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Abstract

The asymmetric tensile/compressive material behavior and microcracks closure-reopening (MCR) effects exhib-

ited by quasi-brittle solids are of significant importance to the nonlinear responses of engineering structures under

cyclic loading, e.g., earthquake excitations. Based on our previous work (Cervera et al., 1995; Faria et al., 1998;

Wu et al., 2006) this work addresses a novel thermodynamically consistent unilateral damage model for concrete.

In particular, the positive/negative projection (PNP) of the effective stress tensor and the additive bi-scalar damage

constitutive relation are maintained owing to the conceptual simplicity and computational efficiency. It is found that

the classical PNP widely adopted in the literature is not optimal for this damage model, since the resulting stiffness is

not always of major symmetry. Consequently, a well-defined free energy potential does not exist in general cases and

the model cannot be cast into the framework of thermodynamics with internal variables. Furthermore, the damage

induced anisotropy cannot be captured, exhibiting excessive lateral deformations under uniaxial tension. To overcome

the above issues, a novel PNP, variationally interpreted as the closest point projection of the effective stress in energy

norm, is proposed with closed-form solution. With the novel PNP, the secant stiffness tensor of the proposed unilateral

damage model always possesses major symmetry and exhibits orthotropic behavior under uniaxial tension and mixed

tension/compression. The corresponding thermodynamics framework is then given, resulting in an energy release rate

based rounded-Rankine type damage criterion appropriate for tensile failure in quasi-brittle solids. Several numerical

examples of single-point verifications and benchmark tests are presented. It is demonstrated that the proposed model

is capable of characterizing localized failure of concrete under proportional and non-proportional static loading, as

well as the MCR effects under seismic cyclic loading.
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1. Introduction

Failure of quasi-brittle solids, e.g., concrete, rock, ceramics, etc., is mainly dominated by microcracks evolution

on the mesoscopic scale. On the one hand, they are prone to localized failure in dominant tension, and exhibit rather

inferior tensile behavior and stiffness degradation compared to the relatively high strength and ductile performances

in compression. On the other hand, microcracks tend to close upon load reversal such that the material stiffness

can be largely recovered (Reinhardt and Cornelissen, 1984; Mazars et al., 1990), known as the so-called unilateral

effects. The asymmetric tensile/compressive material behavior and microcracks closure-reopening (MCR) effects are

of significant importance to the responses and safety of engineering structures under static and seismic loadings.

Owing to the pioneering work of Kachanov (1958), continuum damage mechanics (CDM) has nowadays been

widely adopted in the constitutive modeling of concrete like quasi-brittle solids; see the monographs (Krajcinovic,

2003; Lemaitre and Desmorat, 2005; Murakami, 2012) and the references therein. Restricting our attention to concrete

under cyclic loading, a large volume of damage models have been proposed in the literature; see Mazars and Pijaudier-

Cabot (1989); Cervera et al. (1995); Faria et al. (1998); Li and Fenves (1998); Comi and Perego (2001); Wu et al.

(2006); Abu Al-Rub and Kim (2010); Miehe et al. (2010a); Grassl et al. (2013) among many others. In most of

these damage models, two scalar internal variables, say, i.e., dC and d�, both in the range [0, 1], are adopted to

characterize the asymmetric tensile/compressive material behavior, respectively. With this strategy, the MCR effects

upon load reversals can also be modeled straightforwardly by (partially) activating/deactivating the corresponding

damage variable dependent on the specific stress/strain state.

To the above end, it is necessary to discriminate the dominant tension (positive) and compression (negative) states

in general 3-D cases. In the 1980s the French scholars first decomposed the stress tensor into its positive and negative

components based on the spectral decomposition; see Mazars and Pijaudier-Cabot (1989) for the review. During this

stage, another celebrated work is Ortiz (1985) in which the fourth-order positive/negative projection (PNP) operators

of the stress tensors were first introduced explicitly in the damage constitutive relation. Since then, in the damage

modeling of concrete the PNP of a specific second-order tensor, e.g., the strain (Simó and Ju, 1987; Ju, 1989), the

nominal stress (Yazdani and Schreyer, 1990; Hansen and Schreyer, 1994, 1995; Lubarda et al., 1994) and the effective

stress (Cervera et al., 1995; Faria et al., 1998; Wu et al., 2006; Abu Al-Rub and Kim, 2010; Grassl et al., 2013), etc., has

been the standard strategy. Besides the expressions given in Ortiz (1985), two alternative fourth-order PNP operators

were also proposed (Simó and Ju, 1987; Carol and Willam, 1996). In the last reference (Carol and Willam, 1996),

different PNP operators for the damage modeling of the MCR effects were systematically investigated. It was found

that for a generic anisotropic damage model, all the existing PNP operators cannot guaranteed zero energy dissipation

during a closed loading cycle, violating the second law of thermodynamics. Recently, this issue was revisited by the

author (Wu and Xu, 2013). Unified expressions for the classical fourth-order PNP operators were established with all

the previous ones included as its particular examples. Furthermore, the thermodynamical consistent PNP operators

were derived for the first time, completely removing the aforesaid issue.
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Among the large quantities of damage models for concrete, the one proposed by Cervera et al. (1995) and Faria

et al. (1998) deserves further comments. In this model the PNP of the effective stress was first adopted for modeling

the asymmetric tensile/compressive material behavior and the MCR effects of concrete. This strategy results in a

theoretically simple additive bi-scalar damage constitutive relation. In particular, the plastic strains can be straightfor-

wardly incorporated by the effective stress space plasticity (Ju, 1989) as in the work of Wu et al. (2006). Furthermore,

as the effective stress tensor is defined in the context of strain equivalence (Simó and Ju, 1987), the strain-driven

numerical algorithm (Faria et al., 1998; Wu et al., 2006) is very robust and efficient, particularly useful for the appli-

cation to practical engineering structures (Wu and Li, 2007). Owing to the theoretical and numerical advantages, the

additive bi-scalar damage constitutive relation has been widely adopted in later development of concrete models (Li

and Ren, 2009; Abu Al-Rub and Kim, 2010; Pelà et al., 2011; Gernay et al., 2013; Grassl et al., 2013). However, for

the classical PNP scheme considered in the literature, this additive bi-scalar damage model degenerates in the uniaxial

stress state to an isotropic one which is known being unable to capture the damage induced anisotropy. More impor-

tantly, the corresponding stiffness tensor is not of major symmetry in the mixed tension/compression states. That is,

it is impossible to define a unique free energy potential function. Accordingly, the original additive bi-scalar damage

model cannot be cast into the framework of thermodynamics with internal variables. This is in strong contrast to the

bi-scalar damage models based on the positive/negative split of the stress or strain tensor (Mazars and Pijaudier-Cabot,

1989; Ortiz, 1985; Miehe et al., 2010a) which are thermodynamically consistent. Last but not the lest, another side

effect is that the damage criteria can only be postulated in an ad hoc or heuristically manner.

In order to remedy the aforesaid issues, Cervera and Tesei (2017) recently proposed a multiplicative bi-scalar

damage model which is distinct from the original additive one. The postulate of energy equivalence (Cordebois and

Sidoroff, 1982; Carol et al., 2001) is employed to restore the major symmetry of the stiffness tensor. The classical

PNP is performed on the strain tensor rather than the effective stress for the sake of numerical efficiency.

In this work, an alternative approach is proposed, in which the conceptual simplicity and numerical efficiency

associated with the original additive bi-scalar damage model is preserved as much as possible. As we will show,

the positive/negative components of a specific second-order tensor and the corresponding fourth-order PNP operators

are not unique, unless an extra constraint is applied. Different supplementary condition yields rather distinct posi-

tive/negative components. In particular, the classical PNP scheme considered in the literature is only introduced in a

heuristic manner for convenience. Therefore, it is possible to construct a novel PNP scheme such that the stiffness

tensor of the original additive bi-scalar damage constitutive relation is always of major symmetry. Motivated by this

viewpoint, the objective of this paper is four-fold: (i) to revisit the classical PNP scheme and to demonstrate its ad-

verse effects on the damage model; (ii) to derive a novel variationally consistent PNP in energy norm and to give the

explicit solution; (iii) to cast the additive bi-scalar damage model into the thermodynamics with internal variables;

and finally, (iv) to illustrate its numerical performances in the modeling of concrete under static and seismic loadings.

The remainder of this paper is outlined as follows. Section 2 presents the original additive bi-scalar damage model.

A generalized definition of the PNP is given with respect to the effective stress tensor. Section 3 addresses the classical
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PNP scheme and its variational interpretation. The adverse effects on the original additive bi-scalar damage model

are then demonstrated. On the one hand, these theoretical analyses consolidate the classical PNP scheme heuristically

considered in the literature. On the other hand, they also shed lights to other alternative PNP schemes. Section 4

is devoted to the novel variationally consistent PNP scheme in energy norm and the explicit solutions. In Section

5 the original additive bi-scalar damage constitutive relation is re-derived within the thermodynamics with internal

variables. In particular, an energy release rate based damage criterion appropriate for tensile failure in concrete like

quasi-brittle solids is established with no ad hoc assumption. The novel additive bi-scalar damage model is then

validated in Section 6 with numerical examples of single-point verification as well as benchmark tests of concrete

under both static and seismic loadings. The most relevant concluding remarks are drawn in Section 7, followed by

three appendices closing this paper.

Notation. Compact tensor notation is used as much as possible. As a general rule, scalar a is denoted by a light-

face italic minuscule (Latin or Greek) letter; vector a, second-order tensor A and fourth-order tensor A are signified

by boldface minuscule, majuscule and boldface majuscule letters, respectively. Operators ‘tr.�/’ and ‘.�/sym’ indicate

the trace and sum-type symmetrized operators, respectively, defined as trA D Ai i and .Asym/ij D .Aij C Aj i /=2.

Symbols ‘�’ and ‘:’ denote the inner products with single and double contractions, respectively. The dyadic product

‘�’ and the symmetrized outer product ‘ � ’ are defined as

.A � B/ijkl D AijBkl ; .A �B/ijkl D
1

2

�
AikBjl C AilBjk

�
Letters 1 and I WD 1 � 1 signify the second-order and symmetric fourth-order identity tensors, respectively. The

McAuley brackets hxi and Heaviside function H.x/ are defined as hxi D x, H.x/ D 1 if x > 0, and hxi D 0,

H.x/ D 0 otherwise.

2. An effective stress based bi-scalar damage theory

In this section, the effective stress based additive bi-scalar damage theory proposed by the authors (Cervera

et al., 1995; Faria et al., 1998; Wu et al., 2006) is presented, focusing on the PNP for modeling the asymmetric

tensile/compressive material behavior and the MCR effects exhibited by quasi-brittle solids under cyclic loading.

2.1. Effective stress

In the absence of plastic strains, the effective stress tensor N� in damaging solids is assumed to follow an isotropic

linear elastic behavior. In accordance with the postulate of strain equivalence (Simó and Ju, 1987), it is defined as

N� D E0 W �; � D C0 W N� (2.1)

for the fourth-order elasticity tensor E0 and compliance C0

E0 D 2G0
�
I C O�01 � 1

�
; C0 D 1

E0

h�
1C �0

�
I � �01 � 1

i
(2.2)

4



where the shear modulus G0 WD 1
2
E0=.1 C �0/ is expressed in terms of Young’s modulus E0 and Poisson’s ratio

�0; the modified Poisson’s ratio O�0 is defined as O�0 D �0=.1 � 2�0/ in general 3-D and plane strain cases, and

O�0 D �0=.1 � �0/ for plane stress condition. Note that in the cases of plane strain and plane stress, the second-order

identity tensor 1 and the fourth-order one I are the 2-D counterparts of their 3-D quantities.

2.2. Positive/negative projection (PNP)

In modeling the MCR effects under cyclic loading, one needs to characterize the distinct material behavior under

dominant tension and compression, respectively. To this end, a specific state variable in the set C containing all

second-order symmetric tensors, e.g., the strain �, nominal stress � , effective stress N� , etc., is decomposed into its

positive (tensile) and negative (compressive) components (Ortiz, 1985; Simó and Ju, 1987; Mazars and Pijaudier-

Cabot, 1989; Cervera et al., 1995). As the plastic strains can be incorporated straightforwardly (Ju, 1989; Wu et al.,

2006), in this work the effective stress tensor N� 2 C is adopted and spectrally decomposed as

N� D
X
n

N�nPnn D N�C C N��; N�n D Pnn W N� (2.3)

where N�n and pn represent the n-th (n D 1; 2; 3) principal value of the effective stress tensor N� and the corresponding

principal vector, respectively, with the later defining the second-order symmetric tensor Pnn WD pn � pn. Note

that the subscript n does not refer to the dummy index of a tensor (or vector), but rather, it represents the quantity

associated with the n-th principal value.

In the decomposition (2.3), the positive/negative components N�˙ are coaxial to the parent effective stress tensor

N� . Without loss of generality, they are expressed as

N�C D
X
n

N�Cn Pnn; N�� D N� � N�C D
X
n

N��n Pnn (2.4)

where N�Cn � 0 and N��n WD N�n � N�Cn � 0 are the principal values of the positive effective stress tensor N�C 2 CC and

the negative one N�� 2 C �, respectively, such that

N�˙n D P˙nn W N� ; PCnn CP�nn D Pnn (2.5)

The second-order symmetric tensors P˙nn, to be determined later, depend on the adopted PNP scheme. The sets CC

and C � collect all the positive and negative semi-definite second-order symmetric tensors, respectively. Note that the

closed convex sets C˙ � C are both cones in the sense that ˙ 2 C˙ imply k˙ 2 C˙ 8k � 0 (Del Piero, 1989).

With the relations (2.5), the positive/negative effective stress tensors (2.4) can be rewritten as

N�˙ D P˙ W N� ; PC C P� D I (2.6)

for the fourth-order projection operators P˙

PC D
X
n

Pnn �PCnn; P� D I � PC (2.7)
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both of which possess the minor symmetry but not necessarily the major one.

The positive/negative effective stress tensors N�˙ and the associated PNP operators P˙ have not been uniquely

defined yet and several alternatives exist. This fact makes it possible to investigate different PNP schemes and select

the one optimal for the presented additive bi-scalar damage theory.

Remark 2.1 Note that the projection operators satisfy the idempotent property (Meyer, 2000), i.e.,

P˙ W P˙ W N� D P˙ W N�˙ D N�˙ H) PC W N�� D P� W N�C D 0 (2.8)

That is, the positive/negative decomposition is an orthogonal projection. �

2.3. Additive bi-scalar damage constitutive relation

Corresponding with the positive/negative components . N�C; N��/ of the effective stress tensor N� , two damage vari-

ables dC 2 Œ0; 1� and d� 2 Œ0; 1� are introduced to characterize the material behavior under tension/compression,

respectively.

In line with our previous work (Cervera et al., 1995; Faria et al., 1998; Wu et al., 2006), the following damage

constitutive relation is considered

� D �1 � dC� N�C C �1 � d�� N�� D E W � (2.9a)

for the secant stiffness tensor E

E D
h�
1 � dC�PC C �1 � d��P�i W E0 D �I �D

� W E0 (2.9b)

where the fourth-order damage tensor D D dCPC C d�P� is not necessarily isotropic.

On the one hand, as the positive/negative effective stress tensors N�˙ are both coaxial to N� , the stress tensor (2.9a)

can be spectrally decomposed as

� D
X
n

�nPnn; �n D
�
1 � dC� N�Cn C �1 � d�� N��n (2.10)

for the principal stresses �n. That is, the stress tensor � is also coaxial to the effective counterpart N� such that all

calculations can be performed in the principal space (of the effective stress tensor or of the strain tensor).

On the other hand, as the coefficients .1 � d˙/ 2 Œ0; 1� change neither the principal vectors nor the signs of

principal values, the stress tensor (2.9a) or (2.10) admits a similar PNP, i.e.,

� D �C C ��; �˙ D �1 � d˙� N�˙ (2.11)

Calling for the orthogonality condition (2.8)2, the positive/negative components �˙ 2 C˙ are expressed as

�˙ D P˙ W
h�
1 � dC� N�C C �1 � d�� N��i D P˙ W � (2.12)
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In other words, the projection operators P˙ of the effective stress tensor N� also extract the corresponding posi-

tive/negative components �˙ of the stress tensor � .

Accordingly, the additive bi-scalar constitutive relations (2.9) can be rewritten inversely as

� D C W � D C0 W N� ; C WD E�1 D C0 W
�

1

1 � dCPC C 1

1 � d�P�
�

(2.13a)

or, equivalently,

� D 1�
1 � dC�E0

h�
1C �0

�
�C � �0 tr.�C/1

i
C 1�

1 � d��E0
h�
1C �0

�
�� � �0 tr.��/1

i
(2.13b)

Note the difference between this model and the Mazars and Pijaudier-Cabot (1989) one; see Remark 2.2.

The above additive bi-scalar damage constitutive relations are established based on the postulate of strain equiv-

alence (Simó and Ju, 1987). The resulting secant stiffness tensor (2.9b) and compliance tensor (2.13a)2 depend

explicitly on the expressions of the PNP operators. As will be shown later, for the classical PNP widely adopted in

the literature (Ortiz, 1985; Simó and Ju, 1987; Carol and Willam, 1996; Wu and Xu, 2013), the secant stiffness tensor

and compliance in general do not possess major symmetry, resulting in non-existence of a well-defined free energy

potential. Consequently, the constitutive relation (2.9) or (2.13) cannot be cast into the framework of thermodynamics

with internal variables. This issue is to be tackled in this work by introducing a novel PNP in energy norm.

Remark 2.2 Mazars and Pijaudier-Cabot (1989) proposed a celebrated stress-based bi-scalar damage model for

concrete under cyclic loading. In this model, the positive/negative projection of the stress tensor � is employed and

the constitutive relation is given by

� D 1�
1 � dC�E0

h�
1C �0

�
�C � �0 htr� i1

i
C 1�

1 � d��E0
h�
1C �0

�
�� C �0 h�tr� i1

i
D C W � (2.14a)

where the secant compliance C is expressed as

C D 1�
1 � dC�E0

h�
1C �0

�
PC � �0 H.I1/1 � 1

i
C 1�

1 � d��E0
h�
1C �0

�
P� C �0 H.�I1/1 � 1

i
(2.14b)

for the first invariant I1 D tr� of the stress tensor � . Note that the trace operator tr.�/ is acted to the total stress �

rather than to the positive/negative components �˙ as in Eq. (2.13b). A similar bi-scalar damage model was proposed

in Miehe et al. (2010a) employing the PNP of the strain tensor. �

2.4. Damage evolution laws

The above additive bi-scalar damage theory is completed with the evolution laws for the damage variables d˙.

Though other alternatives exist, let us consider the following effective stress based damage criteria (Simó and Ju,

1987; Ju, 1989)

g˙.Y ˙; r˙/ D Y ˙. N� / � r˙ � 0; r˙ D max
t2Œ0;T �

�
r˙0 ; Y

˙
t

�
(2.15)

7



such that the following Kuhn-Tucker loading/unloading conditions hold

Pd˙ � 0; g˙.Y ˙; r˙/ � 0; Pdg˙.Y ˙; r˙/ � 0 (2.16)

where the damage driving forces Y ˙. N� / are expressed in terms of the effective stress N� ; the damage thresholds r˙,

with the initial values r0̇ , denote the maximum driving forces ever reached.

Accordingly, the damage variables d˙ can be postulated as non-decreasing functions of the driving forces r˙,

i.e.,

d˙ D Od˙.r˙/ H) Pd˙ D h˙ Pr˙ (2.17)

for the damage hardening functions h˙ WD @ Od˙=@r˙ � 0.

The explicit expressions for the damage variables Od˙.r˙/ are determined by fitting those experimental test data

under uniaxial tension/compression; see Section 6 for an example.

2.5. Constitutive relation in rate form and material tangent

In order to derive the damage constitutive relation in rate form, it is necessary to calculate the rates PN�˙ of the

positive/negative effective stress tensors N�˙. After some mathematic manipulations (Faria et al., 2000; Wu et al.,

2006; Wu and Xu, 2013), it follows that

PN�C D QC W PN� ; PN�� D PN� � PN�C D Q� W PN� (2.18)

where the fourth-order tensors Q˙ WD @ N�˙=@ N� is expressed as

QC D PC C 2
X
n

X
m>n

N�Cn � N�Cm
N�n � N�m

Pnm �Pnm; Q� D I �QC (2.19)

for the second-order symmetric tensor Pnm D
�
pn � pm

�sym. Owing to the orthogonal property Pnm W N� D 0 for

m ¤ n (Wu and Xu, 2013), the following identities hold

Q˙ W N� D P˙ W N� D N�˙; PQ˙ W N� D PN�˙ �Q˙ W PN� D 0 (2.20)

That is, the fourth-order tensors Q˙ extract the same positive/negative components N�˙ as the irreducible PNP oper-

ators P˙ do.

Taking derivative of the stress (2.9a) to time yields

P� D �1 � dC� PN�C C �1 � d�� PN�� � N�C PdC � N�� Pd� D �I �Q �H
� W PN� (2.21)

where the fourth-order tensors Q and H are expressed as

Q D dCQC C d�Q�; H D hC N�C ��C C h� N�� ��� (2.22)
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for the second-order tensors �˙ WD @Y ˙=@ N� . Note that upon damage unloading (i.e., Pd˙ D 0) it follows that

h˙ D 0.

Calling for the linear elastic relation (2.1), the constitutive relations (2.9) in rate form then read

PN� D �I �Q �H
� W E0 W � D Etan W P� (2.23a)

for the tangent stiffness tensor Etan

Etan D �I �Q �H
� W E0 (2.23b)

As can be seen, the material tangent Etan is in general non-symmetric due to the damage evolution.

3. Analysis of the classical positive/negative projection (PNP)

In this section the classical PNP (Ortiz, 1985; Simó and Ju, 1987; Carol and Willam, 1996; Wu and Xu, 2013)

is obtained from a variational point of view rather than proposed heuristically. Deficiencies of the resulting damage

model are then addressed, showing the necessity of introducing a novel PNP.

3.1. Mathematic definition of the classical PNP

Let us consider the following PNP8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

N� D N�C C N��

N�C 2 CC

N�� 2 C �

N�C W N�� D N�� W N�C D 0

(3.1)

Compared to the general definition in Section 2.2, an extra orthogonal condition (3.1)4 is imposed such that the

corresponding positive/negative effective stress tensors N�˙ can be determined uniquely.

It can be proved that the PNP (3.1) is equivalent to the following variational inequality (see Appendix A for the

proof)

� N�C �˙ � W � N� � N�C� � 0 8˙ 2 CC ” N�C D Arg max
˙2CC

˙ W N�� (3.2a)

or, equivalently,

� N�� �˙ � W � N� � N��� � 0 8˙ 2 C � ” N�� D Arg max
˙2C�

˙ W N�C (3.2b)

That is, the PNP (3.1) maximizes the inner product ˙ W N�� 8˙ 2 CC (or ˙ W N�C 8˙ 2 C �), mimicking the

postulate of maximum plastic dissipation (Simó and Hughes, 1998).
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Furthermore, it follows from the convexity analysis (see Nguyen (2000), p.48) that the positive/negative effective

stress tensors N�˙ satisfying the variational inequalities (3.2) exist and are uniquely determined by

N�˙ D Arg min
˙2C˙

k N� �˙kF (3.3)

for the Frobenius or Hilbert-Schmidt norm k N� � ˙kF WD
�� N� � ˙ � W � N� � ˙ ��1=2. Namely, the positive effective

stress tensor N�C (or the negative one N��) is the closest point (orthogonal) projection of the effective stress tensor N�
onto the non-negative cone CC (or the non-positive one C �).

The property (3.1)4 verifies that the positive/negative components N�˙ are indeed coaxial to the effective stress

tensor N� (and also to the strain tensor �) as expected; see Lemma 1 of Appendix A. This coaxiality between N�C and

N�� greatly simplifies the solution procedure since only the principal values need to be considered for the orthogonality

condition (3.1)4, i.e.,

N�C W N�� D
X
n

N�Cn N��n D 0 H) N�Cn N��n D N�Cn
� N�n � N�Cn � D 0 (3.4)

for the eigenvalues N�Cn � 0 and N��n � 0 with opposite signs by definition.

From the condition (3.4), the positive/negative components N�ṅ can be trivially solved as

N�Cn D

8̂<̂
: N�n N�n � 0

0 N�n � 0
and N��n D N�n � N�Cn D

8̂<̂
:0 N�n � 0

N�n N�n � 0
(3.5a)

or, equivalently,

N�Cn D hN�ni D PCnn W N� ; N��n D N�n � hN�ni D �h�N�ni D P�nn W N� (3.5b)

where the second-order symmetric tensors P˙nn introduced in Eq. (2.5) are given by

PCnn D H. N�n/Pnn; P�nn D H.�N�n/Pnn (3.6)

Accordingly, the irreducible PNP operators P˙ read

PC D
3X
nD1

H. N�n/Pnn �Pnn; P� D I � PC (3.7)

which possess both major and minor symmetries.

As can be seen, the PNP (3.1) corresponds exactly to the classical one first adopted by those French scholars in

the modeling of concrete; see Mazars and Pijaudier-Cabot (1989) for the review. It is in Ortiz (1985) that the PNP

operators (3.7) were first used to develop an anisotropic damage model for concrete. Ever since then, the classical

PNP has been dominantly employed in the literature. Several different expressions for the PNP operators (Simó and

Ju, 1987; Carol and Willam, 1996) were proposed to overcome the deficiencies exhibited by the irreducible ones

(3.7). Recently, all the classical PNP operators were incorporated into a unified form (Wu and Xu, 2013) and the

thermodynamically consistent expressions (2.19) were derived to guarantee zero energy dissipation for any closed

loading cycle.
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3.2. Analysis of the resulting damage model

With the classical PNP (3.1), the additive bi-scalar damage theory presented in Section 2 recovers the model

proposed in Cervera et al. (1995); Faria et al. (1998) and developed further by Wu et al. (2006). Though it has been

widely adopted in the modeling of concrete (Li and Ren, 2009; Gernay et al., 2013; Grassl et al., 2013) and masonry

(Pelà et al., 2011), this model exhibits two noteworthy deficiencies.

Firstly, the model gives an unrealistic prediction of excessive lateral deformations under uniaxial tension. It

is known that, a crack generation under uniaxial tension is accompanied with strain localization in that direction,

resulting in elastic unloading in the lateral orientation (Ožbolt et al., 2001; Wu and Cervera, 2017). This structural

effect can be correctly accounted for by smeared crack models (Rots et al., 1985) and anisotropic damage models

(Carol et al., 2001; Wu and Xu, 2011), but not by the current one with the classical PNP (3.1). The reason is that the

stress-strain relation (2.9a) is isotropic for uniaxial tension

N�C D N� ; N�� D 0 H) � D �1 � dC� N� (3.8)

which implies a constant nominal Poisson’s ratio throughout the loading history (Ju, 1990)

� WD ��3
�1
D �0 (3.9)

Accordingly, the lateral contraction �3 would continue increasing as the axial elongation �1 does, conflicting with the

unloading lateral behavior of quasi-brittle materials; see Section 6.1.1 for the numerical results. Note that the Mazars

and Pijaudier-Cabot (1989) damage model (2.14) exhibits the same issue.

Secondly, for the classical PNP operators (3.7) the secant stiffness (2.9b) and compliance (2.13a)2 in general are

not (major) symmetric. This fact can be seen from the following results

P˙ W E0 D 2G0
�
P˙ C O�01˙ � 1

�
; C0 W P˙ D 1

E0

h�
1C �0

�
P˙ � �01 � 1˙

i
(3.10)

with the second-order symmetric tensors 1˙ WD P
nH.˙N�n/Pnn. Only for states of pure tension or pure compres-

sion, in which the relations 1˙ D 1 hold, can the major symmetry of the secant stiffness (or compliance) tensor be

guaranteed. Though this fact does not necessarily lead to the violation of thermodynamics (Carol and Willam, 1996),

a well-defined Helmholtz or Gibbs free energy potential cannot be postulated. Consequently, the resulting damage

model cannot be cast in the framework of thermodynamics with internal variables.

Remark 3.1 For the Mazars and Pijaudier-Cabot (1989) damage model, the secant compliance (2.14b) is always

of major symmetry, provided that the PNP operators are symmetric. Therefore, the classical PNP operators (3.7)

sufficiently guarantee the existence of a well-defined free energy potential. However, the issue of excessive lateral

deformations is still exhibited. Furthermore, a unilateral damage model based on the PNP of the stress tensor is

numerically cumbersome (Mahnken et al., 2000). �
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4. Novel positive/negative projection (PNP) in energy norm

As the resulting stiffness tensor is not of major symmetry, the classical PNP scheme is not optimal for the current

additive bi-scalar damage theory. However, the PNP scheme and the associated projection operators are not unique,

and it is thus possible to construct an alternative optimal one. In this section, we introduce such a novel PNP scheme

of the effective stress tensor. Its variational interpretation and the explicit solution are presented. With this novel

projection, the major symmetry of the resulting stiffness and compliance tensors is guaranteed. Furthermore, the issue

of excessive lateral deformations under uniaxial tension is also removed.

4.1. Closest-point PNP in energy norm

Let us consider the following PNP scheme8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

N� D N�C C N��

N�� 2 C �

�C WD C0 W N�C 2 CC H) N�C WD E0 W �C 2 CC

N�C W C0 W N�� D N�� W C0 W N�C D 0

(4.1)

Compared to the classical PNP scheme (3.1), here the orthogonal condition (4.1)4 in energy norm is considered. Note

that, as all the coefficients in the elasticity tensor (2.2)1 are non-negative for �0 2 Œ�1; 0:5�, the condition (4.1)3, i.e.,

�C 2 CC, intrinsically implies N�C 2 CC. However, the inverse argument does not hold since some coefficients in the

compliance tensor (2.2)2 are negative. For instance, the relation (4.1)2, i.e., N�� 2 C �, does not imply C0 W N�� 2 C �;

see Remark 4.1 for a spurious PNP introduced in no-tension materials (Del Piero, 1989; Alfano et al., 2000).

Before the explicit solution to the projection (4.1) is derived, the following proposition is first presented.

Proposition 1 The PNP scheme (4.1) can be alternatively expressed as

� N�� �˙ � W C0 W � N� � N��� � 0 8˙ 2 C � ” N�� D Arg max
˙2C�

˙ W �C (4.2a)

or, equivalently,

�
�C � � � W E0 W �� � �C� � 0 8� 2 CC ” C0 W N�C D Arg max

� 2CC
� W N�� (4.2b)

The proof is given in Appendix A. Proposition 1 mimics the classical postulate of maximum plastic dissipation (Simó

and Hughes, 1998) in which the plastic strain rate is replaced by the positive strain tensor �C WD C0 W N�C.

The positive/negative effective stress tensors N�˙ determined by the PNP scheme (4.1) or the variational inequality

(4.2) also satisfy the following minimization problem (see Nguyen (2000), p.48 for the details)

N�� D Arg min
˙2C�

1

2
k N� �˙kC0

D Arg min
˙2C�

1

2

� N� �˙ � W C0 W � N� �˙ � (4.3a)
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or, equivalently,

C0 W N�C D Arg min
� 2CC

1

2
k� � � kE0

D Arg min
� 2CC

1

2

�
� � � � W E0 W �� � � � (4.3b)

The minimization problem (4.3) states that the negative effective stress tensor N�� (or the strain C0 W N�C associated

with the positive effective stress tensor N�C) is the closest point projection onto the space C � (or CC) of the effective

stress tensor N� (or the strain tensor �) in energy form induced by the compliance tensor C0 (or the stiffness tensor

E0). This variational interpretation is different from that of the classical PNP scheme (3.1) in which the Frobenius

norm is considered.

Interestingly, the above variational argument is very similar to the closest point projection based return mapping

algorithm used in computational inelasticity (Simó and Hughes, 1998). In particular, for the effective stress space

plasticity (Ju, 1989; Wu et al., 2006) the solution is the closest point projection on the admissible (yield) surface of

the elastic trial stress tensor in the same energy form.

Remark 4.1 The PNP scheme (4.1) is similar to the definition of no-tension masonry-like materials (Del Piero,

1989; Alfano et al., 2000; Freddi and Royer-Carfagni, 2010; Li et al., 2016). In these references, the decomposition

is performed to the strain tensor �, resulting in a spurious negative component C0 W N�� … C � which is inconsistent

with the definition (2.4). �

4.2. Explicit solution of the PNP in energy norm

Similarly, convexity analysis guarantees the existence and uniqueness of the solution to the PNP scheme (4.1) or

the equivalent minimization problem (4.3). The property (4.1)4 also ensues the coaxility between the positive/negative

components N�˙ and the effective stress tensor N� . Accordingly, the closest point (orthogonal) projection (4.1) in energy

norm is expressed in terms of the principal values as

N�� W �C D
X
n

N��n �Cn D 0 (4.4)

As the eigenvalues N��n � 0 of the negative effective stress tensor N�� and �Cn � 0 of the strain tensor �C D C0 W� N� � N��� are of opposite signs by definition, it follows that

N��n �Cn � 0 ” N��n D 0 or �Cn D 0 (4.5a)

or, equivalently,8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

1

E0
N��1
h
N�C1 � �0

� N�C2 C N�C3 �i D 0
1

E0
N��2
h
N�C2 � �0

� N�C1 C N�C3 �i D 0
1

E0
N��3
h
N�C3 � �0

� N�C1 C N�C2 �i D 0
(4.5b)
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where the constitutive relation (2.1)2 has been applied in the principal space.

With the complementary conditions N�Cn D N�n � N��n , the following solution is obtained from Eq. (4.5b)

N�C1 D hN�1i (4.6a)

N�C2 D
D

max
� N�2; Q�0 N�1�E; N�C3 D

D
max

�
max

� N�3; �0� N�1 C N�2��; Q�0 N�1�E (4.6b)

for the parameter Q�0 WD �0=.1 � �0/; see Appendix B for the details. As can be seen, only the major principal value

N�C1 coincides with that of the classical PNP, but the intermediate and minor ones are different.

For the plane stress condition (the out-of-plane stress N�2 D 0), the above results also apply with N�2 neglected, i.e.,

N�C1 D hN�1i; N�C2 D 0; N�C3 D
D

max
� N�3; �0 N�1�E (4.7)

The above results are illustrated in Figure 1.

Calling for the relation (2.3)2, the second-order symmetric tensors PCnn associated with the positive principal

values N�Cn are expressed as8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

PC11 D P11; PC22 D P22; PC33 D P33 Case I W N�1 � 0; N�2 � 0; N�3 � �0
� N�1 C N�2�

PC11 D P11; PC22 D P22; PC33 D �0
�
P11 CP22

�
Case II W N�1 � 0; N�2 � 0; N�3 � �0

� N�1 C N�2�
PC11 D P11; PC22 D PC33 D Q�0P11 Case III W N�1 � 0; N�3 � N�2 � Q�0 N�1
PC11 D PC22 D PC33 D 0 Case IV W N�3 � N�2 � N�1 � 0

(4.8)

The corresponding PNP operators P˙ are then given by Eqs. (2.7).

With the above PNP in energy norm, it is verified in Appendix C that the stiffness tensor E (and compliance C)

given in Eq. (2.9b) are always major symmetric. Accordingly, a unique free energy potential can be well defined

such that the resulting additive bi-scalar damage model can be cast into the thermodynamics framework with internal

variables. This topic is deferred to Section 5.

Remark 4.2 The additive bi-scalar damage model with the novel PNP predicts orthotropic material behavior under

mixed tension/compression (Cases II and III). In particular, under uniaxial tension (�2 D �3 D 0), it follows from the

relation (C.3) and d� D 0 that

�3 D N�3 � dC�0 N�1 D �0E0

1 � �20
h�
1 � dC��0�1 C �1 � dC�20��3i D 0 (4.9)

or, equivalently,

� WD ��3
�1
D 1 � dC
1 � dC�20

�0; �1 D 1 � dC
1 � dC�20

E0�1 (4.10)

As can be seen, the nominal Poisson’s ratio � decreases progressively to zero once damage is initiated, completely

removing the excessive lateral deformations exhibited in the model with the classical positive/negative projection. �

Remark 4.3 Another approach to face the issues underlined in Section 3.2 was recently proposed by Cervera and

Tesei (2017). They formulated a multiplicative bi-scalar damage model with stiffness tensor of major symmetry based
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on the postulate of energy equivalence (Cordebois and Sidoroff, 1982; Carol et al., 2001) and on the decomposition

of the strain tensor. In this way, an improved representation of Poisson’s ratio effect with respect to the damage

theory presented in Section 2 is also obtained. In order that the strain-driven numerical algorithm can still be used, the

classical PNP is performed on the strain tensor. Accordingly, the flexibility of accounting for plastic strains through

the effective stress tensor (2.1) and the conceptually sound constitutive relations (2.9), both contributing to success of

the original additive bi-scalar damage model, are not maintained.

5. Thermodynamics framework

With the closest point (orthogonal) PNP in energy form, the effective stress based additive bi-scalar damage theory

presented in Section 2 can now be cast into the framework of thermodynamics with internal variables. In particular,

the damage criteria and evolution laws are established consistently based on the damage energy release rates.

5.1. Moreau’s decomposition of the free energy potential

As usual, the initial Helmholtz free energy (HFE) potential of a damaging solid is defined as the strain energy

potential of the virgin material, i.e.,

 0. N� / D 1

2
� W E0 W � D 1

2
N� W C0 W N� (5.1)

The closest point (orthogonal) projection (4.1) in energy norm admits the Moreau’s decomposition (Moreau, 1974) of

the elastic strain energy potential  0

 0. N� / D  C0 . N�C/C  �0 . N��/ (5.2a)

with the following positive/negative components

 ˙0 . N�˙/ D
1

2
N�˙ W C0 W N� D 1

2
N�˙ W C0 W N�˙ (5.2b)

Note that the above decomposition does not hold for the classical PNP scheme (3.1); see Remark 5.1. Calling for the

variational argument (4.3), it follows that the negative effective stress tensor N�� (or the positive strain tensor C0 W N�C)

minimizes the positive part  C0 (or the negative one  �0 ) of the elastic strain energy  0.

Accordingly, the HFE potential  of the damaging solid is characterized by the damage variables dC 2 Œ0; 1� and

d� 2 Œ0; 1� as follows

 .�; dC; d�/ D �1 � dC� C0 . N�C/C �1 � d�� �0 . N��/ (5.3)

As the major symmetry of the resulting stiffness tensor E is always guaranteed for the novel PNP (4.1) in energy

norm, the corresponding HFE potential function (5.3) is uniquely defined.
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Remark 5.1 For the classical PNP scheme (3.1), the orthogonal condition in energy norm does not hold

N�C W C0 W N�� D � 1

E0
�0tr N�C tr N�� ¤ 0 (5.4)

That is, the cross term in the free energy potential  0 does not vanish and the second equation in Eq. (5.2b) does

not hold any more. Consequently, the positive component of the initial HFE potential  C0 (or the negative one  �0 )

cannot be expressed in terms of the corresponding individual component N�C (or N��) of the effective stress, resulting

in loss of major symmetry of the stiffness tensor and non-existence of a well-defined free energy potential. This issue

is removed in this work with the novel PNP in energy norm. �

5.2. Thermodynamically consistent constitutive relations

For any arbitrary deformation process, the first and second laws of thermodynamics have to be satisfied, i.e.,

PD D � W P� � P � 0 (5.5)

Making standard arguments (Coleman and Gurtin, 1967) and assuming elastic unloading, yield

� D @ 

@�
D E0 W @ 

@ N� D
�
1 � dC�@ N�C

@ N� W N�
C C �1 � d��@ N��

@ N� W N�
� (5.6)

or, equivalently, in the form (2.9)

� D �1 � dC�QC W N�C C �1 � d��Q� W N�� D �1 � dC� N�C C �1 � d�� N�� (5.7)

where the relations Q˙ W N�˙ D N�˙ resulting from the properties (2.8) and (2.20) have been considered for the

thermodynamically consistent PNP operators Q˙.

Besides the above additive bi-scalar constitutive relation, the following damage dissipation inequality holds

PD D � @ 
@dC

PdC � @ 

@d�
Pd� D Y C PdC C Y � Pd� � 0 (5.8a)

or, more strictly,

PDC D Y C PdC � 0; PD� D Y � Pd� � 0 (5.8b)

where the dissipations PDC and PD� under pure tension/compression are assumed to be decoupled.

The thermodynamic forces (i.e., the damage energy release rates), Y C and Y �, conjugate to the damage variables

dC and d�, respectively, are expressed as

Y ˙ D � @ 
@d˙

D  0. N�˙/ D 1

2
N�˙ W C0 W N�˙ D 1

2E0

h�
1C �0

� N�˙ W N�˙ � �0tr2 N�˙
i

(5.9)

Accordingly, the damage criteria g˙.Y ˙; r˙/ � 0 are determined by Eq. (2.15).

To gain further insights, let us consider the case of plane stress ( N�2 D 0) in which the damage forces Y ˙ become

Y ˙ D 1

2E0

h� N�˙1 �2 C � N�˙3 �2 � 2�0 N�˙1 N�˙3 i (5.10)
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or, equivalently,

Y C D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

1

2E0

� N�21 C N�23 � 2�0 N�1 N�3� N�1 � 0; N�3 � �0 N�1
1 � �20
2E0

N�21 N�1 � 0; N�3 � �0 N�1

0 N�3 � N�1 � 0

(5.11a)

Y � D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

0 N�1 � 0; N�3 � �0 N�1
1

2E0

� N�3 � �0 N�1�2 N�1 � 0; N�3 � �0 N�1
1

2E0

� N�21 C N�23 � 2�0 N�1 N�3� N�3 � N�1 � 0

(5.11b)

For the cases of uniaxial tension ( N�1 > 0; N�2 D N�3 D 0) and uniaxial compression ( N�1 D N�2 D 0; N�3 < 0), by calling

for the relations (B.1b) and (B.1d), the damage thresholds r0̇ are then determined as

rC0 D
1 � �20
2E0

�
f C0

�2
; r�0 D

1

2E0

�
f �0

�2 (5.12)

for the elastic limit strengths f0̇ � 0 under uniaxial tension and compression.

The resulting initial admissible (elastic) domain, defined by g0̇ D Y ˙ � r0̇ � 0, is shown in Figure 2. On the

one hand, under biaxial tension and mixed tension/compression, the material behavior is characterized by a rounded-

Rankine criterion appropriate for quasi-brittle solids like concrete. On the other hand, the strength under biaxial

compression is under-estimated since the plastic flows are not considered. As for the pure compression state the novel

PNP scheme coincides the classical one, the approach proposed in Wu et al. (2006) can be employed to account for

the influences of plastic flows. This extension will be addressed elsewhere.

6. Numerical examples

In this section, the additive bi-scalar damage model with the novel projection is applied to several numerical

examples. In all simulations, the plane stress state is assumed with �2 D 0.

For simplicity, only tensile damage is considered in later numerical examples, with the compressive one inacti-

vated by simply setting d� D 0. Though other functions can be considered, the tensile damage variable dC.rC/ is

postulated as the following exponential function

dC.rC/ D 1 �
q
rC0 =rC exp

h
BC

�
1 �

q
rC=rC0

�i
(6.1)

Under uniaxial tension (�1 > 0), the stress-strain relation is given from Eq. (4.10) as

�1 D 1 � dC
1 � dC�20

E0�1 �
�
1 � dC�E0�1 (6.2)

where the approximation in the second relation induces negligible errors.
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However, the resulting constitutive relation with softening regimes cannot be directly used in the finite element

analysis; otherwise the numerical results depend heavily on the mesh size. Though other nonlocal and gradient-

enhanced methods (Pijaudier-Cabot and Bažant, 1987; Peerlings et al., 1996) can also be used to regularize the above

local material model, it is generally accepted that the crack band model (Bažant and Oh, 1983) is adequate to mitigate

the above concern for many practical purposes. In this approach, the stress-strain curve under uniaxial tension is

adjusted in accordance with the element size such thatZ 1
0

�1.�/ d� D Gf

lch
D gf (6.3)

where the so-called fracture energy Gf, usually regarded as a material property, is introduced to represent the energy

required to open a unit area of crack; gf WD Gf=lch is the specific fracture energy per characteristic length lch of the

finite element. Substitution of the damage evolution law (6.1) and the uniaxia stress (6.2) yields (Cervera et al., 1995;

Faria et al., 1998; Wu et al., 2006)

BC D
�
E0Gf

lchf
2
t

� 1
2

��1
D
�
E0gf

f 2t
� 1
2

��1
> 0 (6.4)

where the elastic limit f C0 is assumed as the uniaxial tensile strength ft .

Note that the characteristic length lch depends on the element type and the quadrature scheme adopted. In the later

numerical examples, the characteristic lengths lch D
p
2h for the standard displacement based elements (Rots, 1988)

and lch D 2h for the mixed ones (Cervera et al., 2011) are considered, respectively, with h being the average mesh

size.

6.1. Single-point examples

Several single-point examples are considered such that the stress-strain relations under typical load scenarios are

calculated. In the numerical simulations, the material properties are assumed as follows: Young’s modulus E0 D 30

GPa, Poisson’s ratio �0 D 0:2, tensile strength ft D 3 MPa.

6.1.1. Uniaxial tension

Let us first consider a single element subjected to uniaxial tension along axis x. For different values of the specific

fracture energy gf , the evolution curves of axial stress �xx versus axial strain �xx and lateral strain �yy are shown in

Figure 3 for both the classical PNP scheme and the novel one. As can be clearly seen, the axial behavior predicted

from the bi-scalar damage models with the classical PNP scheme and the novel one almost coincide. That is, a linear

ascending branch is followed by an exponential softening regime approaching to zero asymptotically. As expected, a

smaller gf yields a steeper softening branch. However, the lateral predictions from both schemes are rather distinct.

Namely, in pure tension the classical PNP scheme results in an isotropic damage model which exhibits excessive

lateral deformations. Comparatively, the novel PNP scheme yields an orthotropic damage model, in which the lateral

behavior remains elastic loading/unloading all along, without exhibiting excessive lateral contractions. The above

results are consistent with the theoretical analyses detailed in Sections 3 and 4.
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The above conclusion can be further demonstrated from Figure 4 which compares the evolution curves of the

nominal Poisson’s ratio. As can be seen, for the model with the PNP scheme the resulting nominal Poisson’s ratio

is constant as the initial value �0 D 0:2 due to the excessive lateral deformations proportional to the axial ones.

Contrariwise, regarding the damage model with the novel PNP scheme, as the axial strain increases, the nominal

Poisson’s ratio decreases from initial value �0 D 0:2 asymptotically to zero. That is, as the axial strain approaches to

infinity the lateral behavior does exhibit elastic unloading.

6.1.2. Pure distortion

Let us then consider the pure distortion. In this case, the major and minor principal strains are prescribed with the

same intensity 
=2 > 0 and opposite signs

�1 D 


2
; �2 D 0; �3 D �


2
(6.5)

Note that this strain state also applies to the simple shear.

Figure 5(a) shows the evolution curves of the normal stress �xx (or �yy) versus the shear strain �xy . As can be

seen, the Reynolds effect, i.e, the presence of compressive normal stresses under shear strains, can be captured. The

evolution curves of shear stress �xy versus shear strain �xy shown in Figure 5(b) can be explained by considering the

maximum shear stress

�xy D �1 � �3
2

(6.6)

where the evolution curves of the principal stresses �1 and �3 are shown in Figures 5(c) and 5(d), respectively. The

interaction between the softening major (tensile) principal stress �1 and the hardening minor (compressive) principal

stress �3 leads to the shear stress �xy that exhibits initially softening but finally hardening behavior. As the shear strain

approaches to infinity, the major principal stress �1 tends to zero, and shear stress simply becomes �xy D ��3=2.

Similar predictions were also given by other anisotropic damage models (Carol et al., 2001; Wu and Xu, 2011).

6.1.3. Cyclic uniaxial tension/compression

The uniaxial cyclic tension/compression is then considered. As shown in Figure 6(a), during the first cycle, the

material is stretched along axis x until the axial strain �xx D 1:5 � 10�4 (in the softening region), compressed to

�xx D �5:0 � 10�4 and then unloads to zero; during the second one, the material is stretched to �xx D 2:5 � 10�4,

compressed again to �xx D �5:0 � 10�4 and then unloads to zero; finally, the material is stretched until �xx D
5:0 � 10�4. The specific fracture energy gf D 450N/mm2 is considered in the numerical simulation.

The evolution curve of axial stress �xx versus the prescribed axial strain �xx is shown in Figure 6(b). As can be

seen, the material unloads along a straight line to the origin; upon load reversal, the previous stiffness (the initial elastic

one) is recovered under compression; when the material is stretched again, the previous unloading path is followed

during the reloading stage. That is, the microcracks closure-reopening effect, typical for concrete like quasi-brittle

solids, can be well captured.
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6.2. Benchmark examples under static loading

Several benchmark examples are considered. The mixed stabilized finite element P1P1 (Cervera et al., 2010a,b,

2011) are used in discretization of the computational domain, in order to suppress the mesh bias dependence and

spurious stress locking notorious for orthotropic damage models. In all simulations the exponential function (6.1) is

considered for the tensile damage dC, with the parameter BC determined by Eq. (6.4). It is well-known that the

crack band model is effective in suppressing the issue of mesh size dependence. For the mixed finite elements, the

interested reader is referred to Barbat et al. (2017); Cervera et al. (2011, 2017) on this topic. As the meshes employed

in the following numerical examples are almost coincident with those adopted in our recent work (Barbat et al., 2017;

Cervera et al., 2017; Wu and Cervera, 2017), we only consider various mesh sizes in the first example.

Loading is applied by direct or indirect displacement control (de Borst, 1987). The Newton-Raphson method is

used to solve the nonlinear system of equations arising from the spatial and temporal discretization of the problem.

An automatic procedure is used to decide the step size and about 200 steps are necessary to complete the analyses.

Convergence of a time step is attained when the ratio between the norms of the residual and the total forces is less

than 10�3. Calculations are performed with an enhanced version of the finite element program COMET (Cervera

et al., 2002), developed at the International Center for Numerical Methods in Engineering (CIMNE). Pre- and post-

processing is done with GiD, also developed at CIMNE (CIMNE, 2009).

6.2.1. Uniaxial stretch of a perforated strip

The first example is a 2D singly perforated strip loaded in uniaxial stretching via imposed vertical displacements

at the top and bottom ends; horizontal movement is not restrained. Figure 7(a) depicts the geometry of the problem

with dimensions 20 m � 40 m �1 m (width � height � thickness). An imperfection is introduced with a slanted

perforation of diameter D D 1 m such that symmetric solutions are excluded.

The following material properties are assumed: Youngs modulusE0 D 10MPa, tensile strength ft D 10 KPa and

fracture energyGf D 500 J/m2. Two values of Poissons ratio �0, i.e., � D 0:0 and �0 D 0:3, are taken for comparison.

As shown in Figures 7(b) and 7(c), two finite element meshes, i.e, the fine one with h D 0:20 m and coarse one with

h D 0:3 m, respectively, are considered.

Using the fine mesh, the computed contours of displacement field and tensile damage are shown in Figure 8

for various Poisson’s ratios. As expected, a horizontal localization band forms at the center of the strip in both

cases, and the values of Poisson’s ratio have no effect on the configuration of crack bands. Figure 9(a) compares the

corresponding curves of applied force F � and vertical displacement u�. It can be seen that the lateral deformations due

to non-vanishing Poisson’s ratio have small but non-negligible effects on the softening regimes of global responses.

For Poisson’s ratio �0 D 0:3, Figure 9(b) depicts the curves of applied force F � and vertical displacement u� for

various mesh sizes. As can be seen, the crack band model is effective in guaranteeing the mesh size independence of

global responses.

20



6.2.2. Single edge-notched beam under proportional loading (Arrea and Ingraffea, 1982)

Let us now consider the single edge-notched beams under proportional loading reported by Arrea and Ingraffea

(1982). This pioneering work on mixed mode fracture is a good benchmark to verify concrete models.

In this work, only the concrete beams in series C are considered. The geometry, boundary and loading conditions

of the tests are shown in Figure 10(a). The specimen was of dimension 1322 mm � 306 mm � 152 mm. A notch

of depth 82 mm and out-of-plane thickness 152 mm was fabricated at the centroid of the bottom surface. As only

two beams were tested, the experimental curves of load versus crack mouth shear displacement (CMSD) were very

scattered. Furthermore, there are no data about the tensile strength ft and the energy fracture Gf, both essential for

defining the softening function. Due to the above facts, we do no intend to fit the global responses. In this work,

the model properties given in Cendón et al. (2000), i.e., Young’s modulus E0 D 2:48 � 104 MPa, Poisson’s ratio

�0 D 0:18, the tensile strength ft D 3:7 MPa and the fracture energy Gf D 130 J/m2, are considered.

As shown in Figures 10(b) and 10(c) a refined mesh with an average size h D 1 mm is used to discretized

the sub-domain encompassing potential crack paths. From our experiences this level of refinement is sufficient to

guarantee convergence of the numerical simulation. The crack mouth sliding displacement (CMSD) is used to control

the loading procedure.

The numerical damage contour is shown in Figure 11. As expected, the crack is initiated at the notch and then

propagates along a curve line upwards to the right hand side of the cap where the load is applied. Figure 12 compares

the numerical curves of load versus CMSD.

6.2.3. Single edge-notched beam under non-proportional loading (Gálvez et al., 1998)

The notched beams subjected to non-proportional loading reported in Gálvez et al. (1998) are considered next.

Figure 13 depicts the geometry, boundary and loading conditions of the test. The beam is of dimensions 675 mm �
150 mm � 50 mm, with a vertical notch of sizes 2 mm � 75 mm � 50 mm at the bottom center. The beam was fixed

at the right support (with a distance of 37:5 mm to the right end) and vertically constrained at the left support (with a

distance of 75 mm to the central point). Depending on the stiffness of the spring at the left upper edge, the beam is

subjected to either three-point (k D 0) or four-point (k D1) bending. The material properties are taken from Gálvez

et al. (1998), i.e., Young’s modulus E0 D 3:8 � 104 MPa, Poisson’s ratio �0 D 0:2, tensile strength ft D 3:0 MPa

and fracture energy Gf D 69 J/m2.

Figure 13(b) and 13(c) depict the finite element mesh used in the numerical simulations, with a refined one of

average size h D 2:5 mm around the sub-domain encompassing potential crack paths. The crack mouth opening

displacement (CMOD) is used to control the loading procedure.

The numerically predicted damage contours are shown in Figures 14 and 15, both falling exactly within the

experimental ranges of crack paths. It can be observed that the crack path changes significantly depending on the

boundary conditions applied to the beam. Using an isotropic damage model, Cervera et al. (2010c) and Cervera et al.

(2017) reported similar crack paths with a global tracking algorithm and with the mixed stabilized finite elements,
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respectively.

Figures 16 and 17 show the load versus CMOD curves for both the three- and four-point bending tests. The results

are similar to the ones obtained in Cervera et al. (2010c, 2017). In particular, the three-point bending test shows

very good agreement with the experimental results, though the residual load capacity is slightly underestimated at the

last stages of the simulation. The four-point bending test has its peak load slightly outside the experimental range of

results. This occurs also in other references (Cervera et al., 2010c, 2017; Gálvez et al., 2000).

6.3. Concrete dam under earthquake excitation

During the earthquake motions in 1967, Koyna dam was subjected to both transverse and vertical components of

the ground accelerations. This dam, extensively studied by other investigators (Bhattacharjee and Leeger, 1993; Ghrib

and Tinawi, 1995; Cervera et al., 1995; Li and Fenves, 1998; Wu and Li, 2007), is finally considered.

Following the previous work, the dam-foundation interactions was ignored assuming a rigid foundation, and a

finite element mesh consisting of 15455 standard piece-wise bilinear quadrilateral elements with reduced integration

was adopted to discretize the dam. The dam-reservoir dynamic interactions were modeled using a 2-node element by

the added mass technique of Westergaard (1933). A Rayleigh stiffness-proportional damping factor was assumed to

provide a 3% fraction of the critical damping for the first vibration mode of the dam. The HHT-˛ method (Hilber et al.,

1977) was considered to integrate the dynamic equation of motions. The material properties used in the simulation

were taken from Li and Fenves (1998): density of concrete � D 2643 kg/m3, Young’s modulus E0 D 31027 MPa,

tensile strength ft D 2:9 MPa and fracture energy Gf D 200 J/m2. Note that the rate effect is approximately

accounted for in this work though an increase of the tensile strength ft by 20%, though it also can be considered as

in Wu and Li (2007). Furthermore, the compressive damage is irrelevant in this example and is thus neglected. More

details of the simulation are addressed elsewhere.

The numerical damage contour at the end of the simulation is shown in Figure 7. It can be clearly seen that cracks

are initiated at the dam base on the upstream face due to the infinitely rigid foundation. Furthermore, cracks are

also initiated at the region with stress concentration where the slope on the downstream face changes abruptly, and

propagate downwards to the upstream face. The predicted damage distribution agrees fairly with the observed crack

patterns reported by other investigators (Bhattacharjee and Leeger, 1993; Ghrib and Tinawi, 1995; Cervera et al.,

1995; Li and Fenves, 1998).

The computed relative horizontal displacements at the left corner of the dam crest are shown in Figure 18 (the

positive values represent the displacement towards downstream). It can be seen that the crest displacement remains

less than 30 mm during the first 4 seconds of the earthquake, and after these 4 seconds, the amplitude of the oscillation

of the crest increases substantially, implying severe damage evolution in the structure during these oscillations. Similar

observation was also reported in Li and Fenves (1998) and Wu and Li (2007).
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7. Concluding remarks

Aiming to the modeling of asymmetric tensile/compressive material behavior and the microcracks closure-reopening

effects exhibited by concrete like quasi-brittle solids, this work addresses a novel thermodynamically consistent unilat-

eral damage model, based on our previous work. In particular, the positive/negative projection (PNP) of the effective

stress is maintained such that the conceptual simplicity and computational efficiency of the original additive bi-scalar

damage constitutive relation is preserved. It is found that the classical PNP widely adopted in the literature is not

optimal for this damage model, since the resulting stiffness is not always of major symmetry. Consequently, a well-

defined free energy potential does not exist in general cases and the model cannot be cast into the framework of

thermodynamics with internal variables. Furthermore, the damage induced anisotropy cannot be captured, exhibiting

excessive lateral deformations under uniaxial tension.

In order to overcome the above issues, a novel PNP, variationally interpreted as the closest point projection of the

effective stress tensor in energy norm, is proposed. Closed-form expressions of the novel PNP and the corresponding

projection operators are explicitly given. With the novel PNP in energy norm, the proposed unilateral damage model

always possesses stiffness tensor of major symmetry and exhibits orthotropic behavior under uniaxial tension. The

corresponding thermodynamics framework is also established, resulting in an energy release rate based rounded-

Rankine damage criterion appropriate for modeling tensile failure in quasi-brittle solids. Several numerical examples

of single-point verifications and benchmark tests are presented. It is demonstrated that the proposed damage model is

capable of characterizing tensile failure under proportional and non-proportional static loading, as well as the MCR

effects under seismic cyclic loading.

Compared to our previous isotropic bi-scalar damage model (Cervera et al., 1995; Faria et al., 1998; Wu et al.,

2006), the merits of the proposed one are two-fold. On the one hand, the novel PNP scheme naturally result in

material stiffness tensor of major symmetry, completely restoring the thermodynamical consistency of the popular

bi-scalar damage model. The ensuing symmetric secant matrix also makes it possible to use some efficient solvers,

e.g., Picard’s method, in solving the discrete governing equations which are in general of strong nonlinearities. On

the other hand, with the novel PNP scheme the bi-scalar damage model is able to capture the orthotropic constitutive

behavior at the material level. Due to the extrinsic anisotropy induced by the discretized mesh and the continuity

introduced by the mixed finite element formulation or the ad hoc crack tracking algorithm, the significance of such

an orthotropic damage model is problem dependent. In some cases, the difference of the predicted results between

isotropic and anisotropic models is not pronounced, while for problems with arbitrary curved crack paths, in particular,

under non-proportional loading scenarios, significant variations are observed (Fichant et al., 1999; Barbat et al., 2017).

In this work, the plastic strains are not considered, though they can be incorporated straightforwardly by the

effective stress space plasticity as in Wu et al. (2006). Furthermore, it is necessary to account for the viscous (strain)

rate and damping effects such that the proposed unilateral damage model can be applied to practical engineering

structures. Last but not least, the proposed PNP in energy norm can also be used in the phase-field approach to fracture
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(Francfort and Marigo, 1998; Bourdin et al., 2008; Miehe et al., 2010b; Wu, 2017, 2018) in which the variational

minimization principle plays an important role. These topics will be addressed elsewhere.
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Appendix A. Proofs of the variational inequalities

The variational inequalities (3.2) associated with the classical PNP (3.1) in Frobenius norm is similar to Proposi-

tion 1 for the novel PNP (4.1) in energy norm. As their proofs are almost the same, only the later is considered here.

To this end, let us first introduce some useful lemmas (Del Piero, 1989):

Lemma 1 Two symmetric tensors,A andB are coaxial (commute) ifA �B D B �A, and two coaxial symmetric

tensors admit a common orthogonal basis of eigenvectors.

Lemma 2 Let A 2 C . Then

A W B � 0 8B 2 CC.or C �/ H) A 2 CC.or C �/ (A.1)

Moreover, if A 2 CC, then

B 2 CC .or C �/ H) A W B � 0 .or � 0/ (A.2)

B 2 CC .or C �/ and A W B D 0 H) A �B D B �A D 0 (A.3)

Proof of Proposition 1: On the one hand, assume that, for fixed N�� 2 C � and C0 W N�C 2 C , Eq. (4.2a)1 is

verified for any ˙ 2 C �. Set ˙ D N�� C˙ �, with ˙ � 2 C �. Clearly, ˙ 2 C � and by Eq. (4.2a)1, it follows that

�˙ � W C0 W N�C D
� N�� �˙ � W C0 W N�C � 0 8˙ � 2 C � (A.4)

Hence, C0 W N�C 2 CC by Eq. (A.1). Moreover, for ˙ � D N�� we get N�� W C0 W N�C � 0. But for ˙ D 0 it follows

from Eq. (4.2a)1 that N�� W C0 W N�C � 0. Therefore, N�� W C0 W N�C D 0 has to hold. Conversely, if Eq. (4.1) holds,

then Eq. (4.2a)1 follows directly from Eq. (A.2).

On the other hand, Eq. (4.2a)1 can be rewritten as

N�� W C0 W N�C � ˙ W C0 W N�C 8˙ 2 C � (A.5)

It is exactly the argument of Eq. (4.2a)2.

The alternative variational inequality (4.2b) can be similarly proved. �
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Appendix B. Explicit solution of the novel PNP in energy norm

Regarding the stress state, the following four cases are identified from the relation (4.5b):

(I) N�1 � 0; N�2 � 0; N�3 � �0
� N�1 C N�2�: The positive/negative principal values N�ṅ are given by

N�C1 D N�1; N�C2 D N�2; N�C3 D N�3
N��1 D 0; N��2 D 0; N��3 D 0

(B.1a)

As can be seen, the pure tension state (i.e., N�C D N� and N�� D 0) for the novel projection is more restrictive

than that for the classical one in which the conditions N�n � 0 suffice.

(II) N�1 � 0; N�2 � 0; N�3 � �0
� N�1 C N�2�: The positive/negative principal values N�ṅ are determined as

N�C1 D N�1; N�C2 D N�2; N�C3 D �0
� N�1 C N�2�

N��1 D 0; N��2 D 0; N��3 D N�3 � �0
� N�1 C N�2� (B.1b)

Note that this stress state cannot be identified from the classical projection.

(III) N�1 � 0; N�3 � N�2 � Q�0 N�1: The positive/negative principal values N�ṅ are solved as

N�C1 D N�1; N�C2 D Q�0 N�1; N�C3 D Q�0 N�1
N��1 D 0; N��2 D N�2 � Q�0 N�1; N��3 D N�3 � Q�0 N�1

(B.1c)

for Q�0 D �0=.1 � �0/. Similarly, this stress state cannot be discriminated from the classical projection.

(IV) N�3 � N�2 � N�1 � 0: This case corresponds to a pure compression state, with the following positive/negative

principal values N�ṅ

N�C1 D 0; N�C2 D 0; N�C3 D 0
N��1 D N�1; N��2 D N�2; N��3 D N�3

(B.1d)

This pure compression state with N�C D 0 and N�� D N� coincides with that of the classical projection.

Note that the continuity between different stress states is guaranteed. Furthermore, the above results for cases (I), (II)

and (IV) apply to the plane stress condition ( N�2 D 0), with the out-of-plane stress N�2 neglected.

Appendix C. Stiffness and compliance matrices in the principal space

Let us now verify the major symmetry of the secant stiffness (2.9b) and compliance (2.13a) with the novel PNP in

energy norm. Only the secant compliance is addressed here since the expressions are much simpler, while the stiffness

is obtained straightforwardly from the matrix inverse. Furthermore, it is sufficient to consider only the compliance

matrix in the space of principal effective stresses.

In the space of principal effective stresses, the linear elastic relation (2.1) relates the principal strains �n to the

principal effective stresses N�n, where the later N�n can be expressed in terms of the nominal counterparts �n by calling
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for the additive bi-scalar damage constitutive relation (2.10) and the positive/negative components N�ṅ explicitly given

above. Accordingly, the secant compliance matrix ŒC� can be derived, together with the damage tensor D D I�C�1 W
C0 in matrix form.

Regarding the stress state, the following four cases are identified:

(I) N�1 � 0; N�2 � 0; N�3 � �0
� N�1 C N�2�: In this case, Eqs. (2.10) and (B.1a) give the following principal stresses

�n D
�
1 � dC� N�n (C.1)

such that

ŒC� D 1�
1 � dC�E0

26664
1 ��0 ��0
��0 1 ��0
��0 ��0 1

37775 ; ŒD� D dC

26664
1 0 0

0 1 0

0 0 1

37775 (C.2)

As expected, the pure tension results in an isotropic damage state.

(II) N�1 � 0; N�2 � 0; N�3 � �0
� N�1 C N�2�: Eqs. (2.10) and (B.1b) yield

�1 D
�
1 � dC� N�1; �2 D

�
1 � dC� N�2; �3 D

�
1 � d�� N�3 � Qd�0� N�1 C N�2� (C.3)

for the difference Qd WD dC � d� between the tensile and compressive damage variables. The corresponding

secant stiffness matrix ŒC� and damage matrix ŒD� are determined as

�
C
� D 1�

1 � d��E0

266666664

�
1 � d�� � Qd�20
1 � dC �

�
1 � d��C Qd�0

1 � dC �0 ��0

�
�
1 � d��C Qd�0

1 � dC �0

�
1 � d�� � Qd�20
1 � dC ��0

��0 ��0 1

377777775
(C.4)

�
D
� D

26664
dC 0 0

0 dC 0

�0 Qd �0 Qd d�

37775 (C.5)

Accordingly, the resulting damage model is an orthotropic one. Furthermore, due to the non-vanishing Poisson’s

ratio the compressive damage d� affects the lateral tensile behavior.

(III) N�1 � 0; N�3 � N�2 � Q�0 N�1: It then follows from Eqs. (2.10) and (B.1c) that

�1 D
�
1 � dC� N�1; �2 D

�
1 � d�� N�2 � Qd Q�0 N�1; �3 D

�
1 � d�� N�3 � Qd Q�0 N�1 (C.6a)

leading to

�
C
� D 1�

1 � d��E0

26666664

�
1 � d�� � 2 Qd Q�0�0

1 � dC ��0 ��0

��0 1 ��0

��0 ��0 1

37777775 (C.7)
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�
D
� D

26664
dC 0 0

Q�0 Qd d� 0

Q�0 Qd 0 d�

37775 (C.8)

Similarly to Case (II), the tensile behavior is also affected by the lateral compressive damage d�.

(IV) N�3 � N�2 � N�1 � 0: In this case, Eqs. (2.10) and (B.1d) give

�n D
�
1 � d�� N�n (C.9)

such that

ŒC� D 1�
1 � d��E0

26664
1 ��0 ��0
��0 1 ��0
��0 ��0 1

37775 ; ŒD� D d�

26664
1 0 0

0 1 0

0 0 1

37775 (C.10)

As can be seen, an isotropic damage model is recovered under the pure compression.

With the out-of-plane stress N�2 neglected, the above results for cases (I), (II) and (IV) apply to the plane stress

condition ( N�2 D 0). In all cases, the compliance matrix ŒC� is symmetric, guaranteeing the major symmetry of the

secant stiffness tensor E.
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Figure 1: Positive principal effective stresses of the novel PNP in the 2-D plane stress condition
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Figure 3: Numerical results under uniaxial tension for various specific fracture energy gf: Axial stress �xx versus axial strain �xx and lateral

strain �yy
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Figure 7: Uniaxial stretch of a perforated strip: Problem setting
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Figure 8: Uniaxial stretch of a perforated strip: contours of vertical displacements and damage for various Poisson’s ratios
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Figure 10: Single edge-notched beams under proportional loading (Arrea and Ingraffea, 1982): Problem setting
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Figure 11: Single edge-notched beams under proportional loading (Arrea and Ingraffea, 1982): Damage contours
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Figure 12: Single edge-notched beam under proportional loading (Arrea and Ingraffea, 1982): Load versus CMSD curves for series A and C
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Figure 13: Three- and four-point bending single edge-notched beam under non-proportional loading (Gálvez et al., 1998): Problem setting
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(a) Experimentally observed crack paths

(b) Numerically obtained damage contour

Figure 14: Three-point bending single edge-notched beam: Comparison between the experimentally observed crack paths (Gálvez et al., 1998) and

the numerically obtained damage contour
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Figure 15: Four-point bending single edge-notched beam: Comparison between the experimentally observed crack paths (Gálvez et al., 1998) and

the numerically obtained damage contour
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Figure 16: Three-point bending single edge-notched beam (Gálvez et al., 1998): Load versus CMOD curves
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Figure 17: Four-point bending single edge-notched beam (Gálvez et al., 1998): Load versus CMOD curves
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Figure 18: Koyna dam: Damage contour at the end of the simulation with dam-reservoir hydrodynamic interactions
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Figure 19: Koyna dam: Horizontal crest displacement (relative to the ground displacements)
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