
Under consideration for publication in Math. Struct. in Comp. Science

Formal Analysis of Model Transformations
Based on Triple Graph Grammars

F R A N K H E R M A N N1,2,†, H A R T M U T E H R I G1,†, U L R I K E G O L A S3

A N D F E R N A N D O O R E J A S4,‡

1 [frank,ehrig]@cs.tu-berlin.de, Institut für Softwaretechnik und Theoretische Informatik,
Technische Universität Berlin, Germany

2 Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg
3 golas@zib.de, Konrad-Zuse-Zentrum für Informationstechnik Berlin, Germany
4 orejas@lsi.upc.edu, Departament de Llenguatges i Sistemes Informàtics,

Universitat Politècnica de Catalunya, Barcelona, Spain

Received September 2011

Triple Graph Grammars (TGGs) are a well-established concept for the specification and

execution of bidirectional model transformations within model driven software

engineering. Their main advantage is an automatic generation of operational rules for

forward and backward model transformations, which simplifies specification and

enhances usability as well as consistency. This article presents several important results

for analysing model transformations based on the formal categorical foundation of TGGs

within the framework of attributed graph transformation systems.

In our first main result, we show that the crucial properties correctness and

completeness are ensured for model transformations. In order to analyse functional

behaviour, we generate a new kind of operational rules – called forward translation rules.

We apply existing results for the analysis of local confluence for attributed graph

transformation systems. As additional main results we provide sufficient criteria for the

verification of functional behaviour as well as a necessary and sufficient condition for

strong functional behaviour. In fact, these conditions imply polynomial complexity for

the execution of the model transformation. Moreover, we analyse information and

complete information preservation of model transformations, i.e. the problem whether a

source model can be reconstructed (uniquely) from the target model computed by the

model transformation. We illustrate the results for the well-known model transformation

example from class diagrams to relational database models.

Contents

1 Introduction 2

1.1 Main Challenges for Model Transformations 2

† The participation of these authors is supported by the DFG project BEHAVIOUR-GT.
‡ The participation of this author is supported by the MEC project FORMALISM (ref. TIN2007-66923).

[frank,ehrig]@cs.tu-berlin.de
golas@zib.de
orejas@lsi.upc.edu

F. Hermann, H. Ehrig, U. Golas, and F. Orejas 2

1.2 Model Transformations Based on TGGs and Main Results 3

1.3 Mathematical Framework 4

1.4 Structure of the Paper 5

2 Model Transformation Based on Triple Graph Grammars 5

2.1 Model Transformation Based on Forward Rules 10

2.2 Model Transformation Based on Forward Translation Rules 13

3 Analysis of Functional Behaviour and Information Preservation 20

3.1 Functional Behaviour and Efficient Execution 20

3.2 Information Preservation 31

4 Related Work 34

5 Conclusion 35

5.1 Summary of Main Results 35

5.2 Practical Relevance 36

5.3 Future Work 37

References 37

Appendix A Category of Typed Attributed Garaphs 40

Appendix B Remaining Proofs of Technical Results 41

1. Introduction

1.1. Main Challenges for Model Transformations

Model transformations are a key concept for modular and distributed model driven de-

velopment. They are used thoroughly for model optimization and other forms of model

evolution. Moreover, model transformations are used to map models between different

domains in order to perform code generation or to apply analysis techniques. In this

multi domain context, triple graph grammars have been applied in several case studies

and they show a convenient combination of formal and intuitive specification abilities.

In this paper we consider a number of important properties for model transformations.

More precisely, assuming that we have specified a class of transformations using a triple

graph grammar, we study the following properties of forward transformations from the

class of source models to the class of target models:

1 Syntactical Correctness and Completeness: Syntactical correctness of a transforma-

tion method means that if we can transform any source model GS into a model GT

using the method, then the model GT is a valid target model and, moreover, the pair

(GS , GT) is consistent with respect to the specification of the model transformation

provided by the triple graph grammar. Completeness, on the other hand, means that

if for any consistent pair (GS , GT) according to the specification, then our transfor-

mation method will be able to build GT from GS .

2 Functional and Strong Functional Behaviour: Functional behaviour means that for

each source model GS each forward transformation starting with GS leads to a unique

valid target model GT . Strong functional behaviour means, in addition, that also

the forward transformation from GS to GT is essentially unique, i.e. unique up to

switchings of independent transformation steps.

Formal Analysis of Model Transformations 3

3 Information and Complete Information Preservation: In case of bidirectional model

transformations, information preservation means that for each forward transformation

from GS to GT there is also a backward transformation from GT to GS . Complete in-

formation preservation means in addition that each backward transformation starting

with GT leads to the same GS .

It is the main aim of this paper to analyse under which conditions the properties defined

above can be guaranteed and how these conditions can be checked with suitable tool

support. Additional important properties, like semantical correctness, are not considered

in this paper, but the interested reader is referred to (Bisztray et al.2009; Hermann

et al.2010d). Semantical correctness of a forward transformation from GS to GT means

that GS and GT are semantically equivalent in a suitable sense.

1.2. Model Transformations Based on TGGs and Main Results

Model transformations based on triple graph grammars (TGGs) have been introduced

by Schürr (Schürr1994) and are used, among others, for the specification and execu-

tion of bidirectional model transformations between domain specific languages (DSLs).

The power of bidirectional model transformations is based on the simultaneous support

of transformations in both forward and backward direction. In addition to the general

advantages of bidirectional model transformations, TGGs simplify the design of model

transformations. A single set of triple rules is sufficient to generate the operational rules

for the forward and backward model transformations. The key idea for the execution of

model transformations via TGGs is to preserve the given source model and to add the

missing target and correspondence elements in separate but connected components. For

this reason, the transformation rules add new structures and do not necessarily need to

delete existing elements. The resulting target model is obtained by type restriction. In-

deed, non-deleting triple rules are sufficient for many case studies. However, in general it

may be very difficult, if not impossible, to specify a model transformation whose validity

depends on some global properties of the given models. An example may be automata

minimization, where we transform a finite automaton into an automaton with the same

behaviour, but with the smallest possible set of states. In this case, the transformation

should translate any two states with the same behaviour into a single state. However,

knowing if two states have the same behaviour is a global property of the given automa-

ton. Nevertheless, a possible solution to simplify the model transformation is to perform

some additional pre-processing of the source model or post-processing of the target model.

For this reason and as it is common praxis for TGGs, we consider transformation rules

that are non-deleting.

Based on (Ehrig et al.2009a), we show in our first main result in Thm. 1 that syntac-

tical correctness and completeness are ensured for model transformations based on the

formal control condition of source consistency. Moreover, we can ensure termination for

the execution of a model transformation by the static condition that all TGG-rules are

creating on the source component, which can be checked automatically.

In the general context of transformation systems, it is well-known that termination

and local confluence implies confluence and hence functional behaviour, where local con-

F. Hermann, H. Ehrig, U. Golas, and F. Orejas 4

fluence can be checked by analysing all critical pairs between pairs of transformation

rules. However, in the context of model transformations a weaker notion of confluence

is sufficient, because uniqueness of results is required for successful executions of the

model transformation only. Moreover, the control condition source consistency has to

be included in the analysis as well. For this purpose, we generate a new kind of opera-

tional rules, called forward translation rules, which extend forward rules by additional

attributes keeping track of the elements that have been translated already.

In our main results for the analysis of functional behaviour we extend the presented

contributions in (Hermann et al.2010a; Hermann et al.2010c) and we additionally provide

a less restrictive condition for functional behaviour. We show by Thm. 2 that functional

behaviour of model transformations is ensured by strict confluence of all significant crit-

ical pairs of the forward translation rules. This means that several critical pairs can be

neglected if they are not significant. Moreover, we analyse strong functional behaviour

of model transformations, where uniqueness is also required for the transformation se-

quences up to switch-equivalence. By Thm. 3, we characterize strong functional behaviour

by the absence of significant critical pairs. The results for functional behaviour are addi-

tionally used for improving efficiency of the execution, such that we can ensure polynomial

time complexity if the provided sufficient conditions are satisfied (see Sec. 5.1).

Finally, we analyse information preservation of model transformations, i.e. the prob-

lem whether a source model can be reconstructed from the target model computed by

the model transformation. Here, we extend our results presented in (Ehrig et al.2007)

to TGGs with application conditions and to the notion of complete information preser-

vation. We show by Thm. 4 that model transformations based on forward rules always

ensure information preservation, which requires that there is a backward transformation

sequence starting at the derived target model and resulting again in the given source

model. Thereafter, we provide by Thm. 5 a sufficient condition for complete information

preservation, i.e. that any reconstructed source model coincides with the given one.

1.3. Mathematical Framework

The mathematical background for this paper is the algebraic theory of graph transfor-

mations (Rozenberg1997), especially the double pushout approach for graphs introduced

in (Ehrig et al.1973; Rozenberg1997; Ehrig et al.2006). This approach has been gen-

eralized from graphs to adhesive, adhesive HLR and M-adhesive categories (Lack and

Sobociński2005; Ehrig et al.2006; Ehrig et al.2010). These are categorical frameworks

where specific constructions like pushouts and pullbacks exist and are compatible with

each other. This allows an instantiation of the categorical theory not only for graphs, but

also for several other high-level structures, like typed and attributed graphs, hypergraphs

and different kinds of Petri nets.

In our approach to model transformations, the abstract syntax of models is given

by typed attributed graphs in the sense of (Ehrig et al.2006). In fact, main parts of the

theory can be presented in adhesive orM-adhesive categories (Lack and Sobociński2005;

Ehrig et al.2010) as shown in (Hermann et al.2010c). But for simplicity, the construction

of forward translation rules in this paper is based on attributed graphs, called graphs for

Formal Analysis of Model Transformations 5

short. However, the corresponding category of typed attributed graphs (see App. A) is

an important example of an M-adhesive category.

In this paper we assume basic knowledge of the algebraic theory of graph transforma-

tions as presented e.g. in Part I of (Ehrig et al.2006), but not of general category theory.

For a summary of main results on an informal level and potential applications - going

beyond our running example - we refer to Sec. 5.

1.4. Structure of the Paper

In Sec. 2, we present model transformations based on forward rules and forward trans-

lation rules as well as our first main result concerning correctness and completeness of

model transformations. In Sec. 3, we provide our main results for analysing functional

behaviour as well as information preservation, i.e. whether and how source models can

be (completely) reconstructed from target models. Thereafter, Secs. 4 and 5 discuss re-

lated work and provide a conclusion. Finally, App. A recalls the technical details of the

M-adhesive category of typed attributed graphs. App. B provides the proofs of some

auxiliary facts, while the proofs of the main results in Thms. 1-5 are given in the main

part of the paper.

2. Model Transformation Based on Triple Graph Grammars

Triple graph grammars are a technique developed by Schürr ((Schürr1994)) that allows

us to specify (bidirectional) model transformations. In particular, a triple graph grammar

describes a class of triple graphs, consisting of pairs of models together with the relation

between their elements. More precisely, a triple graph G =(GS ←sG−− GC −tG−→ GT) consists

of a source graph GS and a target graph GT , which are related via a correspondence

graph GC and two graph morphisms sG : GC → GS and tG : GC → GT specifying how

source elements correspond to target elements. In this context, the target graph of G

may be considered the forward transformation of its source graph and the source graph

may be considered the backward transformation of its target graph. Moreover, a given

set of triple graphs can be seen as a class of model transformations, and the triple graph

grammar that generates this set may be considered its specification.

(GS

mS ��
G GCsGoo

mC ��

tG // GT)

mT ��
(HSR

m ��
HC

sH
oo

tH
// HT)

Triple graphs are related by means of triple graph

morphisms which, as we would expect, are formed by

three graph morphisms. More precisely, a triple graph

morphism m = (mS ,mC ,mT) : G → H consists of

mS : GS → HS , mC : GC → HC and mT : GT → HT such that mS ◦ sG = sH ◦mC and

mT ◦ tG = tH ◦mC .

We can use any kind of graphs inside triple graphs, as long as they form an adhesive

(orM-adhesive) category (Lack and Sobociński2005; Ehrig et al.2006; Ehrig et al.2010).

This means that we can have triple graphs (or, better, triple structures) consisting of

many kinds of graphical structures. In this paper, we use attributed triple graphs based

on E-graphs as presented in (Ehrig et al.2007). Moreover, our triple graphs are assumed

F. Hermann, H. Ehrig, U. Golas, and F. Orejas 6

to be typed over a given triple type graph TG . As usual, the typing is done by a triple

graph morphism typeG : G→ TG .

src

Association

name: String
FKey cols

fkeys
referencesdest

fcols

pkey
attrs

parent

TGS TGC TGT

CT

AFK

AC

111

0..1
Class

name: String

Attribute

name: String

datatype: String

is_primary: boolean

Table

name: String

Column

type: String

name: String

Fig. 1. Triple type graph for CD2RDBM

Example 2.1 (Triple Type Graph). Fig. 1 shows the type graph TG of the triple

graph grammar TGG for our example model transformation CD2RDBM from class di-

agrams to database models. The source component TGS defines the structure of class

diagrams while in its target component the structure of relational database models is

specified. Classes correspond to tables, attributes to columns, and associations to for-

eign keys. Throughout the example, originating from (Ehrig et al.2007), elements are

arranged left, center, and right according to the component types source, correspondence

and target. Attributes of structural nodes and edges are depicted within their containing

structural nodes respectively edges. Formally, attribute values are edges to additional

data value nodes (see App. A). Note that the correspondence component is important

for the relation of the the source elements to their aligned target elements. For this rea-

son, it is used in practical scenarios to navigate via the traceability links from source

structures to target structures or vice versa. The morphisms between the three compo-

nent are visualized by dashed arrows. The depicted multiplicity constraints are ensured

by the triple rules of the grammar shown in Figs. 2-4. Moreover, the source language

contains only those class diagrams in which the classes have unique primary attributes.

A rule tr in a triple graph grammar, called a triple rule, is an injective triple

(LS

trS ��
L LCsLoo

trC ��

tL // LT)

trT ��
(RSR

tr ��
RC

sR
oo

tR
// RT)

L
m ��

� � tr // R
n��(PO)

G
� �

t
// H

graph morphism tr = (trS , trC , trT) :

L→ R and without loss of generality

we assume tr to be an inclusion. A

triple rule is applied to a triple graph

G by matching L to some sub triple graph of G. Technically, a match is a morphism

m : L→ G. The result of this application is the triple graph H, where L is replaced by R

in G. Technically, the result of the transformation is defined by a pushout diagram with

comatch n : R → H and transformation inclusion t : G ↪→ H, as depicted on the right.

This triple graph transformation (TGT) step is denoted by G =
tr,m
==⇒ H. A grammar

TGG = (TG , S,TR) consists of a triple type graph TG , a triple start graph S and a set

TR of triple rules.

Formal Analysis of Model Transformations 7

:Class

name=n
:CT

:Table

name=n

Class2Table(n:String)

++
++

++

:parent

S1:Class

:Class

name=n

:CT :Table

:CT

Subclass2Table(n:String)

++

++

++

:cols

:AC

S1:Class

:Attribute

name=n

datatype=t

is_primary=false

:attrs

C1:

CT T1:Table

++

++

++

++

++

:Column

name=n

type=t

Attr2Column(n:String, t:String)

++ ++

++++

++ ++

Fig. 2. Rules for the model transformation CD2RDBM , Part 1

L R

G H(PO)

C

tr C T

C T

A C

C

C T

C T

A C

Fig. 3. Triple graph transformation step via rule “Subclass2Table”

Example 2.2 (Triple Rules and Triple Transformation Step). The triple rules

in Fig. 2 are part of the rules of the grammar TGG for the model transformation

CD2RDBM . They are presented in short notation, i.e. left and right hand side of a

rule are depicted in one triple graph. Elements which are created by the rule are labelled

with ”++” and additionally marked by green line colouring. The rule “Class2Table”

synchronously creates a class with name “n” together with the corresponding table in

the relational database. Accordingly, subclasses are connected to the tables of its super

classes by rule “Subclass2Table”. Note that this rule creates the new class node together

with an edge of type parent implying that our compact case study does not handle the

case of multiple inheritance. Finally, rule “Attr2Column” creates attributes with type “t”

together with their corresponding columns in the database component. Figure 3 shows

a triple graph transformation step G =
tr ,m
==⇒ H via rule tr =“Subclass2Table”, where we

ommitted the attribute values of the nodes and reduced the node types to the starting

letters. The top line shows the rule with its left and right hand sides and the bottom line

shows the given triple graph G and the resulting triple graph H. The effect of this step

is the addition of a new subclass that is related to the existing table corresponding to

the existing class.

From the application point of view a model transformation should be injective on

the structural part, i.e. the transformation rules are applied along matches that do not

identify structural elements. But it would be too restrictive to require injectivity of the

matches also on the data and variable nodes, because we must allow that two different

variables can be mapped to the same data value. For this reason we introduce the notion

F. Hermann, H. Ehrig, U. Golas, and F. Orejas 8

of almost injective matches, which requires that matches are injective except for the data

value nodes. This way, attribute values can still be specified as terms within a rule and

matched non-injectively to the same value. For the rest of this paper we generally require

almost injective matching for the transformation sequences.

Definition 2.3 (Almost Injective Match). An attributed triple graph morphism

m : L → G is called almost injective match, if it is non-injective at most for the set of

variables and data values.

In graph transformation, negative application conditions (in short, NACs) allow us to

restrict the application of transformation rules when certain structures are present in

the given object graph (see, for instance, (Ehrig et al.2006)). In this paper, we consider

NACs for triple rules, following (Ehrig et al.2009a). Moreover, for most case studies

of model transformations source-target NACs, i.e. either source or target NACs, are

sufficient and we regard them as the standard case. These NACs prohibit the existence

of certain structures either in the source or in the target part only, while general NACs

may prohibit both at once, or even structures in the correspondence graph. For model

transformations with more general application conditions we refer to (Golas et al.2011).

Definition 2.4 (Triple Rule with Negative Application Conditions). Given a

triple rule tr = (L → R), a negative application condition (NAC) (n : L → N) consists

of a triple graph N and a triple graph morphism n. A NAC with n = (nS , idLC , idLT) is

called source NAC and a NAC with n = (idLS , idLC , nT) is called target NAC.

A match m : L → G is NAC consistent if there is no injective q : N → G such that

q ◦ n = m for each NAC L −n→ N . A triple transformation G
∗⇒ H is NAC consistent if

all matches are NAC consistent.

For the rest of this paper we only consider source and target NACs and almost injective

matches, which is sufficient in many practical case studies.

Given a triple type graph TG , a set of triple rules TR and a start graph ∅ = (∅← ∅→
∅) (usually, the empty triple graph), we denote by VL the set of integrated models (i.e.

triple models including elements in the source, target and correspondence component)

that are generated from ∅ using the rules in TR. Then, the source language VLS and

target language VLT of VL are derived by projections to the triple components, i.e.

VLS = projS(VL) and VLT = proj T (VL). Moreover, we denote the set of all models

typed over the source component TGS of the triple type graph TG by VL(TGS) implying

directly that VLS ⊆ VL(TGS). Analogously, by VL(TGT) we denote the set of all target

models typed over TGT and have that VLT ⊆ VL(TGT).

Example 2.5 (Triple Rules with NACs). The remaining triple rules of the model

transformation “CD2RDBM ” are shown in Fig. 4. Rule “PrimaryAttr2Column” extends

“Attr2Column” from Ex. 2.2 by creating additionally a link of type “pkey” for the column

and by setting the attribute value “is primary=true”. This rule contains NACs, which are

specified in short notation. The NAC-only elements are specified by red line colouring and

additionally, with a surrounding frame with label “NAC”. A complete NAC is obtained

by composing the left hand side of a rule with the marked NAC-only elements. The

Formal Analysis of Model Transformations 9

:cols

:AC

S1:Class

:Attribute

name=n

datatype=t

is_primary=true

:attrs

C1:

CT
T1:Table

++++

++

++

++

:Column

name=n

type=t

PrimaryAttr2Column(n:String, t:String)

:pKey

++

:Column
:pKey

:Attribute

is_primary=true
:attrs

NAC1 NAC2

:Class :Table

:src

:Class

:dest

:FKey

:Table

:cols:fkeys

:references

:pkey

++

:CT

:AFK

:CT

++

++
++

++

++

++ ++

++

:fcols

:Association

name = an

:Column

type = t

name = an+“_“+cn

Association2ForeignKey(an:String, cn:String)

++

:Column

type = t

name = cn

:Column
:pKey NAC1

++ ++

++++

Fig. 4. Rules for the model transformation CD2RDBM , Part 2

L R

G

tr C TC T

C T

A C

A C

pK

pK

L R

G' H'
(PO)

tr C TC T

C T

A C

A C

pK

C T

A C
pK

A C

Fig. 5. Vioaltion of NAC and satisfaction of NAC for rule “PrimaryAttr2Column”

source and a target NACs ensure that there is neither a primary attribute in the class

diagram nor a primary key in the data base model present when applying the rule.

More formally, the depicted NACs are actually NAC schemata (see Rem. 2.6 below).

The rule “Association2ForeignKey” creates an association between two classes and the

corresponding foreign key, where the parameters “an” and “cn” are used to set the names

of the association and column nodes. The target NAC ensures that the used primary

key for the foreign key in the data base component is unique. The left component of

Fig. 5 shows a violation of the target NAC for rule “PrimaryAttr2Column”, whose target

NAC forbids the presence of an existing primary key at the matched table. In its right

component, the figure shows a NAC consistent transformation step, where no primary

key and also no primary is present and also the existing attribute is assumed to be not

a primary one. Analogously to Fig. 3 we use a compact notation for the transformation

steps.

F. Hermann, H. Ehrig, U. Golas, and F. Orejas 10

Remark 2.6 (NACs for almost injective matches). In order to simplify the specifi-

cation of NACs for systems with almost injective matches we interpret all specified NACs

in a TGG as NAC schemata according to (Hermann et al.2011a). A match m : L → G

satisfies a NAC schema n : L → N , effectively if there is no almost injective morphism

q : N → G, such that q ◦ n = m. The difference to standard NACs is that the morphism

q is allowed to identify data values. According to Fact 2.14 in (Hermann et al.2011a),

a NAC schema is equivalent to the set of all instantiated NACs, which are given by a

structural copy of the NAC but with an adapted data part for each possible data evalu-

ation. Due to this equivalence, we can provide the formal results in this paper using the

standard notion of NAC satisfaction with injective morphism q : N → G according to

Def. 2.4.

Triple graph grammars specify model transformations, but they do not directly solve

the problem of, given a source model (or a target model) how to build its forward trans-

formation (respectively, its backward transformation). However, as we will see in the next

two subsections, from a triple graph grammar we can derive its associated operational

rules that are used for this task. In particular, in Subsec. 2.1, we present model trans-

formation in terms of forward (and backward) transformation rules, describing the main

results (Schürr and Klar2008; Ehrig et al.2009a). Then, in Subsec. 2.2, we present a more

elaborate kind of rules, called forward (and backward) translation rules, based on the

notion of translation attributes. These rules are the basis for the analysis of functional

behaviour and information preservation in Sec. 3.

2.1. Model Transformation Based on Forward Rules

As said above, in order to describe how given source models can be transformed into

corresponding target models, we use the so-called operational rules, which are derived

from the triple rules TR as shown below. From each triple rule tr we derive a source rule

trS and a forward rule trF for forward transformation sequences for the parsing and,

respectively, the construction of a model of the source language. As we can see, source

rules essentially consist of the source part of triple rules. As a consequence they may be

used to generate or parse the valid source graphs. However, we must notice that the set

of graphs that can be generated by the source rules includes, but in general does not

coincide with VLS , the source part of the triple graphs that are generated by the triple

rules. That is, there may be models generated by the source rules that do not have a valid

transformation, according to the triple rules. The reason is that, at a certain moment, it

may be impossible to apply a given triple rule, because we can not match the target or

the correspondence part of its left-hand side, but it may be possible to match just the

source part of the rule (i. e., its associated source rule).

(LS

trS ��
∅oo

��

// ∅)

��
(RS ∅oo // ∅)

source rule trS

(∅
��

∅oo

��

// LT)

trT ��
(∅ ∅oo // RT)

target rule trT

(RS

id ��
LCtrS◦sLoo

trC ��

tL // LT)

trT��
(RS RCsRoo tR // RT)

forward rule trF

Formal Analysis of Model Transformations 11

The intuition behind forward rules is quite simple. Given a certain source model, GS , we

are trying to find a target model GT such that there is a triple graph (GS ←sG−− GC −tG−→ GT)

that can be generated by the given set of triple rules. This means that GT can be

generated by the target part of the triple rules. However, the problem is to know which

target rules should be used. Instead, we use forward rules that restrict the choice of

the possible rules to use in this construction. In particular, given a triple rule tr , in its

associated forward rule trF , the source part of its left-hand side, RS , coincides with the

source part of the right-hand side of tr . This means that, if there is a match of trF in

GS then its source part could have been generated by tr or, conversely, if there is no

match of the source part of trF in GS then we would be unable to use tr to generate the

triple graph (GS ←sG−− GC −tG−→ GT). In addition, using forward rules, we not only are able

to build GT , but also the correspondence between GS and GT .

If the given triple rules include NACs, then these NACs are inherited by the operational

rules as follows. Each forward rule trF inherits the target NACs of its associated triple

rule tr , since target NACs restrict the construction of target models. Conversely, source

NACs restrict the construction of source models. For this reason they are inherited by

source rules. By TRS and TRF we denote the sets of all source and forward rules derived

from TR. Analogously, we derive a target rule trT and a backward rule trB for the

construction and transformation of a model of the target language leading to the sets

TRT and TRB .

As introduced in (Ehrig et al.2007; Ehrig et al.2009a) the derived operational rules

provide the basis to define model transformations based on forward transformation se-

quences that are executed via the formal control condition source consistency, which we

briefly explain in the following. We know that GT is the transformation of GS if the

triple graph G = (GS ← GC → GT) is in the class defined by the TGG, i.e. if there is a

sequence of transformations ∅ =
tr1=⇒ G1 =⇒ . . . =

trn==⇒ Gn = G. But, as we can see in Fact

2.9, this sequence of transformations can be decomposed into a sequence of transforma-

tions using the associated source rules, followed by a sequence of transformations using

the associated forward rules ∅ =
tr1S==⇒ G10 =⇒ . . . =

trnS==⇒ Gn0 = (GS ← ∅ → ∅) =
tr1F==⇒

Gn1 =⇒ . . . =
trnF==⇒ Gnn = G, where the source and forward sequences are match con-

sistent, meaning that the matches of the corresponding source and forward steps are

compatible. Technically, source and forward match are compatible if they coincide for

each mapped element on their source component, i.e., mS
S(x) = mS

F (x) assuming that

the trace morphisms of the transformation sequences are inclusions. Moreover, Fact 2.9

also tells us that for every match consistent sequence of transformations ∅ =
tr1S==⇒ G10 =⇒

. . . =
trnS==⇒ Gn0 =

tr1F==⇒ Gn1 =⇒ . . . =
trnF==⇒ Gnn = G there is a corresponding sequence of

triple rule transformations ∅ =
tr1=⇒ G1 =⇒ . . . =

trn==⇒ Gn = G. This means that, if we want

to compute the transformation of a certain source model GS , what we can do is to find a

sequence of forward transformations (GS ← ∅ → ∅) =
tr1F==⇒ Gn1 =⇒ . . . =

trnF==⇒ Gnn = G,

such that the corresponding sequence of match consistent source transformations gener-

ates GS , i.e. ∅ =
tr1S==⇒ G10 =⇒ . . . =

trnS==⇒ (GS ← ∅ → ∅). These forward sequences are

called source consistent. In principle, to find a source consistent forward sequence we

must first parse the source model, i.e. we must find the match consistent source sequence

F. Hermann, H. Ehrig, U. Golas, and F. Orejas 12

that generates GS . However, in (Ehrig et al.2009a) it was shown that source and forward

sequences can be constructed simultaneously.

Let us now see some of these concepts in more detail.

Definition 2.7 (Model Transformation based on Forward Rules). A model trans-

formation sequence (GS , G0 =
tr∗F==⇒ Gn, G

T) consists of a source graph GS , a target graph

GT , and a source consistent forward TGT-sequence G0 =
tr∗F==⇒ Gn with GS = GS

0 and

GT = GT
n .

A model transformation MT : VL(TGS) V VL(TGT) is defined by all model trans-

formation sequences (GS , G0 =
tr∗F==⇒ Gn, G

T) with GS ∈ VL(TGS) and GT ∈ VL(TGT).

All the corresponding pairs (GS , GT) define the model transformation relation MTRF ⊆
VL(TGS)×VL(TGT) based on TRF .

In (Ehrig et al.2007; Ehrig et al.2009a) we have proved that source consistency ensures

(syntactical) correctness and completeness of model transformations based on forward

rules with respect to the language VL of integrated models. Syntactical correctness means

that every model transformation sequence (GS , G0 =
tr∗F==⇒ Gn, G

T) leads to an integrated

model Gn = (GS ← GC → GT) ∈ VL. In other words, that source consistent forward

transformations generate correct model transformations, according to the class of trans-

formations specified by the given TGG. Completeness means that for any integrated

model G = (GS ← GC → GT) ∈ VL, there is a corresponding model transformation

sequence (GS , G0 =
tr∗F==⇒ G,GT). Intuitively, that any valid transformation specified by a

TGG can be implemented by a source consistence forward transformation.

Note that the model transformation relation MTRF is in general not a function from

VL(TGS) to VL(TGT), but we study functional behaviour in Sec. 3.

Definition 2.8 (Syntactical Correctness and Completeness). A model transfor-

mation MT : VL(TGS) V VL(TGT) based on forward rules is

— syntactically correct, if for each model transformation sequence (GS , G0 =
tr∗F==⇒ Gn, G

T)

there is G ∈ VL with G = (GS ← GC → GT) implying further that GS ∈ VLS and

GT ∈ VLT , and it is

— complete, if for each GS ∈ V LS there is G = (GS ← GC → GT) ∈ VL with a model

transformation sequence (GS , G0 =
tr∗F==⇒ Gn, G

T) and Gn = G. Vice versa, for each

GT ∈ V LT there is G = (GS ← GC → GT) ∈ VL with a model transformation

sequence (GS , G0 =
tr∗F==⇒ Gn, G

T) and Gn = G.

For showing syntactical correctness and completeness for model transformations based

on TGGs by Thm. 1 we use the following composition and decomposition result for TGT-

sequences, which is shown in (Ehrig et al.2007) and (Ehrig et al.2009b) for the case of

rules without and with NACs, respectively.

Fact 2.9 (Composition and Decomposition of TGT-Sequences).

1 Decomposition: For each TGT-sequence G0 =
tr1=⇒ G1 =⇒ . . . =

trn==⇒ Gn (1)

based on triple rules there is a corresponding match consistent TGT-sequence

Formal Analysis of Model Transformations 13

G0 = G00 =
tr1S==⇒ G10 =⇒ . . . =

trnS==⇒ Gn0 =
tr1F==⇒ Gn1 =⇒ . . . =

trnF==⇒ Gnn = Gn (2)

based on corresponding source and forward rules.

2 Composition: For each match consistent transformation sequence (2) there is a

corresponding transformation sequence (1).

3 Bijective Correspondence: Composition and decomposition are inverse to each

other (up to isomorphism).

Theorem 1 (Syntactical Correctness and Completeness). Each model transfor-

mation MT : VL(TGS) V VL(TGT) based on forward rules is syntactically correct and

complete.

Proof.

1 (Syntactical Correctness)

Given a model transformation sequence (GS , G0 =
tr∗F==⇒ Gn, G

T), then source consis-

tency of G0 =
tr∗F==⇒ Gn implies a match consistent sequence ∅ =

tr∗S==⇒ G0 =
tr∗F==⇒ Gn. Using

the composition part of Fact 2.9 we have a corresponding TGT-sequence ∅ =
tr∗
=⇒ Gn.

This implies for G = Gn that G ∈ VL with G = (GS ← GC → GT) and hence, also

GS ∈ VLS and GT ∈ VLT .

2 (Completeness)

Given GS ∈ VLS we have by definition of VLS some G = (GS ← GC → GT) ∈ VL.

This means we have a TGT-sequence ∅ =
tr∗
=⇒ G and by the decomposition part of

Fact. 2.9 we have a match consistent sequence ∅ =
tr∗S==⇒ G0 =

tr∗F==⇒ G, which defines a

model transformation sequence (GS , G0 =
tr∗F==⇒ G,GT) using G = (GS ← GC → GT).

Vice versa, we use Rem. 2.10.

Remark 2.10 (Composition and Decomposition for Backward Case). For each

TGT-sequence G0 =
tr∗
=⇒ Gn there is also a corresponding match consistent backward

TGT-sequence G0 = G00 =
tr1,T
===⇒ G01 =⇒ . . . =

trn,T
===⇒ G0n =

tr1,F
===⇒ G1n =⇒ . . . =

trn,F
===⇒ Gnn =

Gn based on target and backward rules leading to a backward model transformation

MTB : VL(TGT) V VL(TGS) with similar results as in the forward case.

Termination of model transformations is considered in Fact 3.11 in Sec. 3.1.

2.2. Model Transformation Based on Forward Translation Rules

A main difficulty in implementing the techniques described in the previous subsection is

related to how to check source consistency in a reasonably efficient way. In this section

we show an approach, introduced in (Hermann et al.2010c), that solves this problem in

a relatively simple way. Moreover, this approach sets the basis for the analysis of model

transformations in Sec. 3.1.

The basic idea is to use what we call translation attributes that tell us, as described

in Ex. 2.13, which elements of the given source model have been already translated

or used to build the target and the correspondence models. More precisely, given a

F. Hermann, H. Ehrig, U. Golas, and F. Orejas 14

source model GS , if we think of building in parallel the match consistent sequences of

source and forward transformations, ∅ =
tr1S==⇒ G10 =⇒ . . . =

trnS==⇒ Gn0 = (GS ← ∅ → ∅)

and (GS ← ∅ → ∅) =
tr1F==⇒ Gn1 =⇒ . . . =

trnF==⇒ Gnn = G, at any point i, when we

would be going to apply the source transformation G(i−1)0 =
triS==⇒ Gi0 and the forward

transformation Gn(i−1) =
triF==⇒ Gni, all the elements in the source graph which are included

in G(i−1)0 would have their translation attributes set to true and the rest of them would

be set to false, since the elements in G(i−1)0 are the elements that have been translated

by the forward transformations (GS ← ∅→ ∅) =
tr1F==⇒ Gn1 =⇒ . . . =

tr(i−1)F
=====⇒ Gn(i−1).

This means that, first, we must enrich the given source graph with translation at-

tributes assigning one translation attribute to each element (i.e. each node, edge and

attribute) of the source graph. Second, before starting the transformation process, we

must set all translation attributes to false, since initially no element has already been

used in building the target model. Third, when applying the forward rule triF we would

need to check, on the one hand, that the associated source rule, triS , could be applied

using a consistent match. This is equivalent to checking if all the elements of the source

graph that are matched by the left-hand side of the source rule have their translation

attributes set to true and all the elements that would be added by the source rule have

their translation attributes set to false. Moreover, if that source rule includes some NAC,

we would need to check that the subgraph of the source graph, consisting of the elements

with true translation attributes, satisfies that NAC with respect to the given match. On

the other hand, we have to set to true all the translation attributes of the elements of

the source graph that would have been added by triS . Finally, to check that the source

model has been completely transformed into a target (and a correspondence) model, we

would need to check that, at the end of the transformation, all the translation attributes

of the source model are set to true. In this case, we say that the transformation sequence

is complete.

The above explanation of how we use translation attributes may give the impression

that the management of translation attributes (i.e. checking if we can apply a transfor-

mation rule and updating the attributes after each transformation step) is external to

the transformation process, in the sense that the model transformation process is still

done using forward rules, but checking and updating the translation attributes is done in

some metaprocess. Actually, this is not true. A second key idea of our approach is that we

can integrate the management of translation attributes into the transformation process.

We do this by using a variant of forward rules that we call forward translation rules.

More precisely, given a triple rule tr = (L→ R), its associated forward translation rule,

trFT , as described in Example 2.16, enriches its associated forward rule in the following

aspects:

— In the source part of the left-hand side of the rule, every element in LS has an

associated translation attribute set to true, and every element in LR \ LS has an

associated translation attribute set to false. In this way, the matching of the rule

takes care that, in the given source graph, all elements that are expected to have been

already created by previous source transformations have a true translation attribute

Formal Analysis of Model Transformations 15

and all the elements that are supposed to be translated in this transformation step

have a false translation attribute.

— In the source part of the right-hand side of the rule, every element in RS has an

associated translation attribute set to true. In this way, the transformation defined

by the rule takes care of updating translation attributes of the elements that are

supposed to be translated in this transformation step.†

— Every NAC n : L→ N of tr (not only target NACs) is included in trFT , but all the

elements in the source part of the NAC (either in L or in N) are included with an

associated translation attribute set to true.

The main result in this section shows that model transformations based on source

consistent forward TGT-sequences are equivalent to those based on complete forward

translation TGT-sequences as stated by Fact 2.20. The control condition source consis-

tency is ensured by the completeness of forward translation TGT-sequences, which are

based on the generated forward translation rules. For this reason, the check of source

consistency for forward TGT-sequences is reduced to a check whether the model is com-

pletely translated, i.e. all translation attributes are set to true.

Next, we provide the technical details of this approach, together with some examples.

Even if the basic ideas, as we have seen, are relatively simple, some basic definitions

are a bit involved because of the details when handling the translation attributes. For

this reason, in a superficial reading of this part , the reader may prefer to skip these

definitions.

In our notation, the translation attribute of each node, edge and attribute of a graph

is labelled with the prefix “tr”. Notice that we use different font shapes for a triple

rule tr (italic) and for the prefix of translation attributes “tr” (typewriter) in order to

emphasize the difference. Given an attributed graph AG = (G,D) and a family of subsets

M ⊆ |G| for the domains |G| of G, we call AG′ a graph with translation attributes over

AG if it extends AG with one new Boolean-valued attribute tr x for each element x

(node or edge) in M and one new Boolean-valued attribute tr x a for each attribute a

associated to such an element x in M . The family M together with all these additional

translation attributes is denoted by AttM . Note that we use the attribution concept of

E-Graphs as presented in (Ehrig et al.2006), where attributes are possible for nodes and

edges. Attributed graphs consist of a graph for the structural part, an algebra for the

data values and the attributes are edges between the structural elements (nodes and

edges) and the data values. Roughly spoken, an attribution edge of a node points to

the assigned value for the specific attribute. For more details on attributed graphs see

App. A.

Definition 2.11 (Family with Translation Attributes). Given an attributed graph

AG = (G,D) we denote by |G| = (V G
G , V D

G , EG
G , ENA

G , EEA
G) the underlying family of sets

† We may note that forward translation rules are not just inclusions (i.e. non-deleting rules), since

some translation attributes are modified by the rule. As a consequence, as we may see in Definition
2.14, forward translation rules are spans of inclusions as it happens in the general case of graph

transformation rules.

F. Hermann, H. Ehrig, U. Golas, and F. Orejas 16

containing all nodes and edges. Let M ⊆ |G| with (V G
M , V D

M , EG
M , ENA

M , EEA
M), then a fam-

ily with translation attributes for (G,M) extends M by additional translation attributes

and is given by AttM = (V G
M , V D

M , EG
M , ENA, EEA) with:

— ENA = ENA
M ·∪ {tr x | x ∈ V G

M} ·∪ {tr x a | a ∈ ENA
M , srcNA

G (a) = x ∈ V G
G },

— EEA = EEA
M ·∪ {tr x | x ∈ EG

M} ·∪ {tr x a | a ∈ EEA
M , srcEA

G (a) = x ∈ EG
G}.

Definition 2.12 (Graph with Translation Attributes). Given an attributed graph

M
� � //
� _

��
(PO)

AttM

��
|G| // |G′|

AG = (G,D) and a family of subsets M ⊆ |G| with {T,F} ⊆ V D
M

and let AttM be a family with translation attributes for (G,M)

according to Def. 2.11. Then, AG′ = (G′, D) is a graph with trans-

lation attributes over AG, where the domains |G′| of G′ are given

by the gluing via pushout of |G| and AttM over M and the source

and target functions of G′ are defined as follows:

— srcGG′ = srcGG, trgGG′ = trgGG ,

— srcXG′(z) =

{
srcXG (z) z ∈ EX

G

x z = tr x or z = tr x a
for X ∈ {NA,EA},

— trgXG′(z) =

{
trgXG (z) z ∈ EX

G

T or F z = tr x or z = tr x a
for X ∈ {NA,EA}.

AttvM , where v = T or v = F, denotes a family with translation attributes where all

attributes are set to v. Moreover, we denote by AG⊕AttM that AG is extended by the

translation attributes in AttM , i.e. AG ⊕ AttM = (G′, D) for AG ′ = (G′, D) as defined

above. Analogously, we use the notion AG⊕ AttvM for translation attributes with value

v and we use the short notation Attv(AG) := AG⊕Attv|G|.

T1:Table

 name=“Company“

T5:FKey

T4:fkeys S3:Association

tr=T

name = “employee“

tr_name=T

S1:Class

tr=T

name=“Company“

tr_name=T

S5:Class

tr=T

name=“Person“

tr_name=T
T8:Table

name=“Person“

T3:Column

type = “int“

name = “employee_cust_id“

T2:cols

T6:fcols

T7:references

C1:

CT

C2:

AFK

C3:

CT

H
S

H
T

S7:Class

tr=F

name=“Customer“

tr_name=F

H
C

S4:dest
tr=T

S6:parent
tr=F

S2:src
tr=T

Fig. 6. Triple graph with translation attributes

Example 2.13 (Triple Graph with Translation Attributes). Fig. 6 shows the triple

graph H = (HS ← HC → HT) which is extended by some translation attributes in the

source component. The translation attributes with value “T” indicate that the owning

elements have been translated during a model transformation sequence using forward

translation rules, which are defined in Def. 2.14 hereafter. The remaining elements (edge

S6, node S7 and the attribute “name” of S7) in the source component are still marked

Formal Analysis of Model Transformations 17

with translation attributes set to “F”. These elements can still be matched and will

become translated at later steps. The translation attributes are used to explicitly specify

the elements which have been translated up to a specific step during the execution of a

model transformation.

The concept of forward translation rules, which we introduced in (Hermann

et al.2010c), extends the construction of forward rules by additional translation attributes

in the source component. As described in Ex. 2.13, the translation attributes are used

to keep track of the elements that have been translated so far. Since triple rules may

create new attributes for existing nodes by definition, we also have to keep track of the

translation of the attributes. The separate handling of nodes and their attributes is used,

e.g., in synchronization scenarios (Hermann et al.2011b). At the beginning, the source

model of a model transformation sequence is extended by translation attributes that are

all set to “F” and, step by step, they are set to “T” when their containing elements are

translated by a forward translation rule.

Definition 2.14 (Forward Translation Rule). Given a triple rule tr = (L→ R), the

forward translation rule of tr is given by trFT = (LFT ←lFT−−− KFT −rFT−−→ RFT) defined as

follows using the forward rule (LF −trF−−→ RF) and the source rule (LS −trS−−→ RS) of tr ,

where we assume w.l.o.g. that tr is an inclusion:

— LFT = LF ⊕AttTLS
⊕AttFRS\LS

— KFT = LF ⊕AttTLS

— RFT = RF ⊕AttTLS
⊕AttTRS\LS

= RF ⊕AttTRS
,

— lFT and rFT are the induced inclusions.

Moreover, for each NAC n : L → N of tr we define a forward translation NAC

nFT : LFT → NFT of trFT as inclusion with NFT = (LFT +L N)⊕AttTNS\LS
.

Remark 2.15. Note that (LFT +LN) is the union of LFT and N with shared L (formally

a pushout) and for a target NAC n the forward translation NAC nFT does not contain

any additional translation attributes because NS = LS . Given a set of triple rules TR

we denote by TRFT the set of all trFT with tr ∈ TR.

Example 2.16 (Derived Forward Translation Rules). The rule “Subclass2TableFT”

in Fig. 7 is the derived forward translation rule of the triple rule “Subclass2Table” in

Fig. 2. Note that we abbreviate “tr x” for an item (node or edge) x by “tr” and “tr x a”

by “tr type(a)” in the figures to increase readability. The compact notation of forward

translation rules specifies the modification of translation attributes by “[F⇒ T]”, mean-

ing that the attribute is matched with the value “F” and set to “T” during the trans-

formation step. The detailed complete notation of a forward translation rule is shown on

the right of Fig. 7 for “Subclass2TableFT”.

Fig. 8 shows the forward translation rule with NACs “PrimaryAttr2ColumnFT” de-

rived from the triple “PrimaryAttr2Column” in Fig. 4. According to Def. 2.14 the source

elements of the triple rule are extended by translation attributes and changed by the rule

from “F” to “T”, if the owning elements are created by the triple rule. Furthermore, the

forward translation rule contains both, the source and the target NACs of the triple rule,

F. Hermann, H. Ehrig, U. Golas, and F. Orejas 18

:parent

S1:Class

:Class

name=n

:CT :Table

:CT

Subclass2Table(n:String)

++++

++

S2:parent

tr=[F)T]

S3:Class

name=n

tr=[F)T]

tr_name=[F)T]

:CT :Table

:CT

Subclass2TableFT(n:String)

S1:Class

tr=T

S2:parent
tr=F

:CT :Table

Subclass2TableFT(n:String)

S1:Class

tr=T

LHS

S2:parent
tr=T

S3:Class
name=n
tr=T
tr_name=T

:CT :TableS1:Class

tr=T

RHS

:CT

++

T
G

G
-T

rip
le

 R
u

le
F

o
rw

a
rd

 T
ra

n
s
la

tio
n

 R
u

le

F
o

rw
a

rd
 T

ra
n

s
la

tio
n

 R
u

le
 (e

x
p

lic
it L

H
S

 a
n

d
 R

H
S

)

S3:Class
name=n
tr=F
tr_name=F

)

++++

++++

Fig. 7. Forward translation rule Subclass2TableFT (n : String)

:cols

:AC

S1:Class

:Attribute

tr=[F)T]

name=n

tr_name=[F)T]

datatype=t

tr_datatype=[F)T]

is_primary=true

tr_is_primary=[F)T]

:attrs
tr=[F)T]

C1:

CT
T1:Table

++
++

++

:Column

name=n

type=t

PrimaryAttr2ColumnFT(n:String, t:String)

:pKey

++ :Column

:pKey
:Attribute

tr=T

is_primary=true

tr_is_primary=true

:attrs
tr=T

NAC1
NAC2

:cols

:AC

S1:Class

:Attribute

name=n

datatype=t

is_primary=true

:attrs

C1:

CT
T1:Table

++
++

++

:Column

name=n

type=t

PrimaryAttr2Column(n:String, t:String)

:pKey

++ :Column

:pKey:Attribute

is_primary=true
:attrs

NAC1 NAC2 T
G

G
-T

rip
le

 R
u

le
F

o
rw

a
rd

 T
ra

n
s
la

tio
n

 R
u

le

++++

++ ++

++ ++

Fig. 8. Forward translation rule with NACs

where the NAC-only elements in the source NACs are extended by translation attributes

set to “T”. Thus, a source NAC concerns only elements that have been translated so far.

Since forward translation rules are deleting only on attribution edges, each NAC-

consistent match is applicable according to Fact 1 in (Hermann et al.2010a). Note that in

the general case of deleting rules the additional gluing condition has to be checked (Ehrig

et al.2006), in order to ensure, e.g., that edges do not become dangling due to the deletion

of nodes.

Formal Analysis of Model Transformations 19

Now, we define model transformations based on forward translation rules in the same

way as for forward rules in Def. 2.7, where source consistency of the forward sequence is

replaced by completeness of the forward translation sequence.

Definition 2.17 (Complete Forward Translation Sequence). A forward transla-

tion sequence G0 =
tr∗FT==⇒ Gn with almost injective matches is called complete if no further

forward translation rule is applicable and Gn is completely translated, i.e. all translation

attributes of Gn are set to true (“T”).

Definition 2.18 (Model Transformation Based on Forward Translation Rules).

A model transformation sequence (GS , G′0 =
tr∗FT==⇒ G′n, G

T) based on forward translation

rules TRFT consists of a source graph GS , a target graph GT , and a complete TGT-

sequence G′0 =
tr∗FT==⇒ G′n typed over TG ′ = TG⊕AttF|TGS |⊕AttT|TGS | based on TRFT with

G′0 = (AttF(GS)← ∅→ ∅) and G′n = (AttT(GS)← GC → GT).

A model transformation MT : VL(TGS) V VL(TGT) based on TRFT is defined by all

model transformation sequences as above with GS ∈ VL(TGS) and GT ∈ VL(TGT). All

the corresponding pairs (GS , GT) define the model transformation relation MTRFT ⊆
VL(TGS)×VL(TGT) based on TRFT . The model transformation is terminating if there

are no infinite TGT-sequences via TRFT starting with G′0 = (AttF(GS) ← ∅ → ∅) for

some source graph GS .

T1:Table

 name=“Company“

T5:FKey

T4:fkeys

S3:Association

tr=T

name = “employee“

tr_name=T

S1:Class

tr=T

name=“Company“

tr_name=T

S5:Class

tr=T

name=“Person“

tr_name=T T8:Table

name=“Person“

T3:Column

type = “int“

name = “employee_cust_id“

T2:cols

T6:fcols

T7:references

C1:

CT

C2:

AFK

C3:

CT

G
S

G
T

S6:parent

tr=T S7:Class

tr=T

name=“Customer“

tr_name=T

G
C

T10:cols
T9:pkey

S9:Attribute

tr=T

is_primary = true

tr_is_primary=T

datatype = "int"

tr_datatype=T

name=“cust_id“

tr_name=T

T11:Column

type = “int“

name = “cust_id“

C4:

CT

C5:

AC

S8:attrs

tr=T

S4:dest

tr=T

S2:src

tr=T

Fig. 9. Triple graph instance with translation attributes for CD2RDBM

Example 2.19 (Model Transformation via Forward Translation Rules). Fig. 9

shows the resulting triple graph of a forward translation sequence. The execution starts

by extending the source model GS with translation attributes according to Def. 2.18,

i.e. G′0 = (AttF(GS) ← ∅ → ∅). We can execute the forward translation sequence via

F. Hermann, H. Ehrig, U. Golas, and F. Orejas 20

the following sequence of forward translation steps. G′0 =
Class2TableFT=========⇒ G′1 =

Class2TableFT=========⇒
G′2 =

Subclass2TableFT===========⇒ G′3 =
PrimaryAttr2ColFT
=============⇒ G′4 =

Association2FKeyFT
=============⇒ G′5, with G′5 being

the graph G in Fig. 9. Now, the triple graph G′5 is completely translated, because all

translation attributes are set to “T”. No further forward translation rule is applicable

and we derive the resulting target model GT by restricting G′5 to its target component,

i.e. GT = G′
T
5 . According to the equivalence of the model transformation concepts based

on forward and forward translation rules in Fact 2.20 below we can further conclude that

GT can be equivalently obtained via a source consistent forward transformation sequence

based on forward rules without translation attributes.

By Fact 2.20 below we show that the model transformation sequences based on forward

translation rules are one-to-one with model transformation sequences based on forward

rules, i.e. based on source consistent forward sequences. For this reason, we can equiva-

lently use both concepts and chose one of them depending on the particular needs. While

the concept based on source consistency shows advantages in formal proofs, the concept

based on forward translation rules shows advantages concerning analysis and efficiency

as we will show in Sec. 3.1. The proof of Fact 2.20 is given in App. B.

Fact 2.20 (Equivalence of Forward Transformation and Forward Translation

Sequences). Given a source model GS ∈ VL(TGS), the sets of forward rules TRF

and corresponding forward translation rules TRFT , then the following are equivalent for

almost injective matches.

1 There is a model transformation sequence (GS , G0 =
tr∗F==⇒ Gn, G

T) based on TRF with

G0 = (GS ← ∅→ ∅) and Gn = (GS ← GC → GT)

2 There is a model transformation sequence (GS , G′0 =
tr∗FT==⇒ G′n, G

T) based on TRFT

with G′0 = (AttF(GS)← ∅→ ∅) and G′n = (AttT(GS)← GC → GT).

Moreover, the model transformation relation MTRF for the model transformation

based on forward rules coincides with the model transformation relation MTRFT for the

model transformation based on forward translation rules, i.e. MTRF = MTRFT .

3. Analysis of Functional Behaviour and Information Preservation

As shown in Sec. 2 before, we can ensure syntactical correctness and completeness for

model transformations based on forward rules and equivalently for those based on forward

translation rules using Fact 2.20. This section concentrates on the analysis of functional

behaviour and information preservation.

3.1. Functional Behaviour and Efficient Execution

Functional behaviour of a model transformation means that each model of the source

domain specific language (DSL) LS is transformed into a unique model of the target

language, where we require LS ⊆ VLS in order to ensure correctness and completeness

by Thm. 1. The source DSL can form any subset of VLS and it can be specified by the type

graph TGS together with additional well-formedness constraints. In many cases, model

Formal Analysis of Model Transformations 21

transformations should ensure the crucial property of functional behaviour. Moreover,

in order to ensure efficient executions of model transformations, backtracking should be

reduced or eliminated, respectively. Backtracking is necessary due to the possible choice of

a suitable forward rule and match used for the translation of a particular source element.

Therefore, backtracking is performed, if a transformation sequence terminates and is not

completed successfully, because some parts of the source model have not been translated.

This means, an execution of MT requires backtracking, if there are terminating TGT-

sequences (AttF (GS) ← ∅ → ∅) =
tr∗FT==⇒ G′n with G

′S
n 6= AttT (GS). Termination of a

forward translation sequence means that the construction of this sequence ends at a

graph to which no further forward translation rule is applicable. As we will show by

Thms. 2 and 3, functional behaviour and elimination of backtracking are closely related

topics.

Definition 3.1 (Functional Behaviour of Model Transformations). Given a

source DSL LS ⊆ VLS , then a model transformation MT based on forward transla-

tion rules has functional behaviour if each execution of MT starting at a source model

GS ∈ LS leads to a unique target model GT ∈ VLT .

K p2,o2
"*

p1,o1
t|

P1

∗
"*

P2

∗
t|

K ′

The standard way to analyse functional behaviour is to check

whether the underlying transformation system is confluent, i.e. all

diverging derivation paths starting at the same model finally meet

again. According to Newman’s Lemma (Newman1942), confluence

can be shown by proving local confluence and additionally ensuring termination. More

precisely, local confluence means that whenever a graph K can be transformed in one

step into two graphs P1 and P2, these graphs can be transformed into a graph K ′, as

shown in the diagram on the right.

Local confluence can be shown by checking confluence of all critical pairs

(P1 ⇐ K ⇒ P2), which represent the minimal objects where a confluence conflict may

occur. A critical pair describes a minimal conflict, where minimality means that only

overlappings of the rule components are considered for graph K. The technique is based

on two results (see (Ehrig et al.2006)). On the one hand, the completeness of critical pairs

implies that for every confluence conflict given by a pair of diverging transformation steps

(G1 ⇐ G ⇒ G2) there is a critical pair (P1 ⇐ K ⇒ P2) which can be embedded into

(G1 ⇐ G⇒ G2). On the other hand, the transformations (P1
∗⇒ K ′

∗⇐ P2) obtained by

confluence of the critical pair can be embedded into transformations (G1
∗⇒ G′

∗⇐ G2)

that solve the original confluence conflict.

However, as shown by Plump (Plump1993; Plump2005), confluence of critical pairs is

not sufficient for this purpose, but a slightly stronger version, called strict confluence is

necessary, which additionally requires that the preserved elements of the given steps are

preserved in the merging steps. This means that elements, which are not deleted by one of

the original transformations steps, have to be preserved by the additional transformations

which lead to confluence to ensure the applicability of the rules in the bigger context. This

is necessary, because when extending such a transformation, a preserved node may be

adjacent to an edge such that the deletion of this node would lead to dangling edges, i.e.

F. Hermann, H. Ehrig, U. Golas, and F. Orejas 22

K
p2,o2

�%
p1,o1

y�
P1

∗
�%

P2

∗
y�

K′

K

N1

v1
77

w1xx
N2

v2
gg

w2 &&
P1 N

z2
77

z1
gg

z4 ''z3ww

(1)

(4)

(2) (3) P2

N3

v3
ff

w3 ''
N4

v4
88

w4ww
K′

G

K
p2,o2

�'
p1,o1

w�

k0

OO

P1

∗
t1 �'

P2

∗
t2w�

K′

Fig. 10. NAC-strict confluence

the additional transformations were not applicable in the larger context. This result is also

valid for typed attributed graph transformation systems (Ehrig et al.2006; Lambers2009)

and we apply them to show functional behaviour of model transformations.

Furthermore, in the presence of NACs, we also have to ensure that NAC-consistency

of the merging steps is implied by the NAC-consistent diverging steps of the critical pair.

Again, this property ensures that the confluent transformations of the critical pair can

be embedded into a larger context. NAC-consistency of an embedding k : G → G′ for a

transformation step G =
p,m
==⇒ H implies that there is a transformation step G′ =

p,m′

==⇒ H ′

with m′ = k ◦m which satisfies the NACs of p. Concerning a transformation sequence,

NAC-consistency can be checked by constructing the concurrent rule of the sequence

(Lambers2009), which combines the involved NACs in a suitable way. If an embedding

morphism fulfills the NACs of the original rules, the critical pair can be embedded into

the larger context. To ensure the embedding of the additional transformations, the em-

bedding morphism has to fulfill all occurring NACs to ensure the applicability of the

transformation. Otherwise, we may have an embedding of a critical pair that is not

confluent.

Let us recall the basic notions for confluence of critical pairs according to (Ehrig

et al.2006; Lambers2009).

Definition 3.2 (NAC-strict Confluence of Critical Pairs). A critical pair CP =

(P1 ⇐p1,o1
==== K =

p2,o2
===⇒ P2) is called strictly confluent, if we have the following:

1 Confluence: the critical pair is confluent, i.e. there are transformations t1 : P1
∗⇒ K ′

and t2 : P2
∗⇒ K ′ with derived spans der(ti) = (Pi ←vi+2−−− Ni+2 −wi+2−−−→ K ′) for i = 1, 2.

2 Strictness: Let der(K =
pi,oi
==⇒ Pi) = (K ←vi−− Ni −wi−→ Pi) for i = 1, 2, and let N be the

pullback object of the pullback (1). Then, there are morphisms z3 and z4 such that

(2), (3), and (4) in Fig. 10 commute.

3 NAC-consistency : For every injective morphism k0 : K → G that is NAC consistent

with respect to K =
p1,o1
===⇒ P1 and K =

p2,o2
===⇒ P2 in Fig. 10 it follows that k0 is also

NAC consistent with respect to t1 and t2 .

However, while termination of model transformations based on forward rules resp.

forward translation rules can be ensured quite easily by checking that all TGG-triple

rules are creating on the source component, this is not the case for local confluence. In

fact, the system of forward translation rules of our case study CD2RDBM is not locally

confluent, but we can show in Ex. 3.15 that the model transformation has functional

Formal Analysis of Model Transformations 23

S2:parent
tr=F

S3:Class

tr=F
name=n
tr_name=F

:CT :TableS1:Class

tr=T

S3:Class

tr=T
name=n
tr_name=T

:CT :TableS1:Class

tr=T

:CT

)

!
S2:parent
tr=F

:Table

name=n

G1 G2

Fig. 11. Step G1 =
Class2TableFT=========⇒ G2 with misleading graph G2

behaviour. Indeed, functional behaviour of a model transformation does not require gen-

eral confluence of the underlying system of operational rules. Confluence only needs to

be ensured for transformation paths which lead to completely translated models. More

precisely, derivation paths leading to a point for backtracking do not influence the func-

tional behaviour. For this reason, we introduce so-called filter NACs that extend the

model transformation rules in order to avoid misleading paths that cause backtracking,

such that the backtracking for the extended system is reduced substantially. By Fact 3.9

we ensure that the overall behaviour of the model transformation with respect to the

model transformation relation is still preserved. As first important result we show by

Thm. 2 that functional behaviour of a model transformation is ensured by termination

and strict confluence of all significant critical pairs of the system of forward translation

rules enriched by filter NACs, where significant critical pairs are a subset of all critical

pairs. Furthermore, we are able to characterize strong functional behaviour of a terminat-

ing model transformation based on forward translation rules with filter NACs in Thm. 3

by the condition that there is no significant critical pair at all. Compared with func-

tional behaviour we additionally ensure by strong functional behaviour that the model

transformation sequences are unique up to switch equivalence.

The addition of filter NACs therefore has two advantages. On the one hand, the analysis

of functional behaviour is improved, because the possible conflicts between the transfor-

mation rules are reduced and we will show in this section that filter NACs allow us

to verify functional behaviour for our case study CD2RDBM. On the other hand, filter

NACs improve the efficiency of the execution by cutting off possible backtracking paths.

Filter NACs are based on the following notion of misleading graphs, which can be seen

as model fragments that are responsible for the backtracking of a model transformation.

Definition 3.3 (Translatable and Misleading Graphs). A triple graph with trans-

lation attributes G is translatable if there is a transformation sequence G =
tr∗FT==⇒ H via

forward translation rules such that H is completely translated (see Def. 2.17). A triple

graph with translation attributes G is misleading, if every triple graph G′ with translation

attributes and G′ ⊇ G is not translatable.

Example 3.4 (Misleading Graph). Consider the transformation step shown in

Fig. 11. The resulting graph G2 is misleading according to Def. 3.3, because the edge S2

is labelled with a translation attribute set to “F”, but there is no rule which may change

F. Hermann, H. Ehrig, U. Golas, and F. Orejas 24

this attribute in any bigger context at any later stage of the transformation. The only

rule which changes the translation attribute of a “parent”-edge is “Subclass2TableFT”,

but it requires that the source node S3 is labelled with a translation attribute set to “F”.

However, forward translation rules do not modify translation attributes if they are set

to “T” already and additionally do not change the structure of the source component.

Definition 3.5 (Filter NAC). A filter NAC n for a forward translation rule trFT :

LFT ← KFT → RFT is given by a morphism n : LFT → N , such that there is a TGT

step N =
trFT ,n
====⇒ M with M being misleading. The extension of trFT by some set of filter

NACs is called forward translation rule trFN with filter NACs.

LHS RHSNAC

:CT :Table

S1:Class
tr=T

name=n

tr_name=T

S1:Class
tr=F

name=n

tr_name=F

S1:Class
tr=F

name=n

tr_name=F

:parent
tr=F)

:Class

tr=T

Fig. 12. A forward translation rule with filter NAC: Class2TableFN

Example 3.6 (Forward Translation Rule with Filter NACs). The rule

Class2TableFT is extended by a filter NAC in Fig. 12, which is obtained from the graph

G1 of the transformation step G1 =
Class2TableFT=========⇒ G2 in Fig. 11, where G2 is misleading

according to Ex. 3.4. In Fact 3.7 below we present how such filter NACs are generated

automatically. In Ex. 3.15 we will extend the rule by a further similar filter NAC with

“tr = T” for node “S1”.

A direct construction of filter NACs according to Def. 3.5 would be inefficient, because

the size of the considered graphs to be checked is unbounded. For this reason we now

present efficient techniques which support the generation of filter NACs and allow us

to bound the size without losing generality. At first we present an automated technique

for a subset of filter NACs and thereafter, an interactive generation technique leading

to a much larger set of filter NACs. The first procedure in Fact 3.7 below is based on

a sufficient criterion for checking the misleading property. Concerning our example this

automated generation leads to the filter NAC shown in Fig. 12 for the rule Class2TableFT

for an incoming edge of type “parent”.

Fact 3.7 (Automated Generation of Filter NACs). Given a triple graph grammar,

then the following procedure applied to each triple rule tr ∈ TR generates filter NACs for

the derived forward translation rules TRFT leading to forward translation rules TRFN

with filter NACs:

— Outgoing Edges: Check whether the following properties hold

Formal Analysis of Model Transformations 25

– tr creates a node (x : Tx) in the source component and the type graph allows

outgoing edges of type “ Te” for nodes of type “ Tx”, but tr does not create an

edge (e : Te) with source node x.

– Each rule in TR which creates an edge (e : Te) also creates its source node.

– Extend LFT to N by adding an outgoing edge (e : Te) at x together with a target

node. Add a translation attribute for e with value F. The inclusion n : LFT → N

is a NAC-consistent match for tr .

For each node x of tr fulfilling the above conditions, the filter NAC (n : LFT → N)

is generated for trFT leading to trFN .

— Incoming Edges: Dual case, this time for an incoming edge (e : Te).

— TRFN is the extension of TRFT by all filter NACs constructed above.

Proof. See App. B.

The following interactive technique for deriving filter NACs is based on the generation

of critical pairs, which define conflicts of rule applications in a minimal context. By the

completeness of critical pairs (Lemma 6.22 in (Ehrig et al.2006)) we know that for each

pair of two parallel dependent transformation steps there is a critical pair which can be

embedded. If a critical pair P1 ⇐
tr1,FT
==== K =

tr2,FT
===⇒ P2 contains a misleading graph P1, we

use the overlapping graph K as a filter NAC of the rule tr1,FT . However, checking the

misleading property needs manual interaction. But in some cases, these manual results of

identified misleading graphs can be reused for more general static conditions. Indeed, the

conditions used in Fact 3.7 were inspired by first performing the interactive method to

our case study. Moreover, we are currently working on a technique that uses a sufficient

criteria to check the misleading property automatically, and we are confident that this

approach will provide a powerful generation technique.

Fact 3.8 (Interactive Generation of Filter NACs). Given a set of forward trans-

lation rules, then generate the set of critical pairs P1 ⇐
tr1,FT ,m1
======= K =

tr2,FT ,m2
======⇒ P2. If P1

(or similarly P2) is misleading, we generate a new filter NAC m1 : L1,FT → K for tr1,FT

leading to tr1,FN , such that K =
tr1,FN ,m1
======⇒ P1 violates the filter NAC. Hence, the critical

pair for tr1,FT and tr2,FT is no longer a critical pair for tr1,FN and tr2,FT . But this

construction may lead to new critical pairs for the forward translation rules with filter

NACs. The procedure is repeated until no further filter NAC can be found or validated.

This construction starting with TRFT always terminates if the structural part of each

graph of a rule is finite.

Proof. See App. B.

Based on the flattening construction presented in (Ehrig et al.2008) we derive an equiv-

alent plain graph transformation system from the system of forward translation rules.

Since the system of forward translation rules ensures source consistency for complete

transformation sequences by construction, the derived flattened grammar also ensures

source consistency for complete transformation sequences. For this reason, we do not

F. Hermann, H. Ehrig, U. Golas, and F. Orejas 26

need to extend the analysis techniques for critical pairs and can use the critical pair

analysis engine of AGG (AGG2011).

Concerning our case study CD2RDBM, the interactive generation terminates after the

second round, which is typical for practical applications, because the amount of already

translated elements in the new occurring critical pairs usually decreases. Furthermore,

several NACs can be combined if they differ only on some translation attributes. Accord-

ing to Fact 3.9 below, filter NACs do not change the behaviour of model transformations.

The only effect is that they filter out derivation paths, which would lead to misleading

graphs, i.e. to backtracking for the computation of the model transformation sequence.

This means that the filter NACs filter out backtracking paths.

Fact 3.9 (Equivalence of Transformations with Filter NACs). Given a triple

graph grammar TGG = (TG ,∅,TR) with forward translation rules TRFT and filter

NACs leading to TRFN . Let G0 = (GS ← ∅ → ∅) be a triple graph typed over TG

and G′0 = (AttF(GS) ← ∅ → ∅), then the following are equivalent for almost injective

matches:

1 There is a complete TGT-sequence G′0 =
tr∗FT ,m∗FT======⇒ G′ via TRFT .

2 There is a complete TGT-sequence G′0 =
tr∗FN ,m∗FT======⇒ G′ via TRFN .

Proof. See App. B.

Concerning termination of a system of forward translation rules according to Def. 3.10,

we have the following Fact 3.11 according to Thm. 1 in (Hermann et al.2010a).

Definition 3.10 (Termination). A system of forward translation rules TRFT is termi-

nating, if each transformation sequence via TRFT is terminating, i.e. the sequence ends

at a graph to which no further forward translation rule is applicable.

Fact 3.11 (Termination). Given TRFN and TRFT as in Fact 3.9, then TRFN is

terminating if TRFT is terminating. A sufficient condition for termination of TRFT is

that all graphs are finite on the graph part and each rule modifies at least one translation

attribute from false to true. Termination of TRFN with strict confluence of critical pairs

implies unique normal forms by the local confluence theorem in (Lambers2009).

In order to analyse functional behaviour we generate the critical pairs for the system of

forward translation rules and show by Thm. 2 that strict confluence of “significant” crit-

ical pairs ensures functional behaviour. A critical pair is significant if it can be embedded

into two transformation sequences via forward translation rules that start at the same

source model GS , which belongs to the source domain specific language LS . This implies

that a critical pair containing a misleading graph automatically is not significant. For

this reason, some of the non-significant critical pairs can be eliminated already with the

presented automatic and interactive techniques for generating filter NACs in Facts 3.7

and 3.8.

Definition 3.12 (Significant Critical Pair). A critical pair (P1 ⇐
tr1,FN
==== K =

tr2,FN
===⇒

P2) for a set of forward translation rules with filter NACs TRFN is called significant

Formal Analysis of Model Transformations 27

if it can be embedded into a parallel dependent pair (G′1 ⇐
tr1,FN
==== G′ =

tr2,FN
===⇒ G′2) such

that there is GS ∈ LS ⊆ VLS and G′0 =
tr∗FN==⇒ G′ with G′0 = (AttF(GS) ← ∅ → ∅).

G1′
G′0

tr∗FN +3 G′
tr2,FN

)1

tr1,FN -5

G′2

Theorem 2 (Functional Behaviour). Let MTFT be a model transformation based

on forward translation rules TRFT with model transformation relation MTRFT and

source DSL LS . Furthermore, let TRFN extend TRFT with filter NACs such that TRFN

is terminating and all significant critical pairs are strictly confluent. Then, MTFT has

functional behaviour. Moreover, the model transformation MTFN based on TRFN does

not require backtracking and MTFN defines the same model transformation relation, i.e.

MTRFN = MTRFT .

Proof of Thm. 2. For functional behaviour of the model transformation we have to

show that each source model GS ∈ LS is transformed into a unique (up to isomorphism)

completely translated target model GT , which means that there is a completely translated

triple model G′ with G′
T

= GT , and furthermore GT ∈ VLT .

For GS ∈ LS ⊆ VLS we have by definition of VL that there is a GT ∈ VLT and a

TGT-sequence ∅ =
tr∗
=⇒ (GS ← GC → GT) via TR and using the decomposition the-

orem with NACs in (Ehrig et al.2009b) we obtain a match consistent TGT-sequence

∅ =
tr∗S==⇒ (GS ← ∅ → ∅) =

tr∗F==⇒ (GS ← GC → GT) and by Fact 2.20 a complete

TGT-sequence G′0 = (AttF(GS) ← ∅ → ∅) =
tr∗FT==⇒ (AttT(GS) ← GC → GT) = G′.

This means that (GS , G′0 =
tr∗FT==⇒ G′, GT) is a model transformation sequence based

on TRFT . Assume that we also have a complete forward translation sequence G′0 =

(AttF(GS)← ∅→ ∅) =
tr
∗
FT==⇒ (AttT(GS)← GC → GT) = G

′
. By Fact. 3.9 we also have

the complete TGT-sequences (GS , G′0 =
tr∗FN==⇒ G′, GT) and G′0 =

tr∗FN==⇒ G′ and G′0 =
tr∗FN==⇒ G

′
.

Using the precondition that TRFN is terminating and all significant critical pairs are

strictly confluent we show that all diverging transformation sequences can be merged

again. Consider the possible transformation sequences starting at G′0 (which form a

graph of transformation steps) and two diverging steps (G′i+1 ⇐
p1,m1
==== G′i =

p2,m2
===⇒ G′′i+1).

If they are parallel independent, we can apply the local Church-Rosser theorem (LCR)

(Lambers2009) and derive the merging steps (G′i+1 =
p2,m

′
2===⇒ H ⇐p1,m

′
1==== G′′i+1). If they

are parallel dependent diverging steps we know by completeness of critical pairs (see

Thm. 3.7.6 in (Lambers2009)) that there is a critical pair and by Def. 3.12 we know

that this pair is significant, because we consider transformations sequences starting at

G′0. This pair is strictly confluent by precondition. Therefore, these steps can be merged

again. Now, any new diverging situation can be merged by either LCR for parallel in-

dependent steps or by strict confluence of critical pairs for parallel dependent steps. By

precondition the system is terminating. In combination, this implies that G′ ∼= G
′

and

hence, GT ∼= G
T

.

Backtracking is not required, because termination of TRFN with strict confluence of

significant critical pairs implies unique normal forms as shown above. Therefore, any

terminating TGT-sequence (AttF (GS)← ∅→ ∅) =
tr∗FN==⇒ G′n leads to a unique G′n up to

F. Hermann, H. Ehrig, U. Golas, and F. Orejas 28

isomorphism and by correctness and completeness (Thm. 1 and Fact 2.20) we have that

G′
S
n = AttT (GS).

The model transformation relation is the same, because we have by Fact 3.9 the equiv-

alence of the model transformation sequences.

If the set of generated critical pairs of a system of forward translation rules with filter

NACs TRFN is empty, we can directly conclude from Thm. 2 that the corresponding

system TRFT without filter NACs has functional behaviour. Moreover, from an efficiency

point of view, the set of rules should be compact in order to minimize the effort for

pattern matching. In the optimal case, the rule set ensures that each transformation

sequence of the model transformation is itself unique up to switch equivalence meaning

that it is unique up to the order of sequentially independent steps. For this reason, we

introduce the notion of strong functional behaviour with respect to a given source domain

specific language (DSL) LS . Note, that two transformation sequences are called switch-

equivalent, if they can be obtained from each other by switching consecutive sequentially

independent transformation steps, which is possible according to the Local Church-Rosser

Theorem (Ehrig et al.2006; Lambers2009).

Definition 3.13 (Strong Functional Behaviour of Model Transformations). A

model transformation based on forward translation rules TRFN with filter NACs and

the source DSL LS ⊆ VLS has strong functional behaviour if for each GS ∈ LS there

is a GT ∈ VLT and a model transformation sequence (GS , G′0 =
tr∗FN==⇒ G′n, G

T) based on

forward translation rules, and moreover,

— any partial TGT-sequence G′0 =
tri,∗

FN==⇒ G′i terminates, i.e. there are finitely many ex-

tended sequences G′0 =
tri,∗

FN==⇒ G′i =
trj,∗

FN==⇒ G′j , and

— each two TGT-sequences G′0 =
tr∗FN==⇒ G′n and G′0 =

tr
∗
FN==⇒ G

′
m with completely translated

graphs G′n and G
′
m are switch-equivalent up to isomorphism.

Remark 3.14 (Strong Functional Behaviour).

1 The sequences are terminating means that no rule in TRFN is applicable any more.

However, it is not required that the sequences are complete, i.e. that G′n and G
′
m are

completely translated.

2 Strong functional behaviour implies functional behaviour, because G′n and G
′
m com-

pletely translated implies that G′0 =
tr∗FN==⇒ G′n and G′0 =

tr
∗
FN==⇒ G

′
m are terminating

TGT-sequences.

3 Two sequences t1 : G0 ⇒∗ G1 and t2 : G0 ⇒∗ G2 are called switch-equivalent, writ-

ten t1 ≈ t2, if G1 = G2 and t2 can be obtained from t1 by switching sequential

independent steps according to the local Church-Rosser theorem with NACs (Lam-

bers2009). The sequences t1 and t2 are called switch-equivalent up to isomorphism if

t1 : G0 ⇒∗ G1 has an isomorphic sequence t1′ : G0 ⇒∗ G2 (using the same sequence

of rules) with i : G1 −∼−→ G2, written trace(t1′) = i ◦ trace(t1), such that t1′ ≈ t2. This

means especially that the rule sequence in t2 is a permutation of that in t1.

Formal Analysis of Model Transformations 29

The third main result of this paper shows that strong functional behaviour of model

transformations based on forward translation rules with filter NACs can be completely

characterized by the absence of significant critical pairs.

Theorem 3 (Strong Functional Behaviour). A model transformation based on

terminating forward translation rules TRFN with filter NACs has strong functional be-

haviour and does not require backtracking leading to polynomial time complexity if and

only if TRFN has no significant critical pair.

Proof. Direction “⇐”: Assume that TRFN has no significant critical pair. Similar

to the proof of Thm. 2 we obtain for each GS ∈ LS a GT ∈ VLT and a complete TGT-

sequence G′0 =
tr∗FT==⇒ G′ and a model transformation (GS , G′0 =

tr∗FT==⇒ G′, GT) based on

TRFT underlying TRFN . By Fact. 3.9 we also have a complete TGT-sequence G′0 =
tr∗FN==⇒

G′ and hence, also a model transformation (GS , G′0 =
tr∗FT==⇒ G′, GT) based on TRFT

underlying TRFN . In order to show strong functional behaviour let G′0 =
tr∗FN==⇒ G′n and

G′0 =
tr
∗
FN==⇒ G

′
m be two terminating TGT-sequences with m,n ≥ 1. We have to show that

they are switch-equivalent up to isomorphism. We show by induction on the combined

length n + m that both sequences can be extended to switch-equivalent sequences.

For n + m = 2 we have n = m = 1 with t1 : G′0 =
trFN ,m
====⇒ G′1 and t1 : G′0 =

trFN ,m
====⇒ G

′
1.

If trFN = trFN and m = m, then both are isomorphic with isomorphism i : G
′
1 −∼−→ G′1,

such that t1 ≈ i◦t1. If not, then t1 and t1 are parallel independent, because otherwise we

would have a significant critical pair by completeness of critical pairs in (Lambers2009).

By the local Church-Rosser theorem (Lambers2009) we have t2 : G′1 =
trFN==⇒ G′2 and

t2 : G
′
1 =

trFN==⇒ G′2, such that t2 ◦ t1 ≈ t2 ◦ t1 : G′0 ⇒∗ G′2.

Now assume that for t1 : G′0 ⇒∗ G′n−1 and t1 : G′0 ⇒∗ G
′
m we have extensions

t2 : G′n−1 ⇒∗ H, t2 : G
′
m ⇒∗ H, such that t2 ◦ t1 ≈ t2 ◦ t1.

G′0
t1 +3∗

t1 ��∗

G′n−1
t +3

t2
�� ∗

G′n

t3
�� ∗

G
′
m

t2

+3∗H
t3

+3∗K

For a step t : G′n−1 ⇒ G′n, then we have to show that t ◦ t1 and t1 can be extended to

switch-equivalent sequences. By induction hypothesis and definition of significant critical

pairs also t and t2 can be extended by t3 : G′n ⇒∗ K, t3 : H ⇒∗ K, such that t3◦t ≈ t3◦t2.

Now, composition closure of switch equivalence implies t3◦ t◦ t1 ≈ t3◦ t2◦ t1 : G′0 ⇒∗ K.

This completes the induction proof.

Now, we use that G′n and G
′
m are both terminal which implies that t3 and t3◦ t2 must

be isomorphisms. This shows that G′0 =
tr∗FN==⇒ G′n and G′0 =

tr
∗
FN==⇒ G

′
m are switch-equivalent

up to isomorphism.

Direction “⇒”:Assume now that TRFN has strong functional behaviour and that

TRFN has a significant critical pair. We have to show a contradiction in this case.

Let P1 ⇐
tr1,FN
==== K =

tr2,FN
===⇒ P2 be the significant critical pair which can be embedded

into a parallel dependent pair G1 ⇐
tr1,FN
==== G′ =

tr2,FN
===⇒ G2, such that there is GS ∈ LS

F. Hermann, H. Ehrig, U. Golas, and F. Orejas 30

with G′0 =
tr∗FN==⇒ G′ and G′0 = (AttF(GS)← ∅→ ∅). Since TRFN is terminating we have

terminating sequences G1 ⇒∗ G1n and G2 ⇒∗ G2m via TRFN . By composition we have

the following terminating TGT-sequences

1 G′0 =
trFN==⇒ G′ =

tr1,FN
===⇒ G1 ⇒∗ G1n

2 G′0 =
trFN==⇒ G′ =

tr2,FN
===⇒ G2 ⇒∗ G2m

Since TRFN has strong functional behaviour both are switch-equivalent up to isomor-

phism. For simplicity assume G1n = G2m instead of G1n
∼= G2m. This implies n = m and

G′ =
tr1,FN
===⇒ G1 ⇒∗ G1n switch-equivalent to G′ =

tr2,FN
===⇒ G2 ⇒∗ G1n. This means tr2,FN

occurs in G1 ⇒∗ G1n and can be shifted in G′ =
tr1,FN
===⇒ G1 ⇒∗ G1n, such that we obtain

G′ =
tr2,FN
===⇒ G2 ⇒∗ G1n.

But this implies that in an intermediate step we can apply the parallel rule tr1,FN +

tr2,FN leading to parallel independence of G′ =
tr1,FN
===⇒ G1 and G′ =

tr2,FN
===⇒ G2, which is a

contradiction. Hence, TRFN has no significant critical pair.

It remains to show that strong functional behaviour implies that backtracking is not

required. This is a direct consequence of Thm. 2, since we have no significant critical pair

and therefore, all of them are strictly confluent.

S2:parent
tr=F

S3:Class

tr=F
name=n

tr_name=F

:CT :TableS1:Class

tr=T

S3:Class

tr=T
name=n

tr_name=T

:CT :TableS1:Class

tr=T

:CT :Table

)

S2:parent
tr=F

K

P2

S3:Class

tr=T
name=n

tr_name=T

:CT :TableS1:Class

tr=T

:CT

S2:parent
tr=T

P1

)

!

Subclass2TableFT Class2TableFT

Fig. 13. Critical pair for the rules Subclass2TableFT and Class2TableFT

Example 3.15 (Functional and Strong Functional Behaviour). We analyse func-

tional behaviour of the model transformation CD2RDBM . By Fact 3.11, CD2RDBM

is terminating, because all TGG-triple rules are creating in the source component.

For analysing local confluence we use the tool AGG (AGG2011) for the generation

of critical pairs. The set of derived forward translation rules from the rules TR in

Figs. 2 and 4 is given by TRFT = {Class2TableFT ,Subclass2TableFT ,Attr2ColumnFT ,

PrimaryAttr2ColumnFT , Association2ForeignKeyFT}. We exchange the forward trans-

lation rule Class2TableFT by the extended rule with filter NACs Class2TableFN as shown

in Fig. 12, and additionally extend it by a further filter NAC obtained by the automated

generation according to Fact 3.7. We use AGG (version 2.0) for generating the critical

Formal Analysis of Model Transformations 31

pairs. AGG detects three critical pairs for conflicts of the rule “PrimaryAttr2Column”

with itself. The corresponding overlapping graphs K of the critical pairs contain two

primary attribute nodes which belong to classes that are connected to the same table.

This implies that the resulting graphs P1 and P2 of each critical pair (P1 ⇐= K =⇒ P2)

are misleading, because the remaining untranslated primary attribute of the initially two

cannot be translated in any bigger context due to the source NAC of the rule and because

no other rule translates a primary attribute. Therefore, all critical pairs lead to additional

filter NACs by the interactive generation of filter NACs in Fact 3.8. For the resulting

system of forward translation rules with filter NACs, AGG does not generate any critical

pair. Thus, we can apply Thm. 3 and show that the model transformation based on the

forward translation rules with filter NACs TRFN has strong functional behaviour and

does not require backtracking. Furthermore, by Thm. 2 we can conclude that the model

transformation based on the forward translation rules TRFT without filter NACs has

functional behaviour. As an example, Fig. 9 shows the resulting triple graph of a model

transformation starting with the class diagram GS .

3.2. Information Preservation

Model transformations are information preserving if their corresponding backward trans-

formations can be used to derive parts of the given source model from a target model

that was derived via a forward transformation. In fact, several TGG tools do not sup-

port backtracking and use optimizations, such that they cannot ensure completeness.

This implies that the execution of backward transformations may stop without creating

a valid source model for some target models (Giese et al.2010; Schürr and Klar2008; Klar

et al.2010). This section provides results for analysing and ensuring information preser-

vation for TGG model transformations according to Sec. 2. In particular, we analyse

whether and how a source model can be reconstructed from the computed target model.

For this purpose, we distinguish forward and backward model transformations. Inter-

estingly, it turns out that complete information preservation, i.e. the complete recon-

struction of the source model, is ensured by functional behaviour of the backward model

transformation. We present the techniques for model transformations based on forward

rules. According to the equivalence result in Fact 2.20, we also know that these techniques

provide the same results for model transformations based on forward translation rules.

Moreover, due to the symmetric definition of TGGs, the results can be applied dually

for backward model transformations.

Definition 3.16 (Information Preserving Model Transformation). A forward

model transformation based on forward rules is information preserving, if for each for-

ward model transformation sequence (GS , G0 =
tr∗F==⇒ Gn, G

T) there is a backward model

transformation sequence (GT , G′0 =
tr
′∗
B==⇒ G′m, G′

S
) with GS = G′

S
, i.e. the source model

GS can be reconstructed from the resulting target model GT via a target consistent

backward transformation sequence.

F. Hermann, H. Ehrig, U. Golas, and F. Orejas 32

By Thm. 4 we show that model transformations based on forward rules are information

preserving.

Theorem 4 (Information Preserving Model Transformation). Each forward

model transformation based on forward rules is information preserving.

Proof. Given a set of triple rules TR with derived forward rule TRF and backward

rules TRB . By Fact 2.9 and Rem. 2.10 applied to the source consistent forward sequence

G0 =
tr∗F==⇒ Gn via TRF we derive the target consistent backward transformation G′0 =

(GT ← ∅→ ∅) =
tr∗B==⇒ Gn via TRB with GS

n = GS . This means that we have a backward

model transformation sequence (GT , G′0 =
tr∗B==⇒ Gn, G

′S) with GS = G′
S

.

T1:Table

 name=“Company“

S1:Class

name=“Company“

S5:Class

name=“Person“
T8:Table

name=“Person“

C1:

CT

C3:

CT

G’
S

G
T

T1:Table

 name=“Company“

S1:Class

name=“Company“

S5:Class

name=“Person“

S7:Class

name=“otherName“

T8:Table

name=“Person“

C1:

CT

C4:

CT

C3:

CT

G
S

G
T

T1:Table

 name=“Company“

T8:Table

name=“Person“

G
T

)

)

T
rip

le
 G

ra
p

h
 G

’
T

rip
le

 G
ra

p
h

 GS6:parent

Fig. 14. Two possible target consistent backward transformations

Example 3.17 (Information Preserving Model Transformation CD2RDBM).

The model transformation CD2RDBM is information preserving, because it consists of

model transformation sequences based on forward rules, which ensure source consistency

of the forward sequences by definition. Therefore, the presented source model GS of the

triple graph in Fig. 9 can be reconstructed by a target consistent backward transfor-

mation sequence starting at the model G′0 = (∅ ← ∅ → GT). But there are several

possible target consistent backward transformation sequences starting at G′0. The rea-

son is that the rule Subclass2TableB can be applied arbitrarily often without having an

influence concerning the target consistency, because the rule is identical on the target

component. This means that the inheritance information within a class diagram has no

explicit counterpart within a relational data base model.

There are many possible target consistent backward transformation sequences for the

same derived target model GT where two of them are presented in Fig. 14. The source

model GS can be transformed into G = (GS ← GC → GT). But starting with GT ,

both depicted backward transformation sequences are possible and target consistent.

The resulting source graphs GS and G′
S

, however, differ with respect to the class node

Formal Analysis of Model Transformations 33

S7 and the edge S6 in GS . Hence, some information of GS cannot be reconstructed

uniquely and therefore, are partially lost in the target model GT .

According to Thm. 4 each model transformation based on forward rules is information

preserving. But the reconstruction of a corresponding source model from a derived target

model is in general not unique. In order to ensure uniqueness of the reconstruction we

now present the notion of complete information preservation. This stronger notion ensures

that all information contained in a source model of a source domain specific language

(DSL) can be reconstructed from the derived target model itself. More precisely, start-

ing with the target model, each backward model transformation sequence will produce

the original source model. This ensures that only one backward model transformation

sequence has to be constructed. Intuitively, this means that the model transformation is

invertible.

Definition 3.18 (Complete Information Preservation). A forward model trans-

formation with source DSL LS is completely information preserving if it is information

preserving and furthermore, given a source model GS ∈ LS and the resulting target model

GT of a forward model transformation sequence, then each partial backward transfor-

mation sequence starting with GT terminates and produces the given source model GS

as result.

We can verify complete information preservation by showing functional behaviour of

the corresponding backward model transformation with respect to the derived target

models L′T ⊆ MT (LS) ⊆ VLT .

Theorem 5 (Completely Information Preserving Model Transformation).

Given a forward model transformation MT . Then, MT is completely information pre-

serving if the corresponding backward model transformation according to Rem. 2.10 has

functional behaviour with respect to the target language L′T = MT (LS).

Proof. By Thm. 4 we know that MT is information preserving. For a model trans-

formation sequence (GS , G0 =
tr∗F==⇒ Gn, G

T), we additionally know that GT ∈ VLT

by Thm. 1, and furthermore, that GT ∈ L′T = MT (LS). Using the functional be-

haviour of the corresponding backward model transformation according to Def. 3.1 for

the language L′T we know that for each model HT the backward model transformation

yields a unique HS ∈ VLS . Therefore, each backward model transformation sequence

(GT , G′0 =
tr∗B==⇒ G′n, G

′S) leads to a unique G′
S ∈ VLS . Furthermore, there is a backward

model transformation sequence (GT , G′′0 =
tr∗B==⇒ G′′n, G

S) by Thm. 4 implying GS ∼= G′
S

,

i.e. the model transformation is completely information preserving.

Example 3.19 (Complete Information Preservation). The model transforma-

tion MT 1 = CD2RDBM is not completely information preserving. Consider e.g. the

source model GS in Fig. 14 of Ex. 3.17, where two backward model transformation

sequences are possible starting with the same derived target model GT . This means

that the backward model transformation has no functional behaviour with respect to

MT 1(LS) = MT (VLS) = VLT = LT .

F. Hermann, H. Ehrig, U. Golas, and F. Orejas 34

However, we can also consider the inverse model transformation, i.e. swapping the for-

ward and backward direction leading to the model transformation MT 2 = RDBM2CD

from relational data base models to class diagrams. In this case, the model transforma-

tion is completely information preserving meaning that each relational data base model

MDB can be transformed into a class diagram MCD, and each data based model model

MDB can be completely and uniquely reconstructed from its derived class diagram MCD.

In other words, each class diagram resulting from a model transformation sequence of

RDBM2CD contains all information that were present in the given data base model. Ac-

cording to Ex. 3.15 we know that the model transformation CD2RDBM has functional

behaviour and hence, the backward model transformation of RDBM2CD has functional

behaviour with respect to VLT being equal to the source language VLS of CD2RDBM.

For this reason, we can apply Thm. 5 and have that RDBM2CD is completely informa-

tion preserving. In particular, foreign keys are completely represented by associations,

and primary keys by primary attributes. There is no structure within the data base model

which is not explicitly represented within the class diagram.

4. Related Work

TGGs have been successfully applied for model transformations with different purposes

in a variety of domains (Guerra and de Lara2006a; Guerra and de Lara2006b; Kindler and

Wagner2007; Königs and Schürr2006; Taentzer et al.2005). The formal construction and

analysis of model transformations based on TGGs has been started in (Ehrig et al.2007)

by analysing information preservation of bidirectional model transformations and con-

tinued in (Ehrig et al.2008; Ehrig and Prange2008; Ehrig et al.2009a; Ehrig et al.2009b;

Hermann et al.2010c), where model transformations based on TGGs are compared with

those on plain graph grammars in (Ehrig et al.2008), TGGs with specification NACs

are analysed in (Ehrig et al.2009b) and an efficient on-the-fly construction is introduced

in (Ehrig et al.2009a). Pattern-based model-to-model transformations have been intro-

duced in (de Lara and Guerra2008) and corresponding correctness, completeness and

termination results have been presented in (Orejas et al.2009), which are, however, lim-

ited in comparison with the results in this article.

A first approach on analysing functional behaviour was presented for restricted TGGs

with distinguished kernels in (Ehrig and Prange2008) and a more general approach based

on forward translation rules in (Hermann et al.2010a; Hermann et al.2010c). The con-

cept of forward translation rules is inspired by the translation algorithm in (Schürr and

Klar2008), which uses a set for storing the elements that have been translated during

a transformation. The results in this paper for model transformations based on forward

translation rules with specification and filter NACs are based on results in most of these

papers. In particular, we extended these formal results by providing a less restrictive

condition for functional behaviour and a sufficient condition for complete information

preservation.

In (Ehrig et al.2007), a similar case study based on forward rules is presented, but

without using NACs. The grammar with NACs in this paper handles primary keys and

foreign keys in a more appropriate way and allows us to show strong functional behaviour.

Formal Analysis of Model Transformations 35

A more restrictive condition for ensuring functional behaviour is presented in (Giese

et al.2010), which requires the complete absence of all critical pairs, while the presented

condition in this article only requires strict confluence of the significant critical pairs

after optimizing the rules by the automatic and interactive generation of filter NACs.

In order to reduce backtracking, Klar et. al. (Klar et al.2010) propose a concept similar

to the automatic generation of filter NACs in Sec. 3.1. The effect of the filter NACs is

specified directly within the transformation algorithm, however, complete elimination of

backtracking cannot be ensured.

There are several other approaches to model transformations and in particular bidirec-

tional ones, where the general idea is to define one direction of the model transformation

and get the backward direction for free. This is different to the TGG case, where we

define the triple rules that build up the language of consistently integrated models and

from these triple rules we derive both forward and backward rules. In (Hidaka et al.2010),

a bidirectional language is defined using structural recursion on graphs. In (Bohannon

et al.2006), lenses are introduced, which are basically a pair of functions - get for forward

transformation and put for backward transformation - obeying certain behavioral laws.

Foster uses these lenses to propose a bidirectional language for model transformations

for updating views (Foster2009), which ensures that changes are propagated back to the

underlying model. Stevens discusses different important properties for model transfor-

mations in (Stevens2008). Among specification, composition, and maintenance of model

transformations, also verification and correctness properties are advised and some corre-

sponding laws for lenses are formulated. With their main focus on updates, lenses seem to

fit especially to views, but their usefulness for general model transformations with very

different source and target models and the application to graphs and other high-level

structures requires further analysis.

5. Conclusion

5.1. Summary of Main Results

In this paper we have studied model transformations based on triple graph grammars

(TGGs) with negative application conditions (NACs) in order to improve analysis and

execution compared with previous approaches in the literature.

The first key idea is that model transformations can be constructed by applying for-

ward translation rules with NACs, which can be derived automatically from the given

TGG-rules with NACs. The first main result shows correctness and completeness of

model transformations for forward transformations and also for forward translations by

combining Thm. 1 and Fact 2.20. The second main result provides a sufficient condi-

tion for functional behaviour (Thm. 2) based on the analysis of critical pairs for forward

translation rules with filter NACs. The generation of filter NACs improves the analysis of

functional behaviour for model transformations based on critical pair analysis (using the

tool AGG (AGG2011)) by filtering out backtracking paths and this way, some critical

pairs. If we are able to construct filter NACs such that the corresponding rules have no

more “significant” critical pairs, then the third main result shows that we have strong

F. Hermann, H. Ehrig, U. Golas, and F. Orejas 36

functional behaviour (Thm. 3). Moreover, Thms. 2 and 3 also show that strict confluence

of significant critical pairs ensures that backtracking is not required for the execution of

the model transformation which implies polynomial time complexity. Finally, we show

by Thm. 4 that TGG-model transformations are information preserving and by Thm. 5

that forward transformations are completely information preserving, if the correspond-

ing backward transformation has functional behaviour. For our case study CD2RDBM

we show that backtracking can be eliminated and strong functional behaviour can be

obtained by an automatic optimization based on filter NACs. Moreover, this leads to

complete information preservation for the derived backward transformation.

The main challenge in applying our main results on (strong) functional behaviour and

complete information preservation is to find suitable filter NACs, such that we have a

minimal number of critical pairs. For this purpose, we provide automated and interactive

techniques for the generation of filter NACs (see Facts 3.7 and 3.8).

5.2. Practical Relevance

In the following we discuss how the results in this paper can be used to meet the “Grand

Research Challenge of the TGG Community” formulated by Schürr et.al. in (Schürr and

Klar2008). The main aims are “Consistency”, “Completeness”, “Expressiveness” and

“Efficiency” of model transformations.

1 Consistency: Model transformations are consistent towards the given TGG, if when-

ever the algorithm translates a source model GS into a target model GT then there

is a triple graph G = (GS ← GC → GT) ∈ VL generated by the TGG. This property

is shown in Thm. 1.

2 Completeness and Termination: Completeness means that the execution of the model

transformation translates each source model GS ∈ VLS . This property subsumes

termination. Both properties are ensured for our construction by Thm. 1 and Fact 3.11

if triple rules are creating on the source part.

3 Efficiency: Model transformations shall have polynomial space and time complexity

with exponent k the maximal number of elements of a rule. This property can be en-

sured, if we can show that a model transformation does not require backtracking and

the TGG has a finite set of triple rules, which are creating on the source component,

have finitely many NACs and whose rule components are finite. In this case, each

execution of a model transformation has at most n steps with n being the amount of

structural elements of the source model. As discussed in (Schürr and Klar2008), the

bound k then ensures polynomial time complexity. Moreover, we provided sufficient

criteria and techniques for reducing and eliminating backtracking in Sec. 3.1, where

they are used for the the analysis of functional behaviour. Large TGGs with more

than 50 rules and big input models may still slow down the execution. However, in a

current project, we are using a TGG with 50 triple rules in the tool Henshin (Arendt

et al.2010) where we experience that the execution time for transforming models with

several hundred model elements is below 2 seconds on a standard PC. Moreover, the

tool AGG (AGG2011) provides automated analysis components, which we used for

Formal Analysis of Model Transformations 37

analysing functional behaviour and information preservation of the case study in this

paper as described in Sec. 3.

4 Expressiveness: Finally, features that are urgently needed for solving practical prob-

lems like NACs and attribute conditions shall be captured. Both, NACs and attributes

are handled by our approach. Moreover, we partially extended the results to the case

of more general application conditions in (Golas et al.2011) in the sense of (Habel

and Pennemann2009).

Summing up, the presented approach to model transformations based on triple graph

grammars provides an intuitive, expressive, formally well-founded and efficient frame-

work for bidirectional model transformations including powerful results for analysis and

optimization via filter NACs. According to the listed achievements above there are sev-

eral important advantages in comparison to other existing approaches, like (Schürr and

Klar2008; Königs and Schürr2006; Kindler and Wagner2007; Giese and Wagner2009;

Giese and Hildebrandt2009), which are mainly software engineering focused, and there-

fore, do not offer similar formal results. However, these approaches are very similar and

stimulated the development of some constructions. For this reason, the presented results

can be potentially transferred to the related approaches with some modification efforts.

5.3. Future Work

While we considered functional behaviour with respect to unique target models in this

paper, the more general notion in (Schürr and Klar2008) regarding some semantic equiv-

alence of target models will be part of further extensions of our techniques. Moreover,

we will study further static conditions for eliminating misleading execution paths and we

will develop extensions to layered model transformations and amalgamated rules. Finally,

we already applied some of the presented results for model transformation to the model

synchronization based on TGGs in order to ensure correctness (Hermann et al.2011b).

But there are several further problems in model synchronization which will require new

results, e.g. concerning a notion of information preservation for partially related domain

languages.

References

AGG (2011). AGG. TFS-Group, TU Berlin. http://tfs.cs.tu-berlin.de/agg.

Arendt, T., Biermann, E., Jurack, S., Krause, C., and Taentzer, G. (2010). Henshin: Advanced

concepts and tools for in-place EMF model transformations. In Proc. of the ACM/IEEE 13th

Intern. Conf. on Model Driven Engineering Languages and Systems (MoDELS’10), volume

6394 of LNCS, pages 121–135.

Bisztray, D., Heckel, R., and Ehrig, H. (2009). Verification of architectural refactorings: Rule

extraction and tool support. Electronic Communications of the EASST, 16.

Bohannon, A., Vaughan, J. A., and Pierce, B. C. (2006). Relational Lenses: A Language for

Updateable Views. In Principles of Database Systems (PODS).

http://tfs.cs.tu-berlin.de/agg

F. Hermann, H. Ehrig, U. Golas, and F. Orejas 38

de Lara, J. and Guerra, E. (2008). Pattern-Based Model-to-Model Transformation. In Ehrig,

H., Heckel, R., Rozenberg, G., and Taentzer, G., editors, Proc. 4th Int. Conf. on Graph

Transformations (ICGT 2008), volume 5214 of LNCS, pages 426–441. Springer.

Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., and Taentzer, G. (2007). Information Preserving

Bidirectional Model Transformations. In Proc. Fundamental Approaches to Software Engi-

neering (FASE’07), volume 4422 of LNCS, pages 72–86. Springer.

Ehrig, H., Ehrig, K., Prange, U., and Taentzer, G. (2006). Fundamentals of Algebraic Graph

Transformation. EATCS Monographs in Theor. Comp. Science. Springer.

Ehrig, H., Ermel, C., and Hermann, F. (2008). On the Relationship of Model Transformations

Based on Triple and Plain Graph Grammars. In Proc. Graph and Model Transformation

(GraMoT’08), pages 9–16. ACM.

Ehrig, H., Ermel, C., Hermann, F., and Prange, U. (2009a). On-the-Fly Construction, Correct-

ness and Completeness of Model Transformations based on Triple Graph Grammars. In Proc.

Model Driven Engineering Languages and Systems (MODELS’09), volume 5795 of LNCS,

pages 241–255. Springer.

Ehrig, H., Golas, U., and Hermann, F. (2010). Categorical Frameworks for Graph Transforma-

tion and HLR Systems based on the DPO Approach. Bulletin of the EATCS, 102:111–121.

Ehrig, H., Hermann, F., and Sartorius, C. (2009b). Completeness and Correctness of Model

Transformations based on Triple Graph Grammars with Negative Application Conditions.

ECEASST, 18.

Ehrig, H., Pfender, M., and Schneider, H. (1973). Graph grammars: an algebraic approach. In

14th Annual IEEE Symposium on Switching and Automata Theory, pages 167–180. IEEE.

Ehrig, H. and Prange, U. (2008). Formal Analysis of Model Transformations Based on Triple

Graph Rules with Kernels. In Proc. Intern. Conf. on Graph Transformation (ICGT’08),

volume 5214 of LNCS, pages 178–193. Springer.

Foster, J. (2009). Bidirectional Programming Languages. Dissertation, University of Pennsylva-

nia.

Giese, H. and Hildebrandt, S. (2009). Efficient Model Synchronization of Large-Scale Models .

Technical Report 28, Hasso Plattner Institute at the University of Potsdam.

Giese, H., Hildebrandt, S., and Lambers, L. (2010). Toward bridging the gap between formal

semantics and implementation of triple graph grammars. Technical Report 37, Hasso Plattner

Institute at the University of Potsdam.

Giese, H. and Wagner, R. (2009). From model transformation to incremental bidirectional model

synchronization. Software and Systems Modeling, 8(1):21–43.

Golas, U., Ehrig, H., and Hermann, F. (2011). Formal Specification of Model Transformations

by Triple Graph Grammars with Application Conditions. ECEASST. To appear.

Guerra, E. and de Lara, J. (2006a). Attributed typed triple graph transformation with inheri-

tance in the double pushout approach. Technical Report UC3M-TR-CS-2006-00, Universidad

Carlos III, Madrid, Spain.

Guerra, E. and de Lara, J. (2006b). Model View Management with Triple Graph Grammars.

In Proc. Intern. Conf. on Graph Transformation (ICGT’06), volume 4178 of LNCS, pages

351–366. Springer.

Habel, A. and Pennemann, K.-H. (2009). Correctness of high-level transformation systems

relative to nested conditions. Mathematical Structures in Computer Science, 19(2):245–296.

Hermann, F., Corradini, A., and Ehrig, H. (2011a). Analysis of Permutation Equivalence in M-

adhesive Transformation Systems with Negative Application Conditions. MSCS. submitted,

online available at http://tfs.cs.tu-berlin.de/publikationen/Papers11/HCE11.pdf.

http://tfs.cs.tu-berlin.de/publikationen/Papers11/HCE11.pdf

Formal Analysis of Model Transformations 39

Hermann, F., Ehrig, H., Golas, U., and Orejas, F. (2010a). Efficient Analysis and Execution of

Correct and Complete Model Transformations Based on Triple Graph Grammars. In Proc.

Model Driven Interoperability (MDI’10), MDI ’10, pages 22–31. ACM.

Hermann, F., Ehrig, H., Golas, U., and Orejas, F. (2010b). Efficient Analysis and Execution of

Correct and Complete Model Transformations Based on Triple Graph Grammars - Extended

Version. Technical Report 2010/13, FAk. IV, TU Berlin.

Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., and Xiong, Y. (2011b). Correctness

of Model Synchronization Based on Triple Graph Grammars. In Proc. of the ACM/IEEE 13th

Intern. Conf. on Model Driven Engineering Languages and Systems (MoDELS’11), LNCS.

Springer Verlag. to appear.

Hermann, F., Ehrig, H., Orejas, F., and Golas, U. (2010c). Formal Analysis of Functional

Behaviour of Model Transformations Based on Triple Graph Grammars. In Proc. Intern.

Conf. on Graph Transformation (ICGT’ 10), volume 6372 of LNCS, pages 155–170. Springer.

Hermann, F., Hülsbusch, M., and König, B. (2010d). Specification and verification of model

transformations. ECEASST, 30:1–21.

Hidaka, S., Hu, Z., Inaba, K., Kato, H., Matsuda, K., and Nakano, K. (2010). Bidirectionalizing

graph transformations. In Proceedings of the 15th ACM SIGPLAN international conference

on Functional programming, ICFP ’10, pages 205–216. ACM.

Kindler, E. and Wagner, R. (2007). Triple Graph Grammars: Concepts, Extensions, Implemen-

tations, and Application Scenarios. Technical Report TR-ri-07-284, Department of Computer

Science, University of Paderborn, Germany.

Klar, F., Lauder, M., Königs, A., and Schürr, A. (2010). Extended Triple Graph Grammars with

Efficient and Compatible Graph Translators. In Graph Transformations and Model Driven

Enginering - Essays Dedicated to Manfred Nagl on the Occasion of his 65th Birthday, volume

5765 of LNCS, pages 144–177. Springer.

Königs, A. and Schürr, A. (2006). Tool Integration with Triple Graph Grammars - A Survey.

In Proc. SegraVis School on Foundations of Visual Modelling Techniques, volume 148, pages

113–150. Electronic Notes in Theoretical Computer Science, Elsevier Science.

Lack, S. and Sobociński, P. (2005). Adhesive and quasiadhesive categories. Theoretical Infor-

matics and Applications, 39(2):511–546.

Lambers, L. (2009). Certifying Rule-Based Models using Graph Transformation. PhD thesis,

Technische Universität Berlin.

Newman, M. H. A. (1942). On theories with a combinatorial definition of ”equivalence”. Annals

of Mathematics, 43(2):223–243.

Orejas, F., Guerra, E., de Lara, J., and Ehrig, H. (2009). Correctness, Completeness and Ter-

mination of Pattern-Based Model-to-Model Transformation. In Kurz, A., Lenisa, M., and

Tarlecki, A., editors, Int. Conf. on Algebra and Coalgebra in Computer Science (CALCO’09),

volume 5728 of LNCS, pages 383–397. Springer.

Plump, D. (1993). Hypergraph Rewriting: Critical Pairs and Undecidability of Confluence. In

Term Graph Rewriting: Theory and Practice, pages 201–213. John Wiley.

Plump, D. (2005). Confluence of Graph Transformation Revisited. In Processes, Terms and

Cycles: Steps on the Road to Infinity, volume 3838 of LNCS, pages 280–308. Springer.

Rozenberg, G. (1997). Handbook of Graph Grammars and Computing by Graph Transformations,

Volume 1: Foundations. World Scientific.

Schürr, A. (1994). Specification of Graph Translators with Triple Graph Grammars. In Proc.

Workshop on Graph-Theoretic Concepts in Computer Science (WG’94), volume 903 of LNCS,

pages 151–163. Springer Verlag.

F. Hermann, H. Ehrig, U. Golas, and F. Orejas 40

Schürr, A. and Klar, F. (2008). 15 years of triple graph grammars. In Proc. Int. Conf. on Graph

Transformation (ICGT 2008), pages 411–425.

Stevens, P. (2008). A Landscape of Bidirectional Model Transformations. In Proceedings of

GTTSE 2008, volume 5235 of LNCS, pages 408–424. Springer.

Taentzer, G., Ehrig, K., Guerra, E., de Lara, J., Lengyel, L., Levendovsky, T., Prange, U.,

Varro, D., and Varro-Gyapay, S. (2005). Model Transformation by Graph Transformation: A

Comparative Study. In Proc. Workshop Model Transformation in Practice.

Appendix A. Category of Typed Attributed Garaphs

Typed attributed triple graphs are based on underlying category of of typed attributed

graphs (AGraphsATG ,M) which is given by the slice category (AGraph↓ATG,M) of

directed attributed graphs over a type graph ATG . In this App. A, we review the main

constructions for the category of typed attributed graphs according to (Ehrig et al.2006).

An attributed graph consists of an extended directed graph for the structural part –

called E-graph – together with an algebra for the specification of the carrier sets of the

value nodes. An E-graph extends a directed graph by additional attribute value nodes

and edges for the attribution of structural nodes and edges.

Definition A.1 (E-graph and E-graph morphism). An E-graph G with G =

(VG, VD, EG, ENA, EEA, (sourcej , targetj)j∈{G,NA,EA}) consists of the sets

— VG and VD , called the graph and data nodes (or vertices), respectively;

— EG, ENA , and EEA called the graph, node attribute, and edge attribute edges, re-

spectively; and the source and target functions

— sourceG : EG → VG, targetG : EG → VG for graph edges;

— sourceNA : ENA → VG, targetNA : ENA → VD for node attribute edges; and

— sourceEA : EEA → EG, targetEA : EEA → VD for edge attribute edges:

EG
sourceG --
targetG

11 VG

EEA

targetEA
--

sourceEA 33
ENA

targetNA
qq

sourceNAkk

VD

Consider the E-graphs G1 and G2 with Gk = (V k
G , V k

D, Ek
G, E

k
NA, E

k
EA, (sourcek

j ,

targetkj)j∈{G,NA,EA}) for k = 1, 2. An E-graph morphism f : G1 → G2 is a tuple

(fVG
, fVD

, fEG
, fENA

, fEEA
) with fVi

: V 1
i → V 2

i and fEj
: E1

j → E2
j for i ∈ {G,D},

j ∈ {G,NA,EA} such that f commutes with all source and target functions, for example

fVG
◦ source1

G = source2
G ◦ fEG

.

The carrier sets of attribute values that form the single set VD of an E-graph are defined

by an additional data algebra D, which also specifies the operations for generating and

manipulating data values. The carrier sets Ds of D contain the data elements for each

sort s ∈ S according to a data signature DSIG = (SD,OPD). These carrier sets are

combined by disjoint union and form the set VD of data elements.

Definition A.2 (Attributed Graph and Attributed Graph Morphism). Let

DSIG = (SD,OPD) be a data signature with attribute value sorts S′D ⊆ SD. An at-

Formal Analysis of Model Transformations 41

tributed graph AG = (G,D) consists of an E-graph G together with a DSIG-algebra D

D1
s

fD,s //
� _
�� (1)

D2
s� _
��

V 1
D

fG,VD
// V 2

D

such that ·∪s∈S′DDS = VD. For two attributed graphs AG1 =

(G1, D1) and AG2 = (G2, D2), an attributed graph morphism

f : AG1 → AG2 is a pair f = (fG, fD) with an E-graph morphism

fG : G1 → G2 and an algebra homomorphism fD : D1 → D2 such

that (1) commutes for all s ∈ S′D, where the vertical arrows are inclusions.

The category of typed attributed graphs AGraphsATG has as objects all attributed

graphs with a typing morphism to the attributed graph ATG (type graph), and as arrows

all attributed graph morphisms preserving the typing. The category (AGraphsATG ,M)

is shown in (Ehrig et al.2006) to be an adhesive HLR category, where the distinguished

class of monomorphisms M contains all monomorphisms that are isomorphisms on the

data part. For this reason, all results for adhesive HLR transformation systems pre-

sented in (Ehrig et al.2006) are valid. Since M-adhesive categories (Ehrig et al.2010)

are a slight generalisation of weak adhesive and adhesive HLR categories the category

(AGraphsATG ,M) is an M-adhesive category.

Appendix B. Remaining Proofs of Technical Results

In this section we provide proofs for Facts 2.20, 3.7, 3.8 and 3.9. In order to prove Fact 2.20

above we use Def. B.1 and Lem. B.2 below concerning the equivalence of single transfor-

mation steps using the on-the-fly construction of model transformations based on forward

rules presented in (Ehrig et al.2009a). In this context, forward sequences are constructed

with an on-the-fly check for partial source consistency. Partial source consistency requires

that the constructed forward sequence G0 =
tr∗F==⇒ Gk is partially match consistent, mean-

ing that for each intermediate forward step Gk−1 =
trk,F
===⇒ Gk the compatibility with the

corresponding source step Gk−1,0 =
trk,S
===⇒ Gk,0 of the simultaneously created source se-

quence G00 =
tr∗S==⇒ Gk,0 is checked. Compatibility requires that the forward match mk,F is

forward consistent, which means that the comatch nk,S of the source step and the match

mk,F of the forward step coincide on the source component with respect to the inclusion

Gk−1,0 ↪→ G0 ↪→ Gk−1. The formal condition of a forward consistent match is given in

Def. B.1 by a pullback diagram where both matches satisfy the corresponding NACs,

and intuitively, it specifies that the effective elements of the forward rule are matched

for the first time in the forward sequence.

Definition B.1 (Forward Consistent Match). Given a partially match consistent

sequence ∅ = G00 =
tr∗S==⇒ Gn−1,0 ↪−gn−→ G0 =

tr∗F==⇒ Gn−1 then a match mn,F : Ln,F → Gn−1

Ln,S
� � //

mn,S

��

Rn,S
� � // Ln,F

(1) mn,F

��
Gn−1,0

� �

gn−1

// G0
� � // Gn−1

for trn,F : Ln,F → Rn,F is called forward consistent if

there is a source match mn,S such that diagram (1) is

a pullback and the matches mn,F and mn,S satisfy the

corresponding target and source NACs, respectively.

Lemma B.2 (Forward translation step). Let TR be a set of triple rules with

tr i ∈ TR and let TRF be the derived set of forward rules. Given a partially match con-

F. Hermann, H. Ehrig, U. Golas, and F. Orejas 42

sistent forward sequence ∅ = G00 =
tr∗S==⇒ Gi−1,0 ↪−gi−1−−→ G0 =

tr∗F==⇒ Gi−1 and a corresponding

forward translation sequence G′0 =
tr∗FT==⇒ G′i−1, both with almost injective matches, such

that G′i−1 = Gi−1 ⊕AttFG0\Gi−1,0
⊕AttTGi−1,0

. Then the following are equivalent:

1 There is a TGT-step Gi−1 =
tri,F ,mi,F
======⇒ Gi with forward consistent match mi,F

2 There is a forward translation TGT-step G′i−1 =
tri,FT ,mi,FT
=======⇒ G′i

and we have G′i = Gi ⊕AttFG0\Gi,0
⊕AttTGi,0

.

The proof of Lem. B.2 is given by the proof of Fact 1 in (Hermann et al.2010b).

Fact 2.20 (Equivalence of Forward Transformations and Forward Translation

Sequences (see Sec. 2.2)).

Proof. We first show the equivalence of the sequences disregarding the NACs.

Item 1 is equivalent to the existence of the sequence G0 =
tr1,F ,m1,F
======⇒ G1 =

tr2,F ,m2,F
======⇒

G2 . . . =
trn,F ,mn,F
=======⇒ Gn with GS

n = GS , where each match is forward consistent according

to Def. B.1. Item 2 is equivalent to the existence of the complete forward translation

sequence G′0 =
tr1,FT ,m1,FT
========⇒ G′1 =

tr2,FT ,m2,FT
========⇒ G′2 . . . =

trn,FT ,mn,FT
========⇒ G′n via TRFT .

Disregarding the NACs, it remains to show that G
′S
0 = AttF(GS) and G

′S
n = AttT(GS).

We apply Lemma B.2 for i = 0 with G0,0 = ∅ up to i = n with Gn,0 = G0 and using

GS
0 = GS we derive:

G
′S
0 = GS

0 ⊕AttTG0,0
⊕AttFGS

0 \GS
0,0

= GS
0 ⊕AttFGS

0
= GS ⊕AttFGS = AttF(GS).

G
′S
n = GS

n ⊕AttTGS
n,0
⊕AttFGS

0 \GS
n,0

= GS
n ⊕AttTGS

n,0
= GS ⊕AttTGS = AttT(GS).

Now, we show that the single steps are also NAC consistent. For each step, we have

transformations Gi−1,0 =
tri,S ,mi,S
======⇒ Gi,0, Gi−1 =

tri,F ,mi,F
======⇒ Gi, G′i−1 =

tri,FT ,mi,FT
========⇒ G′i

with G′i−1 = Gi−1 ⊕ AttFG0\Gi−1,0
⊕ AttTGi−1,0

, G′i = Gi ⊕ AttFG0\Gi,0
⊕ AttTGi,0

, and

mi,FT |Li,F
= mi,F .

For a target NAC n : Li → N , we have to show that mi,F |= n iff mi,FT |= nFT ,

where nFT is the corresponding forward translation NAC of n. If mi,FT 6|= nFT
, we find

a monomorphism q′ with q′ ◦ nFT = mi,FT . Since n = nFT |N , define q = q′|N and it

follows that q◦n = mi,F , i.e. mi,F 6|= n. Vice versa, if mi,F 6|= n, we find a monomorphism

q with q◦n = mi,F . Since NS = LS
i , we do not have any additional translation attributes

in NFT . Thus mi,FT can be extended by q to q′ : NFT → G′i−1 such that mi,FT 6|= nFT .

Similarly, we have to show that for a source NAC n : L → N , mi,S |= n iff mi,FT |=
nFT . As for target NACs, if mi,FT 6|= nFT , we find a monomorphism q′ with q′ ◦ nFT =

mi,FT and for the restriction to LS
i and NS it follows that qS ◦nS = mS

i,FT , i.e. mi,S 6|= n.

Vice versa, if mi,S 6|= n, we find a monomorphism q with q ◦ n = mi,S . Now define q′

with q′(x) = mi,FT (x) for x ∈ LFT , q′(x) = q(x) for x ∈ N\Li, and for each x ∈ NS\LS
i

we have that q(x) ∈ Gi−1,0. From the above characterization of G′i−1 it follows that the

corresponding translation attributes tr x and tr x a are set to T in G′i−1. Thus, q′ is

well-defined and q′ ◦ nFT = mi,FT , i.e. mi,FT 6|= nFT .

The equality of the model transformation relations follows by the equality of the pairs

(GS , GT) in the model transformation sequences in both cases.

Formal Analysis of Model Transformations 43

Fact 3.7 (Automated Generation of Filter NACs (see Sec. 3.1)).

Proof. Consider a generated NAC (n : LFT → N) for a node x in tr with an outgoing

edge e in N \L. A transformation step N =
trFT ,n
====⇒ M exists, because the gluing condition

is always satisfied for forward translation rules as explained in Sec. 2.2, and the edge

e in M is still labelled with a translation attribute set to “F”, but x is labelled with

“T”, because it is matched by the rule. Now, consider a graph H ′ ⊇ M , such that H ′

is a graph with translation attributes over a graph without translation attributes H, i.e.

H ′ = H ⊕ AttH0
for H0 ⊆ H ′ meaning that H ′ has at most one translation attributes

for each element in H without translation attributes.

We show that H ′ is not translatable, which implies that M is misleading (Def. 3.3).

Forward translation rules only modify translation attributes from “F” to “T”, they do

not increase the amount of translation attributes of a graph and no structural element is

deleted. Thus, each graph Hi in a TGT sequence H ′ =
tr∗FT==⇒ Hn will contain the edge e

labelled with “F”, because the rules, which modify the translation attribute of e are not

applicable due to x being labelled with “T” in each graph Hi in the sequence and there

is only one translation attribute for x in H ′. Thus, each Hn is not completely translated

and therefore, M is misleading. This means that (n : LFT → N) is a filter NAC of trFT .

By duality, the result also holds for a generated NAC with respect to an incoming edge.

Fact 3.8 (Interactive Generation of Filter NACs (see Sec. 3.1)).

Proof. The constructed NACs are filter NACs, because the transformation step

K =
tr1,FT ,m1
======⇒ P1 contains the misleading graph P1. The procedure terminates, because

the number of critical pairs is bounded by the amount of possible pairwise overlappings

of the left hand sides of the rules. The amount of overlappings can be bounded by con-

sidering only constants and variables as possible attribute values.

Fact 3.9 (Equivalence of Transformations with Filter NACs (see Sec. 3.1)).

Proof. Sequence 1 consists of the same transformation diagrams as Sequence 2. NAC-

consistency of sequence 2 implies NAC-consistency of sequence 1, because each step in

Sequence 2 involves a superset of the NACs for the corresponding step in Sequence 1.

For the inverse direction, consider a step Gi−1 =
tr(i,FT),m(i,FT)
=========⇒ Gi, which leads to the step

Gi−1 =
tr(i,FN),m(i,FT)
=========⇒ Gi if NACs are not considered. Assume that mFT does not satisfy

some NAC of trFN . This implies that a filter NAC (n : Li,FT → N) is not fulfilled,

because all other NACs are fulfilled by NAC-consistency of Sequence 1. Thus, there is a

triple morphism q : N → Gi−1 with q ◦ n = mi,FT . By Thm. 6.18 (Restriction Thm.)

in (Ehrig et al.2006) we have that the transformation step Gi−1 =
tr(i,FN),m(i,FT)
=========⇒ Gi can

be restricted to N =
tr(i,FT),n
======⇒ H with embedding H → Gi. By Def. 3.5 of filter NACs we

know that N =
tr(i,FT),n
======⇒ H and H is misleading, which implies by Def. 3.3 that Gi is not

translatable. This is a contradiction to the completely translated graph Gn in sequence

1 and therefore, the filter NAC is fulfilled leading to NAC-consistency of sequence 2.

	Introduction
	Main Challenges for Model Transformations
	Model Transformations Based on TGGs and Main Results
	Mathematical Framework
	Structure of the Paper

	Model Transformation Based on Triple Graph Grammars
	Model Transformation Based on Forward Rules
	Model Transformation Based on Forward Translation Rules

	Analysis of Functional Behaviour and Information Preservation
	Functional Behaviour and Efficient Execution
	Information Preservation

	Related Work
	Conclusion
	Summary of Main Results
	Practical Relevance
	Future Work

	References
	 Category of Typed Attributed Garaphs
	 Remaining Proofs of Technical Results

