
Noname manuscript No.
(will be inserted by the editor)

General queuing model for optimal seamless delivery
of payload processing in multi-core processors

Esther Salamı́ · Cristina Barrado ·
Antonia Gallardo · Enric Pastor

Received: date / Accepted: date

Abstract Recent developments in Unmanned Aerial Systems (UAS) provide
new opportunities in remote sensing applications. In contrast to satellite and
conventional (manned) aerial tasks, UAS flights can be operated in a very short
period of time. UAS can also be more specifically focused toward a given task
such as crop reconnaissance or electric line tower inspection. For some appli-
cations, the delivery time of the remote sensing results is crucial. The current
three-phase procedure of data acquisition, data downloading and data process-
ing, performed sequentially in time, represents a drawback that reduces the
benefits of using unmanned aerial systems. In this paper, we present a parallel
processing strategy, based on queuing theory, in which the data processing
phase is performed on board in parallel with data acquisition. The unmanned
aerial system payload has been enlarged with low-cost, lightweight, multi-core
boards to facilitate remote sensing data processing during flight. The storage
of the raw sensing data is also done for possible further analysis; however, the
ultimate decision support information can be seamless delivered to the cus-
tomer upon landing. Furthermore, text alarms and limited imagery can also
be provided during flight.

Keywords Multi-core · Queuing analysis · Real-time · Remote Sensing ·
Remotely Piloted Aircraft

Esther Salamı́
E-mail: esalami@ac.upc.edu

Cristina Barrado
E-mail: cristina.barrado@upc.edu

Antonia Gallardo
E-mail: agallard@ac.upc.edu

Enric Pastor
E-mail: enric@ac.upc.edu

Department of Computer Architecture, Universitat Politècnica de Catalunya, Castelldefels,
Spain.



2 Esther Salamı́ et al.

1 Introduction

Unmanned aerial systems (UAS, also known as UAV, RPAS or drones) are
increasingly being used to support remote sensing tasks [1–4]. In combina-
tion with or as a substitution for other remote sensing vehicles, UAS have
the advantages of fast deployment and easy payload reconfigurability [5–7].
Moreover, UAS are well suited to poorly accessible areas and dangerous flight
conditions [8–12]. In remote sensing tasks, their ability to operate very-low-
level flights makes UAS highly useful. Nevertheless, most UAS used currently
in remote sensing tasks acquire data during the flight and need later post-
processing before the results are delivered. Assuming that flights are usually
performed in remote areas, with no or slow communication facilities, the cus-
tomer may have to wait one or two days before the final product is available.

For certain applications, two days of delay can be unacceptable. In precision
agriculture, the watering levels, harvest time, and detection of plagues require
fast responses. Some plagues are more vulnerable in a certain short period of
time, during which they can be extinguished with a quick and cheap treatment.
In these cases, a timely precision application reduces the impact of plagues
and increases the harvest [13]. During a fire detection flight, notifications of
hotspots need to be relayed as soon as possible. For homeland missions, the
detection of and urgent alerting to migrant boats in real time can save lives.
Currently, solutions to such time-restrictive applications are based on human
operators. For instance, homeland drones fly beyond light of sight, use visual
cameras and transmit video downstream using satellite communication [14].
A ground operator (who may also be the remote pilot) is devoted to the
observation of the video and to raising an alarm when necessary. However,
this human-based solution has two main drawbacks: the cost of the operation
increases because of the high bandwidth communication and the operator
costs, and the human factors on long, dull tasks can be concerning.

This paper explores a strategy for performing the necessary computation
on-board the UAS during flight. For each specific mission, a particular se-
quence of data processing algorithms, mainly for image processing, needs to
be continuously executed upon each new payload acquisition. That is, an ad-
hoc pipeline of processing is constructed for each mission, therein conducting
the flow of the sensed data. The execution time of the whole pipeline defines
the minimum delay for the delivery of the final product. This time is on the
order of a few seconds. However, given the continuous feed-in of sensing data
into the processing pipeline, the throughput of the system at a given acquisi-
tion rate is limited by the slowest algorithm in the chain, which can block the
complete flow.

Several inexpensive processing boards with multi-core capacity are cur-
rently available with commercial off-the-shelf technology. In this paper, queu-
ing theory is used to pre-calculate the optimal pipeline configuration and maxi-
mum acquisition rate supported for each particular mission with the processing
and acquisition resources available on board. Queuing models have being ex-
tensively used in many fields, especially in networking applications, resource



General Queuing Model for Optimal Seamless Delivery of Payload Processing 3

optimization, and performance modeling of computer systems [15–20]. In their
taxonomy of scheduling in general-purpose distributed computing systems [21],
Casavant and Kuhl include queueing theoretic as a basic category of task allo-
cation algorithms which can be used to arrive at an assignment of processes to
processors. Chou and Abraham [22] use the general queueing model to derive
closed form expressions to analyze the behavior of load redistribution algo-
rithms. Deng and Purvis [23] develop a principle for multi-core task dispatch-
ing and validate the approach using exponential and deterministic models for
packet processing and image search applications. Li [24] considers the problem
of optimal partitioning of a multi-core server by modeling the server processor
as a group of queueing systems.

Whereas in previous work [25] we relied on Markov M/M/S queues, in
this paper, we propose the use of general G/G/S queues instead. The reason
for this is that the arrival rate in these applications does not follow a ran-
dom process; rather, it is fixed by the payload configuration and the mission
requirements. On the other hand, the service time is given by the execution
time of the data processing algorithms, whose probability distribution function
is also far enough from an exponential distribution function. The number of
servers has to be decided considering the limitations in terms of availability,
weight, and power consumption. It is widely accepted that analytical queue-
ing modeling is a cost-effective alternative to multi-core benchmark simulation
in terms of both simulation time and resources. Nevertheless, the analysis of
non-exponential queuing systems is mainly avoided because of analytical in-
tractability reasons [22, 23]. In this study, the approximations presented in
[30] are used for the general queue model analysis. This model provides per-
formance metrics based on the first two moments of the general inter-arrival
time and service-time distributions. Finally, an agent-based execution is used
to validate the strategy on the two example missions.

The proposed queue-based strategy could also be applied to other conven-
tional remote sensing platforms, such as manned aviation and satellites, if they
possess on-board parallel computation capabilities with a flexible configura-
tion. The problem is not specific of UAS or remote sensing tasks, but it differs
from other scenarios like operating systems schedulers, where the inter-arrival
time and processes to be executed are not known in advance.

The structure of this paper is as follows: Section 2 briefly describes the
algorithms for payload processing and analyses their execution times on a
multi-core board for several levels of parallelism. Section 3 presents the theory
and the proposed strategy for applying the general queuing network model to
schedule the parallel computation of the payload. In section 4, the strategy is
validated using an agent-based execution that replicates the data flow of the
flight using hardware in the loop. Finally, section 5 concludes the paper and
provides future research directions.



4 Esther Salamı́ et al.

Table 1: On-board data processing algorithms (VI = Visual, IR = Infrared)

Algorithm Input Output

Fusion VI image, IR image, telemetry TIFF image with thermal information on
the visual image [27]

Georef Telemetry, image pixel Geographic coordinates using direct geo-
referencing [27]

Geotif VI image, telemetry TIFF image: undistort, georeference and
rectify

Hotspot IR image List of hotspots: center of mass, bounding
box, etc. [27]

Jellyfish VI image Image with bounding boxes and list of
jellyfish [28]

Mosaic 4 × (VI image, telemetry) TIFF image panorama using georeferenc-
ing

Overlap 2 × (VI image, telemetry) Overlapping percentages of the two im-
ages

Quality VI image Blur (sharpness grade) and entropy
(over- or under-exposure) metrics

Resize VI image, new size Scaled image
Stitch 4 × VI image Panorama image using invariant local

features [29]

2 Analysis of on-board data processing algorithms

A set of ten data processing algorithms have been developed by the research
group for on-board processing the data captured by the payload. This section
provides a general description of such algorithms together with an analysis of
their execution on the oDroid-XU3 board [26]. It is assumed that this multi-
core board is used as a co-processor, only dedicated to data processing tasks.
The oDroid-XU3 is not involved in any flight management, guidance and con-
trol, conflict detection, or any other safety-critical tasks.

2.1 Algorithms description

The processing has been divided into stand-alone programs, and, depending on
the UAS mission, several of the programs are executed in sequence. Table 1
lists the developed algorithms. The programs are written in C++ with the
OpenCV3 [30] core library to support most image processing algorithms. Input
data include images captured by visual and thermal cameras and telemetry,
which is the position (latitude, longitude, and altitude) and attitude (yaw,
pitch and roll) of the UAS. The resolution of the images used in this study is
320×240 pixels for thermal images and 5 MP for visual images. Output data
can be either a geo-referenced or non-geo-referenced image, text with relevant
information and/or one or more numeric values.



General Queuing Model for Optimal Seamless Delivery of Payload Processing 5

Table 2: Mean (τ) and coefficient of variation (c) of the execution time (in
seconds) of data processing algorithms on the ODROID-XU3 for 1, 2, and 4
threads

1 thread 2 threads 4 threads
Algorithm τ c τ c τ c

Fusion 1.254 0.007 0.881 0.009 0.633 0.038
Georef 0.003 0.030 0.003 0.013 0.003 0.013
Geotif 1.125 0.008 0.744 0.008 0.542 0.010
Hotspot 0.036 0.064 0.034 0.069 0.034 0.068
Jellyfish 7.794 0.015 7.802 0.015 7.799 0.015
Mosaic 4.490 0.007 2.970 0.006 2.151 0.008
Overlap 0.777 0.070 0.477 0.063 0.316 0.059
Quality 0.555 0.023 0.514 0.026 0.497 0.027
Resize 0.336 0.014 0.286 0.017 0.261 0.024
Stitch 13.259 0.487 13.537 0.499 14.665 0.468

2.2 Execution time analysis

The execution time of the algorithms has been characterized on the ODROID-
XU3 commercial off-the-shelf embedded board, which has two asymmetric
quad-core CPUs (one Samsung Exynos5422 CortexTM-A15 2.0 GHz and one
CortexTM-A7) [26]. The pthreads [31] parallelization framework already imple-
mented in the OpenCV libraries was used to exploit the potential parallelism
of the algorithms. The execution times were obtained from processing up to
100 images. The arithmetic mean (τ) and the coefficient of variation (c), which
is the standard deviation of the execution time divided by its mean, are shown
in Table 2. The results are given for execution with 1, 2, and 4 threads.

Notice that only four of the algorithms scale for parallel execution: Fu-
sion, Geotiff, Mosaic, and Overlap (2.0X, 2.1X, 2.1X, and 2.5X performance
speed-up, respectively, over 1 thread execution when they are running with
4 threads). Note also that most algorithms exhibit a coefficient of variation
of approximately zero. This low variability is maintained when the number of
threads increases. In general terms, we can say that, for the algorithms under
study, the runtime follows a distribution that is much closer to a deterministic
distribution (coefficient of variation equal to zero) rather than an exponential
distribution (coefficient of variation equal to one). The exception is the Stitch
algorithm, which exhibits the highest variability (coefficient of variation equal
to 0.5). Having a number of cores available and with a low penalty in terms
of power consumption for each additional core in use, the question becomes
which is the best scheduling strategy for a given payload processing mission.



6 Esther Salamı́ et al.

3 Resource optimization using the general queuing model

We consider a payload data processing application as a queuing model in which
remote sensing data act as incoming clients that request a set of services.
The offered service is the execution of a set of data processing algorithms.
This section presents the use of the general queuing model, which considers
the specific characteristics of the input rate and the execution time of on-
board processing algorithms, as the optimizing strategy for on-board parallel
execution of the payload data processing.

3.1 General queuing model

In Kendall’s notation, the G/G/S queue represents a system with S iden-
tical servers in parallel, unlimited queue length, and first-in first-out queue
discipline, where inter-arrival times follow a general (arbitrary) distribution
of average arrival rate λ and the service times follow a general independent
distribution of average service rate µ (the inverse of the average service time
τ) [32]. Particular cases are given for arrival rates and service rates that follow
a Poisson distribution (M/M/S model), also known as Markov processes [33],
and for deterministic models, in which the inter-arrival time or service time is
fixed and known (D/M/S or M/D/S models).

Metrics used to measure the performance of the queue include the average
waiting time (Wq), average time in the system (W ), average number of clients
in the queue (Lq), average number of clients in the system (L), and utilization
factor or traffic intensity (ρ). All these metrics are clearly related: first by the
expressions W = Wq + τ and L = Lq +Ls, with Ls being the average number
of clients in the servers; second by the definition ρ = λ · τ/S; and finally by
Little’s Law L = λ ·W and Lq = λ ·Wq. Thus, the results herein will focus
on Wq. A small Wq ensures that the waiting queues remain within tractable
limits; however, a too small value will result in non-efficient resource usage.
On the contrary, a large Wq represents a long waiting time, and when beyond
the limit given by Eq. 1 (let us name it λinf ), it makes the system non-stable.

λ < λinf = S · µ = S/τ (1)

An exact formulation can be used in certain models; however, approxima-
tions and/or computer simulations are required for more complex situations.
In this study, the approximations presented in [34] are used for the G/G/S
queue analysis. This model depends on only five parameters: the arrival rate
(λ), the squared coefficient of variation of the inter-arrival time (c2a), the av-
erage service time (τ), the squared coefficient of variation of the service time
(c2s), and the number of servers (S).

Most remote sensing applications use programmable cameras in which the
acquisition rate can be set to a fixed value. This means that the time between
consecutive input data is deterministic, in opposite to Poisson processes, which



General Queuing Model for Optimal Seamless Delivery of Payload Processing 7

model random events. Furthermore, as seen in the previous section, the prob-
ability distribution function of the execution time of the algorithms for the
payload data processing is also far enough from an exponential distribution
function. Figure 1 shows the difference between the responses of both systems,
the D/M/S model (deterministic inter-arrival time and exponential service
time, with mean service rate from Table 2) and the D/G/S model (determin-
istic inter-arrival time and general service time, with mean and coefficient of
variation from Table 2). The figure shows the system waiting time Wq as a
function of the arrival rate λ. The results are given for two different image
processing algorithms, Mosaic and Stitch, executing on 1 thread and for the
number of servers S equal to 1, 2 and 4. The plots have been scaled to the
average execution time of the algorithm (4.490 and 13.259 seconds, respec-
tively). Solid lines represent the D/G/S model and dashed lines represent the
D/M/S model.

Notice that both models satisfy Eq. 1 and λ asymptotically approaches λinf
with increasing waiting time, even though the D/M/S model has a smoother
behavior in reaching the limit. For any given arrival rate lower than λinf , the
average waiting time is always higher under the D/M/S model compared to
the D/G/S model. This is perfectly reasonable because Markov queues model
random behaviors. By comparing the D/G/S plots of the two algorithms in
Fig. 1, one can also notice the effect of the variability of the service time. While
the Mosaic execution time has a very small coefficient of variation (0.007), the
Stitch execution time exhibits higher variability (0.487). The effect of a small
coefficient of variation is to provide a very pronounced change in the curve of
the average waiting time. In contrast, a high coefficient of variation makes the
curve closer to the D/M/S curve.

3.2 Heuristic for establishing Λheu

The goal of our payload processing architecture is to be able to process data
at a reasonable arrival rate using a parallel hardware configuration that con-
sumes less power and provides faster outputs. The arrival rate is limited by
the speed of the sensor and by the maximum throughput of the system. For
example, looking at the graphical response of the D/G/S model in Fig. 1a,
it can be inferred than the ODROID-XU3 is able to produce approximately
0.2 mosaics per second (one mosaic every 5 seconds) when using a single core.
Considering that the Mosaic algorithm processes 4 input images to produce
one output image, the system can manage a maximum camera capture rate
of no more than 0.8 images per second (this is a minimum latency between
consecutive images of 1.3 seconds) unless more resources are provided. When
using the four cores to compute four consecutive mosaics in parallel, the max-
imum throughput increases up to approximately 0.9 mosaics per second (one
image captured every 0.3 seconds).

Inequality in Eq. 1 provides a long-term stability condition of the system,
but it is not enough to satisfy real-time constrains. In real-time systems, the



8 Esther Salamı́ et al.

(a) Mosaic

(b) Stitch

Fig. 1: Comparison of the average waiting time in the D/G/S and D/M/S
models for the (a) Mosaic and (b) Stitch algorithms

time in which the actions take place is significant. Our goal is to find an optimal
arrival rate Λheu that guarantees the highest possible flow, while trying to keep
the average response time as short as possible. Being W = Wq + τ , it entails
to limit the maximum average waiting time Wq.

Figure 2 focuses on the response of the D/G/S model when executing the
Mosaic and Stitch algorithms on one core. Three thresholds are depicted: Wq

equal to 1.00% τ , 0.10% τ , and 0.01% τ . The points at which the threshold
line cuts the plots sets the corresponding λ value. The closer the value from
Λheu to Λinf , the closer we are to the optimal use of resources. But selecting
Λheu equal to 1.00% τ leads to a waiting time is too close to the asymptote
for a deterministic algorithm (see blue vertical line in Fig. 2a). To establish
a balance between both extreme situations, we decided to use the next order
of magnitude and limit the average waiting time up to 0.10% τ . The value of



General Queuing Model for Optimal Seamless Delivery of Payload Processing 9

(a) Mosaic

(b) Stitch

Fig. 2: Selection of the upper threshold for the arrival rate in a service by
limiting the waiting time up to 1.00% τ , 0.10% τ , or 0.01% τ for the (a) Mosaic
and (b) Stitch algorithms

Λheu is then determined using Eq. 2.

Λheu = {λ |Wq = 0.001τ} (2)

The obtained Λheu for the Mosaic and Stitch algorithms is then 0.218 and
0.004 panoramas per second, respectively.

Table 3 shows the value of Λheu for the full set of data processing algorithms
executing on 1 thread and for number of servers S equal to 1, 2 and 4. The
Λheu value using the Markov model and the Λinf limit are also included for



10 Esther Salamı́ et al.

Table 3: Λheu and Λinf of data processing algorithms executing on 1 thread
on the ODROID-XU3 for the general and Markov models with 1, 2, and 4
servers

1 server 2 servers 4 servers

D/M/1 D/G/1 D/M/2 D/G/2 D/M/4 D/G/4

Algorithm Λheu Λheu Λinf Λheu Λheu Λinf Λheu Λheu Λinf

Fusion 0.007 0.778 0.797 0.128 1.576 1.594 0.786 3.170 3.189
Georef 2.533 212.504 287.936 46.160 489.744 575.871 283.714 1057.171 1151.742
Geotif 0.008 0.865 0.889 0.143 1.754 1.778 0.876 3.531 3.556
Hotspot 0.247 13.567 28.038 4.495 36.781 56.076 27.627 88.143 112.152
Jellyfish 0.001 0.116 0.128 0.021 0.244 0.257 0.126 0.500 0.513
Mosaic 0.002 0.218 0.223 0.036 0.441 0.445 0.219 0.887 0.891
Overlap 0.011 0.589 1.287 0.206 1.625 2.574 1.268 3.955 5.147
Quality 0.016 1.468 1.802 0.289 3.235 3.605 1.776 6.815 7.210
Resize 0.026 2.718 2.977 0.477 5.686 5.954 2.933 11.629 11.908
Stitch 0.001 0.004 0.075 0.012 0.029 0.151 0.074 0.117 0.302

comparison. It can be seen that using the general model instead of the Markov
model allows for more aggressive arrival rates.

3.3 Queuing network model

Up to this point, we have considered data processing algorithms as isolated
services. As depicted in Fig. 3, the full mission can be modelled as a queue
network in which remote sensing data act as incoming clients who request a
sequence of such services (nodes). We consider the arrival rate to be determin-
istic for the first node of the network (ca1 = 0) but general for the individual
nodes following the first node.

In a steady-state, the average departure rate for each node should be equal
to the average arrival rate to that node [35]. The coefficient of variation of the
inter-arrival time to the node Nn (can

) can be calculated using Eq. 3 [36].

c2an
= 1 + (1− ρ2n−1)(c2an−1

− 1) +
ρ2n−1√
Sn−1

(c2sn−1
− 1) (3)

As expressed in Eq. 4, the throughput of the network is upper limited
by two factors: first, by the maximum data acquisition rate (Λacq), which
depends on the technical characteristics of the sensors being used; and second,
by the maximum data processing rate supported by the network (Λnet), which
depends on the involved algorithms and available resources, and is limited by
the lowest Λheu in the pipeline. Herein, we call Λmission the upper threshold
of the mission arrival rate.

λout ≤ Λmission = min {Λacq, Λnet} (4)



General Queuing Model for Optimal Seamless Delivery of Payload Processing 11

Fig. 3: Sequential network of queues. Arrival rate is deterministic for the first
node of the network but general for the following nodes.

The average total service time of the nerwork is the sum of the individual
service times, and the average waiting time is the sum of the average waiting
times of the individual services.

3.4 Algorithm for setting the optimizing strategy and establishing Λnet

As stated above, our goal is to establish an optimum configuration for the
system to be able to process data arriving at a fixed arrival rate in real time
and in the most efficient manner. The objective is minimizing the average time
of the clients in the system by ensuring that the waiting queues remain within
small limits. We propose an iterative method starting with the configuration
that uses the minimum number of resources, that is, all algorithms running on
a single core. Then, one additional resource is assigned on each iteration until
either the desired arrival rate is reached or until there are no more resources
(which means that it is not possible to work at the desired frequency with the
available resources). Note that the maximum number of iterations is limited
by the number of available resources. On each step, the mean and variability
of the algorithm execution time is used to compute the upper threshold of the
arrival rate in the queue network (Λnet). If Λnet does not fit the target arrival
rate, then an additional core is given to the most restrictive algorithm, which
is the algorithm with the lowest Λheu.

To illustrate the mechanism, we will focus on the case of a hotspot mission.
In this mission, the UAS scans an area in a post-fire scenario in order to quickly
detect hot areas and prevent fire revivals. The UAS payload consists of a
thermal camera, a visual camera and a positioning system. The data processing
is modeled as a queuing network that consists of the following sequence of
algorithms: Hotspots, Georef, Quality, and Fusion. First, each thermal image
is processed on-board with the Hotspots algorithm. If a hotspot is detected, the
geographical position of the hotspot center of mass is calculated with Georef.
In addition, the paired visual image is selected and processed: first, the Quality
algorithm is executed, and upon achieving the positive threshold, the Fusion
algorithm overlaps the thermal and visual images. For positive detections, both
the information about the hotspot magnitude and geolocation and the fused
image can be sent to the ground as a firefighters’ alarm.



12 Esther Salamı́ et al.

Table 4: Core allocation, τnet (seconds) and Λnet (arrivals/second) in the
Hotspot mission (H=Hotspot, G=Georef , Q=Quality, F=Fusion)

Algorithm S×threads τ Λheu Core τnet Λnet

1 HGQF 1×1th 1.848 0.523 c1 1.848 0.523

2 HGQ 1×1th 0.594 1.394 c1 1.848 0.778
F 1×1th 1.254 0.778 c2

3.a HGQ 1×1th 0.594 1.394 c1 1.475 1.092
F 1×2th 0.881 1.092 c2, c3

3.b HGQ 1×1th 0.594 1.394 c1 1.848 1.394
F 2×1th 1.254 1.575 c2, c3

From Table 3, it can be seen that Fusion is the most restrictive algorithm
(Λheu = 0.778 images per second), whereas Georef is the least restrictive
algorithm (Λheu = 212.504 images per second). Executing the four algorithms
on one core (c1) results in an equivalent service with a τ of 1.848 seconds
per image and a Λheu of 0.523 images per second (iteration 1 in Table 4).
The average service time of the equivalent service is computed as the sum of
the average execution time of the algorithms; in addition, the coefficient of
variation of the service rate has been calculated considering that the variance
of the sum of the algorithms is the sum of their individual variances.

Imagine that we want to process one image per second (λin = 1), and sup-
pose that this is supported by the maximum acquisition rate of the cameras
(that is, Λacq ≥ 1 image per second). Then, to ensure the proper functioning
of the system, the pipeline configuration must provide Λnet ≥ 1 image per
second. Because the initial Λnet (0.523 images per second) does not satisfy
this requirement, the most restrictive algorithm in the chain, that is, Fusion,
is moved to a second core (c2) (see iteration 2 in Table 4). In the first core, the
service consisting of Hotspots, Georef, and Quality (HGQ) has a Λheu equal to
1.394 images per second, whereas the core executing Fusion (F ) obtains the
most restrictive Λheu, equal to 0.778 images per second. As a result, Λnet is
increased to 0.778 images per second, which is still below the desired limit.
Because Fusion is again more restrictive than the other three algorithms to-
gether, an additional core (c3) is assigned to it (iteration 3 in Table 4). Now,
Hotspots, Georef, and Quality are executed on c1, and Fusion is executed on
c2 and c3. However, there are two options for utilizing the two cores: executing
Fusion with 2 threads (3.a in Table 4) and executing two different instances of
Fusion in parallel on each core (3.b in Table 4). Both options reach the target
Λnet ≥ 1 image per second (Λnet equal to 1.092 and 1.394, respectively). Thus,
the option of choice would be 3.a because that option minimizes the execution
time (τnet = 1.475 seconds) while ensuring the desired λin.



General Queuing Model for Optimal Seamless Delivery of Payload Processing 13

4 Model validation

Two use cases are run to validate the contributions of this paper. Each use
case reproduces a UAS mission: a surveillance mission to detect jellyfish shoals,
and a mission to detect of hotspots. The involved data processing algorithms
are the following: Jellyfish for the first mission and Hotspots, Georef, Quality
and Fusion for the second mission. For each mission, at least two runs are
executed: one run with λin set to the Λmission threshold obtained by the
proposed algorithm and another run in which λin is set to Λmission + 0.1.
Expectations are that the queue network is stable for λin equal to Λmission

and becomes unstable when a small increment of input flow is entered into
the system. The data processing algorithms are executed on the actual UAS
payload hardware (the ODROID-XU3) and process a sequence of one-hundred
images taken from the visual and/or thermal cameras, with sizes of 5 M and/or
80 K pixels respectively. We assume that the sensors have a maximum Λacq

equal to 1.0 image per second.
As in a real UAS flight, we build a parallel software system, in which

each image processing algorithm is executed as an agent. Then UAS sensors
are simulated with new agents that are programmed to publish an image at
Λmission rate. The communication between the agents is conducted via multi-
language middleware, namely, the lightweight communication and marshaling
(LCM) software bus [37], which supports the publish/subscribe communica-
tions paradigm. Figure 4 shows the example of the agents involved in the
Hotspot mission. Observe that the agents involved in the data processing exe-
cute the real algorithms in the actual UAS hardware as if they were airborne.
No physical allocation to the ODROID-XU3 cores is forced, and no specific
priority is set to its Linux operating system scheduler.

Prior to the execution, the arrival rate of the mission is calculated using
the resource allocation algorithm and the heuristic described in section 3.4.
The algorithm returns a Λmission threshold for λin and a specific configuration
of the algorithms (sequential or parallel execution, one or multiple cores, and
one or multiple threads). The involved agents are deployed on the hardware,
with the specific configuration, while the sensor agents, which simulate the
cameras, are deployed in another computer. The LCM middleware runs over
the UDP protocol; thus, when an image is published but there is no service
available, the image is simply lost.

4.1 Jellyfish: a use case of D/G/S single-node queuing model to validate Λheu

Imagine a surveillance UAS with daily flights along a route parallel to the
shoreline with the objective of informing the coast guards and the citizens
about the proximity of jellyfish shoals. The UAS has a visual camera taking
images of the water at regular intervals. The images are sent to the on-board
processing system, which executes the jellyfish algorithm and obtains the num-
ber of jellyfish in the image. From the results, the UAS can send alarms in real



14 Esther Salamı́ et al.

Table 5: Core allocation, τnet (seconds) and Λnet (arrivals/second) in the Jel-
lyfish mission

Algorithm S×threads Core τnet Λnet

1 Jellyfish 1×1th c1 7.794 0.116
2 Jellyfish 2×1th c1, c2 7.794 0.244
3 Jellyfish 3×1th c1, c2, c3 7.794 0.372
4 Jellyfish 4×1th c1, c2, c3, c4 7.794 0.500

time to the coast guards. In addition, the UAS can obtain relevant statistics
about the jellyfish proliferation and their movements.

In the jellyfish mission, the network is composed of only one service, the
Jellyfish algorithm. Thus, the Λnet of this network will be equal to the Λheu

of its single queue. The Jellyfish algorithm is CPU intensive (7.794 seconds).
Because it is not scalable, the only reasonable parallelization strategy is to ex-
ecute several jellyfish algorithms with a single thread, thus working in parallel
on different images arriving at the queuing node.

We execute our iterative algorithm to find a faster but feasible input rate
(Λmission) at which the system is not saturated. Observe in Table 5 the evolu-
tion of the iterations of the algorithm, starting with one core (Λnet = 0.116 im-
ages per second still lower than Λacq), followed by 2 cores (Λnet = 0.244 images
per second), etc. The algorithm finishes after the 4th iteration (with Λnet = 0.5
images per second) once all the resources (the 4 cores of the ODROID-XU3)
have been assigned. From Eq. 4, we obtain that the Λmission of the jellyfish
mission is limited by Λnet, this is, by the available computational resources.
Thus, the acquisition rate of the camera (Λacq = 1.0 image per second) is not
achievable for this mission.

We validate this result using the agent based software: 4 instances of the
single-thread version of the Jellyfish algorithm are deployed, one instance for
each processor core. When we set λin to 0.5 images per second, the Λmission

calculated threshold, the results show that all input images have been satisfac-
torily processed in slightly over than 3 minutes. In contrast, when λin is set to
0.6 images per second, a value above the λinf limit, the simulation ends faster;
however, some processed images start failing after the 23rd image. From the
total of 100 images, only 84 images were processed. The remaining 16 images
were neglected because the agents were busy processing other images. Once
the system starts to exhibit instability, the mission images start randomly
missing at a rate of 2-3 images every 10 images. The execution shows that the
proposed heuristic for selecting the Λheu of a service performs satisfactorily
for a network consisting of a single node.



General Queuing Model for Optimal Seamless Delivery of Payload Processing 15

Fig. 4: Agent-based simulation setup

4.2 Hotspots: a use case of G/G/S queuing network model to validate Λnet

The second use case is the hotspot mission presented in section 3.4. Fig-
ure 4 shows, below the LCM component, the 4 image processing agents of
the hotspot mission, which constitute the queuing network. Above the LCM,
we find the 2 agents simulating the cameras and the mission agent. The 2
cameras publish an image every λ−1

in seconds. A total of 200 images (100 vi-
sual images and 100 thermal ones) are used for the validation. Approximately
half of this set of images does not include a hotspot, whereas the other half
does include a hotspot. This benchmark is set to simulate a flight wherein the
initial surveillance is performed over a cold area, and when entering the hot
area, almost all the images contain hotspots. The mission agent is responsible
for the initial dispatching the parallel agents, acts as a central hub for all the
mission messages, receives the results, and presents them to the end user. The
specific configuration resulting from our algorithm is that the Hotspots, Georef
and Quality algorithms are executed on one core, and the Fusion algorithm
executes with 2 threads on another 2 cores. The 4th core remains inactive,
thereby not consuming any power. In this case, Λmission is limited by Λacq,
this is, 1.0.

The execution of the validation when λin is 1.0 images per second creates
a stable flow and finds all the hotspots in the last 49 images. The 49 tagged
output images are correctly generated. In addition, the text information of
each hotspot (its geolocation and magnitude) is returned. The list of hotspots
may contain up to 9 hotspots, thereby being the most saturated input images
processed consecutively in the simulation, in the same way that they would
appear in a real flight.

Two more executions are also used to test situations with saturation. First,
a λin of 1.1 images per second is attempted using the same parallel configu-



16 Esther Salamı́ et al.

ration and resource allocation as before. Then, a λin of 1.0 is also attempted
but using the one-thread Fusion algorithm, therein executing the whole data
processing network with only 2 cores. In the first case, the number of input
images processed by the Hotspots algorithm is correct (100 images), and the
number of geolocations returned is also correct (49 lists of hotspot locations);
however, the number of fused images is only 32. For the second non-stable
case, the algorithms executing on the first core perform correctly as before,
but the Fusion algorithm is able to process only 25 images, namely, one every
2 images.

5 Conclusions

Real-time payload processing is a key feature that UAS should integrate on
board to provide fast response to the end users of the system. Fire fighting and
search-and-rescue tasks are clear examples of the usefulness of such immediate
information. In addition, in precision agriculture, infrastructure maintenance,
coastal guarding, etc., the rapid availability of results can be more useful than
perfect accuracy. Quick response actions can be applied while being out in the
field, rather than after returning to a computing facility, post-processing the
payload data and providing results, which may already be obsolete after the
processing period.

In this paper, we presented a method for matching the execution time of
the payload processing necessities of a mission with available processing and
acquisition capacities of on-board resources. Two contributions are presented:
The first contribution is a heuristic for the selection of a suitable arrival rate
of a service based on general queuing theory and applied to the real execution
time and variability of the processing algorithms using the same multi-core
board equipped by the UAS. The second contribution is the algorithm that
selects the best resource allocation for a network of services composed of the
processing algorithms executed in the pipeline, again using the extension of
general queuing theory for networks of services. The proposed algorithm is fast
and easy to implement. The algorithm obtains an optimal resource allocation
of the payload services and an arrival rate that ensures the stability of the ex-
ecution. The use of the general queuing model, instead of the previous Markov
queuing model, results in higher arrival rates and thus a better utilization of
resources.

Examples of payload processing are given using several image processing
algorithms developed for different UAS missions. Ten independent algorithms,
which use the OpenCV libraries compiled for parallel execution, are presented.
Their execution times are given for an embedded, low-cost, low-power, multi-
core board with sequential and parallel execution using 2-4 threads. Finally,
a hardware-in-the-loop simulation is presented to validate the correctness of
the contributions. The executions demonstrate the necessity of setting the
correct parameters to ensure the stability of the system. Small variations in



General Queuing Model for Optimal Seamless Delivery of Payload Processing 17

these parameters are also tested to demonstrate the negative effects that an
incorrect estimation can produce.

In our mission implementation, with queues of length zero, any task arriv-
ing at the service was simply ignored if the resource was not available. In this
sense, some of the images captured by the cameras are simply not processed.
This may result in the necessity for a repeated flight if the number of missing
images is excessive or if there is a missing output that is considered essential.
With any luck, the flight could be repeated on the same day, thus only increas-
ing flight costs and not field costs. Another solution to avoid the loss of images
could be to store the pending tasks in a queue for later processing. However, if
the network system is unstable, then the memory of the queues will overflow,
and the results could be poor. For instance, a blocking of the processor, which
could also be performing other critical tasks, or a fatal increase in the power
consumption could affect the safety of the UAS.

Our immediate future work is to attempt the produce the presented so-
lution for real UAS flights. An extension to additional alternative hardware
boards and more missions also represents future work. New boards for integra-
tion include the 64-core Epiphany-IV and the small, low-cost and low-power
Raspberry Pi. In parallel to this, efforts to improve the fine-grain parallelism
shall be applied together with incorporation into our catalog of new payload
processing algorithms required in future UAS applications.

Additional future work is the inclusion of more related parameters and
functionalities as part of the queuing network. For instance, the UAS altitude
and flight speed are directly related to the capturing setup of the camera.
When requesting a mosaic of a flight area, for example, the images must overlap
by 60-80 percent. Flying at high speeds may stress the requested acquisition
rate; on the other hand, flying at high altitude can relax this requirement.
In addition, the downstream communication of the results produced on board
requires a limited bandwidth channel. The available bandwidth shall be in line
with the throughput of the queuing network and with the image resolution of
the equipment.

An important feature that requires further study is the power consump-
tion. Especially for small UASs powered by batteries, the payload power con-
sumption is a fundamental metric to be considered in the selection of the
best strategy for achieving a successful mission. The inclusion of the power
consumption can be addressed using a similar methodology based on a priori
experimental profile generation; then, it can be modeled using a mathemati-
cal approximation function, which will then be incorporated into the network
queuing model as part of the resources used in the system.

Acknowledgements This work has been partially funded by the Ministry of Economy and
Competitiveness of Spain under grants number TRA2013-45119-R and TRA2016-77012-R.



18 Esther Salamı́ et al.

References

1. Everaerts J (2009) NEWPLATFORMS - Unconventional platforms (Un-
manned Aircraft Systems) for remote sensing. European Spatial Data Re-
search (EuroSDR) Technical report 56 pp 58–103

2. Zhou G, Ambrosia V, Gasiewski AJ, Bland G (2009) Foreword to the
Special Issue on Unmanned Airborne Vehicle (UAV) Sensing Systems for
Earth Observations. IEEE Transactions on Geoscience and Remote Sens-
ing 47(3):687–689

3. Colomina I, Molina P (2014) Unmanned Aerial Systems for photogram-
metry and remote sensing: A review. ISPRS Journal of Photogrammetry
and Remote Sensing 92:79–97

4. Salamı́ E, Barrado C, Pastor E (2014) UAV flight experiments applied
to the remote sensing of vegetated areas. Remote Sensing 6(11):11,051,
DOI 10.3390/rs61111051

5. Austin R (2010) Unmanned Aircraft Systems - UAVS Design, Develop-
ment and Deployment

6. Watts AC, Ambrosia VG, Hinkley EA (2012) Unmanned Aircraft Systems
in Remote Sensing and Scientific Research: Classification and Considera-
tions of Use

7. Zhang C, Kovacs JM (2012) The application of small unmanned aerial sys-
tems for precision agriculture: A review. Precision Agriculture 13(6):693–
712, DOI 10.1007/s11119-012-9274-5

8. Ackerman E (2011) Japan earthquake: Global Hawk UAV may be able to
peek inside damaged reactors. Spectrum IEEE 17

9. Reavis B, Hem B (2011) Honeywell T-Hawk aids Fukushima Daiichi disas-
ter recovery: Unmanned Micro Air Vehicle provides video feed to remote
monitors. Honeywell Aerospace Media Center Honeywell International Inc
19

10. Baker RE (2012) Combining micro technologies and unmanned systems
to support public safety and homeland security. Civil Engineering and
Architecture 6(10):1399–1404

11. Turner D, Lucieer A, Watson C (2012) An automated technique for gener-
ating georectified mosaics from ultra-high resolution unmanned aerial ve-
hicle (UAV) imagery, based on structure from motion (SfM) point clouds.
Remote Sensing 4(5):1392–1410

12. Ambrosia V, Buechel S, Wegener S, Sullivan D, Enomoto F, Hinkley E, Za-
jkowski T (2011) Unmanned airborne systems supporting disaster obser-
vations: Near-real-time data needs. In: Proceedings of 34th International
Symposium on Remote Sensing of Environment. CD Proceedings, paper
reference, vol 144, pp 1–4

13. Oliveira I, Pereira JA, Lino-Neto T, Bento A, Baptista P (2012) Fungal
diversity associated to the olive moth, Prays oleae Bernard: A survey for
potential entomopathogenic fungi. Microbial ecology 63(4):964–974

14. Skinnemoen H (2014) UAV & satellite communications live mission-critical
visual data. In: Aerospace Electronics and Remote Sensing Technology



General Queuing Model for Optimal Seamless Delivery of Payload Processing 19

(ICARES), 2014 IEEE International Conference on, pp 12–19, DOI
10.1109/ICARES.2014.7024391

15. Govil MK, Fu MC (1999) Queueing theory in manufacturing: A survey.
Journal of manufacturing systems 18(3):214–240

16. Hsu CF, Liu TL, Huang NF (2002) Performance analysis of deflec-
tion routing in optical burst-switched networks. In: INFOCOM 2002.
Twenty-First Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE, vol 1, pp 66–73, DOI
10.1109/INFCOM.2002.1019247

17. Menasce DA, Dowdy LW, Almeida VAF (2004) Performance by design:
Computer capacity planning by example. Prentice Hall PTR, Upper Sad-
dle River, NJ, USA

18. Qiu T, Feng L, Jiang H, Sun W (2013) Queueing model analy-
sis and scheduling strategy for embedded multi-core SoC based on
task priority. Computers & Electrical Engineering 39(1):24–33, DOI
http://dx.doi.org/10.1016/j.compeleceng.2012.03.001, special issue on Re-
cent Advanced Technologies and Theories for Grid and Cloud Computing
and Bio-engineering

19. Munir A, Gordon-Ross A, Ranka S, Koushanfar F (2014) A queueing
theoretic approach for performance evaluation of low-power multi-core
embedded systems. J Parallel Distrib Comput 74(1):1872–1890, DOI
10.1016/j.jpdc.2013.07.003

20. Qiu T, Zhao A, Ma R, Chang V, Liu F, Fu Z (2016) A
task-efficient sink node based on embedded multi-core soc for in-
ternet of things. Future Generation Computer Systems DOI
http://dx.doi.org/10.1016/j.future.2016.12.024

21. Casavant TL, Kuhl JG (1988) A taxonomy of scheduling in general-
purpose distributed computing systems. IEEE Transactions on Software
Engineering 14(2):141–154

22. Chou TCK, Abraham JA (1983) Load redistribution under failure in dis-
tributed systems. IEEE Transactions on Computers 32(9):799–808

23. Deng JD, Purvis MK (2011) Multi-core application performance
optimization using a constrained tandem queueing model. Jour-
nal of Network and Computer Applications 34(6):1990–1996, DOI
http://dx.doi.org/10.1016/j.jnca.2011.07.004, control and Optimization
over Wireless Networks

24. Li K (2015) Optimal partitioning of a multicore server processor. The
Journal of Supercomputing 71(10):3744–3769

25. Salamı́ E, Soler JA, Cuadrado R, Barrado C, Pastor E (2015) Virtualizing
supercomputation on-board UAS. ISPRS - International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences XL-
7/W3:1291–1298, DOI 10.5194/isprsarchives-XL-7-W3-1291-2015

26. Lee J (2014) ODROID-XU3: The fastest computer made by hardkernel so
far! ODROID Magazine pp 22–23

27. Salamı́ E, Barrado C, Pastor E, Royo P, Santamaria E (2013) Real-
time data processing for the airborne detection of hot spots. Journal of



20 Esther Salamı́ et al.

Aerospace Information Systems 10(10):444–451
28. Barrado C, Fuentes Ja, Salamı́ E, Royo P, Olariaga aD, López J, Fuentes

VL, Gili JM, Pastor E (2014) Jellyfish monitoring on coastlines using
remote piloted aircraft. IOP Conference Series: Earth and Environmental
Science 17:012,195, DOI 10.1088/1755-1315/17/1/012195

29. Brown M, Lowe DG (2007) Automatic panoramic image stitching using
invariant features. International Journal of Computer Vision 74(1):59–73,
DOI 10.1007/s11263-006-0002-3

30. Pulli K, Baksheev A, Kornyakov K, Eruhimov V (2012) Real-time com-
puter vision with OpenCV. Communications of the ACM 55(6):61–69,
DOI 10.1145/2184319.2184337

31. Lewis B, Berg DJ (1998) Multithreaded programming with pthreads.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA

32. Kendall DG (1953) Stochastic processes occurring in the theory of queues
and their analysis by the method of the embedded markov chain. The
Annals of Mathematical Statistics 24(3):338–354

33. Gautam N (2012) Analysis of queues: Methods and applications. CRC
Press

34. Whitt W (1993) Approximations for the GI/G/m queue. Production and
Operations Management 2(2):114–161

35. Bertsekas D, Gallager R (1992) Data networks (2Nd Ed.). Prentice-Hall,
Inc., Upper Saddle River, NJ, USA

36. Whitt W (1983) The queueing network analyzer. Bell System Technical
Journal 62(9):2779–2815, DOI 10.1002/j.1538-7305.1983.tb03204.x

37. Huang AS, Olson E, Moore DC (2010) LCM: Lightweight Communi-
cations and Marshalling. In: Intelligent Robots and Systems (IROS),
2010 IEEE/RSJ International Conference on, pp 4057–4062, DOI
10.1109/IROS.2010.5649358


