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1
INTRODUCTION

Hydraulic Fracturing is a technique used in the oil and gas industry since the decade of 1930’s to increase
well performance. It is of special interest to extract a type of non-conventional oil called shale oil from the
subsurface. Shales are a type of rock with the particularity of extremely low permeabilities (in the order of
1×10−6 −1×10−9 Darcy) although they may have much porosity than sandstones (in the order of 30%). This
huge difference between high porosities and low permeabilities is a consequence of the tiny grain size. Stan-
dard reservoirs have porosities in the order of 1×10−2 −1×10−1 Darcy. Therefore they may be an excellent
reservoir rock although the natural extraction of oil or gas may be difficult.

Shale oil reservoirs are less profitable than standard ones but in the last decades with the increase in the
oil price and new technologies have increased its profit. Two main discoveries have came to change this
situation:

1. Horizontal Drilling: the possibility of drill horizontal wells instead of only vertical ones allows to in-
crease the area of exposition which increases the extraction rate in low permeabilities rocks.

2. Advances in Hydraulic Fracturing: the idea of Hydraulic Fracturing is to artificially fracture the rock to
increment the permeability.

The process of trigger artificial fractures in the rock consists in injecting a high pressure mixture of hy-
draulic fluids and sorted sand (proppant) [1]. The fracturing fluid when starts flowing through the rock de-
velops a net of fractures around the borehole. Then once the injection stops, the induced fractures remain
opened due to the proppant transported in the fracturing fluid. The final step is the pump exploitation that
applies a negative gradient of pressure in the reservoir and the oil flows to the extraction pump.

Although hydraulic fracturing was first used in the hydrocarbon industry, it is also applied in other fields
such that ground reinforcement, in petroleum engineering for reinjection of drilling cuttings or in environ-
mental engineering for solids waste disposal [2].

However this process of injecting high pressure fluids into the rock may be sometimes dangerous in terms
of environmental impact (groundwater pollution, vibrations, affection to biodiversity...) or even geothechni-
cal risks (induced earthquakes, collapse...) [3]. This is because the pressure at which fluid has to be injected
(wellbore pressure), usually the only control parameter during the operation, or the time it should last for
is unknown at the time of injection. To improve this performance and to avoid risks, numerical simulations
have been proposed and used since 1950’s to study the evolution of hydraulic fractures in shale reservoirs [4].

Full numerical simulations is a costly process because of the domain size and because it’s time depen-
dent. In addition since the properties and geometry of the rock are in many cases quite uncertain (due to
few geological tests or because their confidence level is low) the pre-well performance simulations may be
inaccurate or even useless. Studies have shown that net-pressures found in the field can be up to 50 to 100
% higher than the ones predicted by conventional hydraulic fracturing simulators, and even more in weak
formations [5]. Therefore it is necessary to found methods to fast integrate field data to update models and
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2 1. INTRODUCTION

increase their reliability.

The aim of this Master’s Thesis is to check the suitability of a Model Order Reduction of the hydraulic
fracturing problem. The final objective of the use of reduced order models in this kind of problem would be to
run real-time simulations able to reintegrate in-situ data that could help in the optimal and safety completion
of hydraulic fracturing processes.

1.1. HYDRAULIC FRACTURING MODELS
Several models have been developed over the years to study the development of hydraulic fractures in a solid
media. This is a complex problem even for simplified problems because it may account for:

1. Deformation of the rock: normally modeled under Theory of Linear Elasticity.

2. Fluid flow in the fracture: under Lubrication Theory.

3. Fracture propagation: with the criterion of energy-release defined by the Stress Intensity Factor (SIF).

Different models have been developed to account for several macro-scale fracture shapes. The Perkins,
Kern and Nordgen (PKN) model [6] is applicable to long fractures of limited height and elliptical cross-section
(Figure 1.1a). On the other hand the Khristinaovic-Geertsma-de Klerk (KGD) model [7] is height independent
and used in short fractures where horizontal plane-strain assumption is valid (Figure 1.1b). Finally the radial
or penny-shaped model was solved by Sneddon [8] is valid in homogeneous reservoirs and the injection re-
gion is almost a point source (Figure 1.1c).

(a) PKN model (b) KGD model (c) Radial model

Figure 1.1: Squemes of three different fracture models [4].

Many modifications and updates have been proposed to these three models since they were first pub-
lished to account for material toughness or power law fluids. However these models are not useful to treat
multilayer reservoirs because the confining stress jump from one layer to the next one may be significant.

A first attempt to model fractures in different layers were the Pseudo-3D (P3D) models which are based
on the assumption that elastic properties of the reservoir are homogeneous and averaged in the layers cut by
the fracture. This assumption is yet valid because confining stress dominates elastic properties in the com-
putation of fracture width.

A new branch of models arose under the general naming of Planar 3D (PL3D) models which uses a 2D
mesh (either fixed or moving) to model the fracture footprint and the coupled fluid flow. Then the full 3D
elastic equations are used to describe fracture width as a function of the fluid pressure.

Finally the most recent work has been devoted to develop full 3D models that, even though the access to
many computational resources, have had limited success.
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1.2. MODEL ORDER REDUCTION
The concept of Model Order Reduction was first introduced in the frame of theory of systems and control,
where the aim was in reducing the complexity of dynamical systems while preserving input-output behaviors
[9]. In numerical modeling the concept Model Order Reduction won importance specially after the publica-
tion of several methods such the Padé Via Lanczos (PVL) [10].

The basic idea of Model Order Reduction in numerical modeling is to simplify models containing many
degrees of freedom to reduced ones that also produce reliable outcomes with treatable times and storage ca-
pacity. In the limit case, it is possible to run on-line simulations. These fast simulations are specially useful in
optimization or inverse problems.

The principle of Reduced Order Models (ROM) techniques consists in capturing the essential features of
the process we want to simulate in the early stage. In this way it is possible to represent an approximation of
the general behavior of our model with fewer information than those of the full simulation. The way to extract
relevant information from the system and the convergence criteria depend on the particular method applied.

The firsts approaches to Model Order Reduction came to light in 1980’s and 1990’s. In 1981 the Trun-
cated Balanced Residual method was published by Moore. Then in 1984 Glover present the Hankel-norm
reduction method. It was in 1987 when Sirovich proposed the Proper Orthogonal Decomposition (POD). A
first method related to Krylov subspaces was published in 1990 (Asymptotic Waveform Evaluation) that was
more centered in getting Padé approximations than finding Krylov spaces. In 1993 the relation between Padé
approxiamtions and Krylov spaces was shown by Freun and Feldmann in the Padé Via Lanczos (PVL) method.

In the last two decades many other Model Order Reduction methods have arose to solve specific situations
or more general cases. One of special interest for us is the Proper Generalized Method (PGD), first introduced
in the context of computational rheology [11][12].

A distinction between ROM’s is done based on if they can be computed directly, the so-called a priori, or
if they first need a set of snapshots of the solution solved with another numerical method to extract from it
relevant information. This second group of methods are called a posteriori. In the present thesis we compare
the POD which is an a posteriori method with the PGD that is an a priori one. In the following sections we
introduce the two methods.

1.2.1. PROPER ORTHOGONAL DECOMPOSITION
The objective of the Proper Orthogonal Decomposition is to obtain a proper orthonormal basis of rank l for
the snapshot set of the solution of a problem given by n vectors (snapshots) yi , . . . , yn ∈ Rm , m being in the
discrete case the number of nodes of our discretization. Since we are seeking for a model order reduction,
l ≤ min{m,n} is satisfied.

The POD is formulated as a constrained optimization problem, and the first-order optimality conditions
are strongly related to the Singular Value Decomposition (SVD) of the rectangular matrix (Y ∈Rm×n) contain-
ing per columns the snapshots. The rank of Y = d ≤ min{m,n}.

The SVD of a matrix Y gives as a result the decomposition in three matrices: Ψ, Y and Φ that satisfy the
relation:

ΨT ·Y ·Φ=
(
D 0
0 0

)
:= S ∈Rm×n (1.1)

where D = di ag (σ1, ...,σd ) ∈ Rd×d and the 0 matrices are of appropriate dimensions. The vectors {Ψi }d
i=1

stored in the columns ofΨ and the vectors {Φi }d
i=1 stored in the columns ofΦ satisfy

Y φi =σiψi and Y Tψi =σiφi for i = 1, ...,d (1.2)

and represent the eigenvectors of the matrices Y Y T and Y T Y respectively with associated eigenvalues λi =
σ2

i > 0, i = 1, ...,d ; and the set of eigenvectors {Ψi }m
i=d+1 and {Φi }n

i=d+1 have zero as eigenvalues.
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Once defined the matricesΨ, S andΦ the following relation holds:

Y =Ψ ·S ·ΦT =Ψd ·D · (Φd )T (1.3)

where Ψd ∈ Rm×d are the firsts d eigenvectors of Ψ and Φd ∈ Rn×d are the firsts d eigenvectors of Φ. In this
way only the relevant eigenvectors, those with non-null amplitude, are stored [13].

The S matrix have the following properties [14]:

• Pseudo-diagonality: the only non zero elements of the matrix are those in the main diagonal of the
rectangular matrix.

S = di ag (σ1,σ2, . . . ,σd ) (1.4)

• Ordering: the amplitude of the diagonal components decreases.

σ1 ≥σ2 ≥ . . . ≥σmi n ≥ 0 (1.5)

Thanks to properties (1.4) and (1.5) it is possible to approximate Y with only a subset of the firsts eigen-
vectors e < d , those with bigger amplitudes σi because they contain most of the relevant information. This
representation with less modes justifies the Model Order Reduction because allows recover the solution with
savings in memory resources and in the computation time.

The fact that to get the separable representation with POD we need previously to compute the solution
justifies classifying this method as an a posteriori one.

1.2.2. PROPER GENERALIZED DECOMPOSITION
The Proper Generalized Decomposition (PGD) is a reduced order technique applied in two phases: first an
off-line process allows computing a base of elements, the computational vademecum, that in the second
phase permit perform multiple on-line queries consisting on vector-vector products to recover the solution
of the model with real-time response [15].

The fact that the solution of the model is directly constructed from the computational vademecum and
not from a previously computed discrete solution classifies this method within the a priori ROM. This prop-
erty makes of PGD not only a ROM technique but also an efficient solver for multidimensional models with
many degrees of freedom that may lead to problems with the curse of dimensionality.

The curse of dimensionality is the name given to the problem caused by the exponential growth of volume
associated with adding extra dimensions to Euclidean spaces. An illustrative example of this problem would
be that a 1D mesh of a unit interval with size 1×10−2 needs 1×102 elements, while to keep the same mesh
size for a 10D case, one would need 1×1020 elements [16]. Therefore even for a quite coarse mesh in a mul-
tidimensional problem, standard numerical methods become too costly and PGD is a powerful tool to solve it.

The basic idea of PGD is, given a D-dimensional problem, each dimension accounting for instance for
physical entities, boundary conditions, material parameters... write a separable solution as a sum of N prod-

ucts of D functions F j
i (x j ) depending each one in only one variable. Both the number of terms of the sum-

mation N and the functions F j
i (x j ) are unknown a priori and determined during an iteratively enrichment

process:

uN (x1, . . . , xD ) =
N∑

i=1
F 1

i (x1)×·· ·×F D
i (xD ) in (x1, . . . , xD ) ∈Ω1 ×·· ·×ΩD (1.6)

The computation of the functionals F j
i (x j ) is done invoking the weak form of the problem and integrating

separately for each dimension. This is possible because at the enrichment step n + 1 all previous func-

tions F j
i (x j ) are known for i ≤ n. Therefore when aiming to compute F k

n+1 ∈ Ω j all the rest of functions

F j
n for j 6= k are known, so they can be moved to the right hand side. In this way at each enrichment step a

system of one-dimensional non-linear equations is defined that has to be solved iteratively [17].
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As said before the number of terms N of the summation is unknown and numerical experiment show
that they don’t depend on the problem dimension D but on the separable character of the solution. The stop-
ping criteria for adding more modes is based in many cases on convergence of the solution ‖uN−uN−1‖ ≤ tol .

The reduction in the number of unknowns is clear: if for example M nodes are used to discretize each
dimension, the original problem had M D unknowns defined in the cross product space Ω1 ×·· ·×ΩD , while
the PGD problem has M ×N ×D unknowns to seek in the space

∑D
i Ωi . Therefore the exponential growth in

degrees of freedom with the dimensions of the problem has been stopped, or what is the same, the curse of
dimensionality has been precluded.





2
FORMULATION

The hydraulic fracturing model is a complex problem because it is coupled and non-linear. The coupling
comes from the fluid-solid interaction in the fracture because the tractions of the solid affects the fluid flow
and vice-versa.

In a high compressed rock formation, as it is the case of a shale oil reservoir at great depth, the minimum
in-situ stress is in the horizontal plane. Therefore the most usual hydraulic fractures develop in vertical planes
perpendicular to the minimum stress [18]. The model chosen in this thesis is the Khristinaovic-Geertsma-de
Klerk (KGD) that assumes a vertical hydraulic fracture of independent high growing radially to the fluid source
under plane-strain conditions (see Figure 1.1b).

The KGD model studies a cross section of the vertical fracture and makes some assumptions to simplify it
and keep the problem treatable, these assumptions are [7]:

1. Homogeneous and isotropic solid

2. Solid deformation is modeled under linear elasticity theory

3. Fracturing fluid flow behaves as purely viscous

4. Fluid flow inside the fracture is everywhere laminar

5. Fracture propagation (when considered) is assumed to grow radially symmetrical from a point source

The micro-scale classical geometry of the fracture front considers a void zone between the fracturing fluid
front and the crack tip known as fluid lag, as it is shown in Figure 2.1.

In our model we have done some extra considerations to simplify the equations because our objective is
to check the suitability of ROM in this problem more than apply complex models. This additional simplifica-
tions are:

6. There is no fluid lag zone

7. There is no fluid leakage neither from the fracturing fluid to the reservoir nor from the reservoir to the
fracture

These two last consideration implies that the injected fracturing fluid occupies all the fracture.

7
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Figure 2.1: Classical geometry of a hydraulic fracturing front [2].

2.1. GOVERNING EQUATIONS
In the following sections we present the equations of the fracking fluid flow, for the reservoir solid deforma-
tion and for the advance criterion.

2.1.1. FLUID EQUATION
The fluid flow is modeled as a laminar flow between two parallel plates, defined as Poiseuille flow [19]. This
equation relates the fracture opening rate with the fluid friction in the fracture and the inflow rate (2.1a):

∂w

∂t
= ∂

∂s

(
w3

12µ

∂p

∂s

)
+δ(s)Q0 (2.1a)

δ(s) =
{

0 if s > r

1 if s ≤ r
(2.1b)

where w is the fracture opening, p is the pressure, s is the position inside the fracture, µ is the fluid vis-
cosity, δ(s) is the Dirac’s delta that only takes values at points placed inside the injection pipe of radius r and
Q0 is the inflow rate. Note the non-linear character of the equation due to the cubic term w3.

This Initial Value Problem needs of an initial condition on pressure inside the fracture to proceed. This
pressure cannot be arbitrary chosen because has to be in equilibrium with the confining stresses surround-
ing the initial fracture length. An initial pressure not in equilibrium may trigger numerical problems that can
result in senseless solutions like negative pressures.

A method for computing a valid initial condition for pressure (p̂) in a half domain is found solving the
non-linear scalar equation (2.2) [20].

q̂∗
(

wσ
0

w∗
0

+ p̂

p̂∗

)3 (
p̂

p̂∗

)
− 1

2
Q0 = 0 (2.2a)

q̂∗ = 1

12µ
(w∗

0 )3 p̂∗

L0
(2.2b)

where wσ
0 is the initial fracture opening due to solely far field stress, w∗

0 is the fracture opening at t = 0
resultant of applying an arbitrary pressure without far-field stress, p̂∗ is an initial fracture pressure and L0 is
the initial fracture length. In our case we have considered that the fracture opening due to only far field stress
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is wσ
0 = 0.

A good initial guess to start the iterative solver is proven to be (2.3) [20].

p̂ = p̂∗
(

1
2Q0

q̂∗

)1/4

(2.3)

2.1.2. SOLID EQUATIONS
The equations of the solid are the ones of linear elasticity, that expressed in conservative form are:

∇·σe =∇· (C : ε) =∇· (C : ∇s u) = 0 inΩ (2.4)

where σe is the effective stress tensor (σe =σ−pp ), pp is the pore pressure ε is the strain tensor and C is the
fourth-order elastic constitutive tensor, defined as:

Ci j kl =
νE

(1+ν)(1−2ν)
δi jδkl +

E

2(1+ν)
(δi kδ j l +δi lδ j k ) (2.5)

where E is the Young’s modulus, ν the Poisson’s ratio and δi j is the Kronecker delta.

We consider a 2D plane-strain model (KGD) and therefore the equations can be simplified adopting engi-
neering Voigt’s notation as:

∇·σe =∇· (Dε) =∇· (D∇s u) = 0 inΩ (2.6)

where

D = E(1−ν)

(1+ν)(1−2ν)

 1 ν
1−ν 0

ν
1−ν 1 0
0 0 1−2ν

2(1−ν)

 ; ε=
 εx

εy

γx y

 ; σe =
σx

σy

τx y


To close the problem we need boundary conditions on the borders of our domain.

σ ·nt =σH on ΓL ∪ΓR (2.7a)

σ ·nt =σh on ΓT ∪ΓB (2.7b)

σ ·n f = p(s, t ) on Γ f (2.7c)

u = 0 on the four vertices (2.7d)

2.1.3. ADVANCE CRITERION
The fracture propagation criterion that we have adopted is based on Griffith’s theory, which is sustained on
energy considerations around the crack tip. This criterion considers that the fracture propagates when the
Stress Intensity Factor (K ′) equals the material parameter Fracture Toughness (KC ) in the crack tip (2.8). In
fact what is used is not the Fracture Toughness but the Effective Fracture Toughness (K ′

C ) because it is shown
that the rock hardness measured in the lab is lower than the real one due to scale effect, to the influence of
confining in-situ stress, to micro-cracking and to plasticity in the process zone near the crack-tip [2]:{

l̇ = 0,K ′ < K ′
C

l̇ > 0,K ′ = K ′
C

(2.8)

where l̇ is the time derivative of the fracture length l . In our case the computation of K ′ is done with an
integral approximation that accounts for both the solid displacement (Iu) and also for the nonzero tractions
of the pressure (Ip ) all along the fracture domain [20]:

K ′ = 4

π(1−ν)
(Iu + Ip ) (2.9)

with the integral expressions for the displacement and pressure contributions:

Iu =
∫
Ω

[(
σ
ψ

i m ui , j +σi mψi , j

)
e j −σi jψi , j em

]
χ,mdΩ (2.10)

I f =
∫
Γp

(
pχ

)
,1ψ2dΓ f (2.11)
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Figure 2.2: Scheme of the three different crack modes defined in fracture mechanics.

where σi j are the components of the stress tensor, and e is a unit vector tangential to the crack face and
pointing out to the uncracked material.

In equations (2.10) and (2.11) the parameters ψ1 and ψ2 representing the Cartesian components of the
auxiliary displacement field ψ undergoing pure tensile fracturing, Mode I (see Figure 2.2) are introduced:

ψ1 = r 1/2 cos

(
θ

2

)
(κ−cosθ) (2.12)

ψ2 = r 1/2 sin

(
θ

2

)
(κ−cosθ) (2.13)

with κ= 3−4ν in plane-strain and r is the distance to the crack tip. The corresponding stress field to ψ1 and
ψ2 is:

σ
ψ

i j =Ci j klψk,l (2.14)

where C is the fourth-order elastic constitutive tensor (2.5).

Since the Stress Intensity Factor affects only the proximities of the crack tip, in equations (2.10) and (2.11)
the auxiliary scalar parameter χ has been introduced. This parameter in our case is defined as:

χ=
{

1 if r ≤ rχ
0 if r > rχ

(2.15)

where rχ is a radius of interaction that in the discrete case is taken to be a few number of elements.

2.2. FEM FORMULATION
As we have explained, in this Master’s Thesis we aim to prove the validity of two ROM’s in the case of hydraulic
fracturing problem: POD and PGD. For the POD we first need a set of snapshots of the solution to extract the
relevant information and create the basis for the ROM. In our case we have chosen the Finite Element Method
to solve the model and feed POD. For this purpose we need to define the weak forms of both fluid and solid
problems and then couple both equations.

2.2.1. FLUID EQUATION WEAK FORM

To get the weak form of the Poiseuille’s equation (2.1a), we define δp as the variations of p, multiply both
sides of the equations, integrate over the fluid domainΩ f and then use integration by parts in the term with
second order derivatives.∫

Ω f

δp
∂w

∂t
dΩ f =

[
δp

w3

12µ

∂p

∂s

]
Γ f

−
∫
Ω f

∂δp

∂s

w3

12µ
∇pdΩ f +

∫
Ω f

δpδ(s)Q0dΩ f (2.16a)

[
δp

w3

12µ

∂p

∂s

]
Γ f

= 0 (2.16b)
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The time derivative is replaced by a Finite Difference discretization:

∂w

∂t
= wn+1 −wn

∆t
(2.17)

Using a Finite Elements approximation we define:

p =
np∑
i=1

N i
p p i u =

nu∑
i=1

N i
u ui w = A

nu∑
i=1

N i
u ui (2.18)

where N p and N u are the 1D pressure and 2D solid shape functions, and p and u the vectors of components
of pressure and displacement respectively. A is a geometrical rectangular matrix (n f lui d ×2nsol i d )that trans-
forms the solid displacement into fracture opening.

With this discretization and using Galerkin method we define the matrix form of the problem as:

1

∆t
M f Aun+1 +K f pn+1 = f f

1

∆t
M f Aun (2.19a)

K f =
∫
Ω f

(∇Np )T w3

12µ
∇NudΩ f (2.19b)

M f =
∫
Ω f

(Np )T NudΩ f (2.19c)

f f =
∫
Ω f

(Np )TδQ0dΩ f (2.19d)

where K f is the stiffness matrix of the fluid problem, M f is the mass matrix of the fluid problem and f f is
the force vector.

Note here that the stiffness matrix of the fluid problem (2.19b) is non-linear because we integrate the

cubic fracture opening w3

12µ that in addition is time dependent. Therefore this term will have to be integrated
at each time step with the new value of fracture opening w in an iterative way till stabilization is reached.

2.2.2. SOLID EQUATIONS WEAK FORM

Now to obtain the weak form of the solid problem we define δu as the variations of u, multiply all terms and
using the divergence Gauss theorem to the second order derivative term, we get:∫

Ωs

∇δuT D∇s udΩ−
∫
Γout

δuTσ0dΓ−
∫
Ω f

δuT pdΩ f = 0 (2.20)

Discretizing likewise equation (2.18) we obtain the matrix form of the solid problem:

Ks un+1 −Ms pn+1 = fs (2.21a)

Ks =
∫
Ωs

∇(Nu)T D∇N dΩ (2.21b)

Ms =
∫
Ω f

(Nu)T Np dΩ f (2.21c)

fs =
∫
Γout

(Nu)Tσ0dΓ (2.21d)

where Ks is the stiffness matrix of the solid problem, Ms is the mass matrix of the solid problem and fs is
the force vector.

Note here that unlike happened in the fluid formulation (2.19a), all matrices of the solid problem discrete
form (2.21a) remain constant since they don’t depend either in time nor in the fracture opening. Therefore
we will only need to compute them once.
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2.2.3. COUPLED PROBLEM
With the FEM formulations of both the fluid and the solid problem we express the matrix form of the coupled
problem as: [

Ks −Ms
1
∆t M f A K f

][
un+1

pn+1

]
=

[
fs

f f + 1
∆t M f Aun

]
(2.22)

Solving this problem will mean inverting a matrix of order (2nsol i d +n f lui d )2 terms at each time step, what
even for small domains and coarse space discretization is an expensive process. To avoid this and taking
advantage of the invariability of the solid matrices, we can invert only once the solid matrices.

un+1 = K −1
s Ms pn+1 +K −1

s fs = B ·pn+1 +b (2.23)

In this way we can write the fluid problem only in terms of pressure unknowns (2.24), solve for pn+1 and
recover the solid displacements un+1 as a post-process with (2.23).[

1

∆t
M f AB +K f

]
pn+1 = f f +

1

∆t
M f A(un −b) (2.24)

2.2.4. DOMAIN REDUCTION
Under the consideration of plane strain conditions and punctual injection source, the solution of the prob-
lem becomes symmetric with respect to both horizontal and vertical axes. Therefore a reduced domain of
study of only a quarter of the fracture is adopted (Figure 2.3). After computing the solution in this reduced
domain, it is possible to plot the hole domain just reflexing the solutions with the corresponding change in
sign.

Figure 2.3: Sketch of the reduced domain. The red dashed line indicates the area of the reduced domain.

This domain reduction implies some special considerations in the formulation. The fracture opening w
is twice the vertical displacement of the fracture solid nodes:

w = 2u2 ∈ Γ f (2.25)

therefore the geometrical matrix A that transforms vertical fracture displacements into fracture opening is
defined as:

Ai j =
{

2 if i = n & j = 2n n ∈ Γ f ⊂ Xs

0 else
(2.26)

Another modification in the formulation is in the boundary conditions. The perpendicular displacement of
the solid nodes in the planes of symmetry is null.

u1 = 0 ∈ ΓL u2 = 0 ∈ ΓB (2.27)

About the Neumann boundary conditions, the only change is that the prescribed tractions in the lower do-
main only affects the non-fractured domain.

σ ·nb = tb ∈ ΓB \Γ f (2.28)

Finally the inflow rate is half the prescribed one:

Qe f f =
Q0

2
(2.29)
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2.3. PGD FORMULATION
In order to obtain a scheme that could be used to generate a PGD solution of our problem we need to reduce
the coupled system to a single equation that expresses the fluid-solid interaction. This is done isolating the
displacement unknown un+1 from the matrix FE formulation 2.22 and replacing w in the fluid equation as
a function of u which is also a function of p. In this way we get an equation where the only unknown is the
pressure p.

In our formulation we want to find a space-time separable solution of the pressure so this pressure has to
be rewritten as the sum of products of pairs of modes depending only on space and time respectively. In this
way the new expression for the pressure is written as:

pm+1
PGD =

m+1∑
i=1

Xi (x)Ti (t ) = X m+1(x)T m+1(t )+
m∑

i=1
Xi (x)Ti (t ) = X m+1(x)T m+1(t )+pm

PGD (2.30)

what makes possible to construct the new approximation pm+1
PGD as a correction of the previous solution pm−1

PGD .

Finally we are able to compute the displacement field and the fracture opening as a transformation of the
pressure field:

um+1 = K −1
s Ms pm+1 +K −1

s fs = B ·pm+1 +b (2.31)

wm+1 = A ·um+1 = A(B ·pm+1 +b) (2.32)

where A is a geometrical matrix that extracts the vertical component of the displacement of the fracture nodes
(2.26).

The separable expression of the solution as the product of space and time modes allows the construction
of the solution for all nodes and for all time. Therefore and since we have expressed the coupled system only
in terms of pressure, the governing equation of the system is derived from the fluid weak form. This implies
that the integrals of the weak form now are not only over space but also over time (2.33).

∫
Ω f ×Ωt

δpẇd tdΩ f +
∫
Ω f ×Ωt

∇(δp)
w3

12µ
∇pd tdΩ f =

∫
Ω f ×Ωt

δpQ0d tdΩ f (2.33)

Now to find the space and time modes we use an Alternating Direction Scheme (fixed-point solver). This
consists in first solve for space modes X m+1 assuming time T m+1 known, and then solve for time T m+1 with
the just-computed space mode X m+1 and iterate this process till the new computed modes stabilizes or a
maximum of iterations.

Then the equation for finding the space mode X m+1 is obtained defining δp as the variations of p, namely
X ∗T m+1 in (2.33).

∫
Ω f ×Ωt

(X ∗T m+1)ẇd tdΩ f +
∫
Ω f ×Ωt

∇(X ∗T m+1)
w3

12µ
∇pd tdΩ f =

∫
Ω f ×Ωt

(X ∗T m+1)Q0d tdΩ f (2.34)

and the equation for finding the time mode T m+1 is obtained defining δp as the variations of p, namely
X m+1T ∗ in (2.33).

∫
Ω f ×Ωt

(X m+1T ∗)ẇd tdΩ f +
∫
Ω f ×Ωt

∇(X m+1T ∗)
w3

12µ
∇pd tdΩ f =

∫
Ω f ×Ωt

(X m+1T ∗)Q0d tdΩ f (2.35)

with

ẇ = AB ṗ = AB

(
X m+1Ṫ m+1 +

m∑
i

X i Ṫ i

)
(2.36)
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Finally replacing terms and operating it leaves for the X m+1 mode:∫
Ω f

(
X ∗AB X m+1

∫
Ωt

T m+1Ṫ m+1d t

)
dΩ f +

∫
Ω f

(
∇(X ∗)

w3

12µ
∇(X m+1)

∫
Ωt

T m+1T m+1d t

)
dΩ f

=
∫
Ω f

(
X ∗Q0

∫
Ωt

T m+1d t

)
dΩ f −

m∑
i

∫
Ω f

(
X ∗AB X i

∫
Ωt

T m+1Ṫ i d t

)
dΩ f

−
m∑
i

∫
Ω f

(
∇(X ∗)

w3

12µ
∇(X i )

∫
Ωt

T m+1T i d t

)
dΩ f

(2.37)

and for the T m+1 mode:∫
Ωt

(
T ∗Ṫ m+1

∫
Ω f

X m+1 AB X m+1dΩ f

)
d t +

∫
Ωt

(
T ∗T m+1

∫
Ω f

∇(X m+1)
w3

12µ
∇(X m+1)dΩ f

)
d t

=
∫
Ωt

(
T ∗Q0

∫
Ω f

X m+1dΩ f

)
d t −

m∑
i

∫
Ωt

(
T ∗Ṫ i

∫
Ω f

X m+1 AB X i dΩ f

)
d t

−
m∑
i

∫
Ωt

(
T ∗T i

∫
Ω f

∇(X m+1)
w3

12µ
∇(X i )dΩ f

)
d t

(2.38)

To solve the time problem (2.38) we have to localize and return to the strong form (2.39) which is a first order
Initial Value Problem that we solve with the Runge-Kutta fourth-order method (RK4):

Ṫ m
∫
Ω f

X m AB X mdΩ f +T m
∫
Ω f

∇(X m)
w3

12µ
∇(X m)dΩ f =QT

∫
Ω f

X mQX dΩ f

−
m−1∑

i
Ṫ i

∫
Ω f

X m AB X i dΩ f −
m−1∑

i
T i

∫
Ω f

∇(X m)
w3

12µ
∇(X i )dΩ f

(2.39)

The remaining equations (2.37) and (2.38) are still non-linear due to the cubic opening term w3

12µ which
also has to be linearized and separated. To linearize it there are two possibilities [17]:

1. Newton’s method: consists in linearize the governing equation before applying PGD

2. Picard’s method: where the non-linear term is evaluated from the previous enrichment step

In our case we chose the Picard’s one.

To separate the cubic term w3

12µ in modes depending only on space and modes depending only on time we
use Singular Value Decomposition (SVD), so we end up with a decomposition:

svd

(
w3

12µ

)
= θ(x) ·α ·φ(t )T ≈

L∑
l
θl (x)αl (φl (t ))T (2.40)

where θ has the space modes, α represents the amplitudes of the modes and φ expresses the time modes. In

this way we have obtained a linearized and separable representation of w3

12µ .

The injection term Q0 also has to be expressed as the product of a function depending only on space and
a function depending only on time (2.41). These functions are basically the injection rate in the nodes inside
the pipe and zero elsewhere for space and all ones for the time since we inject during all the time domain at
the same rate. ∫

Ω f

∫
Ωt

Q0d tdΩ f =
∫
Ω f

Q0dΩ f

∫
Ωt

d t =QX QT (2.41)

For the matrix formulation of the problem we define:

K f =
∑

l
K l

f K l
f (x) =

∫
Ω f

∇Nθ(x)(∇N )T dΩ f

M f =
∑

l
M l

f M l
f (t ) =

∫
Ω f

ϕφ(t )ϕT d t

C (t ) =
∫
Ωt
ϕ(∇ϕ)T d t M(x) =

∫
Ω f

N N T dΩ f
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And finally the matrix expression for the alternating direction strategy ends being:

[T m(M ABC )T m +∑
l
αl K l

f T m M l
f T m]X m+1 = X mQX T mQT

−
m∑
i

X m(M AB)X i T mC T i −
m∑
i

X m(αi MT mC T m −∑
l

K l
f T m M l

f T i )X i
(2.42)

X m+1(M AB)X m+1Ṫ m+1 +∑
l

X m+1K l
f φ

l X m+1T m+1 =

X m+1QX QT −
m∑
i

X m+1(M AB)X i Ṫ i −
m∑
i

∑
l

X m+1K l
f φ

l X i T i
(2.43)

The alternating direction strategy defined by equations (2.42) and (2.43) is solved sequentially first for
X m+1 with (2.42) and then for T m+1 with (2.43) and this process is iterated some times. The alternating di-
rection scheme defined above finds modes in a sequential way, and then the procedure is iterated to ensure
stability of the non-linear term. For the proper function of the alternating direction strategy it is necessary to
normalize the first mode of the iterative solver, in our case the spatial mode X , to ensure that the amplitude
of the solution is only counted in the second mode. This strategy requires of a proper initial pressure distri-
bution to avoid negative pressures, the first mode is devoted to impose this initial pressure distribution. This
is done likewise in FEM finding a proper initial pressure with equation (2.3).

The resulting alternating direction scheme is formed by equation (2.42) which is an algebraic equation
that is solved with a proper linear system of equation solver.

On the other hand equation (2.43) is a first order ordinary differential equation that we solve with the
fourth order Runge-Kutta method with an appropriate initial value. To use this method we have to define the
expression for the time derivative Ṫ m+1:

F (T (t )) = Ṫ m+1 =
X m+1QX QT −∑m

i X m+1(M AB)X i Ṫ i (t )−∑m+1
i

∑
l X m+1K i

f X iφl T i (t )

X m+1(M AB)X m+1 (2.44)

For the time derivatives of the already computed modes Ṫ i we use an explicit finite differences approach:

Ṫ i (n) = T i (n)−T i (n −1)

∆t
(2.45)

The Runge-Kutta fourth order method is defined as:

T (n +1) = T (n)+ ∆t

6
(k1 +2k2 +2k3 +k4) (2.46)

k1 = F (t ,T (n)) k3 = F (t + ∆t

2
,T (n)+ ∆t

2
k2)

k2 = F (t + ∆t

2
,T (n)+ ∆t

2
k1) k4 = F (t +∆t ,T (n)+∆tk3)

which needs an initial condition T 0 to start the loop, in our case we have chosen T 0 = 0.





3
NO FRACTURE ADVANCE

A first simplified model that accounts only for fracture inflation and not for propagation has been proposed
to check the suitability of a Model Order Reduction. First the POD approach is shown and then also the PGD
one.

3.1. MODEL PARAMETERS
For all the simulations of this simplified model with no fracture advance, the material parameters have been
taken in the range of a potential shale oil reservoir [18] and are listed in Table 3.1. The far field stress σ0 is
those of around 1500 m depth, which is a normal depth for a reservoir of this kind.

Parameter Symbol Value Unit
Young’s modulus E 14400 [MPa]
Poisson’s ratio ν 0.2 [-]
Fluid viscosity µ 1×10−3 [MPa ·s]
Far field stress σ0 27.7579 [MPa]

Table 3.1: Material parameters used in the simulation of hydraulic fracturing without crack advance [18].

The model numerical parameters used in the simulations are summarized in 3.2.

Parameter Symbol Value Unit
Inflow rate Q0 0.2 [m3/s]
Pipe width r 0.25 [m]
Initial fracture length L0 1 [m]
Time interval tmesh [0,1] [s]
Initial fracture opening w∗

0 1×10−3 [m]

Table 3.2: Model parameters

3.1.1. SPACE DISCRETIZATION
The spatial discretizations used to simulate the opening of a predefined hydraulic fracture consists in a 2D
mesh of fourth nodedQ1-quadrilaters to model the solid domain, with vertical and horizontal degrees of free-
dom, and a 1D two noded linear mesh for the fluid pressure.

To avoid that the solid boundary conditions affects the fracture Γ f domain, the spatial discretization
is fourth times longer than the fracture length Ω = [0,4] × [0,2]. To chose an appropriate mesh size, we
have compared different meshes using the same time step of ∆t = 0.01 to see its influence on the FEM
solution. Concretely the injection node end time pressure has been compared for sequential finer meshes
h = [0.25,0.125,0.0625,0.03125]. It is seen in Figure 3.1a that as the mesh is refined, the pressure tends to

17
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stabilize. Unfortunately we don’t have access to more computational resources and we can’t refine more the
mesh to obtain more stability. Looking at the results, the mesh size adopted has been the finest possible
h = 0.03125.
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Figure 3.1: Stability analysis for both space and time discretizations. The final injection node pressures are compared.

3.1.2. TIME DISCRETIZATION
Also to define a proper time discretization, the final injection node pressure for sequentially doubling time
step steps∆t = [0.0025,0.005,0.01,0.02,0.04,0.1] with the same spatial discretization of h = 0.03125 have been
compared. In Figure 3.1b the different results are plotted, and it is seen that the problem is much less sensible
to the time mesh than the space one. Since the final result is not significantly affected by the time step, we are
free to choose the number of solutions we want. We have chosen to get the snapshots for the POD solution
∆t = 0.01, what means 101 solutions to see if the model order reduction is efficient or not.

3.2. POD
For the computation of the reduced order model solution with POD we first need to find a series of FEM
snapshots for different times of the pressure p i and store them in a matrix per columns. These solutions are
found with standard Finite Elements space discretization and with a time marching scheme, with the only
particularity of solving a nonlinear system of equations iteratively at each time step.

The numerical simulation of this model has been done in a code debugged in MATLAB, which its main
loops are summarized in Algorithm 1.

After this, using the MATLAB command svd applied to the set of snapshots of the pressure we get as a
result three matrices representing per columns:

1. U: the space modes 2. S: the amplitudes 3. V: the time modes

With these three matrices it is possible to recover the pressure pPOD at any time step i in an on-line phase
just multiplying

p i
POD =U (:,1 : k) ·S(1 : k,1 : k) ·V (i ,1 : k)T (3.1)

where k stands for the number of modes that we want to use to reproduce our POD solution.

If we are also interested in recover the solid deformation u and the fracture opening w , if we have stored
B , b and A, it is easy and fast to recover them in a post-process that with two vector-vector multiplications
like in equations (2.31) and (2.32).



3.2. POD 19

1 define boundary and initial conditions ;

2 compute M f B = 1
∆t M f AB;

3 for i = 2 : nsteps do
4 ui = ui−1 ;

5 p i = p i−1 ;

6 w i = w i−1 ;
7 er r or = inf ;
8 nor m = T OL ;
9 j = 1 ;

10 while er r or > nor m ·T OL & j < maxI ter do
11 compute K f from w i ;
12 a = M f B +K f ;

13 c = f f +M f B ·p i−1;

14 p i = a−1c;

15 ui = Bp i +b;

16 w i = Aui ;

17 ∆p = |p i −p i−1|;
18 er r or =

√
∆pT ·K f ·∆p;

19 nor m =
√

(p i )T ·K f ·p i ;

20 j = j +1;
21 end
22 end

Algorithm 1: Summarized FEM no fracture advance algorithm.

3.2.1. EXAMPLE

An example of the POD model order reduction has been computed using the parameters of Tables 3.1 and
3.2, with a tolerance for the non-linear loop of the FEM algorithm to get the solutions for the svd of T OL =
1×10−5. The discretizations used are those of sections 3.1.1 and 3.1.2. To see the efficiency of the model order
reduction we have plot the amplitudes of the modes, which are represented in the diagonal of the S matrix in
Figure 3.2a.

In Figure 3.2a it is seen a clear exponential decay in the mode’s amplitudes, which allows to recover the
FEM solution with fewer modes than the total non zero 33 produced that correspond to the minimum size of
the matrix of snapshots, in this case the spatial degrees of freedom. In this case it is shown that at the eleventh
mode the amplitudes flatten at almost machinery precision, what means that all the rest of modes are su-
perfluous. Actually in the presented example the first amplitude represent the 99.8974% of all the modes
amplitudes, and together with the second mode represents the 99.9993%. This allows to recover the "exact"
FEM solution instead of storing 3333 entries with only 270, this is 8.1008% of the storage, with a maximum
relative difference of 0.0289%.

The fact that with so few elements we could recover the time evolution of the pressure fracture profile is
a consequence of the special characteristics of the problem. In this case, since the pressure profile is almost
constant inside the fracture and the time evolution linear due to the linear elastic solid model adopted, the
solution at any time can be accurately recovered with low order modes. Therefore the model order reduction
of the hydraulic fracturing problem without fracture advance is clearly proven to be effective for the case of
POD.

As an example of the graphical representation of the orthogonal modes resulting from the svd of the pres-
sure snapshots, the firsts five space and time POD modes are presented in Figures 3.3a and 3.3b. It is seen that
each new space mode is of one order more than the previous one to capture better the response of the time
evolution of the fracture pressure profiles.
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(a) Amplitudes of the POD modes.
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Figure 3.2: Evolution of the mode’s amplitudes for the POD and PGD reduced order models computed with discretizations h = 0.03125m
and ∆t = 0.1s.
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Figure 3.3: Firsts five space and time modes resulting from the POD model order reduction of the hydraulic fracturing model without
crack advance.

Finally in the post-process we can compute the displacement field from the pressures with (2.31) just
with matrix-vector operations. Also it is possible to compute the components of the strain and stress tensors
from the displacement field. In addition although our computational domain has been reduced to just one
quarter, the solution can be extended to the original domain just assigning in the rest of three quarters the
symmetric values of the reduced one. As an example of this, the end time fracture opening and vertical strain
εy y have been plotted in Figure 3.4. We note that the effect of the fracture inflation on the crack tip is very
local, and the deformation in most of the domain is almost zero. This makes interesting study the application
of an adaptive mesh refining algorithm to catch the effect near the fracture while keeping a coarse mesh in
the rest.
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Figure 3.4: End time (t = 1s) fracture opening and vertical component of the strain εy y for the no fracture advance hydraulic fracturing
model.

3.3. PGD
To apply the formulation of the PGD model order reduction a code has been developed in MATLAB, which
is summarized in Algorithm 2. Before initializing the loops the firsts space and time modes are computed to
accomplish with initial conditions. In this way the initial pressure is computed likewise in FEM with Equation
(2.3). The space mode is assigned to be a normalized constant vector. The time mode is also assigned to be
a constant vector with amplitude the computed initial pressure. The amplitude is assigned to the time mode
and not to the space one because in the alternating direction strategy the space modes will be normalized
while the time ones will have the amplitude.

The most external loop is a non-linear loop that updates the Singular Value Decomposition of the cubic

opening term
(

w3

12µ

)
with the updated PGD solution. The stopping criteria adopted for this process is based

on stability of two successive iterative solutions (3.2):

max(p i
PGD −p i−1

PGD ) < nonLi near Tol (3.2)

Inside this non-linear loop there is a second loop that controls the addition of new modes. This loop starts
with the initialization of new modes in case in the previous non-linear iteration there was less modes. If we
need to add new modes these are initialized with a vector of ones for both space X and time T . Since unlike
in POD we don’t have an a priori solution, our stopping criteria cannot be based on an error with respect to
the precomputed solution. Instead of this we use a criteria based on the importance of the new computed
mode with respect to the already computed separable solution p i−1. The stopping criteria is therefore (3.3):

‖X j T j ‖
‖p j−1

PGD‖
< tol PGD (3.3)

This stopping criteria is sustained in the fact that, since we compute the m − th PGD solution as an im-
prove of the m−1 solution, the algorithm flats when the equation balance and no further improve is possible.

Finally the most internal loop is a fixed point iterative solver (alternating direction strategy) where the
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1 initialize X 1 and T 1;
2 i = 1;

3 while max(p i
PGD −p i−1

PGD ) > nonLi near Tol or i < maxNonLi near I ter ) do
4 compute K f and M f of w i−1

PGD ;
5 j = 2;

6 while ‖X j T j ‖/‖p j−1
PGD‖ > tol PGD or j < maxModes do

7 if j > modes(p i−1
PGD ) then

8 initialize X j and T j ;
9 compute K f , M f and φ of the j − th mode;

10 end
11 k = 1;

12 while ‖X k T k −X k−1T k−1‖ > al ter nateTol or k < maxI ter do
13 compute X k+1 from T k ;

14 compute T k+1 from X k+1;
15 k = k +1;
16 end
17 j = j +1;
18 end
19 i = i +1;
20 end

Algorithm 2: Summarized PGD no fracture advance algorithm.

stopping criteria is:

‖X k T k −X k−1T k−1‖ < al ter nateTol (3.4)

3.3.1. EXAMPLE

An example of the efficiency of the PGD reduced order model is presented here with the material parameters
of 3.1 and the algorithm tolerances of Table 3.2 and the discretizations described in sections 3.1.1 and 3.1.2.

Parameter Value
nonLi near Tol 1×10−3

al ter nateTol 1×10−2

tol PGD 1×10−3

Table 3.3: Tolerances of the PGD algorithm.

In this example our algorithm stopped at four modes and their amplitudes are plotted in Figure 3.2b. As
seen the two firsts mode’s amplitudes are of the same order because the first mode is devoted to impose the
initial condition and the rest to reconstruct the solution. The first space mode corresponds to the pressure
profile resulting of the solution of (2.3), a profile that we have assigned in all the time intervals through a con-
stant unitary time mode. The shape of these firsts and rest of modes are plotted in Figure 3.5a and 3.5b.

Unlike what happened in the case of POD, in this case the resulting space modes (Figure 3.5a) aren’t suc-
cessively of one order more, but corrections to the first mode shape. This is a consequence of the construction
of the PGD solution as an improve of the previous solution, then since we have explained in the case of POD
the pressure profile is almost constant and we already assign a proper initial condition, the new PGD space
modes just adjust the previous ones.

To see the "accuracy" of the PGD solution, since we don’t have an analytical solution and just to see if the
solutions produced are consistent with the ones computed with FEM, we have computed the relative differ-
ence of the FEM and PGD solutions as:
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Figure 3.5: Space and time modes resulting from the PGD model order reduction of the hydraulic fracturing model without crack ad-
vance.

pdi f f [%] = 100 · |pF E M −pPGD |
pF E M

(3.5)

The time evolution of this relative difference is plotted in Figure 3.6. It is seen that the maximum FEM-
PGD difference is of only 1.0722%. As we have admitted this is not a measure of the error, but this is enough for
us to ensure that the separability formulation proposed and the algorithm used produce similar solutions to
FEM and therefore, likewise happened in POD, the model order reduction of the hydraulic fracturing problem
without crack advance is possible.

0 0.2 0.4 0.6 0.8 1

time

0

0.2

0.4

0.6

0.8

1

1.2

M
a

x
im

u
m

 r
e

la
ti
v
e

 d
if
fe

re
n

c
e

 [
%

]

Time distribution of maximum relative difference

Figure 3.6: Time evolution of maximum relative PGD differences with 4 modes.





4
FRACTURE ADVANCE

After proving the validity of a Model Order Reduction for both POD and PGD for the hydraulic fracturing
problem of a predefined fracture, now we want to study if it is possible to do the same with a fracture that do
advances.

4.1. MODEL PARAMETERS
In this case for the simulations of the fracture advance and to avoid numerical instabilities the model param-
eters have been Table 4.1:

Parameter Symbol Value Units
Inflow rate Q0 20 [m3/s]
Pipe width r 0.25 [m]
Initial fracture length L0 16h = 0.5 [m]
Initial fracture opening w∗

0 1×10−3 [m]
Fracture toughness K ′

C 5×103 [MPa·pm]
Number of time steps nsteps 24 [-]
Interaction radius rχ 2h = 0.0625 [m]

Table 4.1: Model parameters of the hydraulic fracturing problem with fracture advance.

4.2. POD
To find a set of snapshots of the hydraulic driven fracture advance to then apply svd, first we solve the problem
with FEM. Unlike what happened in the case of no fracture advance where we prescribed the fracture length,
now the length will change so we need a different approach. If our objective was to capture the trajectory of
the tip and the fracture opening, the best approach would be an Arbitrary Lagrangian-Eulerian (ALE) formu-
lation with moving nodes in the crack tip. In this way we could enforce that a node always coincides with the
tip.

However a changing mesh is not possible in our case because to be able to reproduce the solution with
POD, all the snapshots must be taken with the same spatial mesh. Therefore we need an approach that could
capture the fracture advance with a constant spatial discretization.

The advancing criterion (2.8) is such that the fracture grows when the Stress Intensity Factor (K ′) equals
the Fracture Toughness (K ′

C ). In a discrete model with fixed mesh the fracture grows element by element, so
we have applied a code able to capture the exact time instant when the new fracture tip node reaches the
Fracture Toughness (K ′

C ).

This code applies a root finding algorithm (Bisection method) to find the time instant when the crack tip
node reaches breaking conditions (Algorithm 3). This is done sequentially for each new node added to the

25
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fracture iteratively changing ∆t till their condition becomes K ′ = K ′
C .

1 define boundary and initial conditions ;
2 j=1 ;
3 for i = 2 : n f r ac_nodes do
4 define initial guesses ∆t1 and ∆t2 such that (K ′(∆t1)−K ′

C ) < 0 and (K ′(∆t2)−K ′
C ) > 0 ;

5 while |K ′(∆t1)−K ′(At2)| > T OL & j < maxI ter do
6 ∆tnew = ∆t1+∆t2

2 ;

7 M f B = 1
∆t M f AB ;

8 er r or = inf ;
9 nor m = T OL ;

10 k = 1 ;
11 while er r or > nor m ·T OL & k < maxI ter do
12 compute K f from wk ;
13 a = M f B +K f ;

14 c = f f +M f B ·pk−1;

15 pk = a−1c;

16 uk = Bpk +b;

17 wk = Auk ;

18 ∆p = |pk −pk−1|;
19 er r or =

√
∆pT ·K f ·∆p;

20 nor m =
√

(pk )T ·K f ·pk ;

21 k = k +1;
22 end
23 if

(
K ′(∆tnew )−K ′

C

) ·K ′(∆t1) > 0 then
24 ∆t2 =∆tnew

25 else
26 ∆t1 =∆tnew

27 end
28 j = j +1
29 end
30 i = i +1 ;
31 end

Algorithm 3: Summarized FEM fracture advance algorithm.

4.2.1. EXAMPLE

An example of the efficiency of the POD model order reduction of the hydraulic fracturing problem with frac-
ture advance is presented below with the material parameters of Table 3.1, space discretization of section
3.1.1 and fracture advance parameters of Table 4.1.

In Figure 4.1a the amplitudes of the POD modes are plotted. It is seen that for the case of not normalized
space modes, the decrease in the mode’s amplitudes is not as fast as it was in the case of no fracture advance.
This implies that to interpolate the solution with good precision all modes are necessary and there is no pos-
sible model order reduction as it is seen in the comparison with the FEM solution (Figure 4.1b) computed
with (3.5). This is due to the fact that the set of snapshots computed with FEM is of the form of equation (4.1),
this is in each new time step we have a new no null pressure node.
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pF E M =



p11 p12 · · · p1nsteps

0 p22 · · · p2nsteps

... 0 · · · p3nsteps

...
... · · · ...

0 0 · · · pmnsteps

 (4.1)

Therefore the space modes (Figure 4.2a) resulting from the svd has to interpolate a new not null node at each
step. The only way to do so is adding a new mode for each new fracture node. This makes this approach not
reducible.
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Figure 4.1: Comparison of the evolution of POD modes’ amplitudes and maximum relative difference with FEM for not normalized and
normalized pressures.

To check if it is possible to solve this problem with the space POD modes, we have interpolated the pres-
sure snapshots with (4.2) to be all of the number of elements of the final fracture length in a normalized
fracture domain X̂ ∈ Γ̂ f = [0,1].

p̂i j = pup
j +

pup
j −p l ow

j

∆X

(
X̂i − X̂i−1

)
(4.2)

This gives as a result a new set of snapshots of the form (4.3).

p̂F E M =


p̂11 p̂12 · · · p1nsteps

p̂21 p̂22 · · · p2nsteps

p̂31 p̂32 · · · p3nsteps

...
... · · · ...

p̂m1 p̂m2 · · · pmnsteps

 (4.3)

Then applying Singular Value Decomposition to this new set of solutions we obtain the POD modes and am-
plitudes. The first pressure solution of the FEM solution hasn’t been used as asnapshot for the svd because
doesn’t correspond to a case of K ′ = K ′

C . The result show a clear improve in the decay of modes amplitudes
(Figure 4.1a) and maximum relative difference (Figure 4.1b). Although the amplitudes doesn’t flatten at ma-
chine precision as happened in the case of no fracture advance, this normalization allows a model order
reduction since the firsts 3 modes encloses the 99.9993% of the total amplitudes and is able to reproduce the
solution with a maximum punctual relative difference with respect to FEM of only 0.0022%.

The change in the reducible character of the model between the not-normalized and normalized fracture
domain is a consequence of not having to interpolate different fracture lengths. This change can be seen
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comparing the firsts space modes for both the not normalized (Figure 4.2b) and normalized pressures (Figure
4.2a). The set of firsts fourth space modes of the normalized fracture domain (Figure 4.2b) are of similar
shape, this means that many modes repeat most of the information contained in the firsts ones. This is a
clear difference to the not-normalized spatial domain modes (Figure 4.2a) where the shape of modes is very
different between them, so new information is not contained in the previous ones.

0 0.2 0.4 0.6 0.8 1 1.2
-0.3

-0.2

-0.1

0

0.1

0.2

0.3
Firsts 4 space modes pressure

1

2

3

4

(a) Not normalized pressures

0 0.2 0.4 0.6 0.8 1
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Firsts 4 space modes normalized pressure

1

2

3

4

(b) Normalized pressures

Figure 4.2: Firsts 4 POD space modes for both not-normalized and normalized pressure snapshots.

For the case of the time modes (Figures 4.3a and 4.3b) they don’t start at t = 0s because as we have ex-
plained the initial time solution hasn’t been used for the svd since wasn’t a situation of K ′ = K ′

C . Also unlike
what happened in the case of no fracture advance these time modes doesn’t have a constant time step ∆t be-
cause the algorithm founds the time corresponding to K ′ = K ′

C . However for the assumption of linear elastic
solid the same crack elongation is found for similar time steps. What we do seen is that the more the fracture
advances and the more it inflates, the faster reaches the fracture toughness.

0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25
-0.3

-0.2

-0.1

0

0.1

0.2

0.3
Firsts 4 time modes normal pressure

1

2

3

4

(a) Not-normalized pressures

0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Firsts 4 time mode normal pressure

1

2

3

4

(b) Normalized pressures

Figure 4.3: Firsts 4 POD time modes for both not-normalized and normalized pressure snapshots.

Finally to see the graphical representation of the computational domain deformation we have plotted
the end time fracture opening and vertical component of the strain likewise in the case of no crack advance
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taking advantage of the symmetries of the problem in Figure 4.4. It is seen that for the material and model
parameters adopted has to inflate a lot the fracture to reach the fracture toughness. The highest deformation
is extension near the crack tips. This supports the assumption done for the case of fracture advance that the
fracture advances radially to the fluid source due to mainly pure Mode I fracture since the in-plane shear
strain corresponding to Mode II is negligible.

Figure 4.4: End time (t = 0.2491s) fracture opening and vertical component of the strain εy y for the fracture advance hydraulic fracturing
model.

4.3. PGD
As we have shown the hydraulic fracturing problem with fracture advance is not reducible in the case of
different number of fracture elements. Then we have dismissed to code a PGD algorithm to find a separable
representation of the pressure profile of the form (4.4).

pPGD =∑
i

Xi (x)Ti (t ) (4.4)

because there will not allow a model order reduction that is the objective of this master’s thesis.

However we propose a possible future line of study that we haven’t developed yet to achieve a model order
reduction of the hydraulic fracturing problem with fracture advance with PGD.

4.3.1. FUTURE WORK
The analysis of the normalized pressure that we have done in the case of POD shows a descent in the ampli-
tudes and difference with FEM, and makes possible think in a model order reduction also in the case of PGD.
A possible way to obtain a model order reduction with PGD would be to introduce the fracture length l as a
new variable in the separable expression of the pressure (4.5):

pPGD =∑
i

X̂i (x)Ti (t )Li (l ) (4.5)

In this way it would be possible to have a set of spatial modes X̂ that reproduce the inflation of the fracture
of normalized length, a set of length modes L that could track the evolution of it and the time evolution with
the time modes T .





5
CONCLUSIONS

In this thesis we have checked the feasibility of Reduced Order Models (ROM) applied to the hydraulic fractur-
ing problem. First a simplified model of fracture inflation with no fracture advance has been proven for two
reduced order methods: Proper Order Decomposition (POD) and Proper Generalized Decomposition (PGD).

In the case of POD since is an a posteriori ROM first a set of snapshots of the time evolution of the pressure
inside the fracture is found with FEM. This solutions are then decomposed in three matrices using Singu-
lar Value Decomposition that represent space modes, time modes and amplitudes. The mode’s amplitudes
decrease as function of the reducible character of the problem solved. In the example presented the firsts 2
modes of a total of 33 encloses the 99.9993% of the total amplitudes. This allows to recover the FEM solution
with a maximum difference of 0.0289% with a save in memory of around 90%, so the model order reduction
with POD is proven.

On the other hand PGD is an a priori ROM so the solution is found directly. This property allow this
method to be used apart of as a ROM as an efficient solver. A space-time separable expression of the fracture
pressure has been proposed and in the example checked it has been proven to produce a reduced basis that
with only 4 modes achieves a solution that doesn’t differ of the FEM more than 1.0722%. So also with PGD it
is possible to get a model order reduction of this problem.

A second model that accounts for fracture opening and lengthen has also been checked. The propagation
criterion is based on the Stress Intensity Factor around the crack tip. The algorithm developed uses a fixed
space mesh and a root finding strategy to capture the instant when the Stress Intensity Factor at the crack tip
node equals the Fracture Toughness. In this case the set of snapshots for POD has a special shape since the
pressure in all inactive fracture nodes are zero. This force the POD modes to interpolate in each time step a
new not null element, what is only possible adding an extra mode. Therefore this approach is not reducible
and the PGD case hasn’t been developed.

To achieve a set of snapshots susceptible to be reduced in POD it is necessary to interpolate the pressures
in the fracture to be all of the same number of elements. Doing this the reduction is possible and in the
example presented with only 3 modes the FEM solution is recovered with a maximum relative difference of
0.0022%. This is why we propose this same approach to obtain the PGD separable expression, introducing
a part of space and time, the fracture length as a new variable. We haven’t develop this strategy yet and is
proposed as a possible future line of study.
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