geomètrics de la instal·lació.

\[\begin{align*}
\text{d_{min}} + \text{files}_{total} \cdot 1,675 \cdot \cos(30^\circ) &= 6,46 \text{ m} \quad (\text{Eq. 6.14}) \\
h' &= \text{d_{min}} \cdot \tan(24,87^\circ) \quad (\text{Eq. 6.15}) \\
h' + h_1 &= 1,675 \cdot \text{files}_{1r \text{ suport}} \cdot \sin(30^\circ) + 0,2 \quad (\text{Eq. 6.16})
\end{align*} \]
\[h_{\text{màx}} = h_1 + \text{files}_{2n\text{ suport}} \cdot 1,675 \cdot \sin(30^\circ) \leq 2,1 \text{ m} \quad (\text{Eq. 6.17}) \]

\[\text{files}_{\text{tots}} = \text{files}_{1\text{r suport}} + \text{files}_{2n\text{ suport}} \quad (\text{Eq. 6.18}) \]

D’igual manera que en el cas dels habitatges unifamiliars, en primer lloc es troba per un procés iteratiu el nombre de files per cadascun dels suports. El resultat és que el primer suport tindrà una única fila i el segon estarà compost de dues files.

Resolent el sistema d’equacions, els valors que s’obtenen per a la configuració de la instal·lació:

\[d_{\text{mín}} = 2,11 \text{ m}; \quad h’ = 0,98 \text{ m}; \quad h_1 = 0,06 \text{ m}; \quad h_{\text{màx}} = 1,74 \text{ m} \leq 2,1 \text{ m} \]

Pel que fa a columnes, es permetrà que la instal·lació sobresurti 0,5 m per cada costat:

\[\text{columns} = \frac{b_{\text{coberta plurifamiliar}}}{b_{\text{placa}}} = \frac{5,96+0,5 \cdot 2}{1,001} = 6,95 \cong 7 \quad (\text{Eq. 7.19}) \]

En aquest cas, es decideix que no s’imposarà una distància entre columnes, per tal d’optimitzar l’espai disponible. Consequentment, cada grup o suport de plaques tindrà set columnes. Per tant, en el cas de l’exemple que s’està estudiant s’instal·larien 2 suports, format un d’ells per 7 columnes i 1 fila, i l’altre per 7 columnes de plaques i 2 files. D’aquesta manera, la instal·lació per al cas d’habitatges plurifamiliars comptaria amb un total de 21 plaques solars. La vista en planta de la instal·lació solar fotovoltaica:

![Figura 6.8: Disposició dels suports (en planta) dels panells solars a la coberta plurifamiliar. Font: Confecció pròpia](image)

Finalment, un cop dimensionada la instal·lació solar, i tal com s’ha fet en el cas de l’habitatge unifamiliar, ja es pot aplicar l’equació 6.13 per obtenir l’energia anual obtinguda. D’igual forma que en el cas d’estudi anterior, cal aplicar el factor de 0,8. En el cas del cas exemple, doncs, 17 plaques solars.

S’obté per al present cas una energia anual total de 7053,33 kWh, que suposaria un 87,91% de la demanda elèctrica total de l’habitatge plurifamiliar. A continuació es mostra una taula on es resumen el resultats obtinguts.
De manera sorprenent, s’observa amb els resultats que l’aportació solar pel cas dels habitatges plurifamiliars és superior al dels edificis unifamiliars, contràriament al que s’havia estimat inicialment. D’altra banda, en aquest cas també prendreà molta rellevància el concepte de reducció de la demanda, ja que el cas estudiat es correspon amb un edifici amb un ampli marge de millora en termes d’eficiència energètica i reducció del consum. Posteriorment es presenta la taula d’aportació solar i necessitats quant a nombre de plaques solars per tal de cobrir tota la demanda energètica.

Taula 6.9: Resum dels resultats obtinguts per a l’habitatge tipus plurifamiliar

<table>
<thead>
<tr>
<th>Tipologia</th>
<th>Energia primària [kWh/m²·any]</th>
<th>Aportació Solar (%)</th>
<th>Plaques solars necessàries per cobertura total</th>
<th>Nombre d’habitatges</th>
</tr>
</thead>
<tbody>
<tr>
<td>HABITATGE PLURIFAMILIAR</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>34,3</td>
<td>432,55%</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>57,8</td>
<td>256,69%</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>76,08</td>
<td>195,01%</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>143,33</td>
<td>103,51%</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>216,56</td>
<td>68,51%</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>275,33</td>
<td>53,89%</td>
<td>32</td>
</tr>
<tr>
<td>TOTAL</td>
<td>168,77</td>
<td>87,91%</td>
<td>19</td>
<td>373</td>
</tr>
</tbody>
</table>

Taula 6.10: Aportació solar i nombre de plaques necessàries per satisfer la demanda energètica d’un edifici plurifamiliar tipus integrat. Font: Confecció pròpia

III. Instal·lació d’un camp solar per cobrir la demanda restant

En qualsevol dels dos casos estudiat pot veure’s que la cobertura energètica dels habitatges del municipi no es pot garantir totalment amb la superfície de les cobertes. Tal com s’ha comentat anteriorment, s’estudiarà a continuació la instal·lació d’un camp solar per concloure la remodelació complerta del sistema energètic de Llinars.

Per fer-ho, en base als resultats obtinguts al dimensionament de les instal·lacions anteriorment, s’extrapolaran els mateixos al conjunt global del municipi. En altres termes, cal calcular l’energia que manca per cobrir i partint d’aquest valor, s’analitzarà la viabilitat d’instal·lar un camp solar proper al municipi, per tal de reduir al màxim les pèrdues per transport d’energia.

Per realitzar el càlcul de l’energia que manca per cobrir, el primer pas és calcular la demanda total d’energia del municipi. En aquest cas, simplement cal efectuar el producte del nombre
Remodelació del sistema energètic de Llinars del Vallès amb l’ús d’energies renovables

El següent pas és calcular l’energia que poden transferir les instal·lacions solars. Per fer-ho, s’usa la taula de consum d’energia que s’ha utilitzat en els respectius casos d’estudi. En primer lloc, s’estima en base a la recollida de dades, la quantitat d’edificis segons la certificació energètica. Seguidament, conegut el consum mig segons la certificació energètica i l’aportació solar calculada en els dos estudis anteriors, es pot obtenir l’energia, en MWh, que podrien donar les instal·lacions solars situades en les cobertes. La taula posterior mostra els valors obtinguts a partir del càlcul descrit:

Taula 6.11: Càlcul de l’energia solar fotovoltaica provinent de les cobertes dels edificis del municipi. Font: Confecció pròpia

Amb la taula presentada anteriorment i essent coneguda l’estimació del consum total del municipi, es pot deduir l’energia que hauria d’aportar la planta solar. Aquest valor permetrà...
conèixer la superfície necessària per situar les plaques solar, que és un paràmetre clau per analitzar la viabilitat de les accions que es proposen.

El valor total d’energia requerida per acabar de cobrir la demanda energètica del municipi de Llinars del Vallès s’obté de la resta entre les necessitats energètiques totals menys l’energia solar fotovoltaica de les cobertes. S’obté un valor de 14430,96 MWh. Amb el valor d’energia obtingut és possible calcular el número de plaques solars necessàries, fent ús d’una equació ja utilitzada anteriorment:

\[N = \frac{E_{\text{tot}}}{P_N \cdot HSP \cdot PR} = \frac{14430,96 \cdot 10^3}{0,290 \cdot 1788,37 \cdot 0,75} \approx 37.100 \text{ plaques solars} \]

En aquest cas, s’ha inclòs dins de l’estimació del paràmetre Performance Ratio (PR), les pèrdues associades al transport de l’energia elèctrica (s’estimen unes pèrdues associades a l’eficiència del cablejat). Per aquest motiu, es pren un PR de 0,75.

Finalment, és necessari estimar la superfície que ocuparia la planta solar fotovoltaica per corroborar que existeix un terreny suficientment extens i proper al municipi com per a allotjar una instal·lació tan important. El procediment per realitzar l’esmentada avaluació ha de partir, inicialment, de la disposició que es farà de les plaques solars. En el cas que ocupa, es col·locaran les plaques solars en suports –com s’ha realitzat ja en les cobertes dels habitatges–. Lògicament, i seguint en la línia del projecte, les plaques s’orientaran al sud, amb una inclinació de 30°, i cada suport sostindrà 16 plaques solars; 4 files i 4 columnes. Altrament, en aquest cas els suports no es col·locaran de forma esglaonada, sinó que tots s’instal·laran a la mateixa alçada, per facilitar les tasques de manteniment i neteja de les plaques. Finalment, en el cas de la planta solar tampoc hi haurà separació entre columnes. La planta solar s’assimilaria força a la planta fotovoltaica de Kamuthi, a l’Índia, tot i que amb unes dimensions molt inferiors.

Per tant, això com s’ha fet anteriorment, únicament mancaria calcular la distància mínima que ha d’haver-hi entre suports de panells.

\[
d'_{\text{min suport}} = \frac{l \cdot \sin \beta}{\tan H} = \frac{4 \cdot 1,001 \cdot \sin(30^\circ)}{\tan(24,87^\circ)} = 4,31 \text{ m}
\]

On,
- \(d'_{\text{min suport}}\) Distància mínima entre suports, en el pla horitzontal [m]
- \(l\) Longitud del conjunt de mòduls (4 files per suport) [m]
- \(\beta\) Angle d’inclinació del panell respecte la coberta, amb un valor de 30°
- \(H\) Altura solar al migdia en el cas més desfavorable, amb un valor de 24,87°

Un cop calculada la distància mínima entre panells solars, ja es pot estimar la superfície del camp solar. En primer lloc es calcula l’àrea, en planta, que ocuparà cada suport que agruparà 16 panells solars, tenint en compte també la distància mínima que representarà l’ombra en el cas més desfavorable. L’àrea ocupada per cada grup de setze panells solars es calcula com segueix:

\[
A_{\text{ocupada sup}} = \left[l \cdot \cos(30^\circ) + d'_{\text{min suport}} \right] \cdot b = \left[4 \cdot 1,001 \cdot \cos(30^\circ) + 4,31 \right] \cdot 4 \cdot 1,675 = 52,17 \text{ m}^2
\]

On,
- \(A_{\text{ocupada sup}}\) Superfície ocupada per un suport \([\text{m}^2]\)
- \(d'_{\text{min suport}}\) Distància mínima entre suports, en el pla horitzontal \([\text{m}]\)
- \(l\) Longitud del conjunt de mòduls (4 files per suport) \([\text{m}]\)
- \(b\) Longitud de l’amplada del conjunt de mòduls (4 columnes per suport) \([\text{m}]\)

Sabuda la superfície ocupada per cada grup de panells solars, simplement cal trobar el nombre de suports necessaris per agrupar totes les plaques solars i fer el producte d’aquest valor trobat per la superfície unitària de cada panell. Per tal que el nombre de suports a instal·lar sigui un nombre natural, s’hauran d’instal·lar 37.104 plaques solars.

La superfície total del camp solar, que s’expressarà en hectàrees, és la següent:

\[
A_{\text{Camp solar}} = \frac{N \cdot A_{\text{ocupada sup}}}{16 \text{ plaques solars / suport}} \cdot \frac{1 \text{ ha}}{10^4 \text{ m}^2} = \frac{37,104 \text{ plaques solars} \cdot 52,17 \text{ m}^2}{16 \text{ plaques solars / suport}} \cdot \frac{1 \text{ ha}}{10^4 \text{ m}^2} = 12,10 \text{ ha}
\]

Finalment, cal trobar un terreny superior a les més de 12 hectàrees que requereix el camp solar. Si s’examina el municipi de Llinars del Vallès i els seus voltants, existeixen múltiples camps que
podrien ésser útils per a la instal·lació solar. Tot seguit es mostra un terreny que compleix amb les condicions requerides, i que a més a més es troba molt proper a la línia d’alta tensió.

6.2.5. Dimensionament de les bateries d’acumulació per a les instal·lacions en coberta

Les bateries solars, també conegudes com acumuladors fotovoltaics, s’utilitzen per a l’emmagatzematge de l’energia elèctrica generada pels sistemes solars fotovoltaics, amb l’objectiu de disposar d’energia en períodes nocturns o en aquelles hores del dia en les que la radiació solar no és suficient per cobrir tota la demanda. Aquests elements poden, així mateix, exercir com elements estabilitzadores del voltatge i del corrent de subministrament, o com injectors de pics de corrent en determinades situacions, tals com l’arrencada de motors.

Les bateries es componen bàsicament de dos elèctrodes que es troben submergides en un medi electrolític. Els tipus més recomanats per a instal·lacions fotovoltaiques són les de tipus estacionari de plom àcid i de placa tubular, segons els experts. Aquestes es componen de vasos electroquímics interconnectats, de 2V cadascun, que es disposaran en sèrie o paral·lel per a completar les tensions de subministrament de 12, 24, o 48 V.

La característica més important de les bateries és la capacitat. És una unitat de càrrega, que es mesura en Ampers-hora [Ah], i que indica la quantitat de càrrega elèctrica que passa pels terminals d’una bateria. En altres termes, la capacitat de la bateria indica la quantitat d’electricitat que pot emmagatzemar-se durant la càrrega de la bateria, per després tornar-la durant la descàrrega.

Tal com s’ha comentat anteriorment, el disseny dels acumuladors es durà a terme per al cas exemple d’habitatge unifamiliar i plurifamiliar, separadament.
I. Càlcul de les bateries per a edificis unifamiliars

Amb el paràmetre Performance Ratio conegut i utilitzat anteriorment, en primer lloc, és necessari calcular l’energia \(E \) de la qual s’ha de disposar diàriament al sistema.

\[
 E = \frac{E_{tot}/365 \text{ dies}}{PR} = \frac{15766,27/365}{0,8} = 53994,08 \text{ Wh/dia}
\]

On,

- \(E \) Potència diària de la instal·lació [Wh]
- \(E_{tot} \) Potència total anual de la instal·lació [kWh]
- \(PR \) Performance Ratio (pèrdues del sistema) en percentatge, amb valor de 0,8

Un cop calculada la energia total diària de la instal·lació, el següent pas es calcular la capacitat total:

\[
 C_{tot} = \frac{E}{V_{cc}} = \frac{53994,08}{48} = 1124,88 \text{ Ah}
\]

On,

- \(C_{tot} \) Capacitat total [Ah]
- \(V_{cc} \) Voltatge en corrent contínua [V]

No obstant, per calcular la capacitat de la bateria és necessari aplicar les recomanacions dels fabricants, segons els quals cal aplicar una profunditat de descàrrega del 50%. D’aquesta manera s’assegura que la vida útil de la bateria es situi en 12 i 15 anys. En la mateixa línia, cal multiplicar la capacitat pels dies d’autonomia, que s’estimen 3 dies. S’ha considerat aquest valor tenint en compte la nocturnitat i el percentatge de nuvolositat del municipi, que és força baix.

\[
 C_{bat} = C_{tot} \cdot 0,5 \cdot N = 1124,88 \cdot 0,5 \cdot 3 \text{ dies} = 1687,32 \text{ Ah}
\]

Amb aquesta dada ja és possible escollir una bateria dins del mercat que s’adapti a les necessitat de la instal·lació solar. En aquest cas, s’opta per obtenir un banc de bateries composat per 24 elements de 2V sèrie PVS de l’empresa BAE, que té una capacitat \(C_{10h} \) de 1470 Ah, \(C_{100h} \) de 1870 Ah i \(C_{240h} \) de 1941 Ah.

<table>
<thead>
<tr>
<th>Tipus Ue V per element</th>
<th>(\text{C}_{10^\circ C}) Ah 1,8</th>
<th>(\text{C}_{10^\circ C}) Ah 1,8</th>
<th>(\text{C}_{20^\circ C}) Ah 1,8</th>
<th>(\text{C}_{20^\circ C}) Ah 1,8</th>
<th>(R_1 (\text{mO}))</th>
<th>(L_2 (\text{M}))</th>
<th>Dimensiones (mm)</th>
<th>Peso (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 PVS 900</td>
<td>665</td>
<td>877</td>
<td>916</td>
<td>0,47</td>
<td>4,41</td>
<td>147</td>
<td>208</td>
<td>710</td>
</tr>
<tr>
<td>7 PVS 1050</td>
<td>777</td>
<td>1020</td>
<td>1065</td>
<td>0,36</td>
<td>5,66</td>
<td>215</td>
<td>193</td>
<td>710</td>
</tr>
<tr>
<td>8 PVS 1200</td>
<td>886</td>
<td>1160</td>
<td>1216</td>
<td>0,32</td>
<td>6,36</td>
<td>215</td>
<td>193</td>
<td>710</td>
</tr>
<tr>
<td>9 PVS 1350</td>
<td>992</td>
<td>1300</td>
<td>1365</td>
<td>0,33</td>
<td>6,2</td>
<td>215</td>
<td>235</td>
<td>710</td>
</tr>
<tr>
<td>10 PVS 1500</td>
<td>1100</td>
<td>1450</td>
<td>1516</td>
<td>0,28</td>
<td>7,25</td>
<td>215</td>
<td>235</td>
<td>710</td>
</tr>
<tr>
<td>11 PVS 1650</td>
<td>1210</td>
<td>1590</td>
<td>1665</td>
<td>0,28</td>
<td>7,36</td>
<td>215</td>
<td>277</td>
<td>710</td>
</tr>
<tr>
<td>12 PVS 1800</td>
<td>1320</td>
<td>1740</td>
<td>1816</td>
<td>0,24</td>
<td>8,41</td>
<td>215</td>
<td>277</td>
<td>710</td>
</tr>
<tr>
<td>11 PVS 2090</td>
<td>1470</td>
<td>1870</td>
<td>1941</td>
<td>0,24</td>
<td>8,36</td>
<td>215</td>
<td>277</td>
<td>855</td>
</tr>
<tr>
<td>12 PVS 2280</td>
<td>1600</td>
<td>2040</td>
<td>2116</td>
<td>0,24</td>
<td>9,48</td>
<td>215</td>
<td>277</td>
<td>855</td>
</tr>
</tbody>
</table>

Taula 6.12: Dades del catàleg de les bateries de l’empresa BAE. Font: AutoSolar [14]
II. Càlcul de les bateries per a edificis plurifamiliars

Per a les bateries utilitzades en els edificis plurifamiliars, cal seguir el mateix procediment que el que s’ha mostrat anteriorment. Amb l’objectiu de no repetir el procés de càlcul, a continuació s’adjunta una taula que resumeix els resultats obtinguts per als habitatges plurifamiliars.

<table>
<thead>
<tr>
<th>Tipologia</th>
<th>HABITATGE PLURIFAMILIAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potència total anual de la instal·lació E_{tot} [kWh]</td>
<td>7053,33 kWh</td>
</tr>
<tr>
<td>Potència total diària de la instal·lació E [Wh]</td>
<td>24155,24 Wh</td>
</tr>
<tr>
<td>Performance Ratio PR</td>
<td>0,8</td>
</tr>
<tr>
<td>Capacitat total C_{tot} [Ah]</td>
<td>503,23 Ah</td>
</tr>
<tr>
<td>V_{cc} [V]</td>
<td>48 V</td>
</tr>
<tr>
<td>Capacitat de la bateria C_{bat} [Ah]</td>
<td>754,85</td>
</tr>
</tbody>
</table>

Taula 6.13: Taula resum del procediment de càlcul de les bateries per a edificis plurifamiliars. Font: Confecció pròpia

D’aquesta manera, ja es pot triar una bateria al mercat. D’igual manera que en el cas anterior, en aquest cas caldría instal·lar un banc composat per 24 elements de 2V, sèrie PVS amb unes capacitats C_{10h}, C_{100h}, C_{240h} de 665, 877 i 916 Ah, respectivament, com pot observar-se a la taula 6.12.

6.2.6. Dimensionament de l’inversor per a les instal·lacions en coberta

Per concloure amb l’estudi del dimensionament de les instal·lacions, el darrer pas és el disseny de l’inversor. Al mercat existeixen diversos tipus d’inversors que integren el carregador de bateries dins del propi equip. Aquesta qüestió pot ser un avantatge important ja que és el mateix equip el que gestiona l’arrencament del grup electrogen per protegir les bateries i dotar de continuïtat al servei. En una mateixa carcassa s’hí tindria un regulador de bateries, un inversor i un commutador de transferència d’alta velocitat. La funció del commutador és canviar la font d’energia entre el generador solar i el grup electrònic de manera ràpida, evitant que els receptors ho aprecin.

Idènticament que en el cas anterior, pel dimensionament de l’inversor es realitzarà l’estudi en detall per al cas dels edificis unifamiliars, i finalment s’adjuntarà una taula amb els valors més importants per resumir els resultats dels blocs plurifamiliars.

I. Càlcul de l’inversor per a edificis unifamiliars

Per determinar l’inversor, és imprescindible tenir en compte la potència requerida per l’habitatge, i el rendiment del propi inversor. El convertidor o inversor permetrà disposar de corrent alterna a 220 V a l’habitatge per a que pugui ser utilitzat per qualsevol aparell o electrodomèstic.

La potència del convertidor, per tant, cal escollir-la en funció de la suma de totes les potències nominals dels equips consumidors, multiplicant per un factor de simultaneïtat, que sol prendre valors entre 0,5 i 0,7. En el cas que ocupa, es prendreà un factor de 0,7. En la mateixa línia, no pot oblidar-se el rendiment propi de l’inversor, que s’establirà a un 90%.
L’estimació de la potència utilitzada en un habitatge unifamiliar i que serà molt similar que en el cas dels edificis plurifamiliars, es mostra a la següent taula. En la mateixa, els valors que es representen entre parèntesis mostren el valor estimat de potència per al cas plurifamiliar, essent la diferència destacable.

<table>
<thead>
<tr>
<th>Aparell elèctric</th>
<th>Potència utilitzada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frigorífic</td>
<td>0,89 kW</td>
</tr>
<tr>
<td>Rentadora</td>
<td>0,33 kW</td>
</tr>
<tr>
<td>Forn</td>
<td>0,79 kW</td>
</tr>
<tr>
<td>Televisió</td>
<td>0,156 kW</td>
</tr>
<tr>
<td>Enllumenat</td>
<td>0,24 kW (0,20 kW)</td>
</tr>
<tr>
<td>Ordinador</td>
<td>0,01 kW</td>
</tr>
<tr>
<td>Microones</td>
<td>1,2 kW</td>
</tr>
<tr>
<td>Aire condicionat</td>
<td>1,35 kW (0,71 kW)</td>
</tr>
<tr>
<td>Total</td>
<td>4,966 kW (4,286 kW)</td>
</tr>
</tbody>
</table>

Un cop estimades les potències, ja es pot realitzar el càlcul de la potència d’entrada i sortida de què ha de disposar l’inversor.

$$P_s = \frac{P_e \cdot \Psi}{\eta} = \frac{4966 \cdot 0,7}{0,9} = 3862,44 W$$

On,

- P_s Potència de sortida de l’inversor [W]
- P_e Potència d’entrada a l’inversor [W]
- Ψ Coeficient de simultaneïtat, de 0,7
- η Rendiment de l’inversor, de 0,9

L’inversor escollit haurà de tenir una potència superior a la obtinguda. Es decidiria instal·lar l’inversor SUN2000L 4kW solar inverter, de la popular firma *Huawei*.

II. Càlcul de l’inversor per a edificis plurifamiliars

En el cas dels edificis plurifamiliars, es decidiria instal·lar l’inversor model I-P-TPI-3000W (*I-panda*). Es mostren seguidament els resultats.

<table>
<thead>
<tr>
<th>Tipologia</th>
<th>HABITATGE PLURIFAMILIAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potència d’entrada a l’inversor P_e [W]</td>
<td>4286 W</td>
</tr>
<tr>
<td>Coeficient de simultaneïtat Ψ</td>
<td>0,6</td>
</tr>
<tr>
<td>Rendiment de l’inversor η</td>
<td>0,9</td>
</tr>
<tr>
<td>Potència de sortida de l’inversor P_s [W]</td>
<td>2857,33 Ah</td>
</tr>
</tbody>
</table>

Taula 6.15: Taula resum del procediment de càlcul de l’inversor per a edificis plurifamiliars. Font: Confecció pròpia
7. Anàlisi de la viabilitat econòmica

A l’hora d’identificar noves activitats, el pla de viabilitat permet avaluar les possibilitats d’inversió i conèixer els aspectes crítics de qualsevol projecte que es vol inicialitzar. En conseqüència, ajuda a valorar si una iniciativa econòmica té possibilitats de sostenir-se en el temps. Es tracta d’una eina imprescindible per a la presa de decisions i, en definitiva, per buscar l’èxit del projecte a partir d’una informació real i pertinent.

Com qualsevol pla de viabilitat, és important realitzar un estudi previ de les possibilitats del projecte, és a dir, realitzar un estudi de la demanda, l’oferta, l’entorn i de les capacitats i mitjans disponibles.

La determinació de la viabilitat econòmica del projecte es troba entre els objectius fonamentals del pla de qualsevol empresa. Així doncs, en aquest apartat es comentarà la part numèrica o econòmica del projecte.

Com s’ha explicat a l’inici, un del motius pels quals s’ha decidit iniciar aquest projecte és el preu de les energies tradicionals, que està augmentant cada vegada més. Sense anar més enllà, el 2017 ha estat l’any en què el preu de l’electricitat ha arribat al màxim de la dècada, augmentant un 31,6% en relació a l’any anterior.

L’augment del preu de l’electricitat contrasta amb la irrupció de les energies renovables, que sembla que amb el temps es van incorporant al mercat com una alternativa real a l’ús de combustibles fòssils.

Per tal d’analitzar la viabilitat econòmica d’aquest projecte, s’estudiarà, d’una banda, la viabilitat econòmica de les instal·lacions d’energia solar fotovoltaica a les cobertes dels habitatges unifamiliars i plurifamiliars, que corren a càrrec dels propietaris dels habitatges, i de l’altra, la viabilitat econòmica de la planta solar de 12 hectàrees per cobrir la demanda energètica restant.

Abans però de realitzar aquests estudis, en primer lloc és necessari contextualitzar la situació actual del mercat elèctric espanyol. Un recent estudi de l’Observatori de Sostenibilitat assenyala que les gegants comercialitzadores elèctriques dupliquen en beneficis a la resta d’empreses europees, lideren les apujades de preu als consumidors en la darrera dècada i encaçalen la llista de les empreses que més contribueixen al canvi climàtic. D’aquesta manera es defineix el sistema elèctric espanyol.
No obstant això, darrerament la premsa econòmica fa ressò de la falta de rendibilitat econòmica i les pèrdues de les elèctriques. La realitat és que les principals companyies elèctriques, com Endesa, Gas Natural Fenosa o Iberdrola han registrat el darrer any un benefici de 4.295 milions d'euros. La pobresa energètica més greu de la història recent d'Espanya no ha impedit que les grans comercialitzadores conservin el marge de benefici o fins i tot l’ampliïn, segons la Comissió Nacional de Valors. Basant-se en la situació actual del mercat energètic, la factura de la llum ha augmentat enormement, posicionant-se les empreses espanyoles al capdavant de la classificació de comercialitzadores amb més beneficis relatius de tot Europa. Espanya, doncs, és el tercer país de la Unió Europea on el preu de l’electricitat domèstica ha augmentat més en els darrers 10 anys, només per darrere de Grècia i el Regne Unit.

El dèficit de tarifa s’ha produït perquè els ingressos del sistema elèctric –el que es cobra als consumidors– són inferiors als costos associats a la producció i distribució de l’energia. Però aquests costos regulats no són costos reals, sinó que són preus fixats per l’Administració, és a dir, fruit de decisions polítiques.

El dèficit de tarifa ha anat augmentant progressivament fins als 30.000 milions d’euros, a l’any 2014. Amb la reforma elèctrica que planteja el Govern, la part fixa de la factura té més pes que la part variable –el consum–. Això vol dir que, encara que el consumidor faci tot el possible per estalviar energia, l’increment de la part fixa de la factura farà que l’estalvi en consum no garanteixi un estalvi en la factura.

Per tant, desgraciadament aquesta reforma va suposar un gran retrocés en el principi d’eficiència energètica i un greu impacte mediambiental. Amb ella es retalla la inversió en energies renovables. Igualment, es penalitza l’autoconsum en el sector de les energies renovables, un model pel qual havien apostat milers de consumidors seguint les campanyes de conscienciació d’estalvi energètic promogudes per totes les administracions.

7.1. Anàlisi econòmic de les instal·lacions en coberta d’habitatges

Com ja s’ha comentat al capítol anterior, un cop realitzat l’estudi del dimensionament de les noves instal·lacions solars, s’analitzarà a continuació la rendibilitat econòmica d’ambdós casos estuïdi; la instal·lació solar per a l’habitatge tipus unifamiliar i plurifamiliar, per separat.

Per fer-ho, es comptabilitzaran com a despeses els costos de les plaques solars a instal·lar a les cobertes, així com la instal·lació i el manteniment de les mateixes. D’altra banda, es considerarà ingrés anual l’estalvi energètic que suposa la instal·lació. D’aquesta manera, es podran calcular els paràmetres més importants de tot anàlisi econòmic; el període de retorn, el VAN i la TIR.

7.1.1. Anàlisi econòmic de la instal·lació solar en habitatge unifamiliar

En el cas de la instal·lació solar en habitatge unifamiliar, els resultats obtinguts a l’apartat de dimensionament de la instal·lació solar, demostren que en coberta es poden instal·lar 38 plaques solars de la marca SolarWorld, model SW285-300 MONO. El preu unitari dels col·lectors solars és de 193€. El cost total de instal·lació, doncs, ascendirà fins als 7.334€.

No obstant això, també cal tenir en compte el preu de la mà d’obra i de la resta d’elements del sistema de què es compondrà la instal·lació. Per saber quin és l’import total de la instal·lació,
s’ha contactat amb l’empresa SotySolar, que ha estimat que el preu en de mà d’obra i altres elements s’aproxima al 50% del preu de venda dels panells solars. Això és, aproximadament, uns 11.001€. En acabat, l’empresa ha indicat un preu de manteniment anual de 339€ anuals.

Si es recupera el resultat obtingut al capítol anterior, es pot veure que l’energia produïda per la nova instal·lació fotovoltaica per edificis unifamiliars és de 15766,27kWh, el que representaria un 80,50% del consum total de l’habitatge. S’estima que un 90% de la producció d’electricitat provinent de la instal·lació fotovoltaica serà aprofitada directament per l’edifici, mentre que el restant serà excedent energètic que es vendrà a la xarxa. Es considera que el dimensionament de la instal·lació no aprofitarà el 100% de l’energia tot i la instal·lació de bateries d’emmagatzemament.

Així doncs, partint d’aquestes suposicions, i considerant que el consum energètic no disminueix amb mesures progressives de reducció de la demanda –pitjor dels casos–, ja es pot analitzar la viabilitat econòmica de la instal·lació. Per fer-ho, el primer que cal és calcular l’estalvi total que permetrà la nova instal·lació.

D’una banda, com s’acaba d’explicar, el 90% de la producció d’electricitat serà consumida directament. D’aquest percentatge s’obtindrà l’estalvi econòmic. De l’altra, no es pot oblidar tenir en compte l’excedent d’energia. Per conèixer el preu de venda s’ha consultat el preu mig de la Red Elèctrica de España [17], que en mitjana té un valor de 93,92 €/MWh (0,09392€/kWh).

Més endavant es mostra l’estalvi econòmic quant a la producció energètica de la nova instal·lació. Per fer els càlculs, es parteix d’un habitatge unifamiliar de 5,5kW de potència i d’una tarifa fixa anual oferta per l’empresa Iberdrola. La tarifa és la següent:

- **Terme potència**: 38,043426 €/kW a l’any.
- **Terme consum**: 0,146500 €/kWh.

Per tant, ja es podria calcular el preu que es pagaria anualment per cobrir les necessitats energètiques i l’estalvi econòmic.

<table>
<thead>
<tr>
<th>Cas Exemple Habitatge Unifamiliar</th>
<th>Consum/Producció</th>
<th>Preu/Estalvi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consum Total</td>
<td>19585,22kWh</td>
<td>3078,47 €</td>
</tr>
<tr>
<td>Producció esperada (fotovoltaica)</td>
<td>14189,64kWh</td>
<td>2078,78 €</td>
</tr>
<tr>
<td>Reducció</td>
<td>-72,45%</td>
<td>- 67,53%</td>
</tr>
</tbody>
</table>

Taula 7.1: Estimacions de l’estalvi amb la nova instal·lació solar fotovoltaica per habitatges unifamiliars

Addicionalment, l’import que s’obtindria anualment per la venda de l’energia produïda seria de 148,08 €/any. Així doncs l’estalvi anual seria de 2226,86 €/any, amb la qual cosa ja es podria calcular el període de retorn, el VAN i la TIR.

També hi ha la possibilitat que una part de la inversió inicial sigui subvencionada. Els governs aposten per aquest tipus de fonts renovables i a vegades ofereixen subvencions per impulsar-ne el seu ús. En el cas del projecte, es presentaria el projecte a Europa amb l’objectiu d’aconseguir una subvenció. Normalment, el cost de les instal·lacions on s’hi troben vigents incentius o subvencions, disminueix al voltant d’un 35% (es parlaria doncs d’un cost d’instal·lació de 7150,65€, en comptes dels 11.001€ estimats inicialment).
Ara sí que es poden calcular els valors que donaran una idea de la rendibilitat econòmica del projecte. L’horitzó de marge que es planteja, i a partir del qual s’espera recuperar la inversió és, com a mínim, la vida útil de la instal·lació fotovoltaica, 25 anys. Per als càlculs també es tindran en compte la garantia de rendiment lineal de 25 anys que assegura la firma SolarWorld per als seus mòduls, segons el qual es garanteix una disminució màxima del rendiment en un 0,7% per any, en el transcurso de 25 anys. Per als càlculs s’utilitzarà una disminució del rendiment a raó de 0,6% cada any.

El primer valor que s’obtindrà és el període de retorn, és a dir, el temps que es triga en recuperar la inversió en la instal·lació. Posteriorment es calcularà és el VAN o Valor Net Actualitzat. Si aquest valor és positiu, amb un horitzó de 25 anys, indica que el projecte és rentable. En canvi, si és negatiu, el millor, en termes econòmics, serà no actuar. Finalment, es calcularà el TIR, que és el tipus d’interès a partir del qual no interessarà invertir en el projecte.

És impossible trobar tots aquests valors sense una representació del flux de tresoreria o un cash-flow. A tall d’exemple, a continuació es representa el flux de tresoreria de la instal·lació solar fins l’any 2025.

<table>
<thead>
<tr>
<th>Instal·lació unifamiliar</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingressos/Estalvi (€)</td>
<td>0,00</td>
<td>2.226,86</td>
<td>2.213,50</td>
<td>2.200,14</td>
<td>2.186,78</td>
<td>2.173,41</td>
<td>2.160,05</td>
</tr>
<tr>
<td>Despeses (€)</td>
<td>11.001,00</td>
<td>339,00</td>
<td>339,00</td>
<td>339,00</td>
<td>339,00</td>
<td>339,00</td>
<td>339,00</td>
</tr>
<tr>
<td>Cash-Flow (€)</td>
<td>-11.001,00</td>
<td>1.887,86</td>
<td>1.874,50</td>
<td>1.861,14</td>
<td>1.847,78</td>
<td>1.834,41</td>
<td>1.821,05</td>
</tr>
<tr>
<td>Balanç Ac. (€)</td>
<td>-11.001,00</td>
<td>-9.113,14</td>
<td>-7.238,64</td>
<td>-5.377,50</td>
<td>-3.529,73</td>
<td>-1.695,31</td>
<td>125,74</td>
</tr>
<tr>
<td>Subvenció (€)</td>
<td>3.850,35</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Cash-Flow Amb subv. (€)</td>
<td>-7.150,65</td>
<td>1.887,86</td>
<td>1.874,50</td>
<td>1.861,14</td>
<td>1.847,78</td>
<td>1.834,41</td>
<td>1.821,05</td>
</tr>
<tr>
<td>Balanç Ac. Amb Subv. (€)</td>
<td>-7.150,65</td>
<td>-5.262,79</td>
<td>-3.388,29</td>
<td>-1.527,15</td>
<td>320,62</td>
<td>2.155,04</td>
<td>3.976,09</td>
</tr>
</tbody>
</table>

Taula 7.2: Cash-flow del projecte per habitatge unifamiliar fins l’any 2024. Font: Confecció pròpia

El cash-flow reïntrat fins al 2043 (veure estudi complet a l’Annex F: *Cash-flow de les instal·lacions en cobertes*) mostra que el període de retorn del projecte és de 7 anys, és a dir fins al 2025, en cas de no rebre cap subvenció, i de 5 anys en cas de rebre-la.

Per calcular el VAN del projecte cal aplicar la següent expressió:

\[
VN = \sum_{t=0}^{N} \frac{Q_t}{(1+i)^t} \quad (Eq. 7.1)
\]

- \(t\) Període, que en aquest cas, equival a un any
- \(Q_t\) Valor net dels fluxos de caixa (cash-flow) en cada període \(t\). Serien ingressos menys despeses de cada període
- \(i\) Tipus d’interès al 3%.
El valor del VAN que s’obté és de 18.142,28€ i de 21.880,49€ sense i amb subvenció, respectivament. Finalment, la TIR dóna un valor de 16% i 26%.

A la vista dels resultats obtinguts, queda demostrat que la rendibilitat econòmica de la instal·lació solar fotovoltaica instal·lada a les cobertes unifamiliars és molt alta. D’aquesta manera, es demostra que és una bona opció tirar el projecte de la nova instal·lació endavant.

7.1.2. Anàlisi econòmic de la instal·lació solar en habitatge plurifamiliar

L’anàlisi econòmica del cas d’estudi per a l’habitatge plurifamiliar parteix de les mateixes condicions que el cas dels habitatges unifamiliars. Seguidament es resumeixen els resultats obtinguts.

El cost total de instal·lació és de 4.921,5€, si es sumen els 3.281€ de cost dels panells solars i s’hi afegeixen els 1.640,5€ de la resta de d’aparells com inversors i bateries i la mà d’obra referent a la instal·lació.

D’igual forma, el cost de manteniment en aquest cas es fixa proporcionalment a les dimensions de l’anterior instal·lació, resultant en un cost anual de 151,66€. En aquest cas, la potència instal·lada que es prendrà és de 4,4 kW de potència, amb la mateixa tarifa utilitzada que en el cas anterior.

<table>
<thead>
<tr>
<th>Cas Exemple Habitatge Plurifamiliar</th>
<th>Consum/Producció</th>
<th>Preu/Estalvi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consum Total</td>
<td>8023,40 kWh</td>
<td>1342,82 €</td>
</tr>
<tr>
<td>Producció esperada (fotovoltaica)</td>
<td>6348,00 kWh</td>
<td>929,98 €</td>
</tr>
<tr>
<td>Reducció</td>
<td>-79,12 %</td>
<td>-67,53 %</td>
</tr>
</tbody>
</table>

Taula 7.3: Estimacions de l’estalvi amb la nova instal·lació solar fotovoltaica per habitatges plurifamiliars

Finalment, abans de calcular el VAN i la TIR caldria incorporar el 10% d’energia que es vendrà a les elèctriques; 66,24 €/any. Així doncs l’estalvi anual total seria de 996,23 €/any. El cash-flow resultant:

<table>
<thead>
<tr>
<th>Instal·lació plurifamiliar</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingressos/ Estalvi (€)</td>
<td>0,00 €</td>
<td>996,23 €</td>
<td>990,25 €</td>
<td>984,27 €</td>
<td>978,29 €</td>
<td>972,32 €</td>
<td>966,34 €</td>
</tr>
<tr>
<td>Despeses (€)</td>
<td>4.921,50 €</td>
<td>151,66 €</td>
<td>151,66 €</td>
<td>151,66 €</td>
<td>151,66 €</td>
<td>151,66 €</td>
<td>151,66 €</td>
</tr>
<tr>
<td>Cash-Flow (€)</td>
<td>-4.921,50 €</td>
<td>844,57 €</td>
<td>838,59 €</td>
<td>832,61 €</td>
<td>826,63 €</td>
<td>820,66 €</td>
<td>814,68 €</td>
</tr>
<tr>
<td>Balanç Ac. (€)</td>
<td>-4.921,50 €</td>
<td>-4.076,93 €</td>
<td>-3.238,34 €</td>
<td>-2.405,73 €</td>
<td>-1.579,10 €</td>
<td>-758,44 €</td>
<td>56,24 €</td>
</tr>
<tr>
<td>Subvenció (€)</td>
<td>1.722,53 €</td>
<td>0,00 €</td>
<td>0,00 €</td>
<td>0,00 €</td>
<td>0,00 €</td>
<td>0,00 €</td>
<td>0,00 €</td>
</tr>
<tr>
<td>Cash-Flow Amb subv. (€)</td>
<td>-3.198,98 €</td>
<td>844,57 €</td>
<td>838,59 €</td>
<td>832,61 €</td>
<td>826,63 €</td>
<td>820,66 €</td>
<td>814,68 €</td>
</tr>
<tr>
<td>Balanç Ac. Amb Subv. (€)</td>
<td>-3.198,98 €</td>
<td>-2.354,41 €</td>
<td>-1.515,82 €</td>
<td>-683,21 €</td>
<td>143,43 €</td>
<td>964,08 €</td>
<td>1.778,76 €</td>
</tr>
</tbody>
</table>

Taula 7.4: Cash-flow del projecte per habitatge plurifamiliar fins l’any 2024. Font: Confecció pròpia
El valor del VAN que s’obté és de 7.559,53 € i de 9.231,88 € sense i amb subvenció, respectivament. Finalment, la TIR dóna, igual que en el cas dels habitatges unifamiliars, un valor de 15% i 24%.

En conclusió, el resultat de l’anàlisi econòmic en aquest cas aporta unes conclusions molt similars al anterior cosa, per la qual cosa es reafirma la viabilitat econòmica del projecte, demostrant que la remodelació energètica és viable i molt favorable des d’un punt de vista econòmic.

7.2. Anàlisi econòmic de la planta solar

Per tal de realitzar l’anàlisi econòmic de la planta solar futura, s’ha efectuat un estudi d’un conjunt de pressupostos de projectes d’altres plantes solars per poder construir un pressupost propi. La metodologia ha estat calcular, en base als conceptes més reiterats dels diversos pressupostos, el preu/Wp mig de la instal·lació. Coneixent el valor de la potència de la planta solar, de 10,76MW, que s’extreu del producte del nombre de plaques per la potència pic unitària, serà possible calcular una estimació dels costos. El resultat del pressupost del projecte es mostra seguidament.

<table>
<thead>
<tr>
<th>Categoria</th>
<th>Concepte</th>
<th>Preu / Wp</th>
<th>Preu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permisos (Llicència Obres, etc.)</td>
<td></td>
<td>0,01 €/Wp</td>
<td>107.601,60 €</td>
</tr>
<tr>
<td>Assegurança de construcció</td>
<td></td>
<td>- €/Wp</td>
<td>2.500,00 €</td>
</tr>
<tr>
<td>Enginyeria</td>
<td></td>
<td>0,01 €/Wp</td>
<td>107.601,60 €</td>
</tr>
<tr>
<td>Materials i mà d’obra</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obra civil (preparació terreny, tanques, rases, etc.)</td>
<td>0,024 €/Wp</td>
<td>258.243,84 €</td>
<td></td>
</tr>
<tr>
<td>Mòduls solars</td>
<td></td>
<td>0,6655 €/Wp</td>
<td>7.160.886,48 €</td>
</tr>
<tr>
<td>Inversors</td>
<td></td>
<td>0,167 €/Wp</td>
<td>1.796.946,72 €</td>
</tr>
<tr>
<td>Monitorització/comunicacions</td>
<td></td>
<td>0,01 €/Wp</td>
<td>107.601,60 €</td>
</tr>
<tr>
<td>Estructura</td>
<td></td>
<td>0,198 €/Wp</td>
<td>2.130.511,68 €</td>
</tr>
<tr>
<td>Baixa tensió, muntatge i altres extres</td>
<td>0,4264 €/Wp</td>
<td>4.588.132,22 €</td>
<td></td>
</tr>
<tr>
<td>Sistema de seguretat</td>
<td></td>
<td>0,02 €/Wp</td>
<td>215.203,20 €</td>
</tr>
<tr>
<td>Companyia elèctrica</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitja Tensió</td>
<td></td>
<td>0,04 €/Wp</td>
<td>430.406,40 €</td>
</tr>
<tr>
<td>Costos addicionals</td>
<td></td>
<td>0,03 €/Wp</td>
<td>322.804,80 €</td>
</tr>
<tr>
<td>Total cost</td>
<td></td>
<td>1,6009 €/Wp</td>
<td>17.228.440,14 €</td>
</tr>
</tbody>
</table>

Taula 7.5: Pressupost de la instal·lació de la planta solar fotovoltaica. Font: Confecció pròpia
Un cop pressupostat el projecte d’instal·lació d’una planta solar fotovoltaica de 10,76 MW, el darrer pas és calcular el retorn de la inversió. En aquest cas, a diferència de les instal·lacions situades a les cobertes dels edificis, no es produeix un estalvi econòmic quant a consum, ja que hauria de ser l’Ajuntament, una institució pública o una empresa privada les que haurien de realitzar un esforç econòmic per a fer front a la inversió.

L’Ajuntament de Llinars, com a administració pública de serveis, s’entén que és l’organisme més adequat per fer front amb la gestió i inversió d’aquesta actuació. La capacitat financer per part de l’Ajuntament ve garantida per ésser aquest una administració sanejada econòmicament, i amb una raonable capacitat d’inversió, que cal entendre-la com a tal, i no com una simple despesa, ja que en el futur recuperarà la inversió en base a la venda del producte energètic.

Es relacionen a continuació les principals dades econòmiques respecte a la capacitat financer a de l’Ajuntament de Llinars del Vallès, que avalen la afirmació feta anteriorment (la d’aquesta informació prové de *Promo Assessors Consultors, S.A.* [17]):

- La Hisenda Municipal ha presentat una capacitat recaptadora d’ingrés corrent suficient com per finançar la seva despesa corrent anual i generar un estalvi net corrent positiu durant tots els anys analitzats, fet que posa de manifest una gestió responsable i una bona salut de la hisenda municipal de Llinars del Vallès.

- Tot i els augments dels ingressos immobiliaris l’any 2015, la hisenda municipal de Llinars ha manifestat tenir fonts d’ingressos com per garantir certa independència municipal d’aquests impostos i continuar amb un estalvi net positiu. En aquest sentit, els ingressos immobiliaris puntuals només financen entre el 6% i 11% de les despeses corrents anuals entre els anys 2011 i 2014.

- Pel que fa a les despeses financeres, la ràtio de càrrega financera / ingressos corrents ha anat disminuint progressivament (passant de situar-se al 5% l’any 2011 al 3% l’any 2015). Aquesta disminució ha tingut acompanyada per una reducció del seu deute viu consolidat, que s’ha reduït en un 22%, i també per l’augment dels seus ingressos corrents, que han crescut un 24%.

- En aquest punt cal destacar que l’Ajuntament de Llinars del Vallès concentra el gruix del finançament de la inversió en recursos propis i transferències de capital, que sempre són àmpliament superiors al nou endeutament. Concretament l’estalvi net de la hisenda municipal ha estat sempre, com a mínim, 5 vegades superior al nou endeutament.

- L’any 2015 el rati deute viu consolidat/ingressos corrents any anterior se situava en el 13%, quan el límit legal és el 75%.

- Aquest comportament de la hisenda municipal de Llinars del Vallès posa en evidència la bona salut financera del municipi de Llinars, que es desmarca de la situació econòmica i financer de moltes hisendes municipals del nostre país. En termes generals, el finançament de la inversió municipal en molts municipis abans de l’esclat de la bombolla immobiliaria provenia de recursos aliens (entre d’altres, concertació de nou endeutament) mentre que l’etapa de restricció del crèdit que es va viure amb posterioritat a l’esclat de la bombolla, juntament amb unes lleis més restrictives cap a l’endeutament i unes menors

Remodelació del sistema energètic de Llinars del Vallès amb l’ús d’energies renovables
transferències de capital, va obligar a les hisendes municipals a dependre de la seva capacitat pròpia de generar recursos per a finançar les seves inversions.

- En termes absoluts, la xifra mitjana d’inversió real municipal al llarg dels últims cinc anys ha estat de 1,94 milions d’euros anuals aproximadament, balancejant-se sempre dins una forquilla d’entre 1,33 milions d’euros i 2,87 milions d’euros.

Un cop exposats els motius pels quals, d’entrada, l’Ajuntament de Llinars del Vallès podria fer front a la forta inversió que suposa la instal·lació de la planta solar fotovoltaica, es procedeix a analitzar la relació d’ingressos i despeses del projecte.

En primer lloc, la inversió no es realitzarà íntegrament el primer any, lògicament. Caldrà demanar una préstec al banc a llarg termini. Un bon període podria ser la vida útil de la instal·lació, de 30 anys, amb un interès del 3%, tal com s’ha aplicat en els càlculs del Valor Actualitzat Net o VAN. D’altra banda, es suposaran uns costos de manteniment anual de la instal·lació de 90.000 €/any. Aquest concepte inclou també el cost de substitució de plaques.

Pel que fa a ingressos per venda d’energia, es repetirà el mateix procediment que s’ha dut a terme per a l’anàlisi de viabilitat de les instal·lacions situades a la coberta. Finalment, també es té en compte en aquest cas la disminució del rendiment anual dels panells, que es fixa en aquest cas en un 0,2% anual (cas desfavorable), i que és més petit perquè ja s’inclou en les despeses el preu de substitució dels panells. Es presenten els valors del cash-flow, que serviran per calcular per últim cop, el VAN i la TIR, i el període de retorn.

<table>
<thead>
<tr>
<th>Planta solar</th>
<th>Ingressos/ Estalvi (€)</th>
<th>Despeses (€)</th>
<th>Cash-Flow (€)</th>
<th>Balanç Ac. (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any 0 2018</td>
<td>0,00 €</td>
<td>1.091.134,54 €</td>
<td>-1.091.134,54 €</td>
<td>-1.091.134,54 €</td>
</tr>
<tr>
<td>Any 2 2020</td>
<td>1.352.681,00 €</td>
<td>1.181.134,54 €</td>
<td>171.546,46 €</td>
<td>-745.330,84 €</td>
</tr>
<tr>
<td>Any 3 2021</td>
<td>1.349.970,22 €</td>
<td>1.181.134,54 €</td>
<td>168.835,68 €</td>
<td>-576.495,16 €</td>
</tr>
<tr>
<td>Any 4 2022</td>
<td>1.347.259,44 €</td>
<td>1.181.134,54 €</td>
<td>166.124,89 €</td>
<td>-410.370,27 €</td>
</tr>
<tr>
<td>Any 5 2023</td>
<td>1.344.548,65 €</td>
<td>1.181.134,54 €</td>
<td>163.414,11 €</td>
<td>-246.956,15 €</td>
</tr>
<tr>
<td>Any 6 2024</td>
<td>1.341.837,87 €</td>
<td>1.181.134,54 €</td>
<td>160.703,33 €</td>
<td>-86.252,83 €</td>
</tr>
<tr>
<td>Any 7 2025</td>
<td>1.339.127,09 €</td>
<td>1.181.134,54 €</td>
<td>157.992,54 €</td>
<td>71.739,72 €</td>
</tr>
<tr>
<td>Any 8 2026</td>
<td>1.336.416,30 €</td>
<td>1.181.134,54 €</td>
<td>155.281,76 €</td>
<td>227.021,48 €</td>
</tr>
<tr>
<td>Any 9 2027</td>
<td>1.333.705,52 €</td>
<td>1.181.134,54 €</td>
<td>152.570,98 €</td>
<td>379.592,45 €</td>
</tr>
<tr>
<td>Any 10 2028</td>
<td>1.330.994,74 €</td>
<td>1.181.134,54 €</td>
<td>149.860,19 €</td>
<td>529.452,64 €</td>
</tr>
<tr>
<td>Any 11 2029</td>
<td>1.328.283,95 €</td>
<td>1.181.134,54 €</td>
<td>147.149,41 €</td>
<td>676.602,05 €</td>
</tr>
<tr>
<td>Any 12 2030</td>
<td>1.325.573,17 €</td>
<td>1.181.134,54 €</td>
<td>144.438,63 €</td>
<td>821.040,68 €</td>
</tr>
<tr>
<td>Any 13 2031</td>
<td>1.322.862,38 €</td>
<td>1.181.134,54 €</td>
<td>141.727,84 €</td>
<td>962.768,52 €</td>
</tr>
<tr>
<td>Any 14 2032</td>
<td>1.320.151,60 €</td>
<td>1.181.134,54 €</td>
<td>139.017,06 €</td>
<td>1.101.785,58 €</td>
</tr>
<tr>
<td>Any 16 2034</td>
<td>1.314.730,03 €</td>
<td>1.181.134,54 €</td>
<td>133.595,49 €</td>
<td>1.371.687,34 €</td>
</tr>
</tbody>
</table>
Com es pot observar a la taula, el retorn de la inversió es produiria als 7 anys més tard de la instal·lació (8 anys en total). En el cas de la planta solar, el valor del VAN obtingut a 30 anys és de 1.542.684,62 € sense subvenció –cabria la possibilitat de demanar-la a Europa, tenint en compte l’objectiu de cobertura íntegra d’energia renovable al 2050–, respectivament. Finalment, la TIR pren un valor de 14%.

D’aquesta manera, torna a confirmar-se la rendibilitat econòmica de la remodelació energètica del municipi, assolint un dels objectius més importants del present projecte.
8. Avaluació de l’impacte ambiental

Qualsevol acció o activitat humana produeix un impacte ambiental sobre el medi i els seus elements, tant si l’acció sobre el mateix és favorable o no. Per tant, en qualsevol projecte, s’ha de fer un èmfasi especial a l’impacte que pot ocasionar mediambientalment. Per tal de prendre les mesures oportunes, qualsevol projecte ha de realitzar una avaluació de l’impacte ambiental.

Un dels objectius transversals més importants del projecte és, com s’ha vist en el transcurs d’aquest, la introducció d’un model energètic el més sostenible possible. És per aquest motiu que en tots i cadascun dels capítols del projecte s’hi pot observar un rerefons de preocupació pel medi ambient i la sostenibilitat.

No obstant això, cal identificar, preveure i interpretar els possibles impactes ambientals que es produiran. Per fer-ho de manera completa, caldria avaluar l’impacte ambiental en la fase d’execució, d’explotació i de desmantellament del projecte.

De la mateixa manera que s’ha anat remarcar al llarg del projecte, el mateix pot resumir-se en tres gran blocs: reducció i cobertura de la demanda i eficiència energètica. Cadascun d’aquests tres blocs es poden analitzar des del punt de vista ambiental.

En l’etapa de la reducció de la demanda caldria avaluar l’impacte ambiental que suposa, d’una banda, la construcció de qualsevol habitatge, i de l’altra, l’impacte associat a les mesures tècniques de reducció destacades anteriorment. En aquest projecte, però, no s’avaluarà específicament l’impacte ambiental de la reducció de la demanda.

Si que cobra més rellevància la cobertura de la demanda i la optimització de l’eficiència energètica a llarg termini, que en realitat estan molt unides a les instal·lacions d’energia solar fotovoltaica. En aquest cas, tot i l’esforç per reduir l’impacte sobre el medi, aquest no és nul.

8.1. Identificació i valoració d’impacte en la fase de construcció

Si s’analitza la fase construcció íntegra de la instal·lació solar fotovoltaica, cal determinar les conseqüències de del moment en què es fabriquen les plaques fins al moment en què es comença a explotar la instal·lació. La fabricació dels panells solar requereixen, a part de materials comunament utilitzats en la indústria, l’ús de l’energia procedent de fonts convencionals que generen residus en forma de gasos com el CO₂, NOₓ i SO₂ i altres partícules.

L’ús de la maquinària pesada per al transport de les plaques i la construcció dels suports per a la instal·lació també generarà una contaminació atmosfèrica. En la mateixa línia, les emissions de pols i soroll, tant en el transport dels col·lectors com en la instal·lació, poden repercutir sobre la població. Tot i això, els efectes seran d’escassa magnitud, amb la qual cosa l’impacte es considera mínim.

Una bona manera de representar l’impacte ambiental és fer ús de matrius que ajudaran a determinar la importància dels impactes en cadascun dels agents afectats. A partir de les matrius d’impacte, es podran plantejar i aplicar, si escau, accions preventive o correctores. Aquesta
matrícula aplica especialment en el cas de la planta solar. A continuació es presenta la valoració dels impactes potencials identificats en la fase de construcció de la planta solar.

8.2. Identificació i valoració d’impactes en la fase d’explotació

Com ja se sap, un dels grans avantatges de l’energia solar és que no emeten gasos nocius a l’atmosfera. Degut a l’explotació de les instal·lacions solar fotovoltaiques, s’obtindran resultats molt beneficiosos per al medi ambient i per a l’atmosfera en particular, ja que es deixaran d’emetre els mateixos gasos que els citats anteriorment.

Si s’endinsa en el cas dels gasos contaminants, dos dels gasos esmentats anteriorment són el principals agents desencadenants de l’efecte hivernacle i la pluja àcida, el CO₂ pel que fa a l’efecte hivernacle i el SO₂ pel que fa a la pluja àcida.

Per tal d’observar la reducció de l’emissió d’aquests gasos contaminants, es pot prendre com a referència les emissions específiques del sistema elèctric peninsular.

<table>
<thead>
<tr>
<th>Gas</th>
<th>Emissions Típicas (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>0,114 kg/kWh</td>
</tr>
<tr>
<td>SO₂</td>
<td>0,344 kg/MWh</td>
</tr>
<tr>
<td>NOₓ</td>
<td>0,173 kg/MWh</td>
</tr>
<tr>
<td>Altres</td>
<td>0,013 kg/MWh</td>
</tr>
</tbody>
</table>

Sabent que les emissions de la instal·lació fotovoltaica en la fase d’explotació són nul·les, es poden obtenir els quilograms de gasos que deixen d’emetre’s. Senzillament, si es coneix l’energia que produeixen els tres tipus d’instal·lació –les instal·lades en coberta unifamiliar, plurifamiliar i el camp solar–, es podran conèixer també les emissions que es generarien en una central en les mateixes condicions.
Remodelació del sistema energètic de Llinars del Vallès amb l’ús d’energies renovables

Pel que fa als sorolls en aquesta fase, es pot destacar que els únics que en produeixen són l’inversor de corrent i el transformador. No obstant, els decibels màxims als que arriben no són importants i a més es troben tancats dins d’una capsa.

També es pot avaluar en aquesta fase l’impacte sobre el paisatge. Les instal·lacions, pel fet d’estar ubicades a les cobertes, no suposen una perda de qualitat del paisatge, ja que no són vistes amb facilitat. Al contrari, per la seva singularitat, es considera que aporten un cert grau de qualitat a l’entorn del municipi.

Menció apart mereix la fase d’explotació de la planta solar. En aquest cas, cal analitzar l’impacte que comporta la operació i el manteniment de la planta solar fotovoltaica. En aquest sentit, és necessari identificar els agents afectats i classificar l’impacte segons les característiques dels mateixos. En aquest cas, exemples d’agents afectats poden ser els recursos naturals, l’atmosfera, la fauna, el paisatge, els usos del sòl, les conseqüències de la implantació del subministrament i fins i tot l’impacte associat a la generació d’ocupació. De la mateixa manera que en el cas de la fase de construcció, es presenta seguidament la matrícula d’impactes en funció dels quals caldrà aplicar mesures correctives. El detall de les esmentades, però, ja no entren dins l’abast del projecte.
8.3. Identificació i valoració d’impactes en la fase de desmantellament

En aquesta fase és on cal anar més amb compte, quan es parla d’impacte ambiental. Els panells solars, com s’ha comentat anteriorment, estan fabricats a partir de diversos materials com l’alumini o el vidre, que poden ser reutilitzats quan aquests deixen de ser efectius per la instal·lació. Tanmateix, una part d’aquests materials són elements nocius per al medi ambient, com els materials pesats.

Per tots aquests motius, és necessari decidir què es farà amb les plaques un cop es tornin inutilitzables. Es poden vendre o donar a diversos punts de recollida per al posterior reciclatge, assegurant el cicle de vida dels materials.
9. Conclusions

Un cop estudiades les diverses possibilitats quant a la remodelació del model energètic del municipi de Llinars del Vallès, se’n poden extreure diverses conclusions.

En primer lloc, tal i com s’ha pogut observar al llarg de tot el projecte, és molt important tenir present la situació energètica global. Cada cop és més necessària la recerca de models basats en l’ús d’energies renovables, de caràcter inesgotable, per assegurar el futur de les generacions pròximes.

En línies generals, en aquest projecte s’ha demostrat que l’ús d’energies renovables –en aquest cas, font de la qual és el Sol – és una alternativa real, i sobretot necessària, al model energètic actual, per tots els motius que s’han comentat anteriorment.

Analitzant el projecte des de l’inici, una de les conclusions més importants és que la remodelació energètica ha de buscar-se des d’un principi; des de la construcció de qualsevol edifici fins al seu desmantellament o demolició. La integració en la construcció de mesures d’estalvi energètic passives pot reduir les necessitats energètiques en general, especialment en el camp de la climatització i la il·luminació. De fet, i tot i que no s’ha inclòs en el projecte, s’ha calculat que el cost de construcció de l’edifici és d’aproximadament 1.100€/m², mentre que si s’hagués construït sense tenir en compte els principis de l’arquitectura bioclimàtica, el seu cost hauria estat de 1.000€/m². Aquesta diferència en el preu es tradueix posteriorment en un estalvi energètic important que al cap dels anys de vida útil de l’edifici, s’acaba superant.

Pel que fa a eficiència energètica a posteriori de la construcció, és de menester destacar la importància de controlar els consums per tal d’identificar ineficiències. Per això és especialment recomanable instal·lar sistemes de monitorització de les dades de consum energètic. La monitorització permetria introduir mesures a curt termini que es podrien traduir en estalvis energètics fins i tot inesperats. En la mateixa línia, moltes d’aquestes mesures identificades es podrien aconseguir a baixos costos o fins i tot nuls, simplement amb la observació temporal de les dades de consum.

Pel que fa als estudis de les diferents instal·lacions, es poden destacar diverses conclusions susceptibles d’ésser mencionades.

Tal com s’ha vist al llarg del projecte, no és possible cobrir íntegrament la demanda dels habitants únicament amb les superfícies de la coberta. D’entrada, es creia que els edificis unifamiliars tindrien més facilitats per aconseguir que la totalitat de l’energia fos renovable. No obstant, s’ha demostrat que tant per als edificis unifamiliars com pels plurifamiliars, la cobertura de la demanda seria similar –l’aportació solar obtinguda per als casos d’estudi realitzats als edificis unifamiliars i plurifamiliars ha estat del 80,5% i del 87,91%, respectivament –. És important fer notar que l’aportació solar obtinguda ha estat major en el cas dels edificis plurifamiliars donades les condicions geomètriques de les diferents cobertes, que han afavorit la optimització de la cobertura elèctrica de les plurifamiliars enfront les unifamiliars. No obstant l’anterior, la realitat és que si s’ocupés el mateix percentatge de superfície de coberta amb panells solars, l’aportació seria major en les unifamiliars, com ja s’havia previst a l’inici del projecte.
En la línia del que s’ha comentat anteriorment, però, el dimensionament de les instal·lacions depèn directament de la certificació energètica de l’edifici, i tal com s’ha vist anteriorment, la cobertura íntegra d’energia es podria aconseguir en edificis amb certificació energètica entre el nivell A i D. És per això que, altre cop, la reducció de la demanda es converteix en un principi fonamental, i que moltes vegades passa desapercebut. Les directrius principals, doncs, serien posar focus en la reducció i posteriorment situar les plaques solars a les cobertes.

Per altra banda, en cas que la cobertura total fos impossible, s’ha demostrat amb el dimensionament de la planta solar que el municipi de Llinars del Vallès està preparat, en termes de geografia, per ubicar un instal·lació de les dimensions calculades. En total, amb la situació actual del municipi, s’ha calculat que caldrien 37.100 plaques solars per cobrir totes les necessitats del municipi, d’una dimensió de 12,10 hectàrees.

L’anàlisi de la viabilitat econòmica del projecte ha demostrat que totes les mesures preses són rentables econòmicament, tant pel que fa a la inversió que haurien de fer els habitants per a la instal·lació a les cobertes –11.001€ de mitjana per a les cobertes unifamiliares i 4.921,50€ per als sostres plurifamiliares–, com la que hauria de fer l’Ajuntament de Llinars per a la planta solar. A més, en el cas de l’Ajuntament, s’ha mostrat amb dades reals el que el seu múscul econòmic és suficient per fer-se càrrec d’una inversió tan important (17 milions d’€). S’ha mostrat un període de retorn de 8 anys, altament acceptable i uns beneficis econòmics a llarg termini força important.

Finalment, l’avaluació de l’impacte ambiental sobre totes les activitats ha demostrat que totes les mesures realitzades i per realitzar no tenen un greu impacte ambiental, i s’ha calculat que amb la nova instal·lació solar es reduiran substancialment les emissions de gasos contaminants a l’atmosfera, destacant especialment la reducció de 7.302,11 tones/any de CO2.

En resum, al llarg de tot el projecte s’ha intentat demostrar que el camí cap a un nou model energètic no solament és possible, sinó que és rentable econòmicament. Cal canviar la mentalitat cap a un model diferent. Aquest canvi serà real quan la pregunta pel preu d’un habitatge passi a una pregunta pel consum de l’habitatge, deixant en segon terme la part fixa de la construcció.
10. Bibliografia

Bibliografia bàsica

Bibliografia complementària

