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ABSTRACT	13	

The	use	of	 functional	 fillers	 can	be	advantageous	 in	 terms	of	 cost	 reduction	and	 improved	14	

properties	in	plastics.	There	are	many	types	of	fillers	used	in	industry,	organic	and	inorganic,	15	

with	a	wide	application	area.	As	a	 response	 to	 the	growing	concerns	about	environmental	16	

damage	that	plastics	cause,	recently	fillers	have	started	to	be	considered	as	a	way	to	reduce	17	

it	 by	 decreasing	 the	 need	 for	 petrochemical	 resources.	 Life	 cycle	 assessment	 (LCA)	 is	18	

identified	 as	 a	 proper	 tool	 to	 evaluate	 potential	 environmental	 impacts	 of	 products	 or	19	

systems.	 Therefore,	 in	 this	 study,	 the	 literature	 regarding	 LCA	 of	 plastics	 with	 functional	20	

fillers	was	reviewed	in	order	to	see	if	the	use	of	fillers	 in	plastics	could	be	environmentally	21	

helpful.	 It	 was	 interesting	 to	 find	 out	 that	 environmental	 impacts	 of	 functional	 fillers	 in	22	

plastics	had	not	been	studied	too	often,	especially	in	the	case	of	inorganic	fillers.	Therefore,	23	

a	gap	in	the	literature	was	identified	for	the	future	works.	Results	of	the	study	showed	that,	24	

although	there	were	not	many	and	some	differences	exist	among	the	LCA	studies,	the	use	of	25	

fillers	in	plastics	industry	may	help	to	reduce	environmental	emissions.	In	addition,	how	LCA	26	

methodology	was	applied	to	these	materials	was	also	investigated.		27	
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1. INTRODUCTION 29	

1.1. Plastics with fillers 30	

Because	of	their	optimal	cost	and	high	performance,	thermoplastics	have	been	used	in	many	31	

different	kinds	of	applications	during	the	last	few	decades;	and	they	have	been	even	replacing	32	

other	 conventional	 materials	 like	 glass,	 metal,	 and	 wood	 (DeArmitt,	 2011).	 Because	 of	 the	33	

increasing	 demand	 for	 thermoplastics,	 people	 started	 to	 look	 for	ways	 to	 reduce	 their	 cost.	34	

That	was	 the	 initial	 reason	 behind	 the	 introduction	 of	 fillers	 to	 plastics.	 Primarily,	 the	 term	35	

“fillers”	 corresponded	 to	 cheap	 diluents	 introduced	 into	 plastics	 to	 reduce	 the	 overall	 cost.	36	

However,	they	were	found	to	be	more	than	this.	Recently,	the	term	“functional	fillers”	is	used,	37	

because	 they	can	provide	other	properties	 in	addition	 to	cost	 reduction	 (Rothon,	2001).	The	38	

addition	 of	 fillers	 creates	 multiphase	 systems	 composed	 of	 micro/macrostructures	 giving	39	

characteristics	to	the	material	(DeArmitt,	2011).	Improvement	in	processing,	density,	thermal	40	

expansion,	 thermal	 conductivity,	 flame	 retardancy,	 optical	 changes,	 electrical	 and	 magnetic	41	

properties,	 and	mechanical	 properties	 like	 stiffness	 are	 examples	 of	 properties	 that	 can	 be	42	

changed	through	the	addition	of	functional	fillers	to	plastics	(DeArmitt,	2011;	Rothon,	2001).	43	

In	2003,	the	global	demand	for	fillers	 in	plastics	 industry	was	predicted	to	be	15	million	tons	44	

and	 their	main	markets	were	 transportation	 and	 construction,	 later	 consumer	 products	 like	45	

furniture,	 industry	 and	machinery,	 electrical	 appliances	 and	 electronics,	 and	 packaging	were	46	

also	 important	markets	 (Xanthos,	 2010).	 In	2015,	 the	global	polymer	 filler	market	was	more	47	

than	USD	45	billion	(Grand	View	Research,	2016).	According	to	DeArmitt	(2011),	carbon	black,	48	

CaCO3,	 silica,	 Al(OH)3,	 talc	 and	 kaolin	 are	 the	 major	 fillers	 contributing	 to	 a	 multi-billion	49	

euro/year	market.	Recently,	an	increased	interest	in	environmental	protection	has	led	to	using	50	

fillers	 to	 reduce	 environmental	 impacts	 of	 products	 by	 replacing	 petrochemical	 materials	51	

(Murphy,	2001).	52	
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Any	 particulate	material	 added	 to	 plastics	would	 serve	 as	 a	 filler	 (DeArmitt,	 2011).	 Polymer	53	

composites	with	fillers	are	defined	as	mixtures	of	polymers	with	inorganic	or	organic	additives	54	

with	certain	geometries;	thus,	consist	of	two	or	more	components	and	phases	(Xanthos,	2010).	55	

In	 this	paper,	 in	 addition	 to	polymer	 composites,	 polymer	 systems	which	 are	 the	mixture	of	56	

polymer	 and	 additives	 will	 be	 subject	 to	 research.	 This	 kind	 of	 mixtures	 is	 referred	 as	57	

compounds.		58	

Fillers	can	be	grouped	into	two	main	categories:	inorganic	or	organic	ones.	Then,	they	can	be	59	

even	 further	 subdivided	based	on	 their	 chemical	 family	 as	 shown	 in	 Table	1,	which	 includes	60	

some	 commonly	 known	 examples	 as	 well.	 According	 to	 the	 market	 research	 performed,	 in	61	

2015	 inorganic	 fillers	 were	 found	 to	 lead	 the	 filler	 market	 with	 78.9%	 share	 (Grand	 View	62	

Research,	2016).		63	

Table	1:	Chemical	grouping	of	fillers	(Xanthos,	2010)	64	

Groups	 Examples	
Inorganics	 	
Oxides	 Glass,	SiO2,	ZnO,	Al2O3,	Sb2O3	and	MgO	
Hydroxides	 Mg(OH)2	and	Al(OH)3		
Salts		 CaCO3,	CaSO4,	BaSO4,	hydrotalcite	and	phosphates	
Silicates	 Talc,	kaolin,	mica,	montmorillonite,	wollastonite,	asbestos	and	

feldspar	
Metals	 Steel	and	boron	
Organics	 	
Carbon,	graphite	 Carbon	fibers	and	nanotubes,	carbon	black,	graphite	fibers	and	flakes	
Natural	polymers	 Cellulose	and	wood	fibers,	starch,	cotton,	sisal	and	flax,	
Synthetic	polymers	 Polyester,	aramid,	polyamide	and	polyvinyl	alcohol	fibers	

Ground	calcium	carbonate	(GCC)	is	easily	found	on	earth,	mostly	in	the	form	of	limestone	and	65	

chalk,	which	are	formed	from	fossils	 (Maier	and	Calafut,	1998).	With	a	market	share	of	34%,	66	

GCC	 is	 the	 most	 commonly	 used	 inorganic	 filler	 in	 plastics	 because	 it	 is	 a	 common	 and	67	

inexpensive	 material	 with	 superior	 functions	 like	 increasing	 stiffness,	 impact	 strength	 and	68	

flexural	modulus	of	the	plastic	to	which	it	is	added.	The	demand	is	even	expected	to	increase	69	

by	 2.7%	 between	 2015	 and	 2023	 (Ceresana,	 2016).	 Hydrated	magnesium	 silicate,	 known	 as	70	

talc,	provides	better	rigidity	and	impact	strength	to	plastics,	especially	to	polypropylene	(PP),	71	
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when	 it	 is	added.	Thanks	 to	 the	advanced	milling	 technology,	higher	purity	provides	 thermal	72	

stability;	 therefore,	 it	 is	 a	 good	 choice	 to	 use	 in	 packaging	 (Murphy,	 2001).	 Among	 other	73	

inorganic	 fillers,	 silicates	 like	 mica,	 kaolin,	 and	 wollastonite	 can	 modify	 some	 mechanical	74	

properties	of	plastics.	For	example,	the	use	of	kaolin	(mainly	from	kaolinite	origin)	 in	plastics	75	

has	increased	due	to	its	coupling	characteristics	(Xanthos,	2010).		76	

On	 the	 other	 hand,	 the	 mostly	 used	 fibrous	 fillers	 are	 glass	 fiber	 (GF)	 and,	 more	 recently,	77	

natural	fibers	(NFs).	Fibrous	fillers	can	be	used	to	change	mechanical	properties,	electrical	and	78	

magnetic	 properties	 of	 composites	 (Xanthos,	 2010).	 In	 fiber-reinforced	 composites,	 the	79	

mechanical	behavior	depends	on	the	type	of	fiber	and	on	the	fiber/matrix	bonding	interface.	80	

However,	 the	 higher	 cost	 of	 fibers	 can	 be	 a	 limiting	 factor	 to	 use	 them	 (Sathishkumar	 and	81	

Naveen,	2014).		82	

With	 the	 increased	 interest	 in	 environment	 and	 sustainability,	 bio-composites	 have	 been	83	

developed	significantly	in	the	last	century	(Faruk	et	al.,	2012).	Plastics	reinforced	with	NFs	like	84	

sisal,	 flax,	 jute,	 and	 wood-fibers	 have	 become	more	 and	more	 popular	 (Xu	 et	 al.,	 2008).	 In	85	

addition	 to	 their	 biodegradability	 and/or	 renewable	 nature,	 they	 also	 offer	 low	 cost,	 low	86	

relative	density	and	high	specific	strength	(Faruk	et	al.,	2012).	They	are	even	considered	as	the	87	

oldest	 fillers	 added	 to	 plastic	 composites	 (Zah	 et	 al.,	 2007).	 They	 have	 gained	 importance	88	

during	 the	 last	 years,	 as	 the	 replacement	 of	 fibrous	 fillers	 like	 glass	 or	 carbon,	 due	 to	 their	89	

above-mentioned	properties	(Ku	et	al.,	2011;	La	Rosa	et	al.,	2013).	They	have	been	especially	90	

exploited	 by	 the	 European	 car	 manufacturers	 (Holbery	 and	 Houston,	 2006).	 In	 Table	 2,	91	

examples	of	NFs	used	as	fillers	in	plastics	are	given	classified	in	different	categories.	92	

Table	2:	NFs	as	fillers	(Bos,	2004)	93	

Natural	Fibers	 Examples	
Straw	Fibers	 Wheat,	corn,	and	rice	
Bast	 Hemp,	jute,	kenaf,	lax	
Leaf	 Sisal,	henequen,	pineapple	leaf	fibres	
Seed/fruit	 Cotton,	coir	
Grass	Fibers	 China	reed,	bamboo,	grass	
Wood	Fiber	 	
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1.2. Life cycle assessment (LCA) 94	

United	Nations	Environment	Programme	(UNEP)	defines	Life	Cycle	Assessment	(LCA)	as	a	tool	95	

used	for	evaluation	of	environmental	aspects	of	a	product	or	a	system	through	its	all	life	cycle	96	

stages	(UNEP,	2003).	The	International	Organization	for	Standardization	(ISO)	standardizes	LCA	97	

methodology	 within	 the	 series	 starting	 with	 ISO	 14040	 (2006a).	 ISO	 defines	 LCA	 as	 “a	98	

compilation	and	evaluation	of	the	inputs,	outputs	and	the	potential	environmental	impacts	of	99	

a	product	or	system	throughout	its	life	cycle”	and	puts	a	methodological	framework	for	doing	100	

this.	According	 to	 ISO	14040	 (2006a),	an	LCA	shall	be	performed	 through	 the	phases	of	goal	101	

and	scope	definition,	life	cycle	inventory	analysis	(LCI),	life	cycle	impact	assessment	(LCIA)	and	102	

interpretation	of	results.	 In	the	goal	and	scope	definition	phase,	the	product	or	service	to	be	103	

studied	is	described	and	agreed,	together	with	the	purpose	of	the	study.	Many	other	choices	104	

regarding	 modeling	 of	 the	 system	 like	 system	 boundaries,	 environmental	 impacts	 to	 be	105	

considered	and	level	of	detail	are	also	made	in	this	phase.	In	the	inventory	analysis	phase,	the	106	

flow	 model	 is	 developed,	 data	 on	 resources	 and	 emissions	 from	 the	 system	 are	 collected	107	

proportionally	to	a	functional	unit	taken	as	a	reference	(Baumann	and	Tillman,	2004).	Later,	in	108	

the	 LCIA	 phase,	 the	 environmental	 loads	 identified	 in	 the	 LCI	 are	 represented	 in	 terms	 of	109	

environmentally	relevant	impact	information.	At	the	end	of	the	LCA,	the	results	are	assessed	in	110	

order	 to	analyze	 the	quality	of	data,	assumptions,	and	 results	 to	draw	conclusions	 (life	cycle	111	

interpretation	phase).	112	

1.3. New Materials and LCA  113	

It	 is	 known	 that	most	manufacturing	 processes	 and	 products	 have	 negative	 impacts	 on	 the	114	

environment	 (Alves	 et	 al.,	 2009).	 It	 is	 very	 important	 for	 companies	 to	 be	 aware	 of	 the	115	

environmental	 impacts	 of	 their	 processes	 and	 materials	 in	 order	 to	 improve	 their	116	

environmental	 strategy	 (Cinar,	 2005).	 Materials	 normally	 have	 a	 significant	 part	 of	 the	117	

environmental	impacts	of	a	product.	Therefore	to	provide	sustainability,	special	attention	must	118	

be	 paid	 to	 choosing	 them	when	 designing	 a	 product.	 To	 this	 end,	 the	 development	 of	 new	119	
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materials	has	increased	to	comply	with	trending	sustainability	goals.	However,	does	their	use	120	

always	promise	environmental	benefits?		121	

For	 example,	 some	 trending	 NFs	 applied	 to	 plastic	 composites	 have	 recently	 become	 very	122	

common,	even	replacing	the	use	of	inorganic	fillers	like	GF	and	talc	in	automotive	or	aviation	123	

applications	 (Alves	 et	 al.,	 2010;	 Boland	 et	 al.,	 2015;	 Luz	 et	 al.,	 2010;	 Scelsi	 et	 al.,	 2011).	124	

However,	 using	 NFs	 in	 composites	 may	 not	 guarantee	 that	 the	 material	 is	 environmentally	125	

friendly.	A	thorough	LCA	of	the	resulting	composite	should	be	performed	in	order	to	decrease	126	

this	uncertainty.	To	this	end,	LCA	is	defined	as	a	useful	tool	to	assess	environmental	impacts	of	127	

newly	 developed	 materials	 throughout	 their	 life	 cycle	 (Wang	 et	 al.,	 2012;	 Xu	 et	 al.,	 2008).	128	

However,	other	more	simplified	applications	of	LCA	may	also	be	acceptable	(Bala	et	al.,	2010)	129	

and,	 even	 a	 life	 cycle	 perspective	might	 be	 useful	 when	 quantification	 is	 difficult	 (Fullana-i-130	

Palmer	et	al.,	2011;	Theng	et	al.,	2017).	131	

Sometimes,	 applying	 LCA	 to	newly	developed	materials	 can	be	 challenging,	 as	performed	by	132	

Theng	et	al.,	(2017)	for	a	fiberboard	made	from	corn	stalk	and	kraft	lignin	as	a	green	adhesive.	133	

One	could	face	some	difficulties;	especially	if	the	material	is	still	in	research	and	development	134	

or	 in	pilot	 scale.	 Lack	of	data	about	process	parameters,	materials	 formulation,	and	material	135	

properties,	etc.,	may	result	in	some	uncertainties	when	developing	the	model.	In	those	cases,	136	

a	preliminary	LCA	with	the	available	data	could	be	performed	and	to	be	developed	when	more	137	

data	is	available	(Hesser,	2015).	According	to	ISO	14044	(2006b),	“The	depth	and	the	breadth	138	

of	 LCA	 can	 differ	 considerably	 depending	 on	 the	 goal	 of	 a	 particular	 LCA”.	 For	 instance,	139	

Delgado-Aguilar	et	al.	 (2015)	mentioned	 	 in	 their	 study	on	cellulose	nanofibers	 that	 they	did	140	

not	 perform	 a	 fully-fledged	 LCA.	 But,	 only	 a	 life	 cycle	 approach	 was	 used	 to	 find	 out	 from	141	

which	stages	the	main	impacts	were	coming	from.	142	

On	the	other	hand,	plastics	have	become	a	major	concern	for	marine	pollution	and	based	on	143	

the	continuous	growth	of	the	market	the	risk	of	plastics	reaching	to	the	marine	environment	is	144	

increasing	 too	 (Law,	 2017).	 Plastics	 in	 the	 marine	 environment	 are	 persistent	 and	145	
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transportable.	The	authors	believe	that	the	use	of	fillers	in	plastics	may	contribute	positively	to	146	

plastic	marine	littering	problem	since	they	reduce	the	amount	of	petrochemical	used	and	they	147	

are	 natural.	 However,	 no	 studies	 were	 found	 in	 the	 literature	 on	 plastics	 with	 fillers	 in	 the	148	

marine	environment.	Recently,	 during	 the	 “Conferencia	 Internacional	 de	Análisis	 de	Ciclo	de	149	

Vida	 en	 Latinoamérica”	which	 took	 place	 in	Medellin,	 Colombia	 in	 June	 2017,	 The	Medellin	150	

Declaration	on	Marine	Litter	 in	LCA	was	signed	to	encourage	studies	on	LCA	methodology	to	151	

work	on	the	marine	litter	(Sonnemann	and	Valdivia,	2017).	152	

This	 paper	 aimed	 at	 identifying	 what	 has	 been	 published	 so	 far	 about	 the	 environmental	153	

impacts	 of	 plastic	 composites	 and	 compounds	with	 functional	 fillers	 and	 reviewing	 them	 to	154	

understand	if	the	use	of	fillers	tends	to	decrease	the	environmental	 impacts.	By	doing	this,	 it	155	

was	 also	 aimed	 to	 point	 out	 the	 gaps	 in	 the	 literature	 to	 put	 light	 to	 future	 research	 and	156	

provide	 life	 cycle	 approach	 to	 the	 researchers/industries	 who	 are	 working	 with	 plastic	157	

composites/compounds	 with	 fillers.	 Finally,	 we	 wanted	 to	 investigate	 how	 the	 LCA	158	

methodology	has	been	applied	to	plastic	composites.	159	

1.  METHODOLOGY 160	

In	this	study,	special	interest	was	given	to	the	environmental	impacts	of	functional	fillers	used	161	

in	 polymer	 composites/compounds;	 both	 inorganic	 and	 organic	 fillers.	 In	 the	 studies	162	

considered,	the	final	product	(polymer	composite/compound	with	filler)	and	LCA	methodology	163	

used	were	investigated.	The	following	sections	were	structured	based	on	the	final	product	and	164	

for	each	group,	LCA	studies	reviewed	were	summarized.	When	possible,	some	numeric	values	165	

were	presented	in	the	related	sections.	Global	warming	potential	(GWP)	was		chosen	as	impact	166	

indicator,	because	it	is	one	of	the	mostly	known	and	used	impact	categories	and	it	was	difficult	167	

to	 compare	 impacts	 using	 other	 impact	 categories	 due	 to	 the	 different	 methodologies	 and	168	

units	used.		169	
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In	 the	 first	 step	of	 the	 study,	 environmental	 advantages	 of	 fillers	 compared	 to	 conventional	170	

materials	(like	virgin	plastics	and	steel)	were	summarized,	by	reviewing	different	LCA	studies.	171	

In	the	second	part,	different	fillers,	which	can	be	used	instead	of	a	very	common	one	(like	GF,	172	

calcium	carbonate	or	talc)	were	compared	through	existing	LCA	studies.	 In	the	study,	19	LCA	173	

studies	comparing	different	alternative	materials	were	reviewed	in	detail.		174	

After	 collecting	 the	 related	 references	 from	 the	 literature,	 results	were	 examined	 from	 two	175	

different	perspectives.	The	first	one	was	to	identify	how	environmental	impacts	were	affected	176	

with	 the	 use	 of	 functional	 fillers	 in	 plastic	 composites,	 as	 a	 common	message	 about	 these	177	

materials	 is	 their	 supposed	 “greener”	 nature,	 and	we	wanted	 to	 confirm	 it.	 And	 the	 second	178	

one	 was	 to	 see	 how	 LCA	 was	 being	 approached	 by	 reviewing	 methodological	 issues,	 like	179	

boundary	 conditions,	 inventory	 development,	 methodologies	 for	 environmental	 impact	180	

assessment,	and	end-of-life	scenarios.	181	

2.  RESULTS AND DISCUSSION 182	

Although	plastics	with	functional	fillers	have	been	in	use	for	many	years	in	the	industry,	their	183	

environmental	impacts	have	been	seldom	investigated.	There	are	only	small	amount	of	studies	184	

available	 in	 the	 literature;	 therefore,	 in	 this	 paper,	 they	 were	 more	 deeply	 investigated	 in	185	

terms	of	both	their	goal	and	scope	and	methodological	issues.	19	LCA	studies	were	reviewed	in	186	

the	study.	However,	since	some	of	them	fall	into	different	groups	at	the	same	time,	they	were	187	

counted	 in	 two	different	groupings.	Distribution	of	 the	studies	based	on	 the	material	 type	 is	188	

presented	in	Figure	1.	Nearly	half	of	the	studies	reviewed	(43%)	was	comparing	the	use	of	NFs	189	

against	 GFs,	 followed	 by	 the	 second	 largest	 group	 of	 studies,	 which	 were	 LCA	 studies	190	

comparing	 the	 use	 of	 fillers	 against	 virgin	 plastics	 formed	 (24%).	 Following	 that,	 studies	191	

considering	the	use	of	talc	against	organic	and	inorganic	fillers	were	studied	(19%).	Finally,	the	192	

minority	 of	 LCA	 studies	 reviewed	 was	 considering	 the	 comparison	 of	 use	 of	 fillers	 against	193	

conventional	materials	like	steel	and	aluminum	(14%).		194	
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	195	

Figure	1:	Distribution	of	LCA	case	studies	reviewed	196	

Three	review	studies	regarding	plastics	with	fillers	were	found	in	the	literature	previous	to	the	197	

present	 one;	 however,	 they	were	 quite	 different	 in	 terms	of	 their	 goal	 and	 scope	 (only	 one	198	

type	 of	 filler	 or	 no	 environmental	 impact	 included).	 La	Mantia	 et	 al.	 (2011)	made	 a	 review	199	

study	 limited	 to	 polymer-based	 materials	 filled	 with	 only	 natural-organic	 fillers	 which	 are	200	

renewable	 and	 biodegradable,	 including	 some	 environmental	 sustainability	 and	 impacts	201	

information.	 Weiss	 et	 al.	 (2012)	 made	 a	 review	 onthe	 environmental	 impacts	 of	 bio-based	202	

materials	like	wood,	paper,	textile,	rubber,	insulation	materials,	and	composites	based	on	bio-203	

plastics,	which	are	actually	out	of	the	scope	of	this	study.	A	more	recent	review	was	done	by	204	

Thakur	 et	 al.	 (2014)	 regarding	 the	 use	 of	 raw	NF-based	 polymer	 composites	with	 a	 specific	205	

focus	 on	 their	 mechanical	 properties.	 Environmental	 advantages	 of	 using	 them	 were	206	

mentioned;	 however,	 not	 very	 deeply.	 To	 conclude,	 according	 to	 the	 research	 that	 was	207	

performed,	there	are	no	reviews	of	LCA	studies	of	plastics	with	functional	fillers	yet,	especially	208	

of	inorganic	ones.		209	

Fillers vs virgin 
plastics 

24% 
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materials 
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and inorganic 
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3.1. Plastics with fillers vs virgin materials (comparative LCAs) 210	

3.1.1. Fillers vs virgin plastics 211	

Although	not	many,	 there	are	some	studies	 in	 the	 literature,	 in	which	LCA	methodology	was	212	

used	 with	 the	 purpose	 of	 identifying	 how	 the	 addition	 of	 functional	 fillers	 affects	 the	213	

environmental	impacts	of	plastics	in	different	applications	(Roes	et	al.,	2007;	Vidal	et	al.,	2009;	214	

Xu	et	al.,	2008).		215	

In	one	of	them,	environmental	advantage	of	using	PP-silicate	nanocomposite	was	investigated	216	

on	 three	 different	 applications:	 PP	 based	 packaging	 film,	 PE	 based	 agricultural	 film	 and	 GF	217	

reinforced	PP	based	automotive	panels	(Roes	et	al.,	2007).	In	each	application,	some	portion	of	218	

the	base	materials	was	replaced	by	a	PP	nanocomposite,	resulting	 in	the	use	of	 less	material	219	

while	 guaranteeing	 the	 same	 functionality.	 Even	 though	 higher	 changes	 in	 environmental	220	

impacts	were	 expected,	 in	 some	 cases,	 smaller	 changes	were	 observed	 as	 it	 can	 be	 seen	 in	221	

Table	 3.	 The	 reason	 for	 smaller	 changes	 in	 the	 results	 could	 be	 because	 of	 the	 small	222	

percentages	 of	 silicates	 in	 the	 polymers	 and	 the	 uncertainties	 in	 the	 nanoclay	 production	223	

process.	According	 to	 the	authors,	 effects	of	nanoclay	production	process	must	be	 less	 than	224	

expected.	Nevertheless,	in	the	case	of	agricultural	film,	results	of	the	study	showed	some	clear	225	

environmental	 benefits	 in	 GWP	 and	 all	 other	 impact	 categories	 evaluated,	 as	 well	 as	 some	226	

economic	 advantages;	 mainly	 due	 to	 higher	 weight	 reduction	 (36.5%)	 in	 agricultural	 film	227	

application	than	the	other	applications.		228	

In	 another	 study,	 the	 changes	 in	 environmental	 impacts	 of	 virgin	 petrochemicals	 with	 the	229	

addition	of	NFs	as	fillers	were	investigated	(Vidal	et	al.,	2009).	Three	new	different	composites;	230	

PP	+	cotton	liners,	PP	+	rice	husks,	and	high	density	polyethylene	(HDPE)	+	cotton	liners	were	231	

studied	 by	 comparing	 them	 with	 the	 corresponding	 virgin	 petrochemicals;	 PP	 or	 HDPE.	232	

According	to	the	LCA	results,	composites	showed	better	environmental	impacts	in	terms	of	all	233	
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impact	categories,	except	eutrophication	 for	 the	 rice	husk	because	of	 the	 fertilizers	used	 for	234	

the	cultivation	of	rice.	Results	for	GWP	are	presented	in	Table	3	(Vidal	et	al.,	2009).		235	

Fillers	 may	 also	 be	 used	 as	 reinforcements	 to	 produce	 composites	 based	 on	 recycled	236	

thermoplastics	 with	 reduced	 environmental	 impacts.	 Al-Ma’adeed	 et	 al.	 (2011)	 studied	237	

composites	 formed	 by	 recycled	 PP	 and	 polyethylene	 (PE)	 with	 talc	 and	 GF	 to	 see	 how	 the	238	

environmental	 impacts	 change	 when	 fillers	 were	 used	 as	 reinforcement	 in	 recycled	239	

thermoplastics.	When	the	environmental	 impacts	of	 the	recycled	PP	and	PE	composites	with	240	

fillers	were	compared	with	virgin	polymers	by	using	LCA	methodology,	 it	was	concluded	that	241	

the	former	had	lower	GWP,	except	in	the	case	of	recycled	PE	with	talc.	For	example,	for	the	FU	242	

of	1	kg	of	material,	GWP	of	virgin	PP	was	estimated	around	2.1	kg	CO2	eq.,	while	it	was	around	243	

0.12	kg	CO2	eq.	for	recycled	PP.	In	addition,	talc	and	GF	were	added	to	the	recycled	PP,	and	the	244	

results	were	around	0.75	kg	CO2	eq.	and	0.09	kg	CO2	eq.,	respectively.	In	a	similar	way,	GWP	of	245	

virgin	 low	density	polyethylene	 (LDPE)	and	 recycled	LDPE	was	 found	around	2.18	and	0.6	kg	246	

CO2	eq.	And	the	results	were	around	3.55	kg	and	2.15	kg	CO2	eq.,	respectively	when	talc	and	247	

GF	were	added.	However,	it	is	important	to	note	that	those	results	were	read	from	the	graphs	248	

in	the	study,	thus	they	must	be	treated	as	approximate	values.		249	

The	 LCA	 studies	 were	 also	 reviewed	 in	 terms	 of	 the	 type	 of	 filler	 used,	 functional	 unit,	250	

boundary	 conditions,	 software	 and	 impact	 categories	 used	 for	 the	 calculation	 of	251	

environmental	 impacts,	 inventory	 development,	 end-of-life	 scenario	 and	 sensitivity	 analyses	252	

(see	Table	4).	As	 it	can	be	seen	from	the	table,	functional	unit	was	defined	usually	as	1	kg	of	253	

polymer	 or	 a	 specific	 application	 like	 film	 or	 sheet.	 Cradle-to-grave	 LCA	 studies	 including	254	

different	end-of-life	scenarios	like	landfilling	and	incineration	were	common.	GaBi	and	SimaPro	255	

were	 found	 to	 be	 commonly	 used	 (only	 one	 study	 from	 1999	 using	 Umberto	 software	was	256	

found).	 Inventory	 data	was	 collected	 from	 LCA	 databases,	 primary	 data	 from	 the	 producers	257	

(private	sector)	and	other	national	or	international	databases.	258	
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Based	on	the	studies	reviewed,	although	the	types	of	fillers	used	 in	each	case	were	different	259	

and	number	of	the	studies	considered	were	not	that	high,	it	was	observed	that	the	higher	the	260	

proportion	of	functional	fillers,	the	lower	the	environmental	impacts.;	just	in	parallel	to	what	is	261	

said	 in	 a	 study	 by	 Xu	 et	 al.	 (2008).	 They	 studied	 wood-fiber-reinforced	 PP	 composites	 for	262	

different	fiber	contents:	10%,	30%	and	50%	by	mass	(Xu	et	al.,	2008).	Results	clearly	indicated	263	

that	the	addition	of	wood	fibers	reduced	the	environmental	impacts	proportionally	due	to	the	264	

fact	 that	 an	 increasing	 amount	 of	 virgin	 petrochemicals	 used	was	 replaced	with	NFs.	 In	 the	265	

same	way,	Michaud	et	al.	(2009)	agreed	that	the	reductions	in	environmental	impacts	from	the	266	

life	cycle	of	the	product	were	parallel	to	the	amount	of	wood	fibers	added	to	the	HDPE/wood	267	

flour	composite.		268	
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Table	3:	Global	warming	potential	(GWP)	of	the	investigated	studies	269	

Reference	
Methodology	

Polymer	 GWP	(kg	CO2-eq)	
Conventional	 Nanocomposite	

(Roes	et	al.,	
2007)	

CML	2001	 PP	+	silicate	in	packaging	film	 15.9	 15.7	
PE	+	silicate	in	agricultural	film	 9242	 5642	
GF	+	PP	in	automotive	industry	 569	 570	

(Vidal	et	
al.,	2009)	

GWP	[79]	 HDPE	+	cotton	 1.88	 0.61	
PP	+	cotton	 1.99	 0.70	
PP	+	husks	 1.99	 0.71	

Table	4:	Methodological	analysis	of	LCA	studies	(Fillers	vs	virgin	plastics)	270	

Reference	 Polymer	 Functional	unit	(FU)	 System	
boundaries/S
oftware	

Impact	
assessment	

Inventory	sources	 End	of	life	 Data	 quality	
assurance	

(Al-Ma’adeed	
et	al.,	2011)	

Recycled	PP	and	
PE	filled	with	talc	
and	GF	

“1	kg	of	material”	 Cradle-to-
grave/GaBi	

CML	2001	 Ecoinvent	and	Buwal	
250	(with	some	
modifications	for	
Qatar)	

PE	and	PP	
were	
recycled	and	
in	both	cases,	
landfill	was	
assumed	to	
be	disposal	
method	

-	

(Roes	et	al.,	
2007)	

PP	packaging	film	
PE	agricultural	film	
GF	+	PP	in	
automotive	
industry	

FU	of		packaging	film:	“amount	of	
packaging	film	needed	for	1000	
bags	of	200	g	‘Fruitfante’’	
candies	produced	by	Schuttelaar	
B.V.	(Wad-	dinxsveen,	The	
Netherlands)”	
FU	of	agricultural	film:	“the	
amount	of	plastic	film	needed	to	

Cradle-to-
grave/SimaPr
o	

CML	2001		
NREU	

PP	from	APME	Eco	
profile	
Production	of	Nano	
clay	and	
nanocomposite	by	
the	Institute	for	
Polymer	Research	
(IPF,	Dresden,	

Incineration	
with	energy	
recovery	

-	
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cover	a	standard	tomato	
greenhouse	with	a	volume	of	
approximately	650	m3”	
FU	of	automotive	panel:	“Body	
panels	of	a	low-weight	family	car	
that	runs	150000	km	during	its	
entire	lifetime”	

Germany)	
Pilot	plant	data	
Energy	Efficiency	
Office	
SimaPro	database	

(Wötzel	 et	
al.,	1999)	

Hemp	fiber	
composite	vs	ABS	
in	automotive	
industry	

“a	side	panel	of	the	AUDI	A3”	 Cradle-to-
grave/Umber
to	

Eco-indicator	
95	

Hemp	 production	 is	
representative	 of	
Central	 Europe	
Industrial	 Data	 for	
Audi	 A3.ABS	
injection	 molding	
from	 Association	 of	
Plastic	 Manufactures	
Europe	

Recycling	 SA*	on	
production	
planning	and	
cultivation	
scenarios	

(Xu	et	al.,	
2008)	

Wood-fiber	
reinforced	PP	

“three-layered	structure	of	2-mm	
sheets	(127mm×127mm	)	i.e.	one	
layer	of	fiber	sandwiched	
between	two	sheets	of	PP”	

Cradle-to-
gate/SimaPro	

Eco-indicator	
99	

Australian	LCA	
database	

Out	of	
system	
boundaries	

-	

(Vidal	et	al.,	
2009)	

Recycled	PP	and	
PE	filled	with	
cotton	and	rice	
husk	

“1	kg	of	material”	 Cradle-to-
grave/SimaPr
o	v7	

GWP	[79]	
NED	[80]	
AP	[81]	
EP	[82]	

Private	companies	in	
Spain	
Plastics	Europe	
Several	databases	

Landfilling	
and	
incineration	

-	

*	SA:	Sensitivity	Analysis	271	
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3.1.2. Fillers vs other conventional materials 272	

Carbon	fiber	(CF)	reinforced	polymers	were	found	to	be	studied	more	often	than	conventional	273	

materials.	CF	reinforced	polymers	are	considered	to	be	important	due	to	the	weight	reduction	274	

requirements	in	the	automotive	industry	because	they	provide	weight	reduction	while	keeping	275	

the	same	strength	and	stiffness	provided	by	steel	(Das,	2011).	However,	the	production	of	CF	276	

results	 	 fifteen	 times	 higher	 CO2	 emissions	 than	 steel	 (Murphy,	 2008).	 For	 this	 reason,	277	

greenhouse	gas	(GHG)	emissions	from	the	vehicle	production	stage	may	increase	when	steel	is	278	

replaced	with	CF	reinforced	polymer	due	to	the	increase	in	fossil	fuel	consumption	(Timmis	et	279	

al.,	2015).	On	the	other	hand,	some	benefits	may	be	gained	from	fuel	consumption	during	the	280	

use	stage	thanks	to	its	lighter	weight	and,	globally,	lower	GHG	emissions	can	be	achieved	(Kelly	281	

et	al.,	2015).	282	

Partial	results	of	an	LCA	study	by	Das	(2011)	on	CF	reinforced	polymer	are	presented	in	Table	283	

5,	together	with	its	methodological	analysis	in	Table	6.	As	it	can	be	seen	from	Table	5,	although	284	

the	lignin-based	CF	has	higher	CO2	emission	for	the	stages	of	raw	material	and	manufacturing,	285	

it	has	 less	emission	 throughout	 its	whole	 life	 cycle	when	compared	with	 stamped	steel’s	 life	286	

cycle	(Das,	2011).	In	addition	to	this,	in	a	review	study	done	by	harmonizing	43	LCA	results	of	287	

light-weighted	automobiles,	 it	was	concluded	that	the	replacement	of	conventional	materials	288	

like	steel	and	 iron	with	CF	reinforced	polymer	reduces	the	GHG	emissions	of	the	vehicle	and	289	

will	 be	 more	 likely	 to	 be	 used	 in	 the	 future	 in	 automotive	 industry	 (Kim	 and	 Wallington,	290	

2013a).	291	

CF	 reinforced	 polymer	 has	 been	 perceived	 as	 a	 ‘next	 generation’	 composite	 material	 in	292	

aircrafts	due	to	its	reduced	weight	in	comparison	to	aluminum	(Timmis	et	al.,	2015).	In	one	of	293	

the	 studies,	 the	 environmental	 impacts	 of	 aluminum	 alloy	 2024,	 CF	 reinforced	 polymer	 and	294	

Glass	 fibre/Al	 (GLARE)	 used	 in	 aerospace	 panels	 were	 investigated	 with	 the	 help	 of	 LCA	295	

methodology	(see	Table	6).	The	results	showed	that	despite	the	high	energy	requirement	for	296	

their	 production	 and	 difficulties	 in	 disposal,	 the	 use	 of	 composites	 which	 are	 CF	 reinforced	297	
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polymer	 and	 GLARE	 provides	 better	 environmental	 results	 thanks	 to	 the	 savings	 of	 fuel	298	

consumption	due	to	the	reduced	weight	(Scelsi	et	al.,	2011).	In	a	very	similar	way,	an	LCA	was	299	

performed	 to	 compare	 the	 use	 of	 CF	 reinforced	 polymer	 with	 conventional	 aluminum	300	

structure	 in	a	Boeing-787	Dreamliner	plane	 (see	Table	6).	 It	was	observed	 that	 reductions	 in	301	

CO2	and	NOx	emissions	were	gained	due	 to	 less	 fuel	 consumption	by	 the	plane	 thanks	 to	 its	302	

reduced	weight.	On	an	aircraft	base,	20%	reduction	in	CO2	emissions	were	gained	(Timmis	et	303	

al.,	2015).		304	

Under	this	section,	 the	methodologies	of	LCA	studies	were	reviewed	 in	the	same	way	that	 it	305	

was	 done	 in	 the	 previous	 section	 (see	 Table	 6).	 The	 number	 of	 studies	 reviewed	 was	 even	306	

fewer	 than	 the	 previous	 section	 and	 all	 of	 them	 were	 in	 the	 area	 of	 the	 transportation	307	

industry,	 since	 CF	 reinforced	 polymer	 is	 a	 promising	 composite	 material	 thanks	 to	 its	308	

lightweight.	Although	the	3	LCA	studies	are	very	few	to	make	a	general	conclusion,	we	would	309	

like	 to	point	out	 the	potential	 of	 the	use	of	CF	 reinforced	polymer	 to	 reduce	environmental	310	

impacts	 against	 conventional	 materials	 like	 aluminum	 or	 steel	 mainly	 because	 of	 its	 light-311	

weight.	Based	on	the	LCA	studies	reviewed	under	this	section,	it	is	also	important	to	note	that	312	

making	a	cradle-to-grave	assessment	is	crucial	when	comparing	alternative	materials	in	order	313	

not	to	miss	any	environmental	advantages	or	disadvantages	created	in	any	life	cycle	stage	of	314	

the	product	of	concern.	315	

To	 be	 commercially	 competitive	 on	 the	 market,	 composites	 must	 be	 technically	 and	316	

economically	 feasible,	 as	well	 as	 being	 greener	 (Jiménez	 et	 al.,	 2016).	 Despite	 the	 fact	 that	317	

there	 are	 many	 studies	 in	 the	 literature	 investigating	 mechanical	 properties	 of	 plastic	318	

composites	with	 fillers,	 few	studies	could	be	 found	 focusing	on	the	change	 in	environmental	319	

impacts	when	conventional	materials	are	replaced	with	fillers.	However,	according	to	the	LCA	320	

studies	 available	 in	 the	 literature,	 despite	 the	differences	 in	 the	 studied	 systems,	 the	use	of	321	

plastics	with	fillers	as	a	replacement	of	conventional	materials	 looks	like	promising	to	reduce	322	

environmental	impacts	of	a	product	through	its	life	cycle.		323	
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Table	5:	GHG	emissions	for	materials	(Das,	2011)	324	

Material/technology		 CO2	 emissions	
(kg	CO2	eq.)	

Comments	

Per	kg	of	manufactured	part		 Emissions	for	only	material	and	production	
stages	

Lignin	CF	P4	part	 12.5	 The	part	is	produced	by	lignin	and	CF	
Stamped	steel	part	 4.4	 The	part	is	produced	by	stamped	steel	
Life	cycle	of	part		 Emissions	for	total	life	cycle	stages;	material,	

production,	use	and	end-of-life	
Life	cycle	lignin	CF	P4	 1.338	 The	part	is	produced	by	lignin	and	CF	
Life	cycle	stamped	steel	 1.478	 The	part	is	produced	by	stamped	steel	
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Table	6:	Methodological	analysis	of	LCA	studies	(Fillers	vs	other	conventional	materials)	325	

Reference	 Polymer	 Functional	unit	(FU)	 System	
boundaries/Software	

Impact	
assessment	

Inventory	
sources	

End	of	life	 Data	 quality	
assurance	

(Das,	
2011)	

CF	 reinforced	 polymer	
with	 four	 different	
precursors	 (for	 each	
precursor	 there	 are	
two	 possible	
production	
technologies)	 and	
production	 technology	
vs	conventional	steel	

“The	 floor	 pan	 for	 a	 large	
rear	 wheel	 drive	 vehicle	
such	 as	 the	 Cadillac	 CTS	
under	 consideration	 by	
the	 United	 States	
Automotive	 Materials	
Partnership	Multi-Material	
Vehicle	(MMV)”	

Cradle-to-
grave/SimaPro	

Ecoinvent	version	
1.01	and	expanded	
by	Pre	Consultants		
IPCC	for	GWP100	

SimaPro/	
Ecoinvent	
databases		
GREET	
model	

Recycling	 (in	
addition	 to	
conventional	
recycling	
system	 for	
steel,	there	is	
thermal	
treatment	
for	 the	
separation	of	
CF	reinforced	
polymer)	

SA*	 on	
content	 of	
fiber	
SA*	on	energy	
requiremeent	
for	 lignin	
production		

(Scelsi	 et	
al.,	2011)	

CF	 reinforced	 polymer	
vs	 aluminum	 based	
(GF/Al	 laminate)	
GLARE	

“an	aerospace	panel”	 Cradle-to-
grave/SimaPro	7.1	

Eco-indicator	 99	
(E)	V2.05	

Ecoinvent	
v2.0	

Landfill	 is	
assumed	
(Due	 to	 the	
lack	of	data)	

-	

(Timmis	 et	
al.,	2015)	

CF	 reinforced	 polymer	
vs	 aluminum	 based	
structure	in	aircraft	

“section	 46	 of	 Boeing	 787	
fuselage”	 “Boeing	 787	
airframe	 consists	 of	
several	 one-piece	 CF	
reinforced	 polymer	 tube	
sections.	 Section	46	 is	 the	
one	 of	 these	 tube	
sections”	

Cradle-to-
grave/SimaPro	7.2	

Eco-indicator	 99	
(E)	V2.05	

Ecoinvent	 Landfill	 (Due	
to	 lack	 of	
data)	

-	

*	SA:	Sensitivity	Analysis	326	
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3.2. One filler vs other fillers in plastic application 327	

This	research	has	led	to	the	finding	that	the	comparative	LCAs	among	different	kinds	of	fillers	328	

applied	 to	 plastics	 is	 a	 more	 commonly	 studied	 topic.	 In	 fact,	 most	 of	 the	 environmental	329	

assessment	studies	of	plastic	composites	with	fillers	are	based	on	the	comparison	of	the	use	of	330	

different	filler	alternatives	with	the	aim	of	looking	for	a	better	composite	material	in	terms	of	331	

environmental,	 mechanical	 and	 physical	 properties.	 Therefore,	 the	 following	 sections	 were	332	

formed	based	on	their	availability	in	the	literature.	For	example,	environmental	comparison	of	333	

NFs	against	GFs	 in	different	applications	by	using	LCA,	especially	 in	automotive	 industry,	was	334	

identified	as	the	most	commonly	studied	topic.	Therefore,	this	was	defined	as	one	sub-section.	335	

Later	on,	LCA	studies	comparing	environmental	impacts	of	the	use	of	talc	as	an	alternative	to	336	

both	inorganic	and	organic	fillers	in	the	literature	were	grouped	as	one-section;	because	it	is	a	337	

widely	used	filler	and	there	were	relatively	more	LCA	studies	available.	Finally,	information	on	338	

CaCO3;	as	being	one	of	the	most	commonly	available	and	used	fillers	by	the	industry,	was	given	339	

as	one	separate	part,	since	there	were	no	LCA	studies	available	on	it.	Nevertheless,	there	are	340	

many	studies	regarding	mechanical	properties	of	use	of	CaCO3.	341	

3.2.1. Natural fibers (NFs) vs glass fibers (GFs) 342	

Recently,	there	has	been	a	growing	interest	in	the	use	of	NFs	composites,	due	to	the	fact	that	343	

they	may	 be	 advantageous	 in	 terms	 of	 cost	 and	 environmental	 emissions	 and	 applicable	 to	344	

many	 sectors	 (Pickering	 et	 al.,	 2016).	 They	 can	 be	 used	 in	 the	 building	 and	 construction	345	

industry,	 for	 the	 production	 of	 door	 and	 window	 frames,	 decking	 materials,	 and	 furniture	346	

parts;	and	also	in	the	automotive	industry	for	the	production	of	doors,	seats,	dashboards	and	347	

many	 other	 applications	 (Xu	 et	 al.,	 2008).	 In	 a	 recent	 study	 by	 Jimenez	 et	 al.	 (	 2016),	348	

mechanical	 properties	 of	 starch-based	 biodegradable	 polymer	 reinforced	 with	 sugarcane	349	

bagasse	were	 investigated.	 It	was	 found	out	 that	30%	 in	weight	of	NFs	added	to	 the	plastics	350	

provided	more	than	50%	of	the	strength	of	the	whole	composite.		351	
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There	are	many	 types	of	NFs	applicable	 to	plastics	composites	 (Bos,	2004;	 Joshi	et	al.,	2004;	352	

Xanthos,	 2010).	 Korol	 et	 al.	 (2016)	 compared	 the	 environmental	 impacts	 of	 different	 NFs	353	

(cotton,	 jute,	 and	 kenaf)	 applied	 to	 PP,	 by	 using	 LCA	methodology.	 Results	 of	 the	 study	 for	354	

climate	change	midpoint	are	presented	in	Figure	2.	It	was	found	out	that,	among	the	PP-based	355	

plastic	 composites	 with	 NFs	 analyzed,	 cotton	 fibers	 were	 found	 to	 have	 the	 highest	356	

environmental	 impacts	due	 to	 the	 industrial	 cultivation	of	 cotton	at	 a	 large	 scale	 (Czaplicka-357	

Kolarz	 et	 al.,	 2013;	 Korol	 et	 al.,	 2016).	 Czaplicka-Kolarz	 et	 al.	 (2013)	 also	 concluded	 that,	358	

according	 to	an	LCA	study	 in	which	cotton,	cellulose,	 jute	 fiber,	kenaf	and	GFs	 reinforced	PP	359	

composites	were	compared,	PP	reinforced	with	cellulose	 fiber	was	 found	to	be	the	one	with	360	

the	 lowest	 environmental	 impact.	 Bamboo	 has	 also	 attracted	 attention	 to	 be	 used	 as	 a	361	

reinforcement	 to	 create	more	environmentally	 friendly	 composite	materials,	 due	 to	 the	 fact	362	

that	it	grows	very	quickly	and	has	high	strength	and	stiffness	(Kinoshota	et	al.,	2008;	Ogawa	et	363	

al.,	2010).	364	

In	addition,	GFs	are	known	to	have	advantageous	properties	like	strength,	flexibility,	stiffness,	365	

and	 resistance	 and	 have	 been	 used	 in	 many	 applications	 in	 the	 form	 of	 plastic	 composites	366	

(Sathishkumar	 and	 Naveen,	 2014).	 NF	 composites	 have	 been	 introduced	 as	 alternatives	 to	367	

mineral	 fiber	 reinforced	 composites	 because	 of	 their	 competitive	mechanical	 properties	 like	368	

tensile	strength	and	for	being	renewable	(Espinach	et	al.,	2016).		369	

Comparing	the	environmental	impacts	of	using	GF	as	fillers	in	the	automotive	industry	by	using	370	

LCA,	is	one	of	the	most	commonly	studied	topics,	especially	their	replacement	with	NFs	(Alves	371	

et	al.,	2010;	Boland	et	al.,	2015;	Corbière-Nicollier	et	al.,	2001;	Hesser,	2015;	Joshi	et	al.,	2004;	372	

Korol	et	al.,	2016;	La	Rosa	et	al.,	2013;	Roes	et	al.,	2007;	Song	et	al.,	2009).	According	to	Joshi	373	

et	al.	(2004),	NFs	have	been	considered	as	alternatives	to	GF	reinforced	composites	since	the	374	

1990s.	375	

Due	to	the	pressure	 from	the	 fuel	economy	and	the	strict	emission	regulations,	 recently,	car	376	

manufacturers	are	being	forced	to	come	up	with	new	technologies	or	designs	which	will	help	377	



21	
	

them	to	adapt	to	these	new	requirements.	Weight	reduction	is	often	considered	as	one	of	the	378	

most	 important	 ways	 to	 help	 fuel	 economy	 (Dhingra	 and	 Das,	 2014;	 Kim	 and	 Wallington,	379	

2013a;	Penciuc	et	al.,	2016).	According	to	Kim	and	Wallington’s	(2013b)	study,	replacement		of	380	

conventional	materials	like	steel	and	iron	by	lighter	alternatives	like	composites	minimizes	the	381	

GHG	 emissions	 during	 the	 use	 phase	 of	 the	 vehicle	 but	 increases	 the	 emissions	 from	382	

production	 phase.	 In	 some	 of	 the	 LCA	 studies	 conducted,	 it	 was	 pointed	 out	 that	383	

environmental	 savings	 from	 the	 life	 cycle	 of	 a	 product	 can	 be	 achieved	 through	 weight-384	

lightening	(Corbière-Nicollier	et	al.,	2001;	Schmidt	and	Beyer,	1998;	Wötzel	et	al.,	1999;	Zah	et	385	

al.,	2007).	However,	Witik	et	al.	(2011)	showed	that	weight	reduction	may	not	always	bring	a	386	

better	 environmental	 performance.	 In	 their	 study,	 LCA	 was	 performed	 to	 environmentally	387	

compare	 light-weight	 polymer	 composites	 with	 conventional	 materials	 like	 steel	 or	388	

magnesium.	 But,	 results	 showed	 that	 lighter	 materials	 may	 not	 always	 lead	 to	 better	389	

environmental	impacts	from	the	total	life	cycle	of	a	product,	because	of	the	burdens	caused	by	390	

their	 production	 stage.	 Therefore	 concluding	 that	 pressures	 from	 fuel	 economy	 and	 strict	391	

emission	regulations	are	not	enough	to	provide	sustainability	in	the	transportation	sector.	392	

There	 are	 several	 LCA	 studies	 showing	 that,	 in	 order	 to	 achieve	 a	 better	 environmental	393	

emission	profile	through	light-weight	design,	NFs	may	be	preferred	in	comparison	to	GF	(Alves	394	

et	 al.,	 2010;	 Boland	 et	 al.,	 2015;	 Corbière-Nicollier	 et	 al.,	 2001;	Hansen	 et	 al.,	 2000;	Hesser,	395	

2015;	Korol	et	al.,	2016;	La	Rosa	et	al.,	2013;	Schmidt	and	Beyer,	1998;	Wang	et	al.,	2012;	Zah	396	

et	 al.,	 2007).	 In	 Table	 7,	 methodological	 issues	 of	 the	 LCAs	 performed	 were	 summarized;	397	

together	with	their	environmental	evaluation	in	Table	8.	According	to	the	data	collected,	it	was	398	

observed	 that	 the	 use	 of	 NFs	 is	 advantageous	 in	 terms	 of	 environmental	 emissions	 when	399	

compared	 with	 GF.	 In	 parallel	 to	 this,	 La	 Mantia	 et	 al.	 (2011),	 in	 their	 review	 on	 green	400	

composites,	 also	 claim	 that	 plastics	 with	 natural-organic	 fillers	 tend	 to	 have	 better	401	

environmental	results	compared	to	the	ones	with	mineral-inorganic	fillers.		402	
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However,	as	it	can	be	seen	from	Table	7,	significant	differences	exist	between	the	investigated	403	

LCA	studies	 in	 terms	of	 the	studied	systems.	For	example,	 there	 is	a	variety	of	NFs	and	their	404	

composition	 in	 the	 composite	 material	 differs.	 Although	 they	 tend	 to	 have	 better	405	

environmental	 performance,	 there	 are	 still	 some	 unclear	 points	 (like	 transportation	 and	406	

cultivation	of	NFs)	that	require	attention	when	making	a	decision	about	their	use	(Alves	et	al.,	407	

2010;	Boland	et	al.,	2015;	Corbière-Nicollier	et	al.,	2001;	Korol	et	al.,	2016;	Wötzel	et	al.,	1999).	408	

Duflou	et	al.	(2012)	also	stated	that	NFs	have	the	potential	of	reducing	environmental	impacts	409	

by	 replacing	 GF	 composites,	 reminding	 that	 there	 are	 still	 a	 lot	 of	 issues	 to	 be	 investigated	410	

concerning	both	 the	mechanical	 and	 the	environmental	 properties.	 For	 example,	 it	 is	 stated	411	

that	cellulose	fibers	require	more	energy	than	GF	during	the	production	process	(Boland	et	al.,	412	

2015).	Environmental	superiority	of	bio-composites	over	synthetic	fiber	composites	should	be	413	

analyzed	carefully	 through	LCA,	because	of	 the	relatively	more	resource-intensive	processing	414	

of	bio-fibers	 (Yan	et	al.,	2014).	 In	addition,	 in	 the	 study	by	Zah	et	al.	 (2007)	 curauá	 (ananas)	415	

fibers	were	 found	to	be	slightly	better	 in	 terms	of	environmental	emissions;	however,	 it	was	416	

pointed	 out	 that	 curauá	 fibers	 do	 not	 have	 the	 mechanical	 properties	 of	 GF	 and	 thus	 few	417	

recommendations	were	done	to	make	the	NFs	stronger.	At	this	point,	here	comes	the	issue	of	418	

functional	 unit.	 In	 their	 study,	 two	different	 functional	 units	were	 considered;	 1)“1	 kg	 of	 an	419	

interior	car	part	made	of	GF	composites”	and	2)	“the	complete	life	cycle	of	a	car	was	taken	as	420	

functional	unit”	(Zah	et	al.,	2007).	For	the	first	one,	since	the	interior	car	part	can	be	used	for	421	

different	 purposes,	 three	 scenarios	 were	 considered;	 1)	 equal	 stability,	 2)	 equal	 weight,	 3)	422	

equal	volume.	It	was	found	out	that	climate	change	impact	of	the	curauá	composite	is	not	that	423	

different	from	GF	in	the	case	of	“equal	stability”.	However,	in	the	case	of	“equal	weight”,	the	424	

curauá	 fiber	 had	 slightly	 better	 environmental	 impacts.	 And	 since	 the	 density	 of	 the	 curauá	425	

fiber	 is	 lower	 than	 GF,	 for	 the	 functional	 unit	 of	 “equal	 volume”,	 NFs	 caused	 less	426	

environmental	 impact	 in	all	 impact	categories.	Therefore,	 it	can	be	concluded	from	here	that	427	

when	 performing	 comparative	 LCA	 studies	 for	 alternative	 materials,	 it	 is	 very	 important	 to	428	
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choose	 the	 right	 functional	 unit	 allowing	 to	 make	 proper	 comparison	 depending	 on	 the	429	

function.		430	

In	LCA	studies,	environmental	impact	categories	used	can	create	some	differences	in	results,	as	431	

well.	For	example,	 renewable	raw	materials	as	 fillers	may	be	better	 in	 terms	of	 fossil	energy	432	

use	and	GHG	emissions	but	they	may	have	worse	scores	in	LCA	studies	in	relation	to	land	use,	433	

ecotoxicity	 and	 eutrophication	 potential	 impact	 categories	 (Weiss	 et	 al.,	 2012).	 Therefore,	434	

special	attention	must	be	paid	for	the	selection	of	environmental	impact	categories	which	are	435	

going	to	be	studied.		436	

On	the	other	hand,	even	though	in	most	of	the	comparative	LCA	studies	NFs	were	found	to	be	437	

more	environmentally	 friendly	than	GF	reinforced	composites,	depending	on	the	application,	438	

the	use	of	GF	reinforced	composites	can	provide	some	environmental	benefits	as	well.	A	good	439	

example	to	this	is	an	LCA	study	by	Taranu	et	al.	(2015)	about	the	application	of	GF	reinforced	440	

polymers	to	timber	beam	in	order	to	maximize	strength.	The	results	showed	that,	despite	the	441	

negative	 influence	of	 fiber	 reinforced	polymers,	GF	reinforced	polymers	added	to	 timber	are	442	

able	to	reduce	the	environmental	impacts	by	reducing	the	amount	of	timber	used.		443	

According	to	extended	review	by	Joshi	et	al.	(2004)	on	comparing	the	LCA	studies	investigating	444	

the	environmental	impacts	of	NFs	against	GF	reinforced	composites,	despite	the	many	existing	445	

differences	 in	LCA	studies	 like	system	boundaries,	NF	chosen,	and	so	on;	NFs	are	 tend	 to	be	446	

environmentally	 better	 as	 a	 result	 of	 four	 main	 reasons:	 (1)	 NF	 production	 is	 more	447	

environmentally	 friendly;	 (2)	 since	 more	 NFs	 are	 needed	 for	 the	 same	 performance,	 less	448	

amount	of	base	polymer	is	needed;	(3)	the	light-weight	of	NFs	provides	advantages	in	the	use	449	

phase;	 and	 (4)	 incineration	 of	 NFs	 provides	 energy	 and	 CO2	 credits	 (Joshi	 et	 al.,	 2004).	450	

Nevertheless,	the	correct	choice	of	the	functional	unit	in	LCA	studies	plays	an	important	role.	451	
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Table	7:	Methodological	analysis	of	LCA	studies	(NFs	vs	GFs)		452	

Referenc
e	

Polymer	 Functional	unit	(FU)	 System	
boundaries/	
Software	

Impact	
assessment	

Inventory	sources	 End	of	life	 Data	quality	
assurance	

(Alves	et	
al.,	2010)	

Jutes	
fiber/polyester	
composites	vs	
GF/polyester	
composites	in	
automotive	
industry	

“frontal	bonnet	of	the	buggy”	
in	other	words	“the	engine	
cover	of	0.35m2		which	
achieves	the	required	
mechanical	and	structural	
performance”	

Cradle-to-
grave/	
SimaPro	7.0	

Eco	indicator	
99	

Private	companies	
Simapro	database	
IDEMAT	
ECOINVENT	
Literature	and	
governmental	reports	
specific	to	Brazil	
Recycling	data	based	
on	experiments		

Mechanical	
recycling	
Incineration	
Landfill	

-	

(Boland	
et	al.,	
2015)	

Cellulose	fibers	
Kenaf	fibers	
GF	in	PP	in	
vehicles	

“The	automotive	component	
which	is	a	semi	structural	con-
sole	substrate	with	a	fixed	
volume”	

Cradle-to-
grave/	GaBi	6	

Life	cycle	
energy	
demand	
GHG	emissions	
by	IPCC	2012	

Literature	
GaBi	database	
EPA	database	
Private	companies	
Ecoinvent	database		

All	
components	
are	assumed	
to	be	
dismantled	
and	shredded	

SA*	on	
electricity	used	
to	compound	
the	fiber	and	
resin	materials	
together	SA	on	
biogenic	carbon	
storage	within	
NFs	

(Corbière
-Nicollier	
et	al.,	
2001)	

China	reed	fiber	vs	
GF	in	PP	
(transport	pallets)	

FU:	“a	standard	transport	
pallet	satisfying	service	
requirements	(transport	of	
1000	km	per	year)	for	5	years”	

Cradle-to-
grave/	No	
information	

Critical	
Surface-Time	
method	
(CST95)	
CML	92	
Eco	points	
Eco-indicator	
95	

Literature	
BUWAL	database	
IATE-HYDRAM	reports	

Disposal	
Incineration	
Recycling	

SA*	on	product	
lifetime,	fiber	
content	and	
transport	
distance	
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(Hesser,	
2015)	

Kraft	pulp	fiber	
reinforced	PP	vs	
PP	
Talcum	reinforced	
PP	vs	PP	
GF	reinforced	PP	
vs	PP	

FU1:comp.	based	on	mass;	
MJ/kg	material	for	NREU	and	
kg	CO2e/kg	for	GWP	
FU2:comp.	based	on	volume;	
MJ/m3	material	for	NREU	and	
kg	CO2e/m3	for	GWP	
FU3:comp.	based	on	strength;	
MJ/panel	for	NREU	and	kg	
CO2e/panel	for	GWP	
FU4:comp.	based	on	stiffness;	
MJ/panel	material	for	NREU	
and	kg	CO2e/panel	for	GWP	

Cradle-to-
gate/	Non-
valid	

PAS	2050	for	
Global	
warming	
potential	
(GWP)	
Energy	
Requirement	

Literature	
GEMIS	database	
Site	data	collection	
Experimental	data	
(Due	to	lack	of	data,	
simplified	LCA	is	
performed)	

Out	of	system	
boundaries(Off
ered	to	be	
further	
investigated)	

-	

(Wötzel	
et	al.,	
1999)	

Hemp	fiber	
composite	vs	ABS	
in	automotive	
industry	

FU:	“a	side	panel	of	the	AUDI	
A3”	

Cradle-to-
grave/	
Umberto	

Eco-indicator	
95	

Hemp	production	is	
representative	of	
Central	Europe	
Industrial	Data	for	
Audi	A3.ABS	injection	
molding	from	
Association	of	Plastic	
Manufactures	Europe	

Recycling	 SA*	on	
production	
planning	and	
cultivation	
scenarios	

(Korol	et	
al.,	2016)	

PP	
PP+GF	
PP	Cotton	fiber	
PP	Jute	fiber	
PP	Kenaf	fiber	

F:	“the	production	of	one	
standard	plastic	pallet	made	
from	PP	different	composites	
with	different	shares	and	types	
of	filler”	

Cradle-to-
gate/	
SimaPro	8	

ReCiPe	
Midpoint	

Ecoinvent	3.1	 Out	of	system	
boundaries	

-	
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(La	Rosa	
et	al.,	
2013)	

GF	/thermoset	
composite	
GF	-hemp/	
thermoset	
composite	

FU:	“one	elbow	fitting	used	in	
the	sea	water	cooling	pipeline	
of	a	Sicilian	chemical	plant,	
with	an	estimated	life	of	20	
years”	

Cradle-to-
grave/	
SimaPro	

ReCiPe	
Midpoint	

Primary	data	for	
manufacturing	
process	
Ecoinvent	v2.2	for	
other	parts	

Landfilling	
(thermoset	
composites	
cannot	be	
recycled	and		
incineration	is	
not	a	valid	
option	in	Italy)	

-	

(Zah	et	
al.,	2007)	

PP	+	Curauá	fiber	
vs	PP	+	GF	in	
automotive	
industry	

FU	of	the	first	part:	“1	kg	of	an	
interior	car	part	made	of	GF	
composites”	
	
FU	of	the	second	part:	“the	
complete	life	cycle	of	a	car	was	
taken	as	functional	unit”.	

Cradle-to-
grave/	No	
information	

CML	2001	 Ecoinvent	
Primary	data	for	the	
harvesting	and	
processing	of	ananas	
fiber	(curaua)	

Incineration	 -	

(Ogawa	
et	al.,	
2010)	

Bamboo	
fiberboard	vs	GFR	
polymer	

FU:	“a	1250-cm3	in	volume	
self-bonding	fiberboard”	which	
corresponds	1	kg	of	bamboo	

Cradle-to-
grave/	Non-
valid	

GWP	
Energy	
Consumption		

JEMAI-LCA	Japan	
Environmental	
Management	
Association	for	
Industry.	
Manufacturing	data	
from	field	

GFRP	product	
is	assumed	to	
be	separated	
in	GF	and	FBR	
resolvant	

-	

*	SA:	Sensitivity	Analysis	453	
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Table	8:	Environmental	evaluation	of	s	NF	to	GF	454	

Reference	 NF	type	in	comparison	to	GF	 Is	NF	found	to	be	environmentally	
superior	to	GF?	

(Alves	et	al.,	2010)	 Jute	fibers	 Yes.	It	was	observed	that	
composites	including	jute	fibers	
(untreated,	dried,	and	
bleached/dried)	have	5-10%	less	
emissions	than	GF.	

(Boland	et	al.,	2015)	 Natural	cellulose	and	kenaf	
fiber	

Yes.	Composites	with	cellulose	and	
kenaf	had	10-20%	reductions	in	
their	GHG	emissions	compared	to	
GF.		

(Corbière-Nicollier	et	
al.,	2001)	

China	reed	fiber	 Yes.	China	reed	fiber	was	provided	
54%	less	GHG	emissions	than	GF.	

(Hesser,	2015)	 Kraft	pulp	fiber	 Yes.Kraft	pulp	fiber	provided	GHG	
reductions	around	14-35%.	

(Korol	et	al.,	2016)	 Kenaf,	jute	and	cotton	fiber		 Kenaf	and	jute	based	composites	
had	lower	impacts.	However,	cotton	
based	one	was	found	to	have	
highest	environmental	impacts	due	
its	cultivation	(Figure	2).		

(La	Rosa	et	al.,	2013)	 Hemp	fiber	added	GF	 Yes.	Results	showed	that	use	of	
hemp	fibers	in	GF	composite	
reduced	GWP	around	20%.		

(Wang	et	al.,	2012)	 Kenaf	fiber	and	soy-based	
resin	

Yes.	It	was	concluded	that	GWP	of	
kenaf	is	80%	less	than	GF.	

(Zah	et	al.,	2007)	 Cruauá	fiber	 Depends.	In	the	case	of	same	
strength,	not	different	than	GF.	In	
the	case	of	equal	weight,	slightly	
better	than	GF.	Finally,	in	the	case	of	
same	volume,	less	emissions	than	
GF.		

 455	

	456	

Figure	2:	Results	of	climate	change	midpoint	of	composite	materials	for	the	FU	of	one	plastic	457	
pallet	458	
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3.2.2. Talc vs organic and inorganic fillers 459	

Among	the	inorganic	fillers	added	to	plastics,	talc	is	one	of	the	most	commonly	used	fillers	in	460	

thermoplastics	 industry	 due	 to	 its	 high-performance	 functionalities.	 In	 spite	 of	 the	 fact	 that	461	

plastics	 filled	with	 talc	 show	high	 flexural	modulus,	 impact	 resistance,	 young’s	modulus,	 and	462	

yield	strength,	during	the	last	decades,	organic	fillers	have	started	to	be	seen	as	competitors	of	463	

talc	 for	 some	 applications	 because	 of	 their	 better	 properties	 such	 as	 low	 density	 and	464	

biodegradability	 (Premalal	 et	 al.,	 2002).	 Since	 talc	 is	 defined	 as	 non-renewable	 natural	465	

resource	and	contributing	to	abiotic	depletion	(Caraschi	and	Leão,	2002),	it	is	possible	to	find	466	

some	 literature	 looking	 for	 alternative	 materials	 (e.g.	 hollow	 glass	 microspheres,	 kraft	 pulp	467	

fiber	and	sugarcane	bagasse	fiber	)	as	a	replacement	of	talc	(Delogu	et	al.,	2016;	Hesser,	2015;	468	

Luz	et	al.,	2010;	Munoz	et	al.,	2006).	For	example,	 Luz	et	al.	 (2010)	 found	 that	a	bagasse-PP	469	

composite	 is	 environmentally	 superior	 to	 a	 talc-PP	 composite	 for	 automotive	 applications,	470	

despite	of	the	very	similar	mechanical	properties.		471	

It	is	also	possible	to	find	some	LCA	studies	investigating	the	environmental	advantages	of	other	472	

inorganic	 fillers	 applied	 to	plastics,	 like	GF.	Al-Ma’adeed	et	al.	 (2011)	 compared	plastic	 filled	473	

with	 talc	 and	with	GF	 reinforced	 composites.	 The	 results	of	 the	 LCA	conducted	 showed	 that	474	

among	 the	 analyzed	 composite	materials	 with	 15%	 of	 filler	 (GF	 and	 talc)	 and	 85%	 of	 virgin	475	

thermoplastics	(PP	and	PE),	talc	was	found	to	have	higher	environmental	impacts	than	GF	(Al-476	

Ma’adeed	et	al.,	2011).	477	

In	a	recent	study	by	Delogu	et	al.	(2016),	with	the	aim	of	designing	a	light-weight	automotive	478	

component	manufactured	by	Magneti	Marelli,	standard	talc	reinforced	PP	was	replaced	with	479	

an	 innovative	hollow	glass	micro-sphere	reinforced	PP	composite.	PP	reinforced	with	23%	of	480	

hollow	 glass	 microspheres	 was	 analyzed	 vs	 a	 PP	 reinforced	 with	 25%	 of	 talc	 through	 LCA,	481	

together	 with	 their	 mechanical	 properties.	 The	 composite	 with	 talc	 had	 better	 flexural	482	

modulus,	tensile	strength,	flexural	strength	and	izod	impact	strength	than	the	one	with	hollow	483	

glass	microspheres,	while	the	hollow	glass	micro-sphere	reinforced	PP	composite	gave	a	lower	484	
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environmental	impact	at	the	use	stage,	although	at	the	material	production	stage	it	was	worse	485	

in	 terms	 of	 environmental	 emissions	 However,	 in	 overall	 terms,	 hollow	 glass	 microsphere	486	

reinforced	 PP	was	 advantageous	 in	 terms	of	 environmental	 and	 economic	 reasons.	 This	 is	 a	487	

clear	 example	 (like	 others	which	 are	 described	 in	 this	 review)	 of	misuse	 of	 LCA.	 In	 order	 to	488	

compare	two	options,	they	must	have	the	same	functional	unit	and	this	would	mean	that	the	489	

systems	compared	(reference	flows)	should	have	similar	technical	properties.	This	means	that	490	

the	amount	of	PP	reinforced	with	talc	was	over-dimensioned	and	should	have	been	reduced	491	

until	the	properties	were	as	bad	as	those	of	the	other	composite.	492	
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Table	9:	Methodological	analysis	of	LCA	studies	(Talc	vs	organic	and	inorganic	fillers)	493	

Reference	 Polymer	 Functional	unit	(FU)	 System	
boundaries/	
Software	

Impact	
assessment	

Inventory	sources	 End	of	life	 Data	 quality	
assurance	

(Al-
Ma’adeed	
et	al.,	
2011)	

Recycled	PP	
and	PE	filled	
with	talc	and	
GF	

“1	kg	of	material”	 Cradle-to-
grave/	GaBi	

CML	2001	 Ecoinvent	and	
Buwal	250	(with	
some	modifications	
for	Qatar)	

PE	and	PP	will	be	
recycled	and	in	
both	cases,	
landfill	was	
assumed	to	be	
disposal	method	

-	

(Delogu	
et	al.,	
2016)	

Hollow	GF-
reinforced	
composite	vs	
talc-reinforced	
composite	

“an	automotive	dashboard	
panel,	supporting	and	housing	
all	the	instrumentation	for	the	
vehicle	use,	to	be	mounted	on	
Alfa	Romeo	Mito	955	diesel	
engine,	with	a	life-distance	of	
150,000	km	for	10	years”	

Cradle-to-
grave/	GaBi	

CML	2001,	
Primary	
energy	
demand	

Raw	materials	
production	from	
GaBi	6.3	and	
Ecoinvent	3.1	
databases	
Manufacturing	data	
from	direct	
measurements.	

Landfilling	and	
incineration	
Recycling	is	not	
considered	as	an	
alternative;	
because	of	the	
difficulty	in	
dismantling	

SA*	on	
production	
phase	of	hollow	
glass	
microspheres		
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(Luz	et	al.,	
2010)	

PP	+	sugarcane	
bagasse	vs	PP	+	
talc	in	
automotive	
industry	

“the	surface	area	covered,	
i.e.,m2”	

Cradle-to-
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CML	2001		 Primary	 data	 from	
brazilian	industry	
GaBi	database	

Incineration	
Recycling	
Landfill	

-	

(Munoz	et	
al.,	2006)	

PP	based	
composite	with	
talc	(New	
formulation	for	
eco-design)	

“A	single	panel”	 Cradle-to-
grave/	No	
information	

ARD	[80]	
GWP	[83]	
AP	[82]	
HTP	[81]	
FATP	[81]	
EP	[82]	
POFP	[84]	
Energy	
Consumption	
water	
consumption	
and	Landfill	
use	

Commercial	
databases	
Private	companies	
Literature		

Landfilling	Energy	
recovery	in	MSW	
Incinerator	or	
cement	kiln	
Mechanical	
recycling	

SA*	on	the	
quality	of	
recycled	plastic	

*SA:	Sensitivity	Analysis	494	
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3.2.3. Calcium carbonate filled plastics vs virgin plastics 495	

Inorganic	fillers	have	been	used	in	plastic	applications,	mainly	with	the	aim	of	improving	heat	496	

distortion	 temperature,	 toughness,	 hardness,	 mould	 shrinkage	 and	 stiffness	 (Chan	 et	 al.,	497	

2002).	Among	them,	calcium	carbonate	is	a	very	abundant	mineral	on	earth.	It	is	mainly	found	498	

in	 three	 forms:	 calcite,	 aragonite,	 and	 vaterite.	 It	 is	 widely	 used	 in	 the	 paper,	 rubber	 and	499	

plastic,	 as	 well	 as,	 adhesive	 and	 paint	 applications.	 Among	 thermoplastics,	 PP	 and	500	

polyvinylchloride	 (PVC)	 are	 the	 main	 markets	 for	 calcium	 carbonate.	 For	 example,	 calcium	501	

carbonate	is	a	filler	used	together	with	PP	to	increase	the	mechanical	properties	of	its	plastics,	502	

especially	to	enhance	PP’s	rigidity	for	use	in	the	automotive	industry	(Thenepalli	et	al.,	2015).	503	

There	are	many	references	in	the	literature	studying	the	mechanical	properties	of	plastics	filled	504	

with	 calcium	 carbonate	 (Adeosun	 and	 Usman,	 2014;	 Eiras	 and	 Pessan,	 2009;	 Roussel	 et	 al.,	505	

2005).	In	their	study,	Roussel	et	al,(2005)	say	that	it	is	possible	to	improve	productivity	in	the	506	

process	through	the	use	of	calcium	carbonate	because	of	its	thermal	conductivity,	specific	heat	507	

and	thermal	expansion	characteristics.	And	in	their	study,	they	evaluated	different	case	studies	508	

including	 blown	 film,	 extrusion	 coating,	 sheet	 extrusion/thermoforming,	 and	 extrusion	 blow	509	

molding	 with	 the	 aim	 of	 showing	 the	 importance	 of	 proper	 filler	 and	 resin	 combination	510	

(Roussel	et	al.,	2005)	 In	a	study	by	Eiras	and	Pessan	(2009),	the	change	in	tensile	and	impact	511	

properties	of	PP	homopolymer	with	the	addition	of	calcium	carbonate	minerals	was	studied	at	512	

four	 different	 composition	 levels.	 The	 results	 showed	 an	 increase	 in	 elastic	 modulus	 while	513	

showing	a	little	increase	in	yield	stress	(Eiras	and	Pessan,	2009).	In	another	study,	mechanical	514	

and	physical	 properties	 of	 LDPE	 filled	with	 calcium	 carbonate	 and	 fly	 ash	were	 investigated.	515	

Flexural	 strength	 and	 crystallinity	 of	 composites	 were	 observed	 against	 the	 composite	516	

composition.	The	optimum	combination	of	calcium	carbonate	and	fly	ash	was	determined	to	517	

achieve	 optimum	 density	 (Adeosun	 and	 Usman,	 2014).	 Despite	 the	 fact	 that	 studies	518	

investigating	mechanical	and	physical	properties	of	plastics	filled	with	calcium	carbonate,	none	519	

has	been	found	related	to	their	environmental	 impact	evaluation.	For	example,	Thenepalli	et	520	
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al.	 (2013)	 investigated	 calcium	 carbonate	 as	 a	 new	 functional	 filler	 to	 PP	 for	 automotive	521	

applications.	 In	 another	 study,	 it	 is	 mentioned	 that	 PP	 and	 PVC	 are	 the	 main	 markets	 for	522	

calcium	carbonate	 fillers	 and	 it	 is	 the	best	 filler	 to	enhance	 the	mechanical	 properties	of	PP	523	

used	 in	 automobiles.	 It	 can	 provide	 the	 possibility	 of	 increased	 surface	 finishing,	 control	 of	524	

manufacturing,	electric	and	impact	resistance	(Thenepalli	et	al.,	2015).	Other	fillers	like	kaolin	525	

and	clay	minerals	can	also	enhance	 the	mechanical	properties.	However,	 they	are	 related	 to	526	

asbestos	and,	thus,	seen	as	not	very	environmentally	friendly.	Meanwhile,	calcium	carbonate	527	

is	safe	and	abundant	on	the	earth.	Unfortunately,	in	none	of	these	studies,	the	environmental	528	

impacts	of	the	use	of	calcium	carbonate	as	filler	in	plastics	were	covered	in	deep	by	using	the	529	

LCA	methodology.	530	

3.3. LCA in new designs with plastics with fillers  531	

Environmental	 impacts	 of	 products	 may	 come	 from	 any	 stage	 in	 their	 life	 cycle.	 Since	 the	532	

decisions	regarding	products	are	made	during	their	design	phase,	this	phase	is	very	important	533	

for	 identifying	 environmental	 impacts	 and	 improvements.	 To	 this	 end,	 LCA	 can	 be	 an	534	

important	 tool	 to	 help	 eco-design	 by	 pointing	 out	 the	 critical	 points	 and	 comparing	535	

alternatives	(Gazulla	et	al.,	2008).	The	use	of	LCA	in	the	automotive	 industry	can	provide	the	536	

insights	about	how	 important	 is	 the	choice	of	materials,	 the	manufacturing	process,	and	 the	537	

fuel	consumption	to	reduce	the	GHG	of	the	vehicle	(Boland	et	al.,	2015).	In	Brazil,	one	of	the	538	

largest	 agricultural	 sprayer	 machine	 companies	 used	 LCA	 methodology	 to	 compare	539	

environmental	impacts	of	different	fiber	reinforcements	against	GF	in	an	electronic-command	540	

panel	 of	 the	 sprayer	 machine.	 They	 investigated	 the	 environmental	 impacts	 of	 a	 new	541	

composite	based	on	jute	fibers	as	a	replacement	for	traditional	GFR	composite	for	the	selected	542	

product.	 The	 results	of	 the	 study	were	 important	 to	understand	 the	 importance	of	 LCA	as	a	543	

tool	to	help	eco-design	(Alves	et	al.,	2009).	544	

LCA	can	be	used	for	design-for-recycling	purposes,	as	well.	The	increase	of	strict	legislation	on	545	

the	end-of-life	of	vehicles	has	 resulted	 in	 the	use	of	 LCA	as	a	 tool	 for	comparison	of	current	546	
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designs	with	new	designs	in	the	automotive	industry.	Munoz	et	al.	(2006)	used	LCA	to	assess	547	

the	environmental	impacts	of	a	“designed-for-recycling”	plastic	composite	door	panel	for	cars.	548	

They	 concluded	 that	 LCA	 is	 a	 very	 useful	 tool	 to	 validate	 new	 designs	 in	 terms	 of	549	

environmental	impacts	through	their	life	cycle.	Even	if	the	study	was	focused	on	the	end-of-life	550	

scenarios,	LCA	revealed	some	interesting	points	within	other	life	cycle	stages	of	the	product.	551	

3.4. LCA of end of life scenarios of plastics with fillers  552	

In	 some	 LCA	 studies,	 end	 of	 life	 scenarios	 of	 products/materials	 were	 not	 very	 deeply	553	

investigated.	One	of	the	reasons	for	that	was	the	lack	of	data	(Scelsi	et	al.,	2011;	Timmis	et	al.,	554	

2015).	However,	 different	 end	of	 life	 options	will	 have	different	 effects	on	 the	 environment	555	

(Duflou	 et	 al.,	 2012;	 Väntsi	 and	 Kärki,	 2015).	 The	 waste	 hierarchy	 is	 defined	 as	 waste	556	

prevention,	reuse,	recycling,	energy	recovery	and	disposal	by	European	Commission	(European	557	

Commission,	 2008).	 Thus,	 the	 idea	 is	 to	minimize	 disposal	 and	 incineration	 but	 to	maximize	558	

recycling.	For	this	purpose,	Witik	et	al.	(2013)	investigated	three	possible	end-of-life	scenarios	559	

for	 CF	 reinforced	 plastic	 waste	 through	 LCA	 methodology:	 (1)	 recycling	 via	 pyrolysis;	 (2)	560	

incineration	with	energy	recovery;	and	(3)	disposal	through	landfilling.	It	was	seen	that,	even	if	561	

the	waste	hierarchy	is	a	good	rule	to	deal	with	waste,	it	may	not	always	guarantee	the	lowest	562	

impacts	for	the	treatment	of	CF	reinforced	polymer	waste.	563	

Type	of	the	raw	material	used	may	determine	the	end-of-life	scenario	of	each	product.	Muñoz	564	

et	al.	(2006)	found	that	the	little	change	in	subcomponents	of	composite	material	used	in	a	car	565	

door	 panel	 design,	 which	 is	 mainly	 composed	 of	 plastics	 like	 talc-filled	 PP,	 acrylonitrile	566	

butadiene	styrene	(ABS),	PVC,	polyoxymethylene	(POM),	polyester	 (PES),	polyurethane	(PUR)	567	

and	polyamide	GF	reinforced,	reduces	the	impact	of	production	by	increasing	the	recyclability	568	

of	 the	composite	material.	However,	 the	environmental	 impacts	 in	 the	use	stage	remain	 the	569	

same.	It	was	also	concluded	that	recycling	is	often	the	best	case	within	the	hierarchy	of	end-of-570	

life	scenarios;	however,	it	is	highly	dependent	on	the	substitution	rate	of	polyolefins	by	more	571	

recyclable	 subcomponents.	 Delogu	 et	 al.	 (2016)	 still	 recommend	 to	 focus	 and	 further	572	
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investigate	 the	benefits	of	 achieving	a	 light-weight	design	over	achieving	 recycling	 targets	 in	573	

the	 automotive	 sector,	while	Witik	 et	 al.	 (2011)	 had	 already	 concluded	 that	 the	 benefits	 of	574	

light	weighting	composites	for	automotive	industry	outweighs	the	fact	of	not	being	recyclable.	575	

4. CONCLUSIONS 576	

Because	of	the	 increasing	demand	for	thermoplastics,	a	wide	range	of	 functional	 fillers,	both	577	

organic	 and	 inorganic,	 is	 applied	 to	 plastics	 with	 different	 goals:	 cost	 reduction,	 process	578	

improvement,	altering	mechanical	or	physical	properties	or	reducing	environmental	emissions.	579	

Since	 the	 new	 trend	 in	 the	market	 is	 to	 look	 for	more	 environmentally	 friendly	materials	 in	580	

order	to	meet	with	certain	sustainability	targets,	this	paper	focused	on	the	literature	to	see	if	581	

the	 use	 of	 fillers	 in	 plastics	 could	 be	 promising	 to	 reduce	 the	 environmental	 impacts.	 The	582	

results	 of	 this	 study	may	 be	 interesting	 for	 the	 scientific	 community	 to	 attract	 attention	 to	583	

environmental	advantages	of	the	use	of	fillers	in	plastics	industry.	More	specifically	it	could	be	584	

interest	of	LCA	experts,	since	how	LCA	methodology	has	been	used	in	this	area	was	reviewed;	585	

as	 well	 as	 it	 could	 be	 interesting	 for	 material	 experts	 because	 the	 types	 of	 fillers	 used	 in	586	

different	applications	were	investigated	in	terms	of	their	environmental	impacts.	587	

According	 to	 the	 studies	 reviewed	 and	 presented	 in	 this	 paper,	 as	 a	 response	 to	 the	major	588	

objective	of	this	study,	it	can	be	concluded	that	the	environmental	 impacts	of	plastics	can	be	589	

reduced	through	the	addition	of	functional	fillers	while	maintaining	or	improving	the	required	590	

technical	properties	of	the	conventional	material.	In	the	reviewed	studies,	it	was	observed	that	591	

plastics	with	functional	fillers	had	smaller	GWP	than	their	virgin	counterparts.	Functional	fillers	592	

tend	to	reduce	the	environmental	impacts	of	these	materials	because	they	reduce	the	amount	593	

of	virgin	petrochemical	materials	used	in	the	composite	by	replacing	them	with	a	material	with	594	

a	lower	environmental	impact.		595	

Another	objective	of	this	study	was	to	find	out	the	gaps	in	the	literature	to	provide	guidance	to	596	

the	 future	 work.	 Many	 studies	 can	 be	 found	 in	 the	 literature	 which	 is	 dealing	 with	 the	597	
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mechanical	 and	 physical	 properties	 of	 plastics	 with	 different	 kinds	 of	 fillers.	 However,	 their	598	

environmental	 impacts	 are	 seldom	 studied,	 especially	 concerning	 the	 plastics	 with	 mineral	599	

fillers.	It	has	been	observed	that	organic	fillers	are	more	often	studied	than	inorganic	fillers	in	600	

terms	of	their	environmental	profile.	Specifically,	it	was	nearly	impossible	to	find	studies	about	601	

calcium	 carbonate,	 even	 if	 it	 is	 one	 of	 the	 most	 commonly	 used	 mineral	 fillers	 in	 many	602	

industrial	applications.	Therefore,	an	important	research	gap	has	been	found.	603	

Finally,	 the	 last	 objective	of	 the	 study	was	 to	 investigate	 LCA	methodology	used	 in	 the	 case	604	

studies	 reviewed.	Based	on	 the	 review	done,	 it	 can	be	 concluded	 that	 LCA	 is	 a	 good	 tool	 to	605	

make	the	environmental	analysis	of	materials;	however,	the	results	are	application	specific	and	606	

no	 general	 conclusions	 should	 be	driven.	Nevertheless,	 despite	 the	differences	 between	 the	607	

LCA	 studies,	 four	 major	 conclusions	 can	 be	 obtained	 regarding	 LCA	 application	 to	 plastic	608	

composites:	609	

• Since	different	materials	may	present	different	physical	and	mechanical	properties,	in	610	

the	case	of	comparative	LCA	studies,	it	is	very	important	to	define	a	proper	functional	611	

unit	serving	the	same	function,	thus	allowing	to	make	a	fair	comparison	between	the	612	

material	types.	This	is	rarely	done	in	the	composite’s	LCA	literature	reviewed	here.	613	

• It	 is	 suggested	 to	 perform	 cradle-to-grave	 LCA,	 when	 evaluating	 the	 environmental	614	

impacts	 of	 a	 material,	 in	 order	 to	 avoid	 problem	 shifting	 in	 between	 the	 life	 cycle	615	

stages.		616	

• End-of-life	 stage	 of	 plastic	 composites	 is	 rarely	 based	 in	 real	 specific	 data	 or	617	

experiments	on	the	recyclability	of	the	newly	developed	composite.	618	

	In	the	case	of	functional	unit,	for	example,	when	applying	LCA	methodology	to	plastics,	a	clear	619	

application	(a	given	product)	was	often	the	object	of	study,	so	the	function	and	the	functional	620	

unit	of	the	LCA	could	be	defined.	However,	many	times	a	1	kg	of	material	was	chosen	as	the	621	

functional	unit	(or	reference	flow).	In	order	to	compare	different	materials,	it	is	essential	that	622	

the	 options	 being	 compared	 fulfill	 the	 same	 amount	 of	 service	 or	 function.	 As	 the	 different	623	
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materials	have	different	physical	properties,	 the	amounts	used	as	 reference	 flows	 should	be	624	

taken	as	those	with	equal	properties;	i.e.	decreasing	the	amount	of	the	composite	with	higher	625	

quality.	This	reasoning	is	not	always	followed	and,	therefore,	the	comparisons	are	not	fair.	626	

Related	 to	 life	 cycle	 stages,	 it	was	 observed	 through	 the	 LCAs	 reviewed	 that	 the	 fillers	may	627	

have	advantages	over	conventional	materials	or	other	types	of	fillers	for	one	specific	life	cycle	628	

stage,	 although	 it	 may	 have	 worse	 environmental	 results	 for	 another	 life	 cycle	 stage.	629	

Therefore,	 a	 cradle-to-grave	 LCA	 should	 be	 addressed	 to	 be	 able	 to	 say	 one	 filler	 is	630	

environmentally	better	than	the	other	one.		631	

And	finally,	according	to	end-of-life	scenarios	considered	in	the	reviewed	literature,	landfilling,	632	

energy	 recovery	 and	 material	 recycling	 are	 always	 theoretical	 scenarios,	 not	 based	 on	 real	633	

experiments	 or	 real	 applied	 solutions	 for	 the	 newly	 developed	 composite.	 Therefore,	much	634	

effort	 is	 needed	 on	 this	 subject	 to	 decide	 if	 the	 new	 composite	 is	 environmentally	 better,	635	

especially	 considering	 that	 circular	 economy	 is	 one	 of	 the	 main	 sustainability	 drivers	636	

nowadays.	637	

Although	 the	 number	 of	 LCA	 studies	 is	 still	 very	 low	 within	 a	 quite	 important	 universe	 of	638	

technical	studies	of	plastic	composites,	we	can	conclude	that	this	study	was	needed	to	attract	639	

attention	to	the	use	of	functional	fillers	in	plastics	and	proper	application	of	LCA	methodology	640	

in	order	to	understand	their	environmental	advantages	on	the	application	base.	Finally,	it	can	641	

be	recommended	for	the	future	work	to	focus	on	performing	environmental	analysis	for	fillers	642	

which	 have	 not	 been	 studied	 too	 often	 and,	 while	 performing	 LCA	 studies,	 to	 choose	 the	643	

correct	 functional	unit,	 and	 if	 possible,	 to	make	 cradle-to-grave	analysis	 and	 to	 collect	more	644	

data	about	end-of-life	of	the	materials	used.	645	
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