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Abstract—Problems with some sort of divergence constraint
are found in many disciplines: computational fluid dynamics,
linear elasticity and electrostatics are examples thereof. Such a
constraint leads to a Poisson equation which usually is one of
the most computationally intensive parts of scientific simulation
codes. In this work, we present a memory aware Poisson
solver for problems with one Fourier diagonalizable direction.
This diagonalization decomposes the original 3D system into
a set of independent 2D subsystems. The proposed algorithm
focuses on optimizing the memory allocations and transactions
by taking into account redundancies on such 2D subsystems.
Moreover, we also take advantage of the uniformity of the solver
through the periodic direction for its vectorization. Additionally,
our novel approach automatically optimizes the choice of the
preconditioner used for the solution of each frequency subsystem
and dynamically balances its parallel distribution. Altogether
constitutes a highly efficient and robust HPC Poisson solver that
has been successfully attested up to 16384 CPU-cores.

I. INTRODUCTION

The early generation of supercomputers were large ma-
chines that relied on parallel vector processors. Such pro-
cessors exploited a Single Instruction Multiple Data (SIMD)
execution model, where each operation was executed simul-
taneously to a vector of data contiguously stored in memory.
Despite the good performance, the machines were very costly
to built and maintain due to overheating and large energy
consumption constraints. The HPC community embraced a
technology shift and moved towards the use of clusters based
on microprocessor technology. During many years, the su-
percomputing systems performance constantly grew, and the
evolution of the computer architecture was determined by
two factors: rise in clock speed and increase of transistors
density. However, the physical limitations of chip design have
stopped the growth in the clock rate, and have forced the
pursue of new technologies that increase the performance of
the systems to keep the pace of Moore’s law. Paradoxically,
the new CPUs or the accelerator architectures have adopted
vectorization (SIMD) in order to increase the number of
instructions per cycle and boost the performance. The modern
CPUs have included different vector extensions (up to 256-bit)
that support the SIMD model (SSE, AVX, IBM QPX,etc). The
accelerators have also included directly or indirectly the use

of vectorization. The Intel Xeon Phi accelerator introduced the
very wide (512-bit) SIMD unit to increase the FLOP/watt ratio.
While the modern GPUs exploit a stream processing model
that in the low level executes instructions simultaneously in
a SIMD manner of 1024-bit wide registers. This leads to
the conclusion that algorithms need to be adapted to the
SIMD model in order to have a reasonable potential for future
applicability. In this context, we focus our attention on the
development of a parallel Poisson solver flexible enough to
run efficiently on different kind of parallel systems.

The present work is restricted to CFD problems in which
the Poisson equation is generally the most time consuming
part of the code. In particular, direct numerical simulations
(DNS) and large-eddy simulations (LES) of incompressible
turbulent flows. The following four aspects, which are also
relevant in the context of this paper, are commonly present in
many DNS/LES applications:

• The Poisson equation has to be solved repeatedly with
different right-hand-side terms (for DNS/LES problems
the number of time-steps can easily reach O(106)),
while the system matrix remains constant. Hence, a pre-
processing stage with large computing demands can be
accepted.

• Wall-bounded flows and/or flows around internal obsta-
cles are common in most of the applications. Therefore,
in order to solve all relevant turbulent scales near the
walls, arbitrary unstructured meshes are required.

• Periodicity in at least one direction is of interest in many
cases.

For flows fulfilling the last property the Fourier diagonaliza-
tion [1] in the periodic direction(s) is the best choice. By
doing so, the three-dimensional (3D) Poisson equation is de-
composed into a family of independent two-dimensional (2D)
systems of equations. On this basis, several approaches can
be adopted for (i) the parallelization strategy in the periodic
direction and (ii) the choice of the parallel solver(s) for the
2D problems. Roughly speaking, their choice depend on the
size of the problem and the computational architecture. For
instance, the strategy adopted for small problems and reduced



number of CPUs was a sequential approach in the periodic
direction and a direct Schur-complement (DSD) based solver
for the 2D frequency subsystems [2], [3]. Then, for bigger
problems it was necessary to adopt a hybrid strategy combin-
ing DSD for some frequencies with an iterative solver [4] for
the others. This was mainly due to the RAM requirements of
the DSD method. Alternatively, the range of applicability of
the DSD could be extended by using an efficient parallelization
in the periodic direction [5]. In both cases, scalability tests
up to O(104) shown a good performance. These successive
improvements in the Poisson solver led to the possibility
to compute bigger and bigger simulations. Starting from the
simulation of a turbulent air-filled differentially heated cavity
at different Rayleigh (Ra) number [6], [7], many cutting-edge
DNS simulations have been computed in the last decade [8][9].

In this context, the present work proposes several im-
provements and adaptations of the algorithm for Peta-scale
simulations on modern HPC systems. The most remarkable
new features are threefold: (i) the algorithm has been evolved
to a fully iterative mode in order to avoid memory constraints
derived from the memory requirements of direct factoriza-
tion methods. (ii) it optimizes the memory allocations and
transactions by taking into account redundancies on the set
of 2D frequency subsystems, (iii) it also takes advantage of
the uniformity of the solver through the periodic direction for
its vectorization and (iv) automatically optimizes the choice
of the preconditioner used for the solution of 2D problems
and dynamically balances its parallel distribution. Altogether
constitutes a highly efficient and robust HPC Poisson solver.
This solver has been developed and included within Ter-
moFluids code, a multi-physics CFD code developed for
numerical simulation of complex flows on High Performance
Computing platforms. The performance of TermoFluids has
been demonstrated on up to 130K CPU cores on the Mira
supercomputer of the Argonne Leadership computing facility
(ALCF) [10], [11].

II. POISSON EQUATION: PCG + FFT

A. Math model

The simulation of turbulent incompressible flows of Newto-
nian fluids is considered. Under these assumptions the velocity
field, u, is governed by the Navier-Stokes (NS) and continuity
equations

∂tu+ (u · ∇)u− 1

Re
∆u+∇p = 0, (1)

∇ · u = 0, (2)

where Re is the dimensionless Reynolds number.
In an operator-based formulation, the finite volume spatial

discretisation of these equations reads

Ω
duh

dt
+ C (uh)uh +Duh +ΩGph = 0h, (3)

Muh = 0h, (4)

where uh and ph are the velocity and pressure fields defined in
the nodes of the mesh M, Ω is a diagonal matrix with the size

of the control volumes, C(uh) and D are the convective and
diffusive operators and, finally, M and G are the divergence
and gradient operators, respectively. The pressure-velocity
coupling is solved by means of a classical fractional step
projection method [12], [13], leading to a Poisson equation

−MΩ−1M∗pn+1
h = M

(
un
h

δt
+Ω−1R

(
3

2
un
h − 1

2
un−1
h

))
,

(5)
where R(uh) = −C(uh)uh −Duh, and that must be solved
once at each time-step.

B. Discrete Laplace operator

The Laplacian operator of equation (5),

L = −MΩ−1M∗, (6)

is by construction symmetric and negative-definite. Its action
on ph is given by

[Lph]k =
∑

j∈Nb(k)

Akj
ph(j)− ph(k)

δnkj
, (7)

where Nb(k) is the set of neighbors of the k’th node. Akj

is the area of fkj , the face between the nodes k and j,
and δnkj = |nkj · vkj |, where vkj and nkj are the vector
between nodes and the normal unit vector of fkj , respectively.
For details about the spatial discretization the reader is re-
ferred to [14]. The set Nb(k) can be split into two subsets:
Nb(k) = Nbper(k)∪Nb2d(k), where Nbper(k) and Nb2d(k)
refer to the neighbor nodes along the periodic direction and
in the same plane of the extrusion, respectively. In this way,
the expression (7) becomes

[Lph]k =
∑

i∈Nbper(k)

Aki
ph(i)− ph(k)

∆per

+∆per

∑
j∈Nb2d(k)

akj
ph(j)− ph(k)

δnkj
, (8)

where akj is the length of the edge of fkj contained in M2d,
and ∆per is the constant spatial step in the spanwise direction.
This can be written in a more compact form by means of the
Kronecker product of matrices. Using the 1D-block-order, the
Laplacian operator of the equation (8) reads

L = (Ω2d ⊗ Lper) + ∆per(L2d ⊗ INper ), (9)

where L2d ∈ RN2d×N2d and Lper ∈ RNper×Nper are the
Laplacian operators discretised on the meshes M2d and Mper,
respectively; Ω2d ∈ RN2d×N2d is the diagonal matrix repre-
senting the areas of the control volumes of M2d, and INper

is the identity matrix of size Nper. With the above-mentioned
conditions (uniformly meshed periodic direction), Lper results
into a symmetric circulant matrix of the form

Lper =
1

∆per
circ(−2, 1, 0, · · · , 0, 1). (10)

This allows to use a Fourier diagonalisation algorithm in the
periodic direction. Note that this particular solution corre-
sponds to a second-order finite volume discretization (see [14],



for instance). However, the proposed algorithm relies on the
fact that the Laplacian operator has the structure given in
Eq.(9). This is the case for most of the existing numerical
approximations of the Laplacian operator for problems with
one periodic direction.

Lxi = bi i = 1, ...., Nt, (11)

where the Laplacian operator, L, remains constant during the
simulation and Nt is the total number of time-steps. Since the
couplings in the periodic direction are circulant matrices, the
initial system (11) can be diagonalized by means of a Fourier
transform. The spectral Laplacian operator reads,

L̂k = λkΩ2d +∆perL2d k = 0, ..., Nper − 1. (12)

Note that the matrices L̂k only differ in the eigenvalue, λk,
multiplying the diagonal contribution Ω2d. A general expres-
sion for the eigenvectors can be found in [15], [16], in this
particular case

λk = − 2

∆per

(
1− cos

(
2πk

Nper

))
k = 0, ..., Nper − 1.

(13)
Therefore, the original system (11) is decomposed into a set
of Nper mutually independent 2D systems

L̂kx̂
2d
k = b̂2dk k = 0, ..., Nper − 1, (14)

where each system, hereafter denoted as frequency system, cor-
responds to a frequency in the Fourier space. In summary, the
process to solve the Poisson system is detailed in Algorithm 1.

Algorithm 1:

1) Transform the right-hand-side b, b̂ = (IN2d
⊗ F∗

Nper
)b

2) Solve the frequency systems, L̂kx̂2d
k = b̂2dk

3) Restore the solution vector: x = (IN2d
⊗ FNper )x̂

C. Domain decomposition

The parallelisation of the solver is based on a geometric
domain decomposition into P subdomains, one for each par-
allel process. The partition of M is carried out by dividing
M2d and Mper into P2d and Pper parts respectively, being
P = P2dPper. This is referred as a P2d × Pper-partition.
Since a distributed memory parallelisation for the FFT is
out of consideration, the span-wise component of the mesh
is not partitioned. Thus, M2d is divided into P subdomains
and a P × 1-partition of M follows. In this way, the span-
wise subvectors of any field are not split between different
processes, and a sequential FFT algorithm [17] can be used.
An identical reasoning is applied to the change-of-basis from
the spectral to the physical space, choosing the same P × 1-
partition. To obtain a balanced partition of M2d, the graph
partitioning tool METIS [18] is used. Note that the P × 1-
partition chosen for the steps 1 and 3 can be sub-optimal if
P2D is too large according to the strong scalability of the linear

solver being used for the frequency systems. Thus, partitions
with Pper > 1 may be necessary to keep P2d in the region
of linear scalability of the linear solver. In this case, the Nper

frequencies to be solved are divided into Pper subsets, and
groups of P2D = P/Pper processes are used to solve the
frequencies of each subset. The number of frequency systems
contained in the k’th subset is referred as Nper,k. Therefore,
since in general the optimal partitions for the change-of-
basis (steps 1 and 3) and for the solution of the frequency
systems (step 2) are different, two partitions are used in the
parallelisation. As a consequence, two redistributions of data
between those partitions are needed. Hence, the following
algorithm replaces Algorithm 1:

Algorithm 2:
1) Evaluate b̂ = (IN2d

⊗ F∗
Nper

)b on the P × 1-partition.
2) Redistribute b̂ from the P × 1- to the

P2d × Pper-partition (collective comm.).
3) Solve the frequency systems, L̂kx̂2d

k = b̂2dk ,
on the P2d × Pper-partition.

4) Redistribute x̂ from the P2d × Pper- to the
P × 1-partition (collective comm.).

5) Evaluate x = (IN2d
⊗ FNper )x̂ on the

P × 1-partition.

In order to simplify the redistributions of data (steps 2 and
4), a multilevel partition strategy is used. To do so, the P -
partition of M2d, used in steps 1 and 5, is obtained from
the P2d-partition used in the step 3 by dividing each of its
subdomains in Pper parts. In the general case, P2d independent
transmissions need to be done, and Pper parallel processes are
involved in each of them. These collective communications are
performed by means of the MPI Alltoall routine.

D. Conjugate Gradient

The PCG algorithm is very well-known and can be found
in [19]. However, there are several features of the set of
problems given in Eq.(14) that may affect the convergence
of the algorithm. The number of iterations needed to converge
a Krylov-subspace method like PCG is closely related with
its condition number κ. Well-conditioned systems (κ keeps
close to unity) converge easily whereas they tend to degrade
quickly when the system becomes ill-conditioned (κ ≫ 1).
In our particular case, the frequency systems are ordered by
descending the condition number and since the matrices L̂k are
symmetric and positive semidefinite, the condition number κ
is given by

κ(L̂k) =
maxj

{
λj(L̂k)

}
minj

{
λj(L̂k)

} , (15)

where λj(L̂k) ∈ R+
0 denotes the eigenvalues of L̂k. From

Eqs.(13) and (12), it follows that L̂0 = ∆per∆2d. Therefore,
the condition number corresponding to k = 0 is

κ(L̂0) = +∞, (16)



with a zero eigenvalue whose associated eigenvector is the
unity vector

L̂01 = 0. (17)

In practice, this singularity is easily removed by changing one
element on the main diagonal that corresponds to an arbitrary
inner node. This modification fixes the value in this particular
node to zero. For k > 0, the condition number can be bounded
by the following inequality

κ(L̂k) ≤ 1 +
2

sin2(π(k − 1)/Nper)
, (18)

assuming a second-order discretization on a uniformly dis-
tributed mesh with periodic boundary conditions (see [4]
for details). This gives an approximate idea of how well-
conditioned are the systems to be solved as a function of the
relative number of plane defined as

ξ(k,Nper) ≡
2(k − 1)

Nper
(19)

Convergence analysis of the CG algorithm provides an upper
bound for the convergence rate (see [19], for instance)

∥enk∥L̂k
≤ 2

(√
κ− 1√
κ+ 1

)n

∥e0k∥L̂k
, (20)

where ∥enk∥L̂k
= x̂n

i − (L̂k)
−1b̂k is the solution error after

n iterations and the A-norm is defined as ∥e∥A = (etAe)1/2.
Then, after some straightforward calculations, the convergence
rate ω can be bounded above as a function of the relative
number of plane ξ

ω(ξ) ≤ 1

1 + S
√
S2 + 2 + S2

, (21)

where S = sin(ξπ/2).

III. VECTORIZATION

A. SIMD execution model

The Single Instruction Multiple Data (SIMD) is an execu-
tion model that aims at taking advantage of data parallelism.
This means that we can pick the data in chunks, so called vec-
tors, and perform operations on it within one clock cycle. The
vectors are unidimensional arrays of data sequentially placed
in memory. Its size depends on the architecture capabilities,
and determines the number of operations that can be executed
at once. For instance, an architecture that supports 256-bit
vector wide registers performs 4 double precision (64-bit)
vectorized operations simultaneously. In the case of operations
between two vectors (add, multiplication, etc), the instructions
are executed in a pair-wise manner.

B. Main considerations

• Data Layout: Data needs to flow to and from the vector
instructions without excessive overhead. Efficiency on
data movement depends on data layout, prefetching and
efficient store operations. When data is loaded utilizing
vector instructions the performance is optimal because
reduces number of instructions (scalar instructions) and

data access (everything is loaded at once). If the data will
be used more than once, then it is important to reorganize
the layout in order to maximize the data reuse.

• Data Alignment: The valid chunks of data that can be
loaded in the vector registers are linked with the words in
memory. The rule is that the beginning of a vector must
correspond with the beginning of a word. This issue is
known as data alignment, and it is key to obtain maximum
performance in the vector load/store operations. In the
case of a misaligned chunk of memory (when stored
in two contiguous words), fetching in a vector register
requires to perform more operations to organize, permute,
or reorder the data and fulfill the alignment condition.
Misaligned data requests introduce additional load in-
structions and shift or permute operations that degrade
the performance of the vectorized code.

• Loop Unrolling: Normally, a single operation of a loop
operates on one element of an array at a time. But with
vectorization SIMD instructions can be utilized to operate
on multiple components simultaneously. It is important
that the loop iterations are independent to each other,
otherwise problems like vector aliasing can be observed
invaliding the output results.

C. Bluegene/Q intrinsics

In the case of Blue Gene/Q systems, the IBM XL C/C++
compiler supports 256-bit SIMD extensions. The vectorization
can be generated by adding some compilation flags (automat-
ically) or by using vector data types and the corresponding
SIMD instructions (manually). To handle automatic vectoriza-
tion is used the compiler flag -qsimd=auto, which indicates
the compiler to enable vector registers when possible. In addi-
tion, the pragma directives # pragma disjoint() need
to be embedded in the code, specifying the parts where there
is no pointer aliasing. On the other hand, manual vectorization
requires of code refactoring, the critical parts of the code are
rewritten using the vector4double data type (quad) and
vector intrinsic operations such as:

• vec_ld : loads data from a regular data type into quads
• vec_st : stores data from quads to a regular data type
• vec_mult : performs the multiplication of two quads
• vec_madd : executes the axpy operation with quads

These functions perform 4 double precision instructions in a
single CPU-core cycle taking advantage of coalesced memory
accesses.

IV. IMPLEMENTATION DETAILS

A. Unified Approach

The data structures used in the PCG algorithm are sparse
matrices and vectors. As shown in section II-A, after the
Fourier diagonalization, the Laplacian matrix is decomposed
into a set Nper matrices that differ only in the eigenvalue λk

multiplying the diagonal contribution Ω2d.

L̂k = λkΩ2d +∆perL2d k = 0, ..., Nper − 1. (22)



A naive implementation would be storing independently each
one of the Nper frequency systems. This approach facilitates
the implementation of the algorithm because it relies on
standard functions and data structures. However, it does not
take advantage of the data redundancies resulting from the
Fourier diagonalization. Our strategy consists in storing all
the frequency systems on a single data structure avoiding
redundancies, and creating the corresponding unified kernel
which has a higher FLOP per by ratio. The set of matrices
of frequency systems is represented by the Laplacian matrix
∆perL2d and the diagonal matrix Ω2d, both of dimension
N2d; and the vector λk of dimension Nper containing the
eigenvalues of the Fourier operator. The vectors involved in

Figure 1: Left: Unified storage format. Right: Vectors arrange-
ment

the solution of the frequency systems are dense data structures,
therefore the only variant regarding its storage is in the
ordering of the variables. This arrangement propitiates regular
accesses to memory through the periodic direction. Figure 1
illustrates the unified storage format for the frequency systems
and the corresponding vectors. A compressed storage of any
sparse matrix requires at least the individual storage of the
coefficients values and its corresponding columns indexes. The
number of the non-zero entries is determined by the mesh
geometry and the discretization scheme. In our application
context, a 2.5D mesh is composed by triangles extruded
through the periodic direction forming prismatic cells. We
use a second order scheme for the spatial discretization, con-
sequently, the 2D systems resulting from the decomposition
contain 4 entries per row. Table I shows in detail the minimal
number of bytes necessary to represent the set of frequency
systems with both the naive and our novel approach. Generally
the N2d is several times larger than Nper, for this cases the
new approach is almost Nper times more efficient in memory
usage than explicitly storing each frequency system. Hence,
the low memory footprint makes suitable the new approach
when running simulations on systems-on-chip platforms, like
Bluegene/Q, where the memory space is a scarce resource. The

Data Structure Naive Unified approach
Values (double) Nper×(4N2d)×8 (4N2d)× 8
Columns (Int) Nper×(4N2d)×4 (4N2d)× 4
Eigenvalues (double) – Nper × 8
Total (bytes) (48×N2d×Nper) (8Nper + 48N2d)

Table I: Summary of SpMV memory usage for both storage
approaches

SpMV kernel has to be adapted to the new storage format. Our
implementation consists in computing the product by ∆perL2d
simultaneously for all the Nper frequency systems, while
adding the corresponding contribution to the diagonal of each
frequency system. This process is explicitly described in Algo-
rithm 3:

Algorithm 3 Unified SpMV: y = Lx

1: for i ∈ N2d do
2: for j ∈ [L2d]i do
3: [y]i = 0
4: for k ∈ [0, Nper) do
5: [y]ik+ = L2dijxjk

6: if i = j then
7: [y]ik+ = λkΩ2dixjk

8: end if
9: end for

10: end for
11: end for

Where b and x are arrays of dimension NperN2d, and the

subindex ik refers to the position i×Nper + k in the arrays.
On the other hand, [L2d]i refers to the set of column indexes
of the non-zero entries in the ith row of L2d. Apart of
reducing the global memory requirements, a key aspect of this
implementation is the reduction of the memory traffic. Each
coefficient of the matrix L2dij is only fetched once from the
RAM to the cache for all the frequency systems, this derives
in important computing time savings as shown in Section V.

B. Communication reduction

As mentioned in the previous section, the Nper frequency
systems that result from the Fourier diagonalization, are di-
vided into Pper sub-sets containing Nper,k subsystems each,
and P2d processors are assigned to the solution of each sub-
set. Therefore, for the solution of each frequency system are
engaged P2d parallel processes. In our approach each operation
of the PCG solver is performed simultaneously for the Nper,k

frequency systems composing a subset. As a consequence, the
the all-to-all and point-to-point communications required by
the norm, dot and SpMV operations are grouped and executed
synchronously for all the P2d processes, the benefit of this
strategy is the reduction of the inter-core communications by
a factor of Nper,k.

C. Auto-tuning

In section II-D, it is shown that not all the frequency
systems have the same solution costs. This means that a



uniform partition of the set of frequency systems would derive
in a significant imbalance, being the subset with the lowest
frequencies the most expensive. Our approach to solve this
problem is a dynamic load balance. The cost for the solution
of each subset of frequency systems is monitored and the par-
tition is adapted periodically, however a residual imbalance is
tolerated in order to avoid an excessive overhead produced by
the balance process. In particular, in our application context,
once the flow reaches the statistically stationary regime, the
solution cost (i.e. iterations) of the frequency systems remains
almost constant for the rest of the simulation. Therefore, once
a balanced state is achieved, additional balance operations are
rarely required for the remaining steps of the simulation. Using
an asymmetric partition of the frequency systems requires
some changes in the communication pattern, because different
processors need to send and receive different amounts of
data. In particular, the change of basis from the physical
to the spectral space and vice-versa requires substituting
the MPI_Alltoall communications by MPI_Alltoallv.
Changing the distribution of the frequency systems requires
also to reevaluate the preconditioner for the systems that are
redistributed, this produces an overhead but, as mentioned,
in our application context the load balance process could be
considered as “runtime preprocessing” which is only executed
on the initial stages of the time integration process.

The second aspect that is automatically tuned is the choice
of the preconditioner for each subset of frequency systems.
A unique preconditioner is adopted for each subset in order
to favor the vectorization. However, different subsets may be
more efficiently solved by different preconditioning methods.
In general, for the lowest frequencies is more optimal an ac-
curate preconditioner since those are more ill-conditioned sys-
tems. While, the highest frequencies are much more diagonal
dominant, therefore the Jacobi diagonal scaling performs very
well. In the current version of our algorithm we combine two
preconditioners, the sparse Approximate Inverse (AIP) [20]
and the Jacobi diagonal scaling. A greedy algorithm based
in alternate the use of the preconditioners and its parameters
is utilized to estimate the best configuration. In the same
way than the balancing, the preconditioners tuning takes place
during the first steps of the simulation and its costs become
negligible in our application context.

V. PERFORMANCE RESULTS

The numerical experiments of this study were performed
on the Blue Gene/Q Vesta supercomputer of the Argonne
Leadership Computing Facility (ALCF), this is a test and
development platform used as a pad for researchers to the
largest ALCF supercomputer Mira (ranked 5th in the Top500
list). Vesta has two computer racks that sum up a total of
32,768 cores with a peak performance of ≈ 0.5 PFlops.

A. Vectorization

Figure 2 shows the GFLOPS achieved with the vectorized
SpMV using our novel storage format versus the GFLOPS
achieved with the naive approach that consists in multiplying
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Figure 2: Unified SpMV versus naive approach for meshes generated
by the extrusion of a 2D grid with 577K nodes

separately one frequency system after the other. The test case
is the Laplacian matrix discretized on meshes generated by the
extrusion of a 2D mesh with 577K nodes, Nper varies from 4
to 32. The performance of the naive approach is independent of
Nper, because increasing Nper is just repeating more times the
same kernel. On the contrary, the performance of the unified
SpMV improves with Nper, because the larger it is Nper

the larger is the uniform part of the problem in which the
vectorization and memory prefetching produce acceleration.
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Figure 3: The speedup of cg and unified SpMV for meshes generated
by the extrusion of a 2D grid with 577K nodes.

Since the vectorization is performed using vector data types
composed of four doubles (quads). When Nper is multiple of
4 there is a perfect alignment and all the components of the
multiplying vector fetched to the cache are effectively used,
this results on the peaks of performance observed in the figure.
The speedup of the unified SpMV versus the naive approach
ranges between 1.4× and 3.5×. Figure 3 shows the speedup
of the unified versus the naive approach of both the SpMV
and the CG with diagonal scaling (CG-diag). The performance
improvement on the SpMV benefits the CG solver, but the
improvement is limited by Amdahl’s law since the relative
weight of the SpMV on the CG-diag is around 60%. Using
other methods such as the Approximate Inverse Preconditioner
results in higher speedups versus the naive approach.
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Figure 4: Auto-tuning process: (a) Load Imbalance reduction, (b) Initial and final distribution of frequency systems, (c) Preconditioner
choice.

B. Autotuning

Figure 4 illustrates the auto-tuning process. Tests have been
performed on a mesh of about 90 Million nodes composed of
12 planes of 700K nodes each. In particular, the results shown
are for a 512 × 4 partition. In (a) is shown the imbalance
reduction achieved with the auto-balance process, in this case
the Diagonal Jacobi preconditioner is used for all blocks of fre-
quency systems. The imbalance is measured as the maximum
difference on the solution of different subsets of frequency
systems, divided by the average time. In (b) is shown the
initial and final distribution of planes, as expected, the block
containing the larger frequencies are more loaded that the
blocks containing the lower ones since the solution costs grow
with the frequency number. Finally (c) shows the solution time
obtained for the same test case with different preconditioning
configurations. The first column corresponds to the case where
Jacobi diagonal scaling is used for all the blocks of frequency
systems, AIP1 refers to the case where only the first block
is solved with the AIP preconditioner and the rest with the
Jacobi diagonal, a AIP2 the two first blocks are solved with
the AIP preconditioner and for AIP3 the first three blocks.
The auto-tuning process ends when at increasing the number
of blocks solved with the AIP preconditioner the solution time
does not reduce. Therefore, in this particular case, the final
configuration would be AIP2. Changing the preconditioning
configuration has some associated costs: the set up for the new
preconditioner and re-balance the distribution of frequency
systems. But this can be considered as a runtime setup that
does not require interruptions on the simulation process. In
particular in this case the speedup achieved from the initial to
the final configuration is 2.3×.

C. Scalability

A strong scalability test has been performed comparing our
previous direct approach FFT-DSD, in which the frequency
systems where solved by means of a Direct Schur-complement
based Decomposition (DSD) [5], and the iterative solution
here proposed (FFT-PCG). The same test case of the previous
subsection is used here. The direct approach has been used in
other supercomputers for LES simulations on meshes with up
to 300M nodes [21], however 2GB of RAM per core where

used in those simulations. The reduced size of of 1GB per
core on Vesta supercomputer, allowed us to use only 8 of
the 16 CPU-cores of the Vesta nodes. For this reason, we
could only attest the performance of the FFT-DSD approach
up to 8192 CPU-cores. In fact, this limitations are one of
the reasons to evolve our solver. Results show that in the
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Figure 5: Strong speedup test for the direct (FFT-DSD) and iterative
(FFT-PCG) approaches.

region where the FFT-DSD is applied (wasting half of cores
allocated) it is faster than our new iterative approach. However
the iterative approach scales better, initially (using 2048 CPU-
cores) the FFT-DSD is 35% faster but with 8192 CPU-cores
this difference reduces at 16%, finally using 16384 CPU-cores
the iterative approach overcomes the FFT-DSD by 29%. The
overall parallel efficiency of the FFT-PCG approach is 77%.
Note that the load per CPU-core in the last case is only of
about 5500 cells, which is a very small load for the Vesta
CPU-cores, this fact glimpses a great scalability potential of
the code.

VI. CONCLUSIONS

This article presents the efforts to evolve our Poisson solver
for simulations with one FFT diagonalizable direction in order
to align our strategy with the evolution of supercomputing
systems. This evolution brings larger vector registers and less
RAM memory per parallel process. We have adapted our
previous solver into a purely iterative strategy, by solving all
the frequency systems by means of a Preconditioned Con-
jugate Gradient method. In this new implementation we have



focused on optimizing the memory allocations and transactions
and on taking advantage of the regularity of the memory
accesses and operations through the periodic direction for its
vectorization. The speedup achieved with the vectorization
of the SpMV kernel, for which a specific format has been
developed, averages 1.6×, with peaks of about 3× when
perfect alignment is achieved and enough frequency systems
are operated simultaneously. Since the SpMV is the dominant
kernel of the simulation code, a potential acceleration of all
the code turns up, specially on the explicit parts of it. In the
Poisson solver, we have observed that the acceleration of the
Jacobi preconditioned CG averages 1.2× with peaks of 1.5×,
with respect of solving each frequency system separately. This
result is consistent with the relative weight of the SpMV within
the linear solver.

The second focus of our algorithm design has been the
auto-tuning capabilities. The iterative solution of the frequency
systems has variable cost according to the conditioning of each
system. In general, the lower frequencies couple larger parts of
the domain and require more iterations. On the other hand, the
optimal preconditioning requirements of the frequency systems
differ, the higher frequencies are strongly diagonal dominant
and Jacobi diagonal scaling performs very well but the lower
require a more accurate approximation. In order to deal with
these variable situation, that depends on the physical problem
being considered and the computing system engaged, we have
developed a run-time auto-tuning that adjusts both aspects
on the time integration process of the simulation without
requiring user intervention neither the simulation interruption.
Finally the strong scalability of the new algorithm has been
successfully attested up to 16384 CPU-cores. The reduced
memory requirements of our new approach, its demonstrated
scalability and auto-tuning capabilities, and its good perfor-
mance compared with the direct approach previously used in
several HPC systems, make it a highly efficient and portable
code adapted to the characteristics of ongoing HPC systems.
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