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2Wide Eyes Technologies

3Waseda University
Email: arubio@iri.upc.edu, longyu@wide-eyes.it, esimo@aoni.waseda.jp, fmoreno@iri.upc.edu

ABSTRACT

Finding a product in the fashion world can be a daunting task.
Everyday, e-commerce sites are updating with thousands of
images and their associated metadata (textual information),
deepening the problem, akin to finding a needle in a haystack.
In this paper, we leverage both the images and textual meta-
data and propose a joint multi-modal embedding that maps
both the text and images into a common latent space. Dis-
tances in the latent space correspond to similarity between
products, allowing us to effectively perform retrieval in this
latent space, which is both efficient and accurate. We train this
embedding using large-scale real world e-commerce data by
both minimizing the similarity between related products and
using auxiliary classification networks to that encourage the
embedding to have semantic meaning. We compare against
existing approaches and show significant improvements in re-
trieval tasks on a large-scale e-commerce dataset. We also
provide an analysis of the different metadata.

Index Terms— Multi-modal embedding, neural net-
works, retrieval

1. INTRODUCTION

The level of traffic of modern e-commerce is growing fast.
U.S. retail e-commerce, for instance, was expected to grow
16.6% on 2016 Christmas holidays (after a 15.3% increase
in 2014), with 92% of the holiday shoppers going online to
search or buy gifts [1]. In order to adapt to these trend, mod-
ern retail sellers have to provide an easy-to-use experience to
their customers, where products are easy to find and well clas-
sified. In this work, we consider the problem of multi-modal
retrieval, in which a user searches for either text or images
given a text or image query, and propose a joint embedding
for this task.

E-commerce products usually consist of pictures and as-
sociated metadata, generally in the form of textual informa-
tion such as brief descriptions, titles, series of tags, colors,
sizes, etc. Existing approaches for retrieval focus image-only
and require hard to obtain datasets for training [2]. Instead,
we opt to leverage easily obtained metadata for training our

Fig. 1. Example of a text and nearest images from the test
set. Our embedding produces low distances between texts
and images referring to similar objects.

model, and learning a mapping from text and images to a
common latent space, in which distances correspond to simi-
larity.

Our approach consists of exploiting a Convolutional
Neural network (CNN) for processing images, as well as
word2vec-based embedding with a Neural Network for pro-
cessing the textual information. Both networks are trained
such that the distance between the output of related image-
text pairs is minimized, while the distance between unrelated
image-text pairs is maximized. Additionally, two auxiliary
classification networks are used in combination with classi-
fication losses to retain semantic information in the common
embedding.

We evaluate our approach in the retrieval task and our pro-
posed approach outperforms KCCA [3] and Bag-of-word fea-
tures on a large e-commerce dataset. We additionally provide
an analysis of the different textual metadata.

2. RELATED WORK

Interest of computer vision researchers in Fashion has in-
creased in the past years. Many works focus on clothing
parsing, i.e., assigning a semantic label to each pixel of an



Fig. 2. Architecture of the neural network used. Conv, Pool and FC refer to convolutional, pooling and fully connected layers,
respectively. Text descriptor and Image descriptor are the embedded vectors describing the input text and image in the latent
space, respectively.

image [4, 5, 6], others work at a higher level trying to infer de-
ductions from the clothes, such as the person occupation [7],
its social tribe [8] or its fashionability [9, 10]. Nevertheless,
some of the more practical tasks might be clothing retrieval
and classification [11, 12], which we tackle in this paper.

Retrieval task consists on finding similar items given a
query. The usual pipeline for image retrieval is formed by
three steps: extracting local image descriptors (such as Fisher
Vectors [13, 14, 15]), reducing the dimensionality and index-
ing. For text retrieval, classical approaches looked for rep-
etitions of the query words in a document, while newer la-
tent semantic models [16, 17] use more powerful distributed
text representations capable of learn the context of words and
meaning of documents. There is recently a great effort fo-
cused on word embeddings and their applications [18, 19, 20,
21]. According to [22], current image retrieval techniques can
be distributed into: text-based, content-based, composite and
interactive approaches. Our method allows to retrieve texts or
images with any kind of query via a common embedding for
image and text.

The idea of combining models within different domains
of a dataset has already been treated. [23, 24, 25, 26]. Most
of the approaches train with one source domain and then regu-
larize their classifiers to work with the target domain [27, 28].
In our case, we simultaneously train with data from both do-
mains, producing a common space specifically learned for the
retrieval task.

3. METHOD

Our joint multi-modal embedding approach consists of a neu-
ral network with two branches: one for image and one for

text. The image branch is based on a Convolutional Neu-
ral Network (CNN) which converts a 227 × 227 pixel image
into a fixed-size 128-dimensional vector. The text branch is
based on a multi-layer neural network and uses as an input
features extracted by a pre-trained word2vec network which
are converted into a fixed-size 128-dimensional vector. Both
branches are trained jointly such that the 128-dimensional
output space becomes a joint embedding by minimizing the
distance between related image-text pairs and maximizing the
distance between unrelated image-text pairs. Two auxiliary
classification networks are also used during training that en-
courages the joint embedding to also encode semantic con-
cepts. An overview can be seen in Fig. 2.

3.1. Image Network

The image network branch is based on the AlexNet [29] archi-
tecture pre-trained on a fashion subset of ImageNet. The last
layer is removed and replaced with a smaller Fully-Connected
layer that has 128-dimensional outputs (FC8). This is further
split into two branches: one for classification and one for the
embedding. The classification branch has two fully connected
layers (FC9 and FC10) and outputs the score of the differ-
ent classes. The embedding branch has a single layer which
outputs the 128-dimensional feature vector for the embedding
(FC11). All fully connected layers FC8− FC11 consist of
the fully connected layer itself, followed by a batch normal-
ization [30] layer and a Rectified Linear Unit (ReLU) layer.



3.2. Text Network

As preprocessing, we first delete numbers and punctuation
marks, and then switch all characters to lower-case. After-
wards, we train from scratch a word2vec [17] model using
our training set, with 500 dimensions using bi-grams, with a
context window of 3 words and ignoring words appearing less
than 5 times in the dataset. The input for the text branch of the
network are the descriptors computed averaging the word2vec
distributed representations for all the words in each text [31].

The text network consists of 3 common fully-connected
layers that output 1024-dimensional features (FC12-FC14).
Afterwards the network splits into two branches: the clas-
sification branch and embedding branch. The classification
branch consists once again of two additional layers (FC15
and FC16) and the output is the score of the different classes.
The embedding branch outputs 128-dimensional vectors for
the joint embedding. All fully connected layers in the text
network are formed by the fully connected layer itself, fol-
lowed by a batch normalization layer and a ReLU layer.

3.3. Training

For training we assume we have a large dataset of correspond-
ing text-image pairs with class labels. The class labels are
used for the classification losses and for randomly sampling
negatives for training the embedding.

Training of both the text network and image network is
done jointly by encouraging similar text-images pairs to have
a small distance between the embedded vectors, while having
dissimilar text-image pairs have a large distance. Images and
their associated text are used as positive pairs, while unrelated
image-text pairs are obtained by randomly sampling images
and texts from unrelated categories. This is done by using the
contrastive loss [32]:

LC(vI , vT , y) = (1− y)1
2
(‖vI − vT ‖2)2

+ (y)
1

2
{max (0,m− ‖vI − vT ‖2)}2 (1)

where vI and vT are two embedded vectors corresponding
to the image and the text respectively, and y is a label that
indicates whether or not the two vectors are compatible (y =
0) or dissimilar (y = 1), and m is a margin for the negatives.

The fully training loss consists of both the contrastive
loss and the weighted sum of the cross entropy classification
losses:

LC(vI , vT , y) + αLX(CI(vI), LI) + βLX(CT (vT ), LT )
(2)

where LX is the cross entropy loss, CI(vi) is the output of the
image classification network, LI is the image label, CT (vT )
is the output of the text classification network, LT is the text
label, and α and β are two weighting hyperparameters..

Description: MAURO GRIFONI.
denim, solid color, mid rise, dark
wash, front closure, button, zip,
multipockets, logo, slim fit. 84%
Cotton, 14% Elastomultiester, 2%
Elastane.
Title: MAURO GRIFONI Denim
Pants
Gender: female
Color: Blue
Type: denim
Category: WOMAN / Denim /
Denim Pants

Fig. 3. Example of a product’s image and text data.

4. RESULTS

Next, we describe the results obtained by applying our
method to a Fashion e-commerce dataset, in which we train
a common embedding where distances between text and
images referring to products of the same category are con-
siderably smaller than distances between those of different
categories. We compare against existing approaches, analyze
the different text features, and look at classification results
with the auxiliary networks.

We train the network for 100,000 iterations with batches
of 64 samples (forming in each iteration 64 correlated pairs
image-text and 64 non-correlated pairs) with α = β = 1.
Training is done using stochastic gradient descent with back-
propagation. We use an initial learning rate of 10−3 and de-
crease it by 5 · 10−4 every 10, 000 iterations with momentum
0.95.

4.1. Dataset

The dataset we use consists of 431,841 images of fashion
products with associated texts, classified in 32 categories
(vest, hats, boots, polo, jewelry, skirt, clutch/wallet, cardi-
gan, shirt, dress, backpack, swimwear, suits, travel bags,
glasses/sunglasses, pants/leggings, flats, shorts, coat/cape,
tops, pump/wedge, sweatshirt/hoodie, sandals, crossbody-
messenger bag, blazer, top handles, belts, jacket, other ac-
cesories, jumpsuits, sweater and joggers). The textual infor-
mation for each product comes separated in different fields
such as description, title, gender, type, color and category.
See Fig. 3 for an example of a product in the dataset. We
use 60% of the dataset for training, 30% for test and 10% for
validation, and train the model using different combinations
of textual information associated to the images to check the
influence of the different types of text.

4.2. Retrieval

In order to evaluate our method, we compute the 128-
dimensional descriptors of all images and texts in the testing



Table 1. Results of our method compared to KCCA and our method using Bag of Words for text representation. Diff column
corresponds to the difference between mean distance of positive pairs and negative pairs (bigger is better).

Model Median rank Image Text Accuracy Diff.Img v. txt Txt v. img f@5% f@10% f@5% f@10% Text Image

KCCA 52.42% 46.65% 3.70 7.59 3.90 9.59 - - -
Ours (BoW) 4.50% 4.54% 53.18 75.02 53.14 74.20 99.78% 71.73% 0.327576

Ours 1.61% 1.63% 77.90 89.24 77.47 89.78 99.97% 90.06% 0.44

Table 2. Results for our method using the information in different text fields. We see how Title and Category are extremely
discriminative and saturate the text classification accuracy when appear. We compare against a model trained without the
classification losses, seeing how the difference between positive and negative distance increases at the expense of losing more
than 10% classification accuracy.

TEXT FIELDS USED ACCURACYMODEL Description Gender Title Category Color Type TEXT IMAGE DIFF.

Contrastive only 82.56% 79.23% 0.50

93.39% 90.38% 0.42
94.16% 89.53% 0.43
99.89% 89.97% 0.47
99.61% 91.06% 0.42
93.63% 90.02% 0.42
94.50% 89.88% 0.43
98.27% 89.94% 0.43
92.56% 89.47% 0.41

Ours

99.97% 90.06% 0.44

set. Then, we use the text as queries to retrieve the images,
and vice-versa. Looking at the position in which the exact
match is, we compute the median rank for each case. The
resultant values are below 2%, meaning that the exact match
is usually closer than the 98% of the dataset, beating the
result obtained by KCCA1 and by our same architecture sub-
stituting the word2vec by a classical Bag of Words. These
results, the recall@K (which shows that around 80% of the
times the exact match is among the top 5% of nearest items)
and the classification accuracy can be seen in Table 1. We
also tested the performance of our model with respect to the
different data fields available in the dataset, concluding that,
even if the Description field by itself gives good results, using
highly discriminating fields such as Title or Category slightly
improve the metrics (see Table 2).

We compare this metrics with two baselines: a version of
our method replacing word2vec by Bag of Words and KCCA

4.3. Classification

In parallel to the ranking task, we are training a classification
task. This one, intended to help clustering in a certain way
the products of the same category in the common embedding,

1The KCCA model has been trained with less descriptors (only 10000)
due to memory errors when trying to use the whole training set

maintains high accuracy values (> 95% in some cases, as
seen in Table 2) for the 32 clothing categories defined in the
dataset.

5. CONCLUSIONS

In this paper, we have presented an approach for joint multi-
modal embedding with neural networks with a focus on the
fashion domain. Our approach is easily amenable to large
existing e-commerce datasets by exploiting readily available
images and their associated metadata. By training the em-
bedding such that distances correspond to similarities, our ap-
proach can be easily used for retrieval tasks. Furthermore, our
auxiliary classification networks help encourage the embed-
ding to have semantic meaning, making it suitable as features
for classification tasks.
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“Large-scale image retrieval with compressed fisher vectors,”
in CVPR, 2010.

[15] Florent Perronnin, Jorge Sánchez, and Thomas Mensink, “Im-
proving the fisher kernel for large-scale image classification,”
in ECCV, 2010.

[16] David M Blei, Andrew Y Ng, and Michael I Jordan, “La-
tent dirichlet allocation,” JMLR, vol. 3, no. Jan, pp. 993–1022,
2003.

[17] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado,
and Jeff Dean, “Distributed representations of words and
phrases and their compositionality,” in NIPS, 2013.

[18] Fernando Diaz, Bhaskar Mitra, and Nick Craswell, “Query ex-
pansion with locally-trained word embeddings,” arXiv preprint
arXiv:1605.07891, 2016.

[19] Debasis Ganguly, Dwaipayan Roy, Mandar Mitra, and
Gareth JF Jones, “Word embedding based generalized lan-
guage model for information retrieval,” in SIGIR, 2015.

[20] Mihajlo Grbovic, Nemanja Djuric, Vladan Radosavljevic, and
Narayan Bhamidipati, “Search retargeting using directed query
embeddings,” in WWW, 2015.

[21] Bhaskar Mitra, Eric Nalisnick, Nick Craswell, and Rich Caru-
ana, “A dual embedding space model for document ranking,”
arXiv preprint arXiv:1602.01137, 2016.

[22] B Dinakaran, J Annapurna, and Ch Aswani Kumar, “Interac-
tive image retrieval using text and image content,” Cybern Inf
Tech, vol. 10, pp. 20–30, 2010.

[23] Sean Bell and Kavita Bala, “Learning visual similarity for
product design with convolutional neural networks,” ACM
Transactions on Graphics (SIGGRAPH), vol. 34, no. 4, pp. 98,
2015.

[24] Basura Fernando, Amaury Habrard, Marc Sebban, and Tinne
Tuytelaars, “Unsupervised visual domain adaptation using
subspace alignment,” in CVPR, 2013.

[25] Raghuraman Gopalan, Ruonan Li, and Rama Chellappa, “Do-
main adaptation for object recognition: An unsupervised ap-
proach,” in CVPR, 2011.

[26] Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman,
“Geodesic flow kernel for unsupervised domain adaptation,”
in CVPR, 2012.

[27] Alessandro Bergamo and Lorenzo Torresani, “Exploiting
weakly-labeled web images to improve object classification:
a domain adaptation approach,” in NIPS, 2010.

[28] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell,
“Adapting visual category models to new domains,” in ECCV,
2010.

[29] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, “Im-
agenet classification with deep convolutional neural networks,”
in NIPS, 2012.

[30] Sergey Ioffe and Christian Szegedy, “Batch normalization: Ac-
celerating deep network training by reducing internal covariate
shift,” in ICML, 2015.
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