INTRODUCTION

The San José deposit is one of the most important in the Oruro District. It is located in the Oruro town (Bolivia) and is operated by artisanal mining. San José belongs to the Central Andean tin belt and is related to an intrusive porphyry body, concurrent with the San Pablo stock, of the Morococala formation, which is hosted in a meta-sedimentary sequence of Silurian age.

The present work is focused in mineral characterization, paragenesis and in content from the minerals of the San José deposit.

RESULTS and discussion

Mineralogy

Ore mineralization occurs as veins and hydrothermal breccias around the San José and Ilos stocks. Veins are filled with quartz and an ore assemblage of cassiterite, galena, pyrite, sulfosaltas, Ag and In-bearing sulfides.

Preliminary microprobe analyses indicate that In values of 3 wt.% are common, especially in members of stannite group. Sphalerite has up to 12.4 wt.% Fe and 1.94 wt.% of Cd and 0.8 wt.% In. In contents inversely correlates with the Fe contents. In cassiterite In occasionally reach up to 0.99 wt.%, but the most common contents are 0.10-0.20 wt.%.

Paragenetic sequence

Three stages are distinguished: early, hydrothermal and supergene alteration.

Conclusions

In this study several mineral phases that have not been reported in the San Jose deposit until now were identified. Some of these minerals, especially stannite group, show significant In contents.

GEOLOGICAL SETTING

The San José deposit is one of the most important in the Oruro District. It is located in the Oruro town (Bolivia) and belong to the Central Andean tin belt. The San José deposit is related to an intrusive porphyry body, concurrent with the San Pablo stock, of the Morococala formation, which is hosted in a meta-sedimentary sequence of Silurian age.

METHODOLOGY

Minerals were observed by scanning electron microscopy (SEM). Electron microprobe analyses were carried out in order to determine the mineral chemistry of the minerals.

Stannite occurs in significant amounts; crystals are small, up to 25 µm, and in most cases are found filling cavities or following cleavage in hosted minerals as galena, sphalerite and pyrite. Likewise, sulfosaltas as boulangerite, jamesonite, pyrargyrite, andorite, cylinder, argentite, berndtite, ramhodotite, terrywallacite and greenockite are abundant in porosity and fractures.

Alteration is abundant, mainly kaolinitization. In this stage disseminations of small crystals, which include monazite and alunite group minerals.