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Abstract—This paper analyses how OpenStack Swift, a
distributed object storage service for a globally used middle-
ware, interacts with the I/O subsystem through the Operating
System. This interaction, which seems organised and clean
on the middleware side, becomes disordered on the device
side when using mechanical disk drives, due to the way
threads are used internally to request data. We will show
that only modifying the Swift threading model we achieve an
18% mean improvement in performance with objects larger
than 512KiB and obtain a similar performance with smaller
objects. Compared to the original scenario, the performance
obtained on both scenarios is obtained in a fair way: the
bandwidth is shared equally between concurrently accessed
objects. Moreover, this threading model allows us to apply
techniques for Software Defined Storage (SDS). We show an
implementation of a Bandwidth Differentiation technique
that can control each data stream and that guarantees a high
utilization of the device.

Index Terms—SDS;OpenStack Swift;
tion;Storage; QoS; Fairness

Kernel Interac-

I. INTRODUCTION

OpenStack [1] is a world-wide used middleware that
offers an Amazon Web Services-like' service in an open
source way. Such services span across different layers:
from the computing layer, where we can find services
such as Nova that are able to create and run virtual
machines, to the storage layer, where we can find major
storage services like Cinder for Block Storage, Glance for
Image Storage, and Swift for Object Storage. In this paper
we analyse Swift, the Object Storage Service.

A general problem frequently found in middlewares is
that they often rely on a pool of threads for dispatching
I/0 requests to the filesystem, and these requests are
not optimized with regards to the needs of either the
operating system or the underlying hardware. In the
case of Swift, as we will observe in the analysis sec-
tion, read operations are dispatched by using a round-
robin strategy among different threads. Unfortunately,
a pool of threads dispatching parts of an object/file
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uncoordinated, as it happens in the case of the round-
robin policy of Swift, introduces entropy and noise inside
the I/0O scheduler. For example, I/O schedulers such as
Completely Fair Queuing (CFQ) [2] or the ones found at
Split-level [3], include heuristics and different queues to
optimize requests produced from different Thread IDs
(TIDs) assuming that requests to the same file will most
probably come from the same thread. The behaviour
of Swift clashes with these optimizations, given that
requests to the same object are separated in the operating
system per TIDs. This causes that, even if the objects
accessed by the different threads are the same, the OS
perceives them as requests from different applications.

More concretely, in Swift requests from different ob-
jects are served in a 64 KiB chunk basis (Swift chunk size)
that are distributed among the available threads, thus the
order in which the I/O scheduler sends requests to the
disk is not optimal due to the loss of the I/O context.
This behaviour has a big impact with rotational devices
(i.e. HDDs) as the I/O scheduler is not working as it was
intended. With respect to non-mechanical devices (i.e.
SSD or Non-Volatile Memory (NVM)), given that sched-
ulers used with such devices do not take I/O context
into account, we see no clear penalty of this behaviour,
though this could change if new context-based sched-
ulers appear for these devices. Summarizing, in general-
purpose devices, whose schedulers are optimized to
get more performance from contiguous requests, this
produces significantly degraded performance. Addition-
ally, since the I/O scheduler is not able to distinguish
requests coming from different Swift clients, enforcing a
fair distribution becomes problematic: if the workload
of a Swift client provokes more worker threads to be
assigned to it, the I/O scheduler will try to serve these
requests to optimize seek time?, which may produce
starvation to the other clients.

This paper proposes a change in how Swift is used
in order to distribute requests so that the I/O scheduler

2Since it will consider them to be 1/0 related.
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does not lose the semantic context, thus allowing it to
optimize requests to reduce latency. In addition, we use
this mechanism to implement a bandwidth differentia-
tion that will guarantee that users or requests achieve
the agreed performance regardless of the other clients
in the system. We focus our evaluation on HDDs given
that there are no standard I/O schedulers specialized for
SSDs that may benefit from our proposal.

The remaining of this paper is organized as follows:
we present a description of Swift and the I/O Scheduler
in Section 1I, followed by a deep analysis of OpenStack
Swift (Section III). We introduce a proposal to solve
the issues detected (Section IV) and possible implemen-
tation of a SDS bandwidth differentiation mechanism
(Section V). We finalize with the evaluation (Section VI)
and conclusions.

II. COMPONENT DESCRIPTION

The two components that come into play when a user
asks for an object in Swift are the object store in Swift
and the I/O Scheduler in the kernel.

A. OpenStack Swift - Object Store

Swift architecture builds up over a set of object storage
servers and one or more proxy servers. Swift offers to the
user a REST API to manage objects (GET and PUT), and
manages other storage aspects such as replicas or erasure
codes. The user sends a GET request to the Swift proxy
and the proxy sends it to any of the Object Storage (OS)
nodes containing the object. Once the object server has
the request, a python iterator is returned to the user. The
iterator offers to the user chunks of data, issuing read
operations at the Object server.

Swift is configured at boot time with two main pa-
rameters: the number of workers, that serve each TCP
request, and the number of I/O threads per worker. The
workers are created in the Web Server Gateway Interface
(WSGI) [4] layer, and each data chunk for a request is
served inside the object server by using one of the config-
ured 7 threads. Thus, the separation between worker and
thread can be considered as a two level division: first, all
threads inside a worker are served in round-robin, and
when exhausted, the next worker is served (a diagram
can be found at the top of Figure 3). Nevertheless, as
we discuss in Section III, choosing these parameters on
dynamic environments for each individual object server
is difficult, since the optimal parameters will depend on
the expected load.

This paper analyses the behaviour of (i) two config-
uration parameters, and (ii) the I/O request behaviour
inside each single object server. The solution proposed
is intended to get improved 1/0O for each of the available
object servers, and to enable the capabilities of doing
more complex controls like a distributed bandwidth
enforcement. For this reason, the analysis and evaluation
is done inside a single object server. Nevertheless, a

complete Swift evaluation for the bandwidth differen-
tiation with interferences is presented in Section VI-B2,
to demonstrate how a simple distributed mechanism for
bandwidth enforcement can be implemented using the
low-layer mechanism presented.

B. I/O Scheduler: CFQ

The I/O Scheduler is a component in the Linux kernel
(and other operating systems as well), that reschedules,
merges and transforms all the I/O requests going to
a single device. It is really important for mechanical
devices as it is aimed to reduce seek time and enforce
fair sharing of the device. CFQ [2] is one of the available
I/0 scheduler in the Linux Kernel. It is considered one
of the most advanced as it can separate requests from
different processes, and even consider different processes
as close collaborators and schedule their requests close
to each other to reduce seek time. As mentioned, this
close collaborator hint produces performance and fair-
ness problems when we use a round-robin thread pool to
send I/O requests to the storage device. CFQ is the only
I/0 scheduler built to maintain the fairness between
different processes, something that is desired when we
have a middleware that request different objects and
want a fair sharing of resources. It also uses is the I/O
priority field, so it can prioritise different request giving
the capability to create different policies.

ITI. ANALYSIS

For the analysis of the original Swift behaviour we
used a single device (ST91000640NS), the reason being
that the I/O scheduler actions which we want to study
and optimize, are applied to a single device even on a
RAID or a large cluster. In order to generate the traces
for the analysis, we use blktrace [5] and Paraver [6] using
a translator tool called blktrace2paraver [7]. Such tools
enable us to understand what happens inside the system
(i.e. reads and writes) with great detail.

For the analysis, we exercise the setup with two
different workloads. For the first workload, we store
1 GiB objects with random content and each client asks
for a different object to avoid optimizations of the I/0O
stack and cache hits. For the second workload, we use
smaller objects of 64 KiB (a smaller I/O chunk in Swift) to
evaluate our proposal in a scenario serving small objects
(see Section VI).

We evaluate concurrent requests to different objects
with different Swift worker/thread configurations to ob-
serve their effect on performance and the disk. We show
a summary of the results in Figure 1 (Performance) and
in Figure 2 (Fairness) requesting 2, 4, 8, 16, and 32 big
(1GiB) objects.

Figure 1 shows the distribution of the bandwidth ob-
tained per object using different parameters of workers
and threads (1, 2, 4, 8, 16 and 32 threads and 1, 2, 4, 8,
16 workers while threads x workers < #objects requested).
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Figure 1. Performance obtained using the original Swift with different
workers and threads numbers and with requests for 2, 4, 8, 16 and
32 big (1 GiB) objects. Each violin plot shows the distribution of the
Bandwidth obtained per object. Wider parts of the violin has more
occurrences than the other parts.
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Figure 2. Fairness obtained using the original Swift with different
workers and threads numbers and with requests for 2, 4, 8, 16 and
32 big (1 GiB) objects. The ECDF shows the distribution of the fairness
obtained, being 1.0 the fairest. i.e., the point (y = 0.5, x = 0.9) with 4
objects means that the 50% of the observations have a fairness below
0.9.

The distribution is plotted using a violin plot. We can
spot how in some cases the obtained range is very large.
To complement this figure, we can see in Figure 2 the
distribution using an empirical cumulative distribution
function (ECDF) of the fairness® obtained for each tested
configuration. The ECDF shows how the values below
the x-axis point are distributed on the y-axis point value
(i.e., for 32 objects, a 25% of the experiments present a
fairness below 0.75). As we anticipated from Figure 1,
fairness is not maintained on a large number of config-
urations and it decreases when the number of objects
increases.

Analysing the non-aggregated results (looking at the
individual worker and thread combinations from Figure
1 and Figure 2), we get worse performance in fair
situations if the number of workers is lower than the
number of simultaneous objects requested. Increasing
the number of threads does not help, since the workers
parameter is shaping the performance values more than
the number of threads. On the other hand, an interesting
situation is observed using 1, 2 and 3 workers with
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4 simultaneous objects: with 1 worker we get a fair
allocation but bad performance for each object, but with
2 workers the scenario is totally unfair: we obtain more
than 50% of the performance for one single object and the
rest for the three other objects. As requests share the last
worker when they are busy, one worker is serving only
one object and the other worker is serving with round-
robin the remaining three objects producing a large
number of seeks. The same behaviour is observed when
we have less workers than objects requested: increasing
the number of threads does not show any improvement
and in fact, it decreases the obtained bandwidth. We can
observe that even if the bandwidth distribution is unfair,
the performance is better as we burst requests and we
reduce the seek time.

Therefore, our objective is to eliminate these config-
uration issues by using a dynamic threading model
that allows to reduce the unfair configurations as they
introduce unexpected performance changes, and to re-
duce/simplify the configuration settings, as we have
seen the selection of the right combination of those pa-
rameters is hard as it depends on the expected workload,
it can not be changed without restarting each object
server, and it should be set up on each object server.
Improving the performance is not the main objective
because performance in unfair configurations will be
normally better as the bursts are longer and the seek
time is reduced.

A. Detailed analysis

In this subsection we discuss some of the issues ob-
served when analysing several representative configura-
tions and scenarios in our experimental setup.

a) 1 Client, 1 worker, 1 thread: We observed that
Swift’s 1/O thread only submits one request each time, but
the operating system issues additional read requests due
to prefetching. Using one thread to serve one object,
reduces latency as the operating system is issuing
sequential prefetch requests.

b) 1 Client, 1 worker, 4 threads: If more threads are
available than objects requested, requests are distributed
among 2 of the 4 threads available as we do not have
sufficient work for all of them. Due to this, we observed
that the disk also had a maximum of 2 operations in-
fly, but the operating system’s prefetching did not start
given that operations come from different threads. With
this type of distribution, we are effectively creating false
cooperative threads inside the I/O scheduler (CFQ), as
we mistakenly assume that a single thread will serve
the same object. This can also affect other applications,
since the OS cannot do anything to help with fairness
if it does not understand the mapping between 1/0
requests, objects and threads. In this particular scenario,
the bandwidth obtained for such a request will be 66%
higher than other I/O request using a single thread at
the same time. This behaviour damages fairness as we



are offering more I/O time to this request than the other
ones.

¢) 2 Clients, 1 worker, 1 thread: In this case, we add
a new client request, while we maintain 1 thread. By
analysing which object the thread served, we observed
that the thread changed the object to be read from
intermittently as the worker served them using round-
robin. This behaviour is totally fair, but we are losing
performance with mechanical devices due to seeks,
since a first I/O scheduling is done in the middleware
level. It is better to do this sharing at the kernel level, as
it has knowledge of all the requests going to the disk.

d) 2 Clients, 1 worker, 4 threads: With 4 threads, each
thread is serving requests but each object is requested by
all four threads. The object swapping inhibits opportu-
nities for prefetching and optimisations on the kernel.
As a result the performance drops from 75MB/s to
45MB/s compared to the best case. Specialising threads,
so that the kernel I/O scheduler can generate a better
schedule and avoid serving other streams from the same
thread, will increase the performance.

e) 2 Clients, 2 workers, 1 threads: With 2 workers
and 1 thread, we observed that each request goes to a
different worker. The disk is shared in a coarser way (due
to the first scheduling point shown in Figure 3) than with
1 worker and each thread serves a single object, hence
the performance on the disk is better as it implies less
seeking (requests are easily merged and batched). The
behaviour for each of the objects is the same as the 1
Client, 1 worker, 1 Thread trace: Kernel prefetch is also
working for both objects. The device is better used.
This is due to the larger number of requests to the
same object done by each worker. Creating bursts of
sequential requests increases the performance obtained.
As each worker has the same number of requests, the
performance of the two objects is fair, however, we still
control the scheduling of requests in the middleware
layer, so the resources may not be used correctly.

f) 4 Clients, 1 worker, 4 threads: The fairness problem
shows up when we have requests for different objects
going into Swift and each request, even from the same
object, is served by different threads. In this scenario,
the 4 threads are issuing requests in round-robin, so
there is no fixed mapping. The I/O scheduler, gives more
I/0 time to a specific object due to the close cooperator
mechanism in CFQ, and produces starvation on other
objects. Using other schedulers may avoid this particular
problem, but they can not use I/O priorities and are
not created for having fairness between requests so our
capabilities and OS interaction from the middleware is
reduced. The discussed results show that serving a single
object from the same thread increases the performance of
the system. For this reason, we propose a new threading
model that assigns one thread to a single object and
therefore removes the need to setup the workers and
threads parameters. Using this method we may have
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Figure 3. Original Swift threading model (top) compared to the
modified Swift threading model (bottom)

contention if requests go to the same object, but only for
64 KiB blocks which is the disk chunk served by Swift.
Such contention, due to the small size, does not have a
major impact.

IV. NEW THREADING MODEL IMPLEMENTATION

From the analysis discussed, we observed that re-
quests are served in round-robin by all the threads
available in Swift, which often interferes with the op-
timizations of the kernel’s I/O scheduler. To solve this
and produce a good I/0O scheduler behaviour we need to
fix the thread with the stream, effectively mapping a TID
with an Object ID. By doing that, we can eliminate the
workers configuration value while obtaining the same
effect, and the CFQ scheduler would work as intended
as requests will follow the rule one stream - one TID. CFQ
is the only Linux default I/O scheduler that uses such
behaviour, but more can be found in the literature.

As we can not know the number of objects in advance,
we provide a dynamic creation of threads so we can
remove the threads parameter from the configuration.
With this dynamic creation we serve each object with
one thread, it removes the explicit I/O wait and the two
aforementioned configuration options from Swift. On the
one hand, parallelism (but not performance) is reduced
if we have requests going to the same object, however, it
will only affect in 64 KiB blocks which is the Swift chunk
size as we mentioned before. On the other hand, it will
be in general better than a fixed thread configuration
as we does not know how many objects we will serve
simultaneously.

Our implementation relies on the Object ID to assign
work to a thread, while requests to the same object share
the same thread. No major changes are done to the code
other than changing the ThreadPool class. In the case of
smaller objects of less than 10 chunks, we redirect them
to a populated pool of threads to reduce the overhead, in
order to obtain a similar performance while maintaining
the fairness. We also introduce a maximum number of
threads, to avoid overheads if a larger number of objects



is going to be requested, though the limiting factor will
be the storage system. Figure 3 shows a diagram explain-
ing the two threading models: while with the original
Swift we have three I/0 scheduling points (two of them
outside the operating system), with our implementation
the I/0 scheduling is left to the kernel, thus reducing
interferences.

Finally, it may happen that an object will be shared
among several clients. In this scenario, the assigned
thread will issue non-sequential requests, but the
I/0 scheduler will have the opportunity for merging,
prefetching and caching requests on most situations. Of
course, randomized access by different clients will harm
the performance on both models, but in the case of
our threading model, it will not harm the other object
requests as all the clients for the same object will get the
same 1/O thread.

V. BANDWIDTH DIFFERENTIATION

Bandwidth differentiation is the ability of the object
store to apply unfair but controlled bandwidth per ob-
ject. Thanks to the new threading model we can track
each stream of data at the object server, which was not
possible on the original model and it is an essential
service for Software Defined Storage.

In order to implement bandwidth differentiation, we
can apply several policies. For instance, we can directly
apply 1/O priorities [9] to each object request to cre-
ate bandwidth differentiation policies, controlling the
bandwidth or throughput offered to one object, group
of objects, or tenant by each individual object server.
Having control at the request level and using the OS
mechanisms allows sharing spare disk bandwidth, a
degree of control that would not be possible at higher
layers, as we would not be able to prioritise our requests
over other I/O threads due to interferences.

One way to get bandwidth differentiation is to increase
the priority of a request if the object is being served
below the needed BW, and mark it as a low priority
request if they exceed the needed BW value. The Oper-
ating System offers several mechanisms to classify 1/O
requests, one of such being I/O Priority. This mechanism
offers 3 request classes on the latest Linux: Idle, Best
Effort (BE), and Real Time (RT). BE has 8 priority levels
(0 maximum, 7 minimum).

Though I/O Priority is rarely used, it allows differen-
tiating between important and non-important requests,
which is why we chose it for our threading model.
We use only BE level 0 (BE(0)) and IDLE priorities,
so the spare bandwidth is distributed to the other 1/O
processes. For instance, requests that need to increase
their bandwidth should have a higher priority than the
default one (e.g. BE(4)).

The kernel’s I/O priorities mechanism simplifies the
implementation of bandwidth differentiation as we can

avoid using delays in the code. However, as Swift’s re-
quests can not be cancelled and the HDD performance is
non-linear, it is a best effort: if the requested bandwidth
is not obtained, the client will need to cancel the ongoing
transfer, and repeat it. The proxy server will intercept
it, and send it to another object storage (selected using
some defined policies) with enough capacity.

Distributed and coordinated bandwidth differentia-
tion can be applied using an external controller. How-
ever, the actions that the controller can take are limited to
modify the bandwidth allocated up or down to specialise
storage servers and to reduce seek time. So again we
could only achieve a best effort bandwidth differentia-
tion.

To provide such distributed bandwidth differentiation,
the IOSTACK project has an SDS controller with agents
that provides a control plane to adjust the bandwidth
and do actions like distribute and specialize object
servers (code available at GitHub [10]). The deep evalua-
tion of the distributed bandwidth differentiation control
is out of the scope of this paper.

VI. EVALUATION

In this section we will evaluate the new threading
model and then the bandwidth differentiation function-
ality added into Swift.

The first set of experiments (New Threading Model) is
done with a Swift All-in-One installation, using a 7200
rpm HDD for object storage. The workloads are sent to
Swift using the same machine with the -~—no-download
option so it only does the GET call, but does not
write anything to the disk avoiding bottlenecks (but
the read on the object storage is done). The second
set of experiments, evaluates how effective we are at
controlling the bandwidth offered to each object and
whether performance is improved. We use a single object
store within a normal Swift installation, however we also
include results with 3 object servers for the interferences
use case.

A. New Threading Model

We use the same experiments as in Figures 1 and 2 but
this time with our threading model. Note that we do not
need to configure any parameter (workers or threads).
All the scenarios (Figure 4) show a smaller variation
on the bandwidth obtained per object (1MB/s as maxi-
mum). Calculating the fairness we get a 1 value for each
experiment so we have a fair sharing of resources of each
object compared to the different configurations done
at the experiments over the original Swift. Each object
is served by its own thread, therefore creating a more
friendly I/O Scheduler behaviour and producing a fair
distribution of the disk resources. Although it may seem
that an excessive number of threads may be created, we
should remember that each thread is a request from an



Table I
PERFORMANCE IMPROVEMENTS OVER THE MEDIAN USING THE
DYNAMIC THREADING MODEL OVER THE ORIGINAL MODEL.

Number of Clients | Improvement
2 37.7 %
4 5.9%
8 159 %
16 132 %
32 26.7 %

object in that Object Server that goes to a storage device
which will be, in the end, the limiting factor.

We are evaluating only read requests as write requests
are unaffected, since they are buffered in the kernel
immediately. Finally, as the I/O Scheduler affects one
device, using a RAID will not harm the model, as each
local I/O scheduler will still see sequential requests. For
that reason we are doing the evaluation in a single disk.

MB/s per object
N w B
o o o

=
o

2 4 16 32

8
Objects Requested

Figure 4. Distribution of the Performance obtained using the dynamic
Swift per object (1GiB). The results are more stable than the default
scenario.

However, this model is not the best for small objects
(i.e., 64KiB) as they will be served in one chunk, so
the overhead of creating a thread creates a performance
penalty. Hence, in this scenario we redirect requests to
a pool of threads as we explained in Section IV. The
original Swift results obtain more performance in the 256
and 512 simultaneous objects scenarios but our threading
model gets more fairness. The fairness obtained with our
modification is higher than 0.85 for more than the 75%
of the experiments on the 512 objects case (compared to
a fairness below 0.5 for the 75% of the experiments in
the original Swift). For the other scenarios we achieve
similar values: for example with 16 small objects, for
the original threading model we observe a 75% of the
experiments with a fairness higher than 0.75, whereas
with the modified threading model all experiments show
a fairness of 1.0. Getting more performance is difficult
given that serving small objects in a fair way increases
seek time. On the other hand, our results are more stable
and predictable. On the performance side with bigger
objects, we have a performance gain going from 5.9% to
a 37.7% which is produced by a better I/O Scheduling
in the kernel. We can see the results in the Table L

With all these modifications, we have performance
improvements with HDD devices, as the kernel’s 1/0O
scheduler can do a better work. We have also checked
the effect of these modifications with SSD devices, but
as there is not a particular context-aware I/O scheduler
for SSDs, there are no benefits in fairness due to the
lack of penalties due to seeks. In fact, performance is 4%
worse (maximum) as dispatching requests as they come
will typically offer better parallelism. To circumvent
this issue, we can detect if the target device is a non-
mechanical device and use a pool of threads to send
more requests to the SSDs.

Summarising, although we have performance im-
provements serving big objects, the most important ben-
efits are: 1) the removal of the two configuration param-
eters (workers and threads) simplifying the deployment
and the result of 2) an improved fairness in all the
scenarios. Smaller objects obtain a good fairness value
(over 0.90), while the performance is similar.

B. Bandwidth Differentiation

Bandwidth differentiation can be explained as the
creation of a controlled unfair sharing of the resource.

1) Experiment 1. Mean bandwidth obtained: To test band-
width differentiation we use CosBench [11] as a bench-
mark. This benchmark imitates several (distributed)
clients requesting objects from Swift. As we do not have
any cancel operation on the server side to provide a way
to relocate requests, the bandwidth allocation tries to
maintain a fair relation with the allocated bandwidth.
We will also observe that having bandwidth allocations
creates some bursts in the data and HDD devices work
better than without bandwidth allocation. This is the
same effect that causes that some original worker-thread
parameter, the unfair ones, obtain more performance
than others.

CosBench uses 300MiB objects, 300 seconds, using
2 drivers and 8 workers per tenant. Tests are done
with 3 tenants. We do not use smaller objects as the
performance obtained from CosBench only takes into
account instant bandwidth, so when it is not requesting
the metric is zero and it does not produce stable results.
Our system can maintain the bandwidth required per
tenant, using a configurable window (i.e., 15 seconds
by default). A larger window produces more stable
results but reacts slower to changes in the workload or
interferences.

Table II presents performance numbers for different
bandwidth allocations, including no allocation and the
original Swift. Here we obtain better performance, even
without bandwidth allocation, due to a better scheduler
behaviour. However, we achieve better disk performance
when we offer different bandwidth at each tenant due
to a more bursty and a behaviour prone to merge 1/0.
Observing the co bandwidth line, it is interesting to note
that CosBench did not manage to get some objects due



Table 11
BANDWIDTH DIFFERENTIATION USING HDDS. MB/S. INCLUDES 95%
CONFIDENCE INTERVAL.

Experiment Tenant 1 Tenant 2 | Tenant 3 | Total BW
No BW Diff 8+0.1 8+0.1 7.9+0.1 23.9540.3
BW: co/ — /— 101.84+0.6 | NA NA 101.80+0.6
BW: 50/ — /— 67.44+4.2 4.840.6 4.7+0.5 76.85+5.3
BW: 70/ — /— 78.2+2.5 47415 47+15 87.51+5.5
BW: 25/25/— 32+5.1 30.4+54 | 3.9+0.7 66.32+11.2
BW: 15/20/15 16.6+1.7 24.6+43 | 17421 58.13+8.1
Original Swift | 7.740.3 7.7£0.3 7.7+0.3 23.1540.9

to timeouts on the client side. In this situation, the client
should request the object again and the proxy server
will move it to another server. Based on these results,
it is easy to observe that the concept of “maximum
bandwidth” or “maximum throughput” is hard to de-
fine on HDDs due to its dependency on the workload.
Therefore having control points that use that concept as
a metric to distribute objects will produce wrong results
as the “maximum” can not be predicted or calculated.
For non-mechanical devices, on the other hand, we will
not have this penalty since the priorities will distribute
the bandwidth accordingly in a fair way.

2) Experiment 2. Bandwidth differentiation with external
interferences: We tested the bandwidth differentiation
working through time and introducing external inter-
ferences. As we cannot cancel requests, we should be
proactive and try not to send the objects to an overloaded
server. On this experiment we request two 10 GiB objects
without bandwidth differentiation with a background
interference of 10MB/s. The figures show the time as
x — axis and the obtained bandwidth as the y — axis.

With the original Swift, requests do not get a lot of
throughput due to the background noise that we artifi-
cially created in this experiment (but note that it can be
naturally produced by the Swift replication mechanisms,
for example). We get less than 2.5MB/s for each of the
objects and the interference.

If we setup bandwidth differentiation with (40 MB/s
and 20MB/s), requests start to be reordered and pri-
oritised, and burst opportunities start to arise. Figure 5
shows how a request obtains 40MB/s and the other
object 20MB/s. As observed, the bandwidth obtained
does not go higher than the required level, due to the
background I/O activity (continuous line) which has
normal priority. But the required level is guaranteed
thanks to the low-level implementation, that manages
all the I/O in the node and issues high priority requests
when bandwidth drops from the required level. On the
other hand, a positive effect is that the global throughput
of the HDD increases compared to the original Swift.

We also include results from a distributed execution.
We start a process doing 20 MB/s interferences in three
object servers and asking 50MB/s for tenant 1 and
20MB/s for tenant 2 for their requests (hundreds of
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Figure 5. Performance obtained with 2 tenant requesting two 10 GiB
objects with 40 MB/s and 20MB/s of requested bandwidth differenti-
ation. Background I/O noise (10 MB/s sustained) applied.
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Figure 6. Performance obtained with 4 tenants requesting 5 GiB objects.
The requests go to the same object server. We setup the bandwidth as
-/-/-/-,20/5/5/10, 20/5/5/20 and 20/5 values during the timeline.
At the last update, as the server is not overloaded, both tenants are
increasing their throughput but Tenant 2 has higher priority.

objects and different sizes going from 16 MiB to 160 MiB
and several clients per tenant). The distributed execution
involves network (1 GbE) and a proxy deciding which
object server (of the 3 available) to use for each request.
The requested bandwidth is achieved by the 75% of the
sampled bandwidth points for the two tenants. How-
ever, an object server may become overloaded with too
many requests, and this is the reason of the points that
did not achieve the bandwidth requested.

3) Experiment 3. Changing bandwidth differentiation over
time: Finally, in Figure 6 we setup 4 tenants requesting
5GiB objects with different bandwidth allocations over
time. The BW differentiation is deactivated at the be-
ginning, and then a 20/5/5/10 MB/s is selected. At the
third phase, we change the settings to 20/5/5/20 MB/s,
so the last object obtains more performance. Finally once
tenant 1 and 4 finish their requests, we fix a 20/5 MB/s
bandwidth values. We can see that since the server is not
overloaded, both tenants are increasing their throughput,
but Tenant 2 has higher priority. This is a nice effect of
the kernel implementation as it shares automatically the
spare 1/0O to different requests. We can see this effect on
the second phase, Tenants 2 and 3 get up to 10MB/s.



VII. RELATED WORK

a) Middleware - Kernel cooperation: Typically the mid-
dleware is written with portability in mind, however,
sometimes this is not optimal and produces negative
effects when we are on overloaded systems. For exam-
ple, Apache Tomcat had a problem with SSL sessions
that produced an undesired overhead in the system. To
reduce this effect a communication and collaboration of
kernel - middleware is explored by Guitart [12] and
it helps to avoid the performance problem. However,
such improvements need tools to analyse the whole
software stack and the kernel - middleware interactions.
The paper by Chuanpeng [13] talks about how to handle
concurrent sequential I/O streams in a Virtual Machine
setup and explains a similar issue in the VM middle-
ware.

b) Bandwidth Differentiation: Bandwidth differentia-
tion involving networks [14], [15] normally uses queues.
However, disk bandwidth is affected by the workload
(random, sequential, number of requests) and it is not
linear. The work IOFlow by Thereska [16] explores the
problem from the I/O perspective controlling the 1/0
Flow using queues and modifying Samba. Another sim-
ilar work, Libra from Shue [17] implements bandwidth
differentiation using a co-design of the application and
the I/0 scheduler. Our implementation, using the inter-
nal kernel I/O scheduler mechanisms, allows putting a
priority on each request. This enforces the bandwidth
in the disk, and allows to share the spare bandwidth
proportionally and controls interferences from other I/O
processes. However, using the kernel 1/0O scheduler has
some drawbacks: Write request priorities are lost, as
the control is offered to another process. This can be
solved with the Split-Level I/O Scheduling work by
Yang [3], but requires major changes on the kernel.
More concretely in Swift, there is a middleware layer
bandwidth differentiation filter by Gracia [18] enforcing
PUT and GET requests, we only enforce GET requests,
as controlling the priority on the PUT requests can not
be achieved on the stock kernel (as it is done by a
specialized thread, kswapd). On the other hand, middle-
ware layer controls, does not work well with scenarios
with interferences. The usage of the control plane, with
our low-level bandwidth differentiation provided better
experience on distributed scenarios with interferences,
removing the need to configure the maximum band-
width of the storage device.

VIII. CONCLUSIONS

Our analysis of the I/O behaviour of Swift had de-
tected that the number of workers and threads have
a big impact on the performance obtained. Using such
analysis we have successfully modified Swift to use a
new threading model with low impact on the code
that has very promising results using HDDs. This new
threading model makes I/O better in both performance

and sharing fairness metrics, as we are working as the
operating system expects. This newer model also creates
the opportunities to better control the I/O in Swift and
include functionalities such as bandwidth differentia-
tion, of which we offer a possible implementation. We
have observed that changing bandwidth allocations cre-
ates bursts in the I/O requests to the disk and increases
the performance of rotational disk drives. Some of the
challenges that we encountered modifying Swift were
that Python does not have a mechanism to obtain the
Thread ID and that we need to take care of stateless
behaviour of Swift. This new threading model removes
two configuration parameters from the object servers,
resulting in an easier deployment and allows to have
QoS on Swift, and serves objects with a fair allocation
of resources between them. The code is available on
GitHub [10].
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