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ABSTRACT 

 Flexible and lightweight electrodes are prepared using a two-step process. First, poly(3,4-

ethylenedioxythiophene) (PEDOT) microparticles are loaded into poly-γ-glutamic acid (γ-PGA) 

hydrogel matrix, during the reaction of the biopolymer chains with the cross-linker, cystamine. 

After this, PEDOT particles dispersed inside the hydrogel are used as polymerization nuclei for 

the chronoamperometric synthesis of poly(hydroxymethyl-3,4-ethylenedioxythiophene) 

(PHMeDOT) in aqueous solution. After characterization of the resulting electrode composites, 

electrochemical studies revealed that the capacitive properties drastically depend on the 

polymerization time used to produce PHMeDOT inside the loaded hydrogel matrix. Specifically, 

flexible electrodes obtained using a polymerization time of 7 hours exhibit an specific 

capacitance of 45.40.7 mF/cm
2
 from cyclic voltammetry and charge-discharge long-term 

stability. The applicability of these electrodes in lightweight and flexible energy-harvesting 

systems useful for energy-autonomous, low-power, disposable electronic devices, has been 

proved powering a LED bulb. 

 

 

  



3 
 

Introduction 

 A great interest in thin, flexible, safe energy storage devices has been shown by the scientific 

community over the last decades.
1,2

 Fully pliable and robust devices, conceivably and preferably 

composed of eco-friendly materials, are the new benchmark of modern society.
1
 These devices 

have a large variety of applications from motor vehicles
3-5

 to laptops
6,7

 or autonomous medical 

sensors.
8,9

 Energy can be stored in batteries or in capacitors; the main difference is the charge 

storage mechanism, which is based on faradic and non-faradic processes, respectively. In the 

former devices, an electron transfer that produces a redox reaction takes place, whereas the 

second type is based on electrostatic processes that occur in absence of electron transfer across 

the electrode interface.
10

 Conventional capacitors share important similarities with another class 

of devices known as electrochemical capacitors, which rely on charge separation at 

electrode/electrolyte interfaces to store energy. 

 Electrochemical capacitors have superb specific power compared to batteries, but modest 

specific energy. Batteries are characterized by high energy density values of 10−100 Wh/kg, 

whereas capacitors are able to release the stored energy much faster however the energy density 

is < 0.1 Wh/kg.
11

 Recently, electrochemical supercapacitors (ESCs) have emerged displaying 

higher energy values (i.e. 1−10 Wh/kg) compared to capacitors.
12

 ESCs present an interface 

between an electronic conductor and an ionic conductor (i.e. the electrolyte).
13

 The simplest ESC 

is composed of two non-reactive porous electrodes immersed into an electrolytic medium and 

electrically isolated by a membrane to allow the migration of ions. From a technological point of 

view, ESCs are characterized by a good acceleration, robustness and excellent life cycle, which 
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can improve the effectiveness of battery-based systems by shrinking the volume of the batteries 

and reducing the frequency of their replacement.
10

 

 In spite of the advantages reported for ESCs, the quality of these devices has to be improved 

by using more environmentally friendly materials (e.g. renewable materials) and electrolytes (e.g. 

non-organic, aqueous solvents), and by improving properties such as capacitance, flexibility and 

durability. These improvements could be obtained through: 

 Construction of 3D devices incorporating micro- and/or nanometric conductive 

components arranged in interpenetrating networks, with the aim to create short diffusional 

paths and, thus, very high currents. 

 Replacement of organic solvents by water-containing gel-biopolymer electrolytes, 

characterized by ease of processability, large exposed area for electrochemical activity, 

good resistance to strain and, in addition, significant reduction of costs.  

 Within this context, we have developed the supra-molecular assembly of a biohydrogel with 

a conducting polymer (CP), producing and characterizing a new flexible, lightweight and 

efficient organic electrode for application in ESCs. More specifically, we have prepared an 

electrode composed by poly-γ-glutamic acid (γ-PGA) as 3D-gelated network and a poly(3,4-

ethylenedioxythiophene) (PEDOT) derivative, as CP.  

 Selected polymers are characterized by high relevance in research and industrial 

environments. γ-PGA is an anionic homopolypeptide linked by the peptide bond between the α-

amino and the γ-carboxyl groups of glutamic acid,
14

 that exhibits good biocompatibility due to its 

biodegradability, water-solubility and non-toxicity towards humans.
15

 This compound is naturally 

synthetized as a slime layer by a variety of members of the genus Bacillus.
16

 γ-PGA and its 
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derivatives have been used in different fields such as food industry,
17,18

 medicine,
19,20

 

cosmetic,
21,22

 agriculture,
23

 and wastewater treatment.
24

 Due to their robustness, γ-PGA gels were 

recently employed as solid electrolyte media for organic ESCs.
25

 Armelin et al.
26

 recently 

reviewed the utilization and the advantages of biohydrogels for ESCs, highlighting the 

sustainability of devices composed by materials that can be naturally produced, as γ-PGA from 

biosynthesis, or directly extracted from biomass.  

 Among CPs, PEDOT is one of the most widely used for energy storage devices due to its 

excellent properties: low band gap, easiness to stabilize the oxidized state, high electrical 

conductivity, stable charge-discharge response, excellent environmental stability and fast doping-

dedoping process.
27-30

 The unique characteristics of PEDOT are due to the oxygen atoms attached 

at the ,’-positions of the thiophene ring, which induce strong electron-donating effects and 

prevent the formation of parasitic - linkages during the polymerization of the 3,4-

ethylenedioxythiophene (EDOT) monomers.
31

 Moreover, the electrochemical performance of 

PEDOT can be improved if properly combined with other materials such as graphene,
23,32-34

 

carbon nanotubes,
35

 inorganic oxides,
36,37

 and even biomolecules.
26,38-41

  

 The present work represents a step ahead with respect to the setup of ESCs composed of 

PEDOT electrodes and γ-PGA solid electrolytic medium. More specifically, γ-PGA biohydrogel 

has been synthesized and analyzed in presence of PEDOT and poly(hydroxymethyl-3,4-

ethylenedioxythiophene) (PHMeDOT), a PEDOT derivative with an exocyclic hydroxyl group 

that facilitates its preparation in aqueous environments. Accordingly, the novelty of this work is 

related with the loading of PEDOT particles into the hydrogel, which are subsequently used as 

nucleation sites for the in situ electropolymerization of PHMeDOT inside the hydrated γ-PGA 
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matrix. The excellent properties of the resulting electrode composite, the contribution of its 

different components (i.e. γ-PGA, PEDOT particles and PHMeDOT), and its potential 

applicability are discussed in the next sections.  

 

Materials and methods 

 Materials  

 Free-acid γ-PGA (from Bacillus subtilis), with average molecular weight Mw= 350000, was 

purchased from Wako Chemicals GmbH (Neuss, Germany). Cystamine dihydrochloride 

(≥98.0%), 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide methiodide (EDC), EDOT (95%) 

and hydroxymethyl-3,4-ethylenedioxythiophene (HMeDOT, 95%) were purchased from Sigma-

Aldrich. Acetonitrile (Reagent European Pharmacopoeia for analysis, ACS) and NaHCO3 were 

obtained from Panreac. Anhydrous lithium perchlorate (LiClO4), analytical reagent grade from 

Aldrich, was stored in an oven at 70 ºC before use in electrochemical experiments. Milli-Q water 

grade (0.055 S/cm) was used in all synthetic processes.  

 

 Synthesis of PEDOT particles  

 Both anodic polymerization and electrochemical assays were performed with a potentiostat-

galvanostat Autolab PGSTAT101 equipped with the ECD module (Ecochimie, The Netherlands) 

using a three-electrode compartment cell under nitrogen atmosphere (99.995% pure) at room 

temperature. Steel AISI 316 sheets of 6 cm
2
 in area were used as working and counter electrodes, 

respectively. To prevent interferences during the electrochemical assays, the working and counter 

electrodes were cleaned with acetone, ethanol and distillated water before each trial. The 
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reference electrode was an Ag|AgCl electrode containing a KCl saturated aqueous solution 

(offset potential versus the standard hydrogen electrode, E
0
= 0.222 V at 25 ºC). 

 PEDOT films were prepared by chronoamperometry (CA) applying a constant potential of 

1.40 V during 600 s and using a 10 mM monomer solution in acetonitrile with 0.1 M LiClO4 as 

reaction medium. The resulting films were processed into particles by sonication (Bandelin 

Sonopuls sonicator) in 0.5 M NaHCO3 solution during 25 min in steps of 5 min at low frequency 

(0.01% frequency). The diameter of the resulting PEDOT particles was determined at room 

temperature by dynamic light scattering (DLS) in Milli-Q water dispersions (0.3 % v/v) using a 

NanoBrook Omni Zeta Potential Analyzer from Brookheaven Instruments Corporation. Finally, 

the basic aqueous (0.5 M NaHCO3) dispersion with 20% w/w of the resulting PEDOT particles 

was directly used for the synthesis of CP-loaded γ-PGA hydrogels (see below). 

 

 Synthesis of the γ-PGA hydrogel  

 γ-PGA hydrogels were prepared adapting the procedure described by Matsusaki et al.
42

 γ-

PGA and EDC were dissolved in 0.75 mL of 0.5 M NaHCO3 at 4 ºC under magnetic stirring. 

Then, cystamine dihydrochloride, previously dissolved in 0.25 mL sodium hydrogen carbonate 

solution (0.5 M), was added to the solution and mixed during 2-3 minutes. The γ-PGA / EDC / 

cystamine molar ratio was 5 / 5 / 4. The final solution was removed with a magnetic stirrer, and 

the reaction solution was poured into glass molds of 2.51.50.1 cm. The solution was let to gel 

at room temperature for one hour. To remove any compound in excess, the resulting hydrogel 

was washed with distillate water three times.  
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 CP-loaded γ-PGA hydrogels: PEDOT/γ-PGA 

 The procedure described in Section 2.3 was also used to prepare γ-PGA hydrogels loaded 

with PEDOT particles, hereafter denoted PEDOT/γ-PGA. More specifically, the only difference 

with respect to the preparation of pure γ-PGA hydrogel is that the 0.5 M NaHCO3 solution used 

to dissolve the biopolymer already contained the PEDOT particles (20% w/w of PEDOT particles 

with respect to the weight of -PGA). 

 

 Preparation of [PEDOT/-PGA]PHMeDOT electrodes through polymerization inside 

PEDOT/γ-PGA 

 Steel AISI 316 sheets of 0.50.5 cm
2
 were coated with PEDOT/γ-PGA hydrogel and 

subsequently kept into the reaction medium overnight whilst stirring (65 rpm). The PEDOT/γ-

PGA coated sheets were then used as working electrodes for the anodic polymerization of 

PHMeDOT by CA. The reaction medium was a 10 mM HMeDOT aqueous solution with 0.1 M 

LiClO4 as supporting electrolyte. The anodic polymerization was conducted under a constant 

potential of 1.10 V using a polymerization time, , of 6 min or 7 hours. Thus, in a preliminary 

study (Figure S1) we observed that such two values are representative of systems obtained using 

 lower and higher than 2 h, respectively. The experimental setup used for the in situ 

modification of the PEDOT/-PGA hydrogel was identical to that described in Section 2.2 for the 

synthesis of PEDOT films. Hereafter, the loaded PEDOT/γ-PGA hydrogel electrochemically 

modified with PHMeDOT is denoted [PEDOT/γ-PGA]PHMeDOT 

 

 Morphological and topographical characterization 
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 Scanning electron microscopy (SEM) studies were performed to examine the surface 

morphology of PEDOT, PEDOT/γ-PGA and [PEDOT/γ-PGA]PHMeDOT electrodes. Dried 

samples were placed in a Focussed Ion Beam Zeis Neon 40 scanning electron microscope 

operating at 3 kV, equipped with an energy dispersive X-ray (EDX) spectroscopy system. EDX 

analyses were performed to identify the presence of PEDOT particles and the success of the in 

situ PHMeDOT polymerization. 

 Atomic force microscopy (AFM) images were obtained with a Molecular Imaging PicoSPM 

using a NanoScope IV controller under ambient conditions. The tapping mode AFM was 

operated at constant deflection. The row scanning frequency was set to 1 Hz. AFM measurements 

were performed on various parts of the films, which provided reproducible images similar to 

those displayed in this work. The scan window sizes used in this work were 5×5 μm
2
. The 

statistical application of the NanoScope Analysis software was used to determine the root mean 

square roughness (Rq), which is the average height deviation taken from the mean data plane.  

 

 Electrochemical characterization.  

 All electrochemical experiments were run in triplicate using water with 0.1 M LiClO4 as 

supporting electrolyte. Cyclic voltammetry (CV) was carried out to evaluate the electroactivity, 

areal specific capacitance (SC) and the electrochemical stability of the prepared electrodes. The 

initial and final potentials were –0.50 V, and the reversal potential was 1.10 V. A scan rate of 100 

mV/s was used in all cases.  

 The areal SC (in mF/cm
2
) was determined using the following expression: 

 
AV

Q
SC

·
   (1) 
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where Q is voltammetric charge determined by integrating the oxidative or the reductive parts of 

the cyclic voltammogram curve, ΔV is the potential window (in V), and A is the area of the 

electrode (in cm
2
). The exposed area of the different electrodes for CV analyses was 0.025 cm

2
. 

The electrochemical stability was examined by evaluating the loss of electroactivity (LEA, in %) 

against the number of oxidation-reduction cycles:  

 
2

2

2 Q

QQ

Q

Q
LEA i 


   (2) 

where ΔQ is the difference between the oxidation charge (in C) of the second (Q2) and the 

evaluated oxidation-reduction cycle (Qi).  

 Electrochemical impedance spectroscopy (EIS) diagrams were taken at open circuit (OCP) 

over the frequency range of 100 kHz to 10 mHz with a potential amplitude of 0.05 V using an 

AUTOLAB-302N potentiostat/galvanostat. All experiments were performed at room temperature 

in water with 0.1 M LiClO4.  

 Galvanostatic charge-discharge (GCD) cycles were run between -0.50 and 0.40 V using a 

current of 0.1 mA. GCD curves were also employed to evaluate the areal SC according to: 

 
AV

tI
SC

·

·







  (3) 

where I is the applied current, Δt is the time of discharge (in s), V is the difference between the 

potential at the beginning and at the end of the discharge (in V) and A is the area of the electrode 

(in cm
2
). 

 

 Thermal stability, swelling and spectroscopic characterization 
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 The thermal stability of the prepared samples was studied by thermogravimetry (TGA) at a 

heating rate of 20 ºC/min (sample weight ca. 5 mg) with a Q50 thermogravimetric analyzer of 

TA Instruments and under a flow of dry nitrogen. Test temperatures ranged from 30 to 600 ºC. 

 The swelling ratio (SR, %) of the hydrogels was determined according to:  

 
D

DW

w

ww
SR


   (4) 

where wW is the weight of the hydrogels after 30 min in milli-Q water and wD is the weight of the 

hydrogel dried at room temperature during 30 min after preparation. 

 Samples were characterized by micro-Raman spectroscopy using a commercial Renishaw 

inVia Qontor confocal Raman microscope. The Raman setup consisted of a laser (at 785 nm with 

a nominal 300 mW output power) directed through a microscope (specially adapted Leica 

DM2700 M microscope) to the sample after which the scattered light is collected and directed to 

a spectrometer with a 1200 lines·mm
-1

 grating. The exposure time was 10 s, the laser power was 

adjusted to 1% of its nominal output power and each spectrum was collected with 3 

accumulations. 

  

 Conductivity measurements under mechanical stretching 

 The conductivity of the prepared stretchable electrodes was determined under extreme 

conditions, which were applied using a universal testing machine (Zwick GmbH & Co., model 

Z2.5/TN1S) with integrated testing software (testXpert, Zwick). Electrical conductivities (σ) 

were determined for the stretched specimens using the sheet-resistance method following a 

previously described procedure.
43
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Results and Discussion  

 Preparation of PEDOT/γ-PGA and [PEDOT/γ-PGA]PHMeDOT electrodes 

 In this work, the synthesis of PEDOT/γ-PGA and [PEDOT/γ-PGA]PHMeDOT electrodes to 

be applied in energy storage devices are reported for the first time. PEDOT particles were 

obtained by applying a sonication treatment to electropolymerized PEDOT films. The influence 

of the sonication time (tson) in the diameter of the resulting particles (DCP) was evaluated by DLS 

in 0.5 M NaHCO3 (Figure 1a). Results indicate that DPEDOT decrease with increasing tson, 

becoming stable at DPEDOT= 0.850.03 µm after 25 min. 

 In order to achieve a homogenous dispersion of the PEDOT particles in the γ-PGA matrix, 

this DPEDOT value was chosen for the fabrication of PEDOT/γ-PGA electrodes. Moreover, the γ-

PGA hydrogel, which was prepared as described in the Methods section, exhibited pores / void 

spaces with diameters higher than DPEDOT values (see below). Figure 1b shows that the 

consistency and toughness of the synthesized γ-PGA hydrogel are suitable to hold the PEDOT 

particles and to ensure the robustness of the resulting electrode. PEDOT/γ-PGA electrodes were 

prepared by introducing PEDOT particles (20% w/w) in the reaction medium used to cross-link 

the biopolymer chains. The optical image displayed in Figure 1c shows that the dispersion of the 

CP in the γ-PGA network was good and homogeneous, the final PEDOT/γ-PGA electrode 

exhibiting a blackish appearance. Figure 1d also proves the consistency and flexibility of the 

PEDOT-loaded hydrogel, which compresses more than 50% of its initial volume.  

 On the other hand, the influence of the loaded CP particles in the conductivity of the 

hydrogel was examined by performing EIS measurements on -PGA and PEDOT/-PGA using a 

cell with a geometry explicitly constructed for the analysis of these polymeric systems.
44

 The 
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diameter of the semicircle in the recorded Nyquist plots (not shown) corresponded to the charge-

transfer resistance, RC, the conductivity (, in S/cm) being determined through the following 

expression: 

 
AR

L

C

   (5) 

where L is the thickness of the coating (0.02 cm), A is the area of the coated electrode (1.77 cm
2
), 

and RC is the hydrogel resistance. As expected, the incorporation of 20% w/w PEDOT particles 

significantly affects the electrical conductivity, which increases from = 6.84·10
-6

 S/cm for -

PGA to = 1.77·10
-3

 S/cm for PEDOT/-PGA. The latter value is within the typical range 

attributed to semiconducting materials. 

 In order to enhance the electrochemical behavior of the electrode, HMeDOT monomers in 

aqueous solution were anodically polymerized directly inside the loaded PEDOT/γ-PGA 

hydrogel. PHMeDOT was chosen for the electrochemical modification of PEDOT/γ-PGA 

because of the following two reasons:
45,46

 (i) the solubility in water of HMeDOT is high, 

especially when compared with the EDOT monomer, due to the exocyclic hydroxymethyl group; 

and (ii) the capacitance and electrochemical activity of PEDOT and PHMeDOT are very similar. 

Accordingly, the exocyclic hydroxymethyl group of HMeDOT allowed us to ensure the success 

of the polymerization process in water without cause detriment in the electrochemical 

characteristics of the final [PEDOT/γ-PGA]PHMeDOT electrode. It should be emphasized that 

PEDOT/γ-PGA was kept under stirring in the reaction medium overnight (see Methods section). 

This simple procedure guarantees the penetration of the HMeDOT monomers into the hydrogel 

matrix ensuring the success of the polymerization process. 
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 Figure 2a represents the chronoamperograms obtained after the electropolymerization of a 10 

mM HMeDOT aqueous solution with 0.1 M LiClO4 as supporting electrolyte on a steel electrode 

coated with PEDOT/γ-PGA and unloaded γ-PGA hydrogels. For the sake of comparison, the 

chronoamperometric curve obtained in aqueous solution with 0.1 M LiClO4 (i.e. without 

HMeDOT monomer) for a steel electrode coated with unloaded γ-PGA (blank sample) is also 

reported. As it can be seen, the electropolymerization charge was 25% higher in the presence of 

PEDOT particles (i.e. 0.128 and 0.160 C for unloaded γ-PGA and PEDOT/γ-PGA, respectively). 

This is a very remarkable difference considering that the γ-PGA hydrogel tends to behave as a 

dielectric material. Therefore, the presence of PEDOT particles inside the γ-PGA matrix 

presumably provides additional nucleation sites that enhance the HMeDOT polymerization.  

 In order to better understand the polymerization reaction when the hydrogel is part of the 

reaction medium, a detailed study of the kinetics was conducted. The evolution of current with 

time during the anodic polymerization of PEDOT, and by extrapolation of PHMeDOT, was 

explained through three main steps:
47

 (i) the initial spike, which is due to the charging of the 

double layer; (ii) the region that exhibits a slow variation of the current, which is associated to the 

CP nucleation; and (iii) the zone in which the current keeps constant over time because of the 

growth of the polymer chains. However, chronoamperograms displayed in Figure 2a reflect a 

different current decay during the second step, independently of the absence or presence of 

PEDOT particles. Specifically, this step ends at 85 s and 105 s for the polymerization inside 

PEDOT/γ-PGA and unloaded γ-PGA, respectively. Accordingly, the nucleation of PHMeDOT is 

most probably affected by the presence of PEDOT microparticles embedded into the hydrogel, 

which provide charges and radicals able to bind HMeDOT monomers. 
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 The Cottrell equation was applied using the data shown in Figure 2a to study the diffusion of 

the HMeDOT molecules in the solution. Figure 2b represents the variation of the anodic current 

density against the inverse of the square of electropolymerization time (1/2
). The diffusion 

coefficient (D) was derived from: 

 
2/1

2/1*

)·(

····

θ

DCAFn
I


   (6) 

where, I is the anodic current, C
*
 is the molar concentration (10 mM), F is the Faraday constant, 

A is the area of the electrode and n is the number of electrons transferred. The value of the current 

obtained for the blank sample (i.e. electrode coated with unloaded γ-PGA and without monomer 

in the reaction medium), which is related to the electron transfer at the steel electrode when the 


4ClO  molecules reach the surface, was subtracted from the currents recorded during the 

experiments with PEDOT/γ-PGA and unloaded γ-PGA hydrogels in presence of monomer. 

 Although Figure 2b shows the current decay, a steady state is detected at long times in 

presence of PEDOT particles. From that, it can be inferred a “transition time” after which the 

current profile behaves linearly until the end of the experiment. The transition time is defined by 

the intersection of the two straight lines in Figure 2b, representing ideal transient and steady-state 

conditions, respectively. According to the Nernst–Planck equation, the flux of species is due to 

the concentration gradient and the electric field. However, since the y-intercept of Cottrell plots is 

very low (i.e. 0.0013 and 0.022 mA cm
2
 for PEDOT/γ-PGA and unloaded γ-PGA, respectively), 

it can be considered that the influence of the electric field can be roughly disregarded in both 

cases. Based on this, the results indicate that the transport of molecules inside the swelled γ-PGA 

hydrogel is driven by the concentration gradient of the charge on the infinite-diffusion system. 
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According to the Cottrell equation (Eqn 6), the diffusion coefficients were estimated as 4.525×10
-

9
 and 1.739×10

-9
 cm

2
/s for unloaded γ-PGA and PEDOT/γ-PGA hydrogels, respectively. These 

values, which are significantly higher than those typically expected for substances in solution. 

Thus, the difficulties in the mobility of HMeDOT molecules inside the hydrogel limit the 

electrogeneration process. However, the differences between the two systems confirm that 

PEDOT particles dispersed in the hydrogel matrix act as reaction nuclei, decreasing the diffusion 

coefficient of the intercepted HMeDOT monomer molecules that bind to PEDOT particles before 

reaching the steel surface. 

 On the other hand, the electropolymerization times used in this work were = 6 min and 7 

hours. Considering the current productivity of PHMeDOT in water and the charge consumed 

during the electropolymerization process inside PEDOT/γ-PGA hydrogel (i.e. 1.80 and 33.5 mC 

for = 6 min and 7 hours, respectively), the mass of PHMeDOT produced per 1 mm
3
 of loaded 

hydrogel is estimated to be around 5·10
-5

 and 1·10
-3

 mg for = 6 min and 7 hours. 

 

 Morphological and topographical analysis 

 Figure 3 compares SEM micrographs of -PGA and PEDOT/γ-PGA hydrogels before 

(Figures 3a-b and 3c-f, respectively) and after (Figures 3e and 3f, respectively) CV analyses. As 

one of the most important objectives of this work is to promote the movement of ions through the 

flexible electrode, the hydrogel should present an open porous structure and mechanical integrity. 

Figures 3a-b show the porous structure of the -PGA hydrogel, which exhibits irregularly shaped 

pores with diameter typically comprised between 2 and 12 µm (Figure 3b). A similar structure is 

observed for PEDOT/γ-PGA (Figures 3c-d), even though in this case aggregates of PEDOT 
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microparticles dispersed into the biopolymeric matrix are observed (Figure 3d). The dispersion of 

the PEDOT particles in biopolymeric matrix is reflected in the cross section SEM images of 

PEDOT/γ-PGA (Figures 3e-f), which prove that such particles are not only located at the surface 

of the -PGA hydrogel but also embedded inside. 

 After electrochemical analyses, which were performed in water with 0.1 M of LiClO4 as 

supporting electrolyte, the surface morphology of both -PGA and PEDOT/γ-PGA electrodes 

experienced significant changes (Figures 3g and 3h, respectively). More specifically, the porous 

hydrogel matrix transforms into a closed structure, while PEDOT particles becomes more 

compact. These morphological alterations are due to the effects of voltammetric processes on the 

-PGA and PEDOT chains. More specifically, fast rearrangements of the -PGA chains after the 

ions transport are possible because of the chemical nature of the crosslinked polymer network. 

Thus, cystamine offers relatively flexible crosslinks due to the presence of a bridge with four 

methylene units, providing mobility to the -PGA chains. It should be noted that chain 

rearrangements are necessary to obtain both a high diffusion rate of the water molecules and a 

good distribution of the ions inside the matrix. Besides, electrostatic repulsions among the 

carboxylate groups in the dehydrated structures used for SEM analyses are expected to be 

significantly mitigated by the presence of Li
+
 ions inside the matrix, which chelate with such 

negatively charges groups.
48

 In addition, for the PEDOT/-PGA electrode, at potentials higher 

than the oxidation potential of the CP, the repulsive forces between emerging positive charges on 

closer PEDOT chains (i.e. formed polarons) induce conformational movements that generate free 

volume, facilitating the entrance of counterions and solvent molecules from the solution. In 

opposition, during the voltammetric reduction, the CP polymer shrinks since counterions and 
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solvent molecules are expelled towards the solution and the structure becomes closed (i.e. 

interchain distances are shorter than counterion diameters). The influence of the voltammetric 

oxidation and reduction on PEDOT was studied in detail by Otero and co-workers.
49

 

 Figure 4 compares SEM micrographs of -PGA after electropolymerization of PHMeDOT 

during 6 min (Figure 4a), denoted [γ-PGA]PHMeDOT(= 6 min), and [PEDOT/γ-

PGA]PHMeDOT considering electropolymerization times of = 6 min and 7 hours (Figures 4b 

and 4c, respectively). In absence of PEDOT particles, at low electropolymerization time, no 

evidence of PHMeDOT is detected on the surface of -PGA, the morphology of [γ-

PGA]PHMeDOT(= 6 min) (Figure 4a) being practically identical to that obtained for pure γ-

PGA after apply a voltammetric cycle (Figure 3g). In contrast, the surface of [PEDOT/γ-

PGA]PHMeDOT(= 6 min) is covered by a layer (Figure 4b), which has been attributed to 

PHMeDOT. Moreover, PEDOT particles are surrounded by ramifications. This feature indicates 

that the electropolymerization of PHMeDOT starts at the CP particles, corroborating the role of 

PEDOT particles as nuclei for the electropolymerization process. However, the morphology of 

PHMeDOT experiences drastic changes when the electropolymerization time increases to = 7 h. 

More specifically, Figure 4c displays a quite uniform and well-distributed 3D microstructure that 

densely covers the -PGA surface. As observed, apparently such microstructure results from the 

assembly of lamellar architectures, suggesting that PHMeDOT organizes according to a folded-

chain model.
50

 Moreover, SEM cross section images (Figure 4d) demonstrate that the conductive 

PHMeDOT networks extends inside the hydrogel matrix. 

 Representative 3D topographic and 2D phase AFM images of [PEDOT/γ-

PGA]PHMeDOT(= 7 h), which are displayed in Figures 4e and 4f, respectively, are fully 
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consistent with the conclusions extracted from SEM micrographs (Figure 4c). Moreover, AFM 

images indicate that the observed 3D microstructure presents a very high roughness with Rq= 783 

nm. Besides, EDX analyses from the sample displayed in Figure 4c confirm the presence of 

PHMeDOT, as is evidenced by the well-defined sulfur peak (Figure 4g). 

 

 Chemical characterization, thermal stability and swelling  

 Figure 5a shows the FTIR spectra of γ-PGA, PEDOT/γ-PGA and [PEDOT/γ-

PGA]PHMeDOT(= 6 min and 7 h). The typical absorption bands of the γ-PGA hydrogel, as 

identified by Pérez-Madrigal et al.,
25

 are detected for all samples. The success of the cross-

linking process was proved by comparing with the FTIR spectrum of the biopolymer acquired 

before the reaction with the cystamine (not shown). Thus, the formation of –CONH– bonds due 

to the reaction between the biopolymer and the cross-linker was evidenced by the disappearance 

of the free carboxylic acid (1718 cm
-1

) and asymmetric COO
–
 bands (1595 cm

-1
), and by the 

enhancement of the amide I (1621 cm
-1

) and amide II (1530 cm
-1

), as compared with non-

crosslinked γ-PGA.  

 Besides, the presence of PEDOT particles in PEDOT/γ-PGA is disclosed by the appearance 

of the C–O–C stretching vibration (1090 cm
-1

) and ethylendioxy stretching (1180 cm
-1

) bands. 

Electropolymerization of PHMeDOT results in the enhancement of such peaks. Further, the 

broad peak at around 3298 cm
-1

, which is due to the overlap of N–H and O–H stretching 

vibrations from -PGA, experiences a shift towards 3258 cm
-1

 for the [PEDOT/γ-

PGA]PHMeDOT(= 7 h) sample. Both the blue shift and the narrowing of such peak have been 

attributed to the high amount of hydroxyl groups arising from PHMeDOT. Moreover, peaks at 
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1530, 1575 and 1729 cm
-1

, which appear using = 7 h, have been associated to enhanced 

oxidation processes. 

 Furthermore, Raman spectra and microscopy images were taken from the cross section of 

transversely cut PEDOT/-PGA and [PEDOT/-PGA]PHMeDOT(= 7 h) samples using confocal 

Raman microscope. Spectra were taken inside the areas marked in images displayed in Figures 5b 

and 5c. As it can be seen, black spots ascribable to the PEDOT particles are clearly identified in 

Figure 5b, whereas these spots are much less evident in Figure 5c due to the great amount of 

PHMeDOT covering PEDOT particles.  

 The spectra reported in Figure 5d exhibit the characteristics peaks of PEDOT: 983 cm
-1

 

(vibration mode of the thiophene C–S bond), 1085 cm
-1

 (stretching of the ethylendioxy group), 

1255 cm
-1

 (C–C inter-ring stretching), 1365 cm
-1

 (C–C stretching), 1430 cm
-1

 (C=C symmetrical 

stretching) and 1485 cm
-1

 (C=C asymmetrical stretching). In presence of PHMeDOT, the peaks 

at 1430 and 1485 cm
-1

 shift to 1433 and 1496 cm
-1

, respectively, and, in addition, the intensity of 

the latter experiences a significant increment. However, the most important feature is the 

appearance of two new peaks at 2878 and 2960 cm
-1

, which have been associated to the exocyclic 

hydroxyl group. Therefore, we conclude that both the loaded PEDOT particles and the 

PHMeDOT electropolymerized on PEDOT/-PGA are well and homogenously distributed inside 

the hydrogel matrix.  

 The thermal stability is an essential parameter for the potential application of conducting 

polymers. Unfortunately, the decomposition temperature of these materials is usually low, as is 

reflected in the literature.
51-53 

Figure 6, which compares the thermogravimetric curves for -PGA, 

PEDOT/-PGA and [PEDOT/-PGA]PHMeDOT(= 7 h), shows a small weight loss (i.e. 10 %) 
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at about 100 °C for -PGA and PEDOT/-PGA. This loss corresponds to the evaporation of 

absorbed traces of water. A similar weight loss is detected for [PEDOT/-PGA]PHMeDOT(= 7 

h) although the evaporation process takes place in a wider temperature interval (i.e. the DTGA 

peak moves to 122 ºC), suggesting that the hydrogel network becomes more compact as expected 

from the performed polymerization.  

 Figure 6 also indicates that the thermal degradation process is roughly similar for the three 

samples taking into account that the predominant decomposition step took place around 275 ºC. 

However, detailed analyses reveal some important differences among the three samples. Thus, -

PGA shows a multistep degradation that could be justified by the complex molecular architecture 

that involves different units (e.g. -PGA and the cystamine crosslinker) and also to a non-highly 

homogeneous matrix. The degradation process becomes more complex for PEDOT/-PGA in the 

240-327 ºC interval as evidenced by the higher number of peaks surrounding the one associated 

to the maximal decomposition. This feature suggests a hindered diffusion of degradation products 

caused by the presence of PEDOT particles. Small shoulders at 225 ºC and 350 ºC could also be 

detected in the DTGA curve as well as a peak at 585 ºC. Interestingly, analysis of the DTGA 

curve obtained for [PEDOT/-PGA]PHMeDOT(= 7 h) indicates that the polymerization of 

PHMeDOT inside the hydrogel matrix gives rise to a highly uniform matrix that causes a similar 

diffusion of degraded molecules and therefore a single predominant peak. Shoulders detected in 

the PEDOT/-PGA sample are logically still observed as well as a high temperature peak at 582 

ºC. 

 The swelling behavior of the different systems, which was determined by gravimetric 

measurements, is displayed in Table 1. As it can be seen, the swelling ratio of the hydrogels 
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increases with the content of CP, growing from SR= 54% for the pristine -PGA hydrogel to SR= 

289% [PEDOT/-PGA]PHMeDOT(= 7 h). This effect has been attributed to the hydrophilicity 

of PEDOT and, specially, of PHMeDOT. 

 

 Electrochemical properties  

 The electroactivity, specific capacitance (SC) and electrochemical stability of the prepared 

electrodes were determined by CVs in water with 0.1 M LiClO4. Figure 7a compares the control 

voltammograms recorded for -PGA, PEDOT/-PGA and [PEDOT/-PGA]PHMeDOT(= 6 min 

and 7 h). The response of the -PGA hydrogel is more pronounced than that expected for a 

dielectric. However, previous studies devoted to investigate the electrochemical response of 

nanomembranes prepared by spin-coating mixtures of polythiophene and insulating 

thermoplastics,
54,55

 proved the electrochemical response of control nanomembranes made with 

the latter. In spite of this, voltammograms recorded for insulating thermoplastics did not show 

well-defined oxidation and reduction peaks in water with LiClO4, which was consistent with the 

formation of charged species at unspecific positions.
54,55

 This represents a significant difference 

with respect to the voltammogram obtained for the -PGA hydrogel (Figure 7a). In this case, the 

oxidation peaks with anodic peak potentials of –0.2 and 0.7 V have been attributed to the 

formation of irreversible polarons and bipolarons, respectively, at preferred positions. 

Furthermore, the cathodic scan shows a reduction peak with cathodic peak potential of 0.08 V, 

which has been attributed to the electrochemical reduction of the amide bond to secondary amine 

(i.e. electrochemical deoxygenation process).
56

 On the other hand, the electrochemical activity of 

the -PGA hydrogel is higher than that observed for insulating thermoplastics.
54,55

 This has been 
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attributed to the pores (Figure 3) formed by cross-linked polymer chains, which facilitate 

considerably the access of the electrolyte ions to the surface of the steel substrate.  

 On the other hand, the electrochemical response obtained for PEDOT/-PGA and [PEDOT/-

PGA]PHMeDOT(= 6 min) is apparently similar to that observed for the pristine hydrogel 

(Figure 7a, inset). Thus, the incorporation of CP inside the dielectric hydrogel matrix does not 

cause an increment in the electrochemical activity, even though the oxidation and reduction of 

PEDOT and PHMeDOT are typically detected.
37

 The first oxidation peak of chains occurs at 0.5 

V, while the second peak overlaps with the oxidation potential of the medium. In addition, two 

reduction peaks are detected in the cathodic scans, indicating the presence of redox pairs in the 

recorded potential range. These redox processes, which are clearly identified for both PEDOT/-

PGA and [PEDOT/-PGA]PHMeDOT(= 6 min), should be attributed to the formation of 

polarons in the CP chains.  

 The electroactivities, which were quantified as the voltammetric stored charge per surface 

unit (Q), and the areal specific capacitances (SC, Eqn 1) of -PGA, PEDOT/-PGA and 

[PEDOT/-PGA]PHMeDOT(= 6 min), are listed in Table 1. Consistently with the 

voltammograms displayed in Figure 7a, the electrochemical properties of the three systems were 

lower than those typically obtained for CPs.
53,57

 More specifically, the values of Q and SC 

determined for PEDOT films prepared using identical experimental conditions are 4.25·10
-2

 

C/cm
2
 and 27 mF/cm

2
, respectively.

 

 Enlargement of the PHMeDOT polymerization time from = 6 min to t= 7 h causes a 

remarkable improvement of the electrochemical properties, which is reflected by the gain in both 

the cathodic and anodic areas of the recorded voltammogram (Figure 7a). The electroactivity is 
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one order of magnitude higher for [PEDOT/-PGA]PHMeDOT(= 7 h) than for the other three 

systems (Table 1). The well-defined oxidation peak, with anodic peak potencial Ep
a
 1.35 V and 

the reduction shoulder, with cathodic peak potential Ep
c
=  -0.02 V, are consistent with the very 

high content of PHMeDOT at the electrode and reflect a remarkable redox charge storage 

capacity. The SC of [PEDOT/-PGA]PHMeDOT(= 7 h), 45.4 mF/cm
2
, is almost 20 times 

higher than the areal capacitance of PEDOT/-PGA (2.3 mF/cm
2
), and several times higher than 

those recently reported for other flexible PEDOT-based organic electrodes, as for example: four-

layered PEDOT:poly(styrene sulfonate) (PSS) films (4.7 mF/cm
2
),

58
 graphene oxide/PEDOT and 

reduced graphene oxide/PEDOT composites electropolymerized onto flexible substrates (16 and 

25 mF/cm
2
, respectively),

59
 and PEDOT electrochemically deposited on PEDOT:PSS/cellulose 

substrates (from 11 to 32 mF/cm
2
).

60
 Moreover, the SC of [PEDOT/-PGA]PHMeDOT(= 7 h) 

experienced a slight increment after a few consecutive oxidation-reduction cycles (i.e. from 45.4 

to 46.1 mF/cm
2
 after ten cycles), suggesting that such electrochemical processes induce small 

structural rearrangements that favor the interactions between different chemical components. This 

synergistic interaction was not observed for PEDOT/-PGA and [PEDOT/-PGA]PHMeDOT(= 

6 min). 

 The lifetime stability of [PEDOT/-PGA]PHMeDOT(= 7 h) was examined by submitting 

this electrode to one-thousand consecutive GCD cycles from -0.50 to 0.40 V at a current of 0.1 

mA (Figures 7b). GCD curves exhibited slight distortions with somewhat non-symmetrical 

curves since the discharge time was imposed to be lower than the charge time. The areal SC of 

the PEDOT/-PGA]PHMeDOT(= 7 h) electrode, as derived from Eqn 3 (47.2 mF/cm
2
), showed 

an outstanding retention of 87.5% after 1000 cycles (41.3 mF/cm
2
). Besides, the mechanical 
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characteristics of the [PEDOT/-PGA]PHMeDOT(= 7 h) electrode remains practically unaltered 

after multiple charge-discharge cycles. This is demonstrated in Figure 7c, which shows the 

robustness and compression behavior of the electrode after the 1000 GCD cycles. Specifically, 

the electrode can be compressed by more than 50% without signs of damages. 

 

 Practical applications: Conductivity changes under stretching and powering a LED bulb 

 The [PEDOT/-PGA]PHMeDOT(= 7 h) electrode retains the flexibility and compression 

behavior of the -PGA hydrogel. In recent years the importance of organic flexible and 

stretchable electrodes has been reviewed different authors.
61-64

 Important advances have been 

also described for PEDOT-based electrodes. For example, Cheng et al.
65

 reported flexible 

transparent electrodes with very good electrochemical and optoelectronic performance by 

combining Ag grids with PEDOT:poly(styrene sulfonate) (PSS) layers on polyethylene 

terephthalate substrates using an inkjet printing methodology. The electromechanical properties 

of these electrodes were superior to those achieved for flexible electrodes constructed embedding 

Ag nanowires into poly(dimethylsiloxane).
68 

Kurungot and co-workers
66

 prepared highly 

conducting and robust PEDOT-paper electrodes using a surfactant-free interfacial polymerization 

at the interface of two immiscible liquids. This procedure resulted in flexible PEDOT films with 

highly ordered polymer chains and enhanced doping level. Liu et al. obtained highly flexible, 

bendable and conductive graphene-PEDOT:PSS films using a simple bar-coating method. The 

assembled device using rGO-PEDOT/PSS electrode could be bent and rolled up without any 

decrease in electrochemical performance.
67
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 Measurements of conductivity changes have been made in flexible [PEDOT/-

PGA]PHMeDOT(= 7 h) electrode when subjected to a uniaxial strain of up to 10% (Figure 8a). 

For this purpose, the prepared specimens, which consisted of rectangular sheets of 30 mm 

(length)  5 mm (width)  0.8 mm (thickness), were stretched at a rate of 2 mm / min. Figure 8b 

displays the change in resistance under tensile deformation. Although the conductivity decreases 

linearly with increasing uniaxial strain, changes are relatively small (37% for the maximum 

tensile deformation). These results indicate that embedded CP regions remain relatively 

associated among them and, therefore, the electrode’s electrical properties experience relatively 

small variations. Unfortunately, the situation changes when the uniaxial strain is  15%. In that 

case, the electrical resistivity increases drastically, indicating the irreversible dissociation of 

conductive regions inside the hydrogel. This should not be attributed to the rupture of the 

hydrogel but to the very poor mechanical properties of PHMeDOT and PEDOT particles, which 

are not able to follow the elastic movements of -PGA chains without damage.  

 Finally, the [PEDOT/-PGA]PHMeDOT(= 7 h) electrode displayed in Figure 8c was used 

in a simple demonstration of an energy harvesting system by powering a red LED bulb. For this 

purpose, a Teflon holder with a stainless steel (AISI 304) disk was assembled with the 

[PEDOT/-PGA]PHMeDOT(= 7 h) electrode, as is illustrated in Figure 8d. The assembled 

system was charged by coupling a power supply of 24 V and a resistance of 20 kΩ (Figure 8e). 

Such two elements were retired after complete the recharge, employing about 60 s. As the voltage 

required to power a LED bulb is about 1.5 V, the system was connected in series (Figure 8f) with 

the LED bulb to get an open circuit voltage of 2.2 V. The LED bulb was powered during 

intervals of time of ~125 s, the discharge through the powering of the red LED being displayed in 
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Figure 8g. This result corroborates that the [PEDOT/-PGA]PHMeDOT electrode composite is 

able to supply enough current instantaneously, evidencing its applicability in flexible energy-

harvesting systems (this work is currently in progress).  

 

Conclusions 

 Highly flexible and lightweight free-standing electrodes have been synthesized by 

functionalizing -PGA hydrogels with PEDOT particles, which were subsequently used as 

polymerization nuclei for the anodic polymerization of PHMeDOT. The -PGA hydrogel 

provides a support with consistency, robustness and open internal structure, which is crucial to 

permit the ion diffusion process. PEDOT particles play a key role in the electropolymerization of 

HMeDOT monomer, favoring the homogeneous distribution of PHMeDOT chains across the 

hydrogel. The resulting [PEDOT/-PGA]PHMeDOT(= 7 h) composite presents a great potential 

in supercapacitors with specific capacitance hitting 45-47 mF/cm
2
, as obtained by CV and GCD, 

and excellent cycle durability. The effectiveness of this electrode has been proved through a 

simple application based on power a red LED. The as-made [PEDOT/-PGA]PHMeDOT(= 7 h) 

electrodes can be potentially used in various fields, as for example textiles (e.g. wearable 

electronics) and biomedic, where robustness and flexibility is required.  
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CAPTIONS TO FIGURES 

Figure 1. (a) Variation of the average diameter of PEDOT particles (DPEDOT) against the 

sonication time (tson) as revealed by DSL measurements in 0.5 M NaHCO3. Both the average and 

the standard deviation for each tson were calculated using the registered population vs. diameter 

distribution profile. Optical images of (b) the unloaded -PGA and (c) the PEDOT/-PGA 

hydrogels. (d) Optical images illustrating the consistency and compression behavior of PEDOT/-

PGA. 

Figure 2. (a) Chronoamperograms recorded in 0.1 M LiClO4 aqueous solution for unloaded -

PGA, unloaded -PGA with 10 mM of HMeDOT monomer, and PEDOT/-PGA with 10 mM of 

EDOT-OH monomer. (b) Cottrell plots for unloaded -PGA and PEDOT/-PGA with 10 mM of 

HMeDOT monomer. 

Figure 3. SEM micrographs of (a, b, e) unloaded -PGA and (c, d, e, f, h) PEDOT/-PGA 

hydrogels. Images (e, f) correspond to the cross section of the PEDOT/-PGA hydrogel. Images 

before (a-f) and after (g, h) analysis by CV in acetonitrile with 0.1 M of LiClO4 are displayed. 

Additionally, (b), (d) and (f) display high magnification images of (a), (c) and (e), respectively. 

Figure 4. Surface SEM micrographs of (a) [γ-PGA]PHMeDOT(= 6 min), (b) [PEDOT/γ-

PGA]PHMeDOT(= 6 min), and (c) [PEDOT/γ-PGA]PHMeDOT(= 7 h). (d) Cross section 

SEM image of [PEDOT/γ-PGA]PHMeDOT(= 7 h). (e) 3D topographic and (f) 2D phase AFM 

images of [PEDOT/γ-PGA]PHMeDOT(= 7 h). (g) EDX analysis of the sample displayed in (c). 

Figure 5. (a) FTIR spectra for pure -PGA, PEDOT/-PGA, and [PEDOT/-PGA]PHMeDOT(= 

6 min and 7 h). Images obtained using a confocal Raman microscope for (b) PEDOT/-PGA and 



38 
 

(c) [PEDOT/-PGA]PHMeDOT(= 7 h). White squares define the areas used to record de Raman 

spectra. (d) Raman spectra of PEDOT/-PGA and [PEDOT/-PGA]PHMeDOT(= 7 h). 

Excitation wavelength: 785 nm. 

Figure 6. Thermogravimetric (solid lines) and derivative thermogravimetric curves (dashed 

lines) for -PGA, PEDOT/-PGA and [PEDOT/-PGA]PHMeDOT(= 7 h). Details of the region 

associated to the main decomposition process are provided in the inset.  

Figure 7. (a) Control voltammograms (2
nd

 cycle) for -PGA, PEDOT/-PGA, [PEDOT/γ-

PGA]PHMeDOT(= 6 min) and [PEDOT/γ-PGA]PHMeDOT(= 7 h). Initial and final potential: 

-0.50; reversal potential: 1.10 V; scan rate of 100 mV/s. (b) Galvanostatic charge-discharge 

(GCD) curves recorded at 0.1 mA (charging and discharging times of 30 seconds) for [PEDOT/γ-

PGA]PHMeDOT(= 7 h). The second cycle is displayed at the right. (c) Photographs reflecting 

the mechanical robustness and compression behavior of [PEDOT/γ-PGA]PHMeDOT(= 7 h) 

after 1000 GCD cycles. 

Figure 8. (a) Photographs showing the electrical conductivity measurement under stretching 

conditions of the flexible [PEDOT/γ-PGA]PHMeDOT(= 7 h) electrode. (b) Variation of the 

electrical conductivity with the strain for flexible [PEDOT/γ-PGA]PHMeDOT(= 7 h) 

electrodes. Error bars display standard deviations calculated considering five independent 

samples. (c) Flexible [PEDOT/γ-PGA]PHMeDOT(= 7 h) electrode used power the LED bulb. 

(d) Energy harvesting system constructed using a Teflon holder with a stainless steel (AISI 304) 

disk and the [PEDOT/-PGA]PHMeDOT(= 7 h) electrode. Schematic diagram of the circuits 

used to (e) charge and to (f) power the LED using the energy-harvesting device displayed in (d). 

(g) Photographs of the device used to power the LED bulb.   
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Table 1. Properties of the studied systems: Swelling ratio (SR), voltammetric stored charge per 

surface unit (Q), and the areal specific capacitance (SC) as determined by cyclic voltammetry. 

 

System SR (%) Q (C/cm
2
) SC (mF/cm

2
) 

-PGA 54 8.298·10
-3 

2.40.3 

PEDOT/-PGA 115 7.277·10
-3 

2.60.4 

[PEDOT/-PGA]PHMeDOT(= 6 min) 206 7.981·10
-3 

2.70.5 

[PEDOT/-PGA]PHMeDOT (= 7 h) 289 0.1454 45.40.7 
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