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Summary

Diana Lucia Huerta Muñoz.

Candidate for the degree of Philosophy Doctor in Statistics and Operations Research.

Universitat Politècnica de Catalunya.

Department of Statistics and Operations Research.

Thesis title:

The Flexible Periodic Vehicle Routing Problem:

Modeling alternatives and solution techniques

Abstract: In this thesis the Flexible Periodic Vehicle Routing Problem is introduced

and studied. In this problem a carrier must establish a distribution plan to serve a given

set of customers over a planning horizon using a fleet of homogeneous capacitated vehicles.

The total demand of each customer is known for the time horizon and it can be satisfied by

visiting the customer in several time periods. There is, however, a limit on the maximum

quantity that can be delivered at each visit. The aim is to minimize the total routing cost.

This problem can be seen as a generalization of the Periodic Vehicle Routing Problem

which, instead, has fixed service schedules and fixed delivered quantities per visit. On the

other hand, the Flexible Periodic Routing Problem shares some characteristics with the

Inventory Routing Problem in which inventory levels are considered at each time period,

the delivery of product is a decision of the problem and, typically, an inventory cost is

involved in the objective function. The relation among these periodic routing problems is

discussed and a worst-case analysis, which shows the advantages of the studied problem

with respect to the problems with periodicity mentioned above, is presented. Furthermore,

alternative mixed-integer programming formulations are described and computationally

tested.
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Given the difficulty to optimally solve the studied problem for small size instances, a

matheuristic is developed, which is able to solve large size instances efficiently. Extensive

computational experiments illustrate the characteristics of the solutions of the problem

and show that, also in practice, allowing flexible policies may produce substantial savings

in the routing costs in comparison with both the Periodic Vehicle Routing Problem and

the Inventory Routing Problem.

Motivation:

• The importance in real–world applications: Vehicle Routing Problems are con-

sidered one of the most important class of problems in combinatorial optimization

due to their variety of real–world applications. Focusing on versions where customers

have periodic demand throughout a given time horizon, the study of Periodic Ve-

hicle Routing Problems has increased, mostly in the last years, as many real–world

applications related to recycling, periodic deliveries of products to customers, and

periodic visits for providing specific services have a substantial impact nowadays.

• The benefit of incorporating flexible service policies: According to Campbell

and Wilson (2014), one of the future directions of growth in the study of Periodic

Vehicle Routing Problems is the increase of operational flexibility in their definitions.

This is largely motivated by the increment of the real–world applications with peri-

odic demand, which are usually addressed by limiting service visits to a predefined

set of schedules, which, if it is not well defined, it can severely affect the quality of

the final solution. Since one of the most important criteria in this type of problems is

the minimization of transportation costs, incorporating flexible service policies may

produce significant savings. In this thesis the term flexible service policy refers to

service policies where the frequency of the visits to each customer as well as the

delivered quantities are not determined a priori. Thus the time periods when each

customer will be served and the quantity to be delivered in each visit have to be

decided.

Scope:

• A new generalization of vehicle routing problems with periodic demands where flex-

ible service policies are allowed is introduced and studied.
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• Flexible service policies involve two types of decisions concerning when and how

to satisfy the customers demands: those related to the frequency of visits to each

customer and those related to the quantities to be delivered at each visit.

• This research includes an analysis of the mathematical properties and suitable mixed–

integer programming formulations for the studied problem, as well as the develop-

ment of exact and approximate solution methods.

Objectives:

• General:

– To introduce and study a new vehicle routing problem with periodicity criteria

and thus generate knowledge related to this area of research.

– To analyze the effects of flexible service policies in vehicle routing problems

with periodic demand, i.e., when visits and deliveries to customers can be de-

termined by the decision maker instead of fixing them a priori (as they are

usually managed in the literature).

• Specific:

– To offer alternatives for addressing periodic vehicle routing problems by means

of new mathematical models in which this type of flexibility is allowed.

– To design and implement exact and approximate solution algorithms for solving

the new problem.

– To provide a significant analysis based on extensive computational experiments

to show the advantages of the proposed approaches.

Methodology to achieve objectives:

1. Analysis of the state of the art on the related field to show the advantages and

disadvantages of the existing models and solution methods.

2. Worst–case analysis for determining the potential savings obtained when flexible

service policies are included.

3. Proposal of mathematical programming formulations for modeling the new vehicle

routing problem with periodic demand.
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4. Design and implementation of exact and approximate solution methods for the pro-

posed problem.

5. Evaluation and analysis of the performance and efficiency of the solution algorithms,

particularly for the case of large-size instances.
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Chapter 1

Introduction

Finding better vehicle routes in the management of freight transportation and distribution

is an aspect of crucial relevance. A mismanagement can generate high increments in

operational costs, affecting competitiveness of companies and the perception of the service

quality in customers. Some of the most significant costs that a company incurs include

the transportation costs (mainly generated by the price of fuel) and the associated wage

costs. The main aim is to minimize them. Some applications of this type of problems

arise in product distribution companies, transportation services, periodic deliveries, waste

collection, and many others (Golden et al., 2002).

The Vehicle Routing Problem (Toth and Vigo, 2014, VRP), is the name given to a class

of problems that incorporate optimization tools in order to reduce routing costs. Early

studies focus on the Traveling Salesman Problem (Shmoys et al., 1985, TSP) that assumes

one single vehicle without any type of capacity limitation as well as on the most basic VRP

models that integrate capacity constraints on an available fleet of vehicles. Recent works

progressively incorporate more complex elements, trying to increase the similarity between

the theoretical VRP models and the real–world applications. Some added elements are

time windows, priorities, service frequencies, and inventory costs (Goel and Gruhn, 2006;

Hashimoto et al., 2006; Lee, 2013).

Several methods proposed in the literature to address VRPs define a mathematical

formulation to represent the problem and apply an exact solution algorithm for solving

instances to optimality. Due to the limitation on the size of the instances that can be

solved to optimality, an alternative for dealing with larger instances is to implement an

approximate solution algorithm. Some works in the literature propose a combination of

exact and approximate methods for addressing different parts of the original problem.

These methods are known as matheuristics and have been successfully applied in VRPs

(Archetti and Speranza, 2014).

1
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This thesis introduces and studies a generalization of the VRP, called the Flexible Pe-

riodic Vehicle Routing Problem (FPVRP), which extends the Periodic Vehicle Routing

Problem (Campbell and Wilson, 2014, PVRP) and focuses on flexible service policies. The

term flexible service policy refers to a service policy where the frequency of the visits to

each customer, as well as the quantities to be delivered in each visit, are not fixed in ad-

vanced and are part of the decision making process. The main objective of this thesis is

to develop new modeling alternatives and appropriate solution methods that outperform,

from a cost minimization perspective, the existing models where the frequency of visits

and the amount to be delivered to customers are fixed. We define, model and develop

formulation alternatives for the FPVRP. A first formulation uses a vehicle–index repre-

sentation of the decision variables. An alternative formulation represents vehicle routes

through their loads using a set of continuous variables. In addition, we propose two types

of solution methods for solving the FPVRP. The first method is based on exact techniques

applied to the proposed formulations. It includes several inequalities and optimality cuts

to strengthen the formulations, as well as separation procedures for the families of con-

straints of exponential size. The second solution method, which is a matheuristic, is a

two–phase algorithm integrating a mixed–integer linear programming (MILP) formulation

and a Tabu Search (Glover and Laguna, 1997, TS) heuristic to obtain efficiently good

quality solutions of large size FPVRP instances. Extensive computational experiments

have been run in order to evaluate and compare the performance of the proposed solution

algorithms.

This thesis is organized as follows. In Chapter 2, an extensive review of the literature

related to the studied problem is carried out. Chapter 3 gives the formal definition of the

FPVRP and studies its relation to other VRPs with periodic demand. Two illustrative ex-

amples and the theoretical worst-case analysis of the FPVRP with respect to other related

problems are also presented. Several MILP formulations for the FPVRP as well as for the

PVRP and IRP are proposed in Chapter 4. In Chapter 5 the exact solution algorithms

developed for solving the FPVRP to optimality, the benchmark instances used in the com-

putational experience and a summary of the analysis of the extensive tests performed to

evaluate the proposed solution methods, are presented. Chapter 6 shows the description of

a two–phase solution algorithm developed to solve medium and large size instances of the

problem efficiently. Also, the analysis of the results of the corresponding computational
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experience is provided. Finally, in Chapter 7, the conclusions and future directions of the

work done are presented. Some appendices are included to provide complementary results

obtained during the development of this thesis.



Chapter 2

Literature review

2.1 The Vehicle Routing Problem

VRP (Toth and Vigo, 2014) is the term used to identify a class of problems focused on

designing optimal routes for a fleet of capacitated vehicles that depart from a given depot

in order to satisfy the demand of a set of customers. The minimization of the total

transportation cost is one of the objectives most often considered in these problems. VRP

constraints include those that model the assumption that vehicles have a limited capacity,

so that the overall demand satisfied by a vehicle route does not exceed the capacity of

the vehicle. These problems were introduced by Dantzig and Ramser (1959) in the work

The Truck Dispatching Problem in which a set of routes was sought for a fleet of fuel

dispatching vehicles, which should travel from a depot to several service stations to satisfy

their demand.

The VRP is an NP–Hard problem (Garey and Johnson, 1979) because it is a generaliza-

tion of two well-known combinatorial problems: the Traveling Salesman Problem (Shmoys

et al., 1985, TSP) and the Bin Packing Problem (Coffman et al., 1984, BPP). In practice

VRPs are much more difficult to solve than TSPs, due to the difficulty of the additional

constraints. According to Laporte (2009) and Uchoa et al. (2017), the best–known exact

algorithms can solve to optimally instances with up to 100 nodes. Because of the difficulty

of finding good quality solutions in small computing times for real–world applications, a

considerable amount of current work on VRPs deals with approximate methods to handle

large size instances.

Different variants and extensions have been proposed for modeling several real–world

applications. For example, the Multi–Depot VRP (Salhi et al., 2014, MDVRP), which

considers two or more depots that must attend customer demands through their vehicles.

Another VRP extension is the one that considers a heterogeneous fleet (Baldacci et al.,

4
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2008, HVRP). The Split Delivery VRP (Archetti et al., 2008a, SDVRP), allows that the

demand of each customer is met by two or more vehicles. The VRP with Time Windows

(Lau et al., 2003, VRPTW) assumes that deliveries to each customer must be attended

within a certain time interval, which varies among customers. In Dynamic VRPs (Pillac

et al., 2013; Albareda-Sambola et al., 2014, DVRP), some delivery orders are known but

during the day new orders arrive, which must be incorporated into the current plan.

Additionally, there are other interesting research areas that study VRPs with multiple

decision criteria called multiobjective VRPs (Alabaş-Uslu, 2007; Garćıa Calvillo, 2010),

which involve more than one objective to be optimized simultaneously. In practice, several

elements of the input data of VRPs may be uncertain (Zhang et al., 2013). On the other

hand, VRPs with Pickup and Delivery (Côté et al., 2012; Hernández-Pérez et al., 2016,

VRPPD) allow routes with two different types of customers: customers who require loading

product and customers who require unloading product. The book by Toth and Vigo (2014)

overviews a good number of VRPs that have been studied by different authors.

This thesis focuses on a VRP variant that considers periodic customers demands

throughout a specific time horizon. Some of the problems related to the one that we

study are overviewed below.

2.2 Vehicle Routing Problems with periodic demand

Some real–world VRP applications require to serve the customers demand throughout a

given time horizon. The vehicle capacity constraints as well as inventory limitations at

the customers locations usually suggest to address this type of problems resorting to some

periodicity in the visits to customers. Periodic routing problems have been studied for over

forty-three years since the idea of introducing periodicity was first proposed by Beltrami

and Bodin (1974).

According to Campbell and Wilson (2014), the most common applications of routing

problems with periodicity can be classified in terms of how customers demands are satisfied,

i.e., by picking up a product (garbage, recyclable, wastes, autoparts, oil, factory goods,

etc.), by delivering it (groceries, blood, vending machines, hospitals, etc.), or by giving on-

site service (maintenance of equipment, home health care, quality inspectors, etc.). Two

comprehensive surveys that show such applications are Francis et al. (2008) and Campbell
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and Wilson (2014).

Three important groups of VRPs with periodic demand, which are related to the

problem studied in this thesis are the classical Periodic VRP (PVRP), the PVRP with

Service Choice (PVRP–SC) and the Inventory Routing Problem (IRP).

2.2.1 The Periodic Vehicle Routing Problem

Five years after the seminal work of Beltrami and Bodin (1974), Russell and Igo (1979) used

the name “Assignment Routing Problems” to refer to this family of problems. Christofides

and Beasley (1984) used the name “Period Routing Problem”, and provided the first

mathematical formulation, while the current name “Periodic Vehicle Routing Problem”

was coined by Gaudioso and Paletta (1992).

The PVRP (Campbell and Wilson, 2014) is a generalization of the classical VRP in

which vehicle routes must be constructed over a given time horizon using predefined sched-

ules that indicate the time periods when customers should be visited. Feasible schedules

for a given customer reflect the frequency with which the customer should be visited ac-

cording to its service demand. Each day of the time horizon vehicles travel along routes

starting and ending at a specific depot depending on the selected schedule. According to

Christofides and Beasley (1984), three important considerations must be taken into ac-

count in PVRPs: define a schedule for the set of customers, assign customers to vehicles

and find the best route that each vehicle must take in order to serve their demands. De-

pending on the frequency of visits to a given customer, a fraction of its total demand will

be delivered at each time visit. The aim is to select a feasible schedule for each customer,

and to find a set of routes that minimize the total travel cost satisfying vehicle capacity

and customer visit requirements.

Several extensions of the original PVRP have been addressed over the last forty-three

years: Periodic TSPs (PTSP), PVRPs with Time Windows (PVRPTW), Multi-depot

PVRPs (MDPVRP), PVRPs with Intermediate Facilities (PVRP-IF), and many others.

2.2.2 The Periodic Vehicle Routing Problem with Service Choice

The PVRP–SC is a variation of the PVRP in which the visit frequency is a decision

variable and it is allowed to visit customers more often than their predefined frequencies.

This problem was proposed and formulated as an integer programming (IP) formulation
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by Francis et al. (2006) and a continuous approximation model was presented by Francis

and Smilowitz (2006). In Francis et al. (2006) the objective function combines routing and

service decisions. They propose a solution method based on a Lagrangian relaxation of

the formulation, which allows to obtain tight lower and upper bounds. If the bounds do

not coincide, a branch and bound method is applied to close the gap between them. A

variation of this algorithm is used as a heuristic in order to obtain high quality solutions

to large instances. In Francis and Smilowitz (2006) the authors show that the proposed

continuous approximation is useful using a set of benchmark instances.

2.2.3 The Inventory Routing Problem

The IRP (Coelho et al., 2013) is a VRP with periodic demand that includes inventory

management and delivering–scheduling decisions, which depend on the inventory levels

at each time period. This family of problems was introduced by Bell et al. (1983) as

the Vendor–Managed Inventory (VMI). Three decisions must be made: when to serve

customers, the amount of product to deliver at each visit, and the design of the service

routes at each day of the time horizon. The aim is to minimize the total inventory holding

cost plus the total routing cost.

According to Coelho et al. (2013), variants of the IRP allow alternative replenishment or

inventory handling policies, or different criteria related to inventory and routing decisions.

Two common replenishment policies are: the Maximum–Level policy and the Order–Up–to

level policy. In the first one the quantity to replenish can be any amount that does not

exceed the capacity available per customer, while in the second one the total inventory

capacity level of each visited customer is filled at each visit. The inventory handling policies

include alternative options like allowing (or not) stock–out, avoiding negative inventory

(back–orders), or undelivered demand. Archetti et al. (2014) analyzed and evaluated

different formulations and valid inequalities for a Multi–Vehicle IRP. An extensive review

of the IRP literature is given in Coelho et al. (2013).

Different matheuristics have been used for solving large size IRP instances. Accord-

ing to Bertazzi and Speranza (2012b), some of the most common matheuristics for IRPs

correspond to the following classification:

• Routing–based: The aim is to minimize only the routing costs. However, considering

only routing costs may result in solutions of low quality when inventory costs are
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added to the final solution.

• Inventory–first routing–second: First, a subproblem that focuses on the inventory

criterion is solved. Then routing is obtained by solving a TSP for each time period.

• Cluster–first inventory–routing second: First, customers are grouped into segments,

then a small inventory–routing model is solved to optimality for each segment.

• Intensified TS: Combines a TS scheme with MILP formulations to intensify the search

of the solution space.

2.3 State of the art for Periodic Vehicle Routing

Several solution methods have been proposed for solving different classes of PVRPs. Given

the difficulty of exact methods for finding optimal solutions for large size instances, most

of them are approximate approaches. The most relevant methods use sophisticated tech-

niques to obtain high quality solutions. Those considered state of the art are shown in

Figure 2.1 and are explained below according to their year of publication.
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Figure 2.1: State-of-the-art approaches for PVRPs.

Christofides and Beasley (1984) provided the first IP formulation for the PVRP. How-

ever, this formulation was not used for solving the problem. Instead, a heuristic was used

to initially assign visit days to customers and then the VRP resulting for each time period

was solved.

Chao et al. (1995) proposed a heuristic consisting of an initialization, an improvement

phase and a feasibility recovery step. In the initialization phase, an IP formulation is
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solved in order to obtain the assignment of customers to schedules. Then, in the second

phase, a record to record improvement heuristic is applied to obtain better solutions. If the

final solution is infeasible a procedure is applied to recover feasibility. In order to analyze

its effectiveness, the heuristic was applied to existing benchmark instances and to new

instances generated by the authors. In particular, the heuristic improved the best–known

solutions for most of the benchmark instances tested.

Cordeau et al. (1997) proposed a TS algorithm for solving three generalizations of

PVRPs. This algorithm generates an initial solution in which feasibility is not required.

The initial solution is then modified by applying different moves and by avoiding recent

ones. The heuristic was tested with the PVRP instances used by Chao et al. (1995). The

results showed that in 24 out of the 32 considered instances, the proposed TS produced bet-

ter solutions than the best–known results of the literature. In Cordeau and Maischberger

(2012) this TS heuristic was improved by adding a local search as well as diversification

and parallelization tools.

Hemmelmayr et al. (2009a) developed a hybrid Variable Neighborhood Search (VNS)

heuristic for solving the PVRP. This VNS generates a new solution from an initial random

solution by applying different neighborhoods sequentially. Then, a 3–opt local search is

applied in order to further improve it. A worse solution can be accepted with a certain

probability using a Simulated Annealing (SA) criterion. This algorithm produced 24 new

best–known solutions for the considered PVRP benchmark instances.

Concerning exact solution methods, the algorithm of Baldacci et al. (2011) is considered

as state of the art for the classical PVRP and two of its generalizations. In this algorithm,

three relaxations of a set-partition formulation are solved in order to obtain tight lower

bounds of the problem. Moreover, five bounding procedures are developed, outperforming

some of the best–known upper bounds of Hemmelmayr et al. (2009a) and producing very

high quality solutions, which, on average, have a 1% deviation with respect to the obtained

lower bounds.

Vidal et al. (2012) proposed a metaheuristic based on a Genetic Algorithm (GA) and a

local search. This GA operates with both feasible and infeasible solutions. This heuristic

was tested using benchmark PVRP instances used in Baldacci et al. (2011) improving 20

of them within 0.02% of optimality precision.

Cacchiani et al. (2014) developed a hybrid optimization algorithm for solving the
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PVRP. This algorithm integrates the solution of a MILP within a heuristic framework.

A relaxation of a set-covering formulation of the PVRP is solved by column generation

and then a local search is applied considering a fix–and–relax procedure and a TS heuristic.

Results on benchmark instances showed that good quality solutions can be obtained by

the proposed algorithm. Some best–known solutions of the literature were improved.

2.4 Flexible service policies in Periodic Vehicle Routing

According to Francis et al. (2008) flexible service policies may produce great savings in

the routing cost of a PVRP. Several works have studied these policies in PVRPs in order

to improve the solutions in comparison with those obtained with standard models in the

literature.

For example, Rusdiansyah and Tsao (2005) integrated IRP and PVRPTW features

to solve a problem for the delivery of products in vending–machine supply chains. They

developed a mathematical formulation that combined both inventory and periodic routing

with the difference that the objective function attempts to minimize routing, inventory

holding and visit frequency costs. However, due to the complexity of the problem, they

developed four variants of heuristics to solve it. These heuristics were evaluated and the

obtained results were compared with the best–known PVRPTW solutions in the litera-

ture. They were able to obtain relevant savings for most of the instances through the

incorporation of inventory and vehicle routing decisions in their model.

Francis et al. (2006) introduced the PVRP–SC. In the PVRP–SC flexibility in service

frequency is considered as a decision of the model. The authors proposed a mathematical

formulation and an exact solution algorithm. Computational results showed that adding

service choice (flexibility in visit frequency) can improve the system efficiency. In order

to compare the quality of the final solution, Francis and Smilowitz (2006) evaluated their

formulation considering different service levels. They also compared the advantages and

disadvantages of considering the service choice term in the objective function. They noticed

that savings are greater when customers with high frequency of visits are closer to the

depot. In general, their results showed that adding service choice can help to provide

better designs of service options.

Francis et al. (2007) developed a TS for a PVRP that incorporates different operational
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flexibility options: flexible service choice, crew flexibility, greater number of schedule op-

tions, and delivery strategies. They analyzed the trade-off between operational flexibility

and operational complexity through the incorporation of a set of quantitative measures.

They concluded that adding operational flexibility increases the operational complexity to

find the solutions, that the location of customers affects the savings obtained, and that

the reduction of the crew flexibility reduces the operational complexity. Their proposed

TS produced solutions within 3% of optimality for instances from the literature.

Hemmelmayr et al. (2009b) developed several solution approaches based on an IP

formulation and VNS to evaluate delivery strategies for blood products supplies. For their

IP formulation they combined IRP and PVRP features and considered two alternative

delivery strategies: regionalization (creation of regions with fixed routes) and delivery

regularity (repeating delivery patterns for each hospital). The aim was to minimize the

traveling costs. The results of the computational experiments showed that allowing more

flexible strategies it is possible to obtain about 30% of savings.

Pacheco et al. (2012) proposed a MILP formulation and a two–phase method based

on a Greedy Randomized Adaptive Search Procedure (Feo and Resende, 1995, GRASP)

and Path Relinking (Glover et al., 2000, PR) for a real–world problem of a bakery com-

pany. They addressed the problem as a generalization of the Capacitated Vehicle Routing

Problem (Ralph et al., 2003, CVRP) because preliminary experiments showed that mod-

eling the problem as a PVRP was more complex to handle. They introduced flexibility on

the delivery dates in their approximate method and solutions were compared with those

produced by state–of–the–art metaheuristics. Their results showed that adding flexibility

to their model made it possible to obtain high quality solutions (about 20% of reduction

of the total traveling costs in real–world instances) in much less time than other solution

methods proposed in the literature.

Aksen et al. (2012) proposed two different flow commodity formulations that combined

PVRP and IRP features for a waste vegetable oil collection problem. The aim was to

minimize the total collection, inventory and purchasing costs. Neither of the proposed

formulations assumed fixed visit frequencies or predetermined schedules. Some valid in-

equalities were proposed to strengthen them obtaining about 3.28% optimality gaps on

average on small size instances.

Archetti et al. (2015) studied a multi–period vehicle routing problem in city logistics
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where customers have to be served considering due dates. In this work, alternative flow-

based and load-based formulations that combine PVRP and IRP features are proposed

and the benefit of incorporating flexibility in the due dates and in the number of vehicles

is analyzed. Results showed that the load-based formulation outperforms the flow-based

formulation and more savings can be obtained when due dates are extended.

Table 2.1 shows the relation among works that include flexibility in the models that

are addressed. Other works found in literature where flexibility criteria are applied, can

be found in Hashimoto et al. (2006), and Há et al. (2014).
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Reference Application Type of flexibility
Model and solution

method
Objective (Min)

Rusdiansyah and

Tsao (2005)

Vending-machine

supply chains

Visit frequency is a

decision variable

IRP model based on

PVRPTW and five

heuristics

Sum of the average

inventory holding and

travel costs

Francis et al. (2006) Library deliveries
Visit frequency is a

decision variable

PVRP-SC: exact

algorithm and heuristic

variation of the exact

method

Total travel cost plus

service benefit

Francis and

Smilowitz (2006)

Periodic distribution

with Service Choice

Visit frequency is a

decision variable

Continuous PVRP-SC

reduced by geographic

decomposition and

variable substitution

Total travel cost plus

service benefit of each

subregion

Francis et al. (2007) Periodic distribution

Visit frequency, crew

flexibility, schedule

options, delivery

strategy

PVRP embedded in a

Tabu Search method

Total travel cost plus

service benefit

Hemmelmayr et al.

(2009b)
Blood product supplies

Routing decisions:

regions/fixed routes

and delivery regularity

IP formulation based

on IRP, a basic

heuristic and a Variable

Neighborhood Search

Total traveling cost

Pacheco et al.

(2012)
Bakery company Dates of delivery

CVRP: metaheuristic

(GRASP & Path

Relinking)

Total distance traveled

Aksen et al. (2012)
Waste vegetable - oil

collection

Visit frequency is not

fixed nor a limited

number of

predetermined

schedules is assumed

Two MILPs based on

IRP and PVRP and

partial linear

relaxations to generate

lower bounds

Total transportation

costs, vehicle operation

costs, holding costs,

and purchasing costs

Archetti et al.

(2015)
City logistics

Due date, crewsize,

vehicle capacity

Three formulations

reinforced with valid

inequalities: Flow

based formulation

(FF), FF with

assignment variables

and load–based

formulation

Transportation costs,

inventory costs and

penalty costs for

postponed service

Table 2.1: Literature review of flexible service policies in periodic delivery operations.



Chapter 3

The Flexible Periodic Routing Problem

The Flexible Periodic Vehicle Routing Problem can be seen as a new generalization of the

PVRP that allows service policies that are flexible with respect to the frequency of visits

and the amount delivered at each visit. The motivation for this research stems from the

variety of real–world PVRP applications that have been constrained to deliver for each

customer a fixed amount of product with a pre-established frequency. As it will be seen,

allowing flexible service policies for these two criteria may produce considerable operational

savings, both theoretically and empirically. The general aim of this research is to provide a

suitable mathematical and algorithmic framework for PVRPs in which flexible distribution

plans are allowed to improve the quality of the final solutions.

This chapter is organized as follows. The FPVRP, the PVRP and the IRP are formally

defined in Section 3.1 and their relation is described in Section 3.2. Two illustrative

examples are given in Section 3.3 to highlight the main advantages of FPVRPs over PVRPs

and IRPs. These potential advantages are formalized in Section 3.4 with a theoretical

worst-case analysis for the savings that can be obtained with the FPVRP with respect to

these related problems.

3.1 Formal definition and related problems

3.1.1 The Flexible Periodic Vehicle Routing Problem

Consider a complete and directed network G = (N,A) with set of nodes N = {0} ∪C and

set of arcs A. Node {0} denotes the depot and C = {1, . . . , n} the set of customers. Let

T = {1, . . . ,H} be a discrete set of time periods. Each customer i ∈ C has a total demand

Wi over T and a storage capacity wi. A homogeneous fleet of vehicles K = {1, . . . ,m}, with

capacity Q is available to perform the service. In order to satisfy the customers demand

a distribution plan must be defined, indicating the quantity of product to be delivered to

14



Chapter 3. The Flexible Periodic Routing Problem 15

each customer at each time period. The quantity delivered to customer i ∈ C at each visit

cannot be greater than wi and the sum of the quantities delivered over T must be equal to

Wi. A cost cij ≥ 0 is associated with each arc (i, j) ∈ A and is paid every time a vehicle

traverses the arc.

The FPVRP is the problem of finding the quantity to be delivered to each customer

at each time period that, together with the set of routes that satisfy customer demands at

the end of the time horizon, minimize the total routing cost.

3.1.2 The Periodic Vehicle Routing Problem

In the PVRP, as defined in Christofides and Beasley (1984), a set of schedules, S, is given.

Each schedule consists of a set of days in which customers receive service. This implies

that each customer will be visited, receiving the same amount of product wi at each visit,

in every day of the schedule, i.e., Si = {s ∈ S :
∑

t∈T ast = fi} where Si is the schedule

chosen for customer i, fi is the visit frequency for customer i, and

ast =

 1 if day t ∈ T belongs to schedule s ∈ S,
0 otherwise.

Three sets of decisions have to be made: select a schedule from all the predefined

options for each customer, assign customers to vehicles, and generate the routes to be

performed in each period of the time horizon.

The PVRP is the problem of selecting a schedule for each customer and finding a set

of routes consistent with the selected schedules of minimum total routing cost.

The relation between the FPVRP and the PVRP can be established by defining the

storage capacity wi as the ratio between the total demand Wi and the expected frequency

of visits fi as defined in the PVRP. Thus, wi = Wi
fi

. This way, in the FPVRP customer

i has to be visited at least fi times (the frequency defined in the PVRP). The customer

may be visited more frequently if this leads to cost savings.

3.1.3 The Periodic Vehicle Routing Problem with Service Choice

The PVRP–SC is a generalization of the PVRP in which service frequency is a decision of

the model. Similarly to the FPVRP, the PVRP–SC is defined on the same network G and
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the service frequency fi is a lower bound on the number of days that a customer i ∈ C
must be visited. However, the amount of product to deliver to each customer at each visit

is established by the selected schedule, which comes from the set S of possible options

known beforehand. The number of days for each schedule s ∈ S is denoted by γs. A

stopping cost τ si is defined for each customer i ∈ C and each schedule s ∈ S. Furthermore,

a service benefit αs and a demand accumulation factor βs, s ∈ S, are defined.

The aim of the PVRP–SC is to find a set of routes, for each vehicle and each time

period, that minimizes the total travel cost plus the service benefit, satisfying the vehicle

capacities and the minimum service requirements.

3.1.4 The Inventory Routing Problem

The IRP is defined on the same network G as the FPVRP. The difference with respect to

the FPVRP setting is that customers are no longer associated with a total demand Wi.

Instead, a demand dti is defined for each customer i ∈ C and each time period t ∈ T .

Moreover, a starting inventory level I0i is associated with each customer, together with a

capacity wi. The distribution plan has to be such that each customer is able, at each time

period, to satisfy the demand dti, thus the customer must have a sufficient quantity Iti in

inventory. Moreover, the quantity delivered at each visit plus the inventory available when

the visit is performed should not exceed the capacity wi. Similarly to Archetti et al. (2014)

it is assumed that, at each customer, the inventory level at time t ∈ T is the inventory

level at time t − 1 plus the amount delivered at time t minus the amount consumed at

time t. No shortages are allowed.

The aim of the IRP is to determine the quantity of product to deliver to each cus-

tomer and the corresponding service routes, guaranteeing that there is no shortage at each

customer in each time period, of minimum total routing cost.

Note that the IRP, as defined in Bertazzi and Speranza (2012a, 2013) and Coelho et al.

(2013), includes inventory holding costs in the objective function and inventory constraints

at the supplier. In order to have a fair comparison with the FPVRP, none of these elements

will be considered from now on. Such a version of the IRP will be referred to as the FPVRP

with Inventory Constraints (FPVRP-IC).
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3.2 Relationship among periodic routing problems

PVRPs, PVRPs–SC and IRPs share some characteristics: they perform periodic visits to

customers in order to deliver a certain quantity of product along a time horizon. These

visits incur some costs mostly related to the routing of the vehicles. There are however

important differences among these classes of problems as well.

In the PVRP, every customer must be visited with a known periodicity on a specific

time horizon. This periodicity (or frequency) must be chosen from a set of schedule

plans which are known initially. At each visit the quantity delivered is exactly the same,

according to the selected schedule. In the PVRP–SC, the frequency of visits is modeled

as a decision variable. In particular, it is allowed to visit customers more often than a

minimum predefined frequency. However, the PVRP–SC still depends on a previously

known reference schedule for each customer, which determines the amount of product

to deliver to each customer at each time visit. A service benefit, which mainly depends

on the demand of each customer, is considered to determine the solution cost. On the

other hand, the IRP incorporates inventory management and a distribution route design

decisions simultaneously. It is not based on a predefined schedule, and customers are

visited according to their replenishment policy. In this type of problems, the frequency of

visits is implicit and there is no minimum service requirement as in the PVRP–SC. The

amount of product to deliver to each customer depends on the customer inventory at that

time and it is modeled as a decision variable. Table 3.1 summarizes the main differences

among these three types of problems.

Problem Periodicity Delivered quantity Objective

PVRP
Predefined set of

schedules
Same quantity at each

visit
Minimize routing cost

PVRP–
SC

Predefined schedule,
visit frequency modeled
as a decision variable

Depends on the
selected schedule and

the delivery strategy at
each customer

Maximize net profit:
balance between service
benefit and routing cost

IRP
No predefined schedule

and unconstrained
number of visits

Modeled as a decision
variable. Depends on

the replenishment
policy

Minimize holding plus
routing costs

Table 3.1: Comparison among PVRP, PVRP–SC and IRP.
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3.3 Illustrative examples

In this section we present two examples that motivate the study of the FPVRP and show

the potential savings that can be obtained with respect to both the PVRP and the IRP.

The first example refers to the comparison between the FPVRP and the PVRP while the

second compares the FPVRP and the FPVRP-IC.

Example 1. Consider a PVRP instance with a number of customers |C| = 4, a time

horizon |T | = 6, a vehicle capacity Q = 8 and a fleet of |K| = 2 vehicles. Suppose that

distances are as indicated in Figure 3.1 where ε � M and α � M . In addition, for each

i ∈ C, a total demand Wi = 12 and a number of visits fi = 2 are assigned.

0

1

23

4

M − ε

M

ε ε

M

ε
αα

1

Figure 3.1: Input network for Example 1.

In the classical PVRP each customer has to be visited every third day and the quantity

to be delivered at each visit is wi = 12
2 = 6. The set of feasible schedules for each customer

is Si = {(1, 4), (2, 5), (3, 6)}, i ∈ C. Since the capacity of each vehicle allows to serve one

customer per route, any solution minimizing the number of vehicles is optimal for this

PVRP instance. The minimum number of routes is (4× 1) + (2× 2) = 8 (4 days with one

route and 2 days with two routes). An optimal PVRP solution is the one that is shown in

Figure 3.2 and is described below:

3.2a Periods 1 and 4: One vehicle delivers 6 units to Customer 1 and another vehicle

delivers 6 units to Customer 2. The traveled distance is 8M (2M per vehicle at each

time period).
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3.2b Periods 2 and 5: One vehicle delivers 6 units to Customer 3. The traveled distance

is 4M (2M for each time period).

3.2c Periods 3 and 6: One vehicle delivers 6 units to Customer 4. The traveled distance

is 4M − 4ε

The overall distance traveled by the 8 vehicles is 16M − 4ε.
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1(a)

S1 = S2 = {(1, 4)},
q1,41 = q1,42 = 6,

Dist = 2× (2× 2M.)
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1(b)

S3 = {(2, 5)},
q2,53 = 6,

Dist = 2× 2M
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1(c)

S4 = {(3, 6)},
q3,64 = 6,

Dist = 2× (2M − 2ε)

Figure 3.2: Optimal PVRP solution. Total distance traveled: 16M − 4ε.

For the FPVRP, the following schedule is optimal:

3.3a Periods 1 and 4: One vehicle delivers 6 units to Customer 1 and 2 units to

Customer 4. The traveled distance is 4M (2M at each time period).

3.3b Periods 2 and 5: One vehicle delivers 6 units to Customer 2 and 2 units to

Customer 4. The traveled distance is 4M+2α−2ε (2M+α−ε at each time period).

3.3c Periods 3 and 6: One vehicle delivers 6 units to Customer 3 and 2 units to

Customer 4. The traveled distance is 4M+2α−2ε (2M+α−ε at each time period).

The total traveled distance is 12M + 4(α − ε), which is much smaller than 16M − 4ε

when ε�M and α�M . Figure 3.3 shows the FPVRP solution.
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q3,63 = 6, q3,64 = 2,

Dist = 2(2M + α− ε)

Figure 3.3: Optimal FPVRP solution. Total distance traveled: 12M + 4α− 4ε.

Example 2. Consider now a FPVRP-IC instance with |C| = 5 customers, time horizon

|T | = 3, a vehicle capacity Q = 228 and a fleet of |K| = 2 vehicles. Distances between each

pair of nodes i, j ∈ N are shown in Figure 3.4. It is assumed that each customer i ∈ C has

a fixed demand at all time periods, i.e., dti = di for all t ∈ T . Information about the demand

per period (di), the initial inventory levels (I0i ) and the maximum inventory levels at each

customer (wi) is presented in Table 3.5. Note that for the FPVRP Wi = dti × |T | − I0i .
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Figure 3.4: Input network for Ex-
ample 2.

i di I0i wi Wi

1 87 87 174 174

2 86 86 172 172

3 65 65 130 130

4 53 106 159 53

5 13 26 39 13

Table 3.5: Initial data for Example
2.

An optimal FPVRP-IC solution for this example is:

3.6a Period 1: One vehicle delivers 65 units to Customer 3. The traveled distance is

106.98. The customers inventory levels are I1i = {0, 0, 65, 53, 13}.

3.6b Period 2: One vehicle delivers 13 units to Customer 5 and 172 units to Cus-

tomer 2. Another vehicle delivers 53 and 174 units to Customers 4 and 1, re-
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spectively. The traveled distance is 2088.86. The customers inventory levels are

I2i = {87, 86, 0, 53, 13}.

3.6c Period 3: One vehicle delivers 65 units to Customer 3. The traveled distance is

106.98. The final inventory levels are all zero.
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(c) Period 3: Dist 106.98

Figure 3.6: Optimal FPVRP-IC Solution. Total distance traveled: 2302.82.

The total distance of the optimal FPVRP–IC solution is 2302.82.

If the FPVRP associated with this instance is considered, then Wi = dti × |T | − I0i as

inventory levels are no longer considered at the customers. Then, an optimal solution for

the FPVRP is as follows:

3.7a Period 1: No deliveries are performed. The traveled distance is 0.

3.7b Period 2: One vehicle is used to deliver 10 units to Customer 2 and 174 units to

Customer 1. The traveled distance is 1058.47.

3.7c Period 3: One vehicle delivers 130 units to Customer 3 and another vehicle delivers

13, 53 and 162 units to Customers 5, 4 and 2, respectively. The distances traveled

by the vehicles are 106.97 and 944.05, respectively.
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Figure 3.7: Optimal FPVRP Solution. Total distance traveled 2109.51.

The total distance of the optimal FPVRP solution is 2109.51. Therefore, in this exam-

ple, the FPVRP produces an improvement of more than 8% with respect to the FPVRP-IC

(Cost = 2302.82).

3.4 Worst-case analysis

In the examples of Section 3.3 it was shown that substantial savings can be obtained by

the FPVRP with respect to both the PVRP and the FPVRP-IC. This section quantifies

and formalizes the maximum potential savings in each case. Let z(P ) denote the optimal

value to a given instance of problem P .

Theorem 1. There exists no finite bound for the ratio z(PV RP )
z(FPV RP ) .

Proof. Consider the following instance of the PVRP in which |T | = 2, |K| = Q and

fi = 1 for each customer i. There are three sets of customers. The first set is composed

by Q customers with wi = Wi = Q. In the second set there are Q customers with

wi = Wi = Q − 1 and the third set have Q customers with wi = Wi = 1. Moreover,

all customers can be visited either in t = 1 or in t = 2. Customers and depot locations

are as follows. Each customer in the first set is co-located with a customer of the second

set and they are spread around a circle centered at the depot with radius δ < 1 and a

distance ε apart. Customers of the third set are spread around a circle centered at the

depot with a radius 1, perfectly aligned along the radius with the customers of the first

and second set, with a distance ε
δ apart (Figure 3.8a). Note that, as the fleet is composed

by Q vehicles and |T | = 2, the maximum number of routes during T is 2Q. Moreover, as

the total demand of customers is 2Q2, all vehicles must be used and fully loaded in both

periods.
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The optimal and only solution of the PVRP is the one where Q routes are used to

serve the customers in the first set with direct trips to the depot and the other Q routes

serve one customer in the second set and one customer in the third set each. The cost of

this solution is 2Qδ + 2Q (Figure 3.8b).

The optimal solution of the FPVRP is the following (Figure 3.8c). In t = 1 one route

is used to serve all customers in the third set. There remains Q − 1 routes in t = 1 and

Q routes in t = 2. They are constructed as follows. Without loss of generality, choose

one customer of the second set as the first customer. Number all customers in a clockwise

direction as i1, ..., i|Q| if they belong to the second set and j1, ..., j|Q| if they belong to the

first set. The first route delivers Q − 1 units to customer i1 and 1 unit to customer j1.

The second route delivers Q− 1 units to customer j1 and 1 unit to customer i2. The third

route delivers delivers Q − 2 units to customer i2 and 2 units to customer j2, and so on.

We obtain Q + Q − 1 routes where the last route delivers Q units to customer j|Q|. The

odd routes are performed in t = 2 while the even routes are performed in t = 1 (as no

customer can be served more than once in the same period). The cost of this solution is

2 + (Q− 1)( εδ ) + 2Qδ + (Q− 1)(2δ + ε).

The ratio between z(PV RP ) and z(FPV RP ) is therefore 2Qδ+2Q
2+(Q−1)( ε

δ
)+2Qδ+(Q−1)(2δ+ε) .

When Q goes to infinity and ε, δ and ε
δ go to 0 this ratio tends to infinity.
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(a) Original Graph (b) PVRP Solution

t = 1 t = 2

(c) FPVRP Solution

Figure 3.8: Worst–case analysis

�

The proof presented above is quite similar to the one proposed by Gueguen (1999) for

the analysis of the benefits of the SDVRP with respect to the VRP.

We now compare the FPVRP with the FPVRP-IC as defined in Section 3.1.4. The

following result holds.

Theorem 2. There exists no finite bound for the ratio z(FPV RP−IC)
z(FPV RP ) .

Proof. Let us consider the instance introduced in the proof of Theorem 1. In the

FPVRP-IC, initial inventory levels at customers must be defined. We define them as

follows: the initial inventory level is equal to 0 for the customers in the first set, to Q− 1

for the customers in the second set and to 1 for the customers in the third set. The

customers demands are equal to Q− 1 and 1, at time t = 1 and t = 2, for customers of the
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second and third set, respectively. For the customers in the first set, demand at time t = 1

is equal to Q and demand at t = 2 is equal to 0. Note that the customers of the second

and third set cannot be served at time t = 1 as their initial inventory level is equal to the

storage capacity. On the other side, customers of the first set have to be served at time

t = 1 as their initial inventory level is 0 and the demand at t = 1 is positive. Thus, the

only feasible solution for the FPVRP-IC corresponds to the solution of the PVRP shown

in the proof of Theorem 1, i.e., Q routes are used to serve the customers in the first set

with direct trips to the depot at time t = 1 and Q routes serve one customer in the second

set and one customer in the third set each at time t = 2. The cost of this solution is

2Qδ + 2Q. The solution of the FPVRP does not change. Thus the ratio is the same and

tends to infinity.

�



Chapter 4

Mixed Integer Linear Programming

formulations

Traditional VRP formulations with multiple vehicles use decision variables with a vehicle

index to indicate the arcs traversed by each vehicle. This involves a high number of decision

variables, particularly in problems where decisions must be made at different periods of

a given time horizon, like those studied in this thesis. In order to mitigate this difficulty,

recent works on several VRP variants have proposed the use of the so-called load-based

formulations, in which decision variables identify the arcs used in the solutions without

making explicit the vehicles that traverse them (Letchford and Salazar-González, 2015;

Archetti et al., 2014). For this, an additional set of continuous commodity flow variables

is needed to guarantee that routes are properly defined. Such formulations tend to be

quite effective in practice, although their linear programming (LP) relaxations are usually

weaker than their traditional counterpart. On the one hand they have a smaller number of

variables. On the other hand their implementation does not require the use of sophisticated

techniques, like branch-and-cut or column generation.

In this chapter, a vehicle-index and a load-based MILP formulations are proposed for

the FPVRP. Load-based formulations are also presented for the FPVR-IC and the PVRP,

since they have been used in the computational experiments, for comparative purposes.

Alternative vehicle-index formulations for the FPVRP–IC and the PVRP, are given in the

Appendices.

4.1 Vehicle-index formulation for the FPVRP

For the vehicle–index FPVRP formulation, we define two sets of binary variables to rep-

resent the routes and the visits to customers, and one set of continuous variables for the

26
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quantities delivered by the vehicles to customers at each time period.

Decision Variables:

• yktij =

 1 if arc (i, j) ∈ A is traversed by vehicle k ∈ K at time period t ∈ T ,
0 otherwise.

.

• zkti =

 1 if node i ∈ N is visited by vehicle k ∈ K at time period t ∈ T,
0 otherwise.

• qkti : Quantity delivered to customer i ∈ C by vehicle k ∈ K at time period

t ∈ T .

The vehicle-index MILP formulation for the FPVRP is the following:

min
∑
t∈T

∑
k∈K

∑
(i,j)∈A

cijy
kt
ij (4.1)

s.t. qkti ≤ wiz
kt
i i ∈ C, k ∈ K, t ∈ T (4.2)∑

i∈C

qkti ≤ Qzkt0 k ∈ K, t ∈ T (4.3)

∑
k∈K

zkti ≤ 1 i ∈ C, t ∈ T (4.4)

∑
j|(i,j)∈A

yktij = zkti i ∈ N, k ∈ K, t ∈ T (4.5)

∑
j|(i,j)∈A

yktij =
∑

j|(j,i)∈A

yktji i ∈ N, k ∈ K, t ∈ T (4.6)

∑
(i,j)∈A
i,j∈S

yktij ≤
∑
i∈S

zkti − zkts S ⊆ C, s ∈ S, k ∈ K, t ∈ T (4.7)

∑
t∈T

∑
k∈K

qkti = Wi i ∈ C (4.8)

zkti ∈ {0, 1} i ∈ N, k ∈ K, t ∈ T (4.9)

qkti ≥ 0 i ∈ C, k ∈ K, t ∈ T (4.10)

yktij ∈ {0, 1} (i, j) ∈ A, k ∈ K, t ∈ T. (4.11)

The objective function (4.1) minimizes the routing costs. Constraints (4.2) im-

pose that, at each time period, no vehicle delivers any customer i ∈ C a quantity
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that exceeds wi. Constraints (4.3) establish that the total quantity delivered by

each vehicle k at time period t does not exceed the vehicle capacity. Constraints

(4.4) ensure that, at each time period, at most one vehicle serves the demand of

customer i. Constraints (4.5) state that, for every vehicle and time period, one arc

has to exit from the node of every visited node. Constraints (4.6) are flow conserva-

tion constraints on the entering and leaving arcs at each customer, vehicle and time

period. Constraints (4.7) are a reinforcement of the classical subtour elimination

constraints (SECs)
∑

(i,j)∈A
i,j∈S

yktij ≤ |S| − 1. These enhanced SECs are better than

the classical SECs due to their stronger linear programming relaxation, i.e., when z

variables are fractional, the solution space is better delimited by using Constraints

(4.7). Constraints (4.8) impose that the total quantity delivered to each customer at

the end of the time horizon is equal to Wi. Finally, Constraints (4.9)–(4.11) define

the domain of the variables.

This formulation has |K||T | (|A|+ |N |) binary variables and |K||T ||C| continuous

variables. The size of the family of constraints (4.7) is exponential in the number of

customers. All other families of constraints are of polynomial size.

4.1.1 Valid inequalities and optimality cuts

In order to strengthen formulation (4.1)–(4.11), several families of inequalities have

been proposed and tested. Note that classical inequalities that can be used when

the amount of product delivered to each customer at each time period is fixed, like

the ones described in Letchford and Salazar-González (2015), cannot be applied to

these formulations because this amount is a decision variable. Then, the following

inequalities have been considered for the proposed formulation. They are similar to

the ones used by Archetti et al. (2014) for the IRP.

Valid Inequalities Î1: Consistency constraints. They strengthen the routing part.

Constraints (4.12) avoid to use vehicles if they do not depart from the depot.

zkti ≤ zkt0 i ∈ C, t ∈ T, k ∈ K (4.12)

Valid Inequalities Î2: Symmetry-breaking for vehicles. They are used to avoid
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replicating a given solution by just interchanging the indices of some of the vehicles.

Constraints (4.13) establish that vehicle k + 1 cannot be used unless vehicle k is

also used. Constraints (4.14) are called the lexicographic ordering constraints in

which a number is given to each customer and vehicles are assigned according to

the order of these.

zkt0 ≥ zk+1,t
0 1 ≤ k ≤ m− 1, t ∈ T (4.13)

j∑
i=1

2(j−i)zkti ≥
j∑
i=1

2(j−i)zk+1,t
i j ∈ C, 1 ≤ k ≤ m− 1, t ∈ T. (4.14)

Valid Inequalities Î3: Fractional Capacity–Cut Constraints (FCCCs) are similar

to those used in Archetti et al. (2014). These constraints differ from the classical

FCCCs (Letchford and Salazar-González, 2015) in that the capacity cannot be

rounded since the delivered quantities are modeled as decision variables.

Q
∑
i∈S
j∈C\S

yktij ≥
∑
i∈S

qkit S ⊆ C, k ∈ K, t ∈ T. (4.15)

4.2 Load-based formulation for the FPVRP

For the load-based formulation of the FPVRP two sets of binary decision variables

are introduced, which identify the arcs that are traversed and the customers that

are visited at each time period. In addition, a set of integer decision variables that

indicate the number of vehicles that are used at each time period is defined. This

can be easily computed by counting the number of arcs leaving the depot at each

time period. Finally, two additional sets of continuous variables are used. The first

one indicates the load of the vehicles when they traverse the arcs while the second

one, shows the amount of product delivered to each visited customer.

The definition of the decision variables is the following:

• zti =

 1 if customer i is visited at time period t,

0 otherwise.
(i ∈ C, t ∈ T )
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• ytij =

 1 if arc (i, j) is traversed at time period t,

0 otherwise.
((i, j) ∈ A, t ∈ T )

• zt: Number of vehicles used at time period t ∈ T .

• ltij: Load of the vehicle traversing arc (i, j) ∈ A, at time period t ∈ T .

• qti : Quantity delivered to customer i ∈ C at time period t ∈ T .

The formulation of the FPVRP is as follows:

min
∑
t∈T

∑
(i,j)∈A

cijy
t
ij (4.16)

s.t. qti ≤ wiz
t
i i ∈ C, t ∈ T (4.17)∑

i∈C

qti ≤ Qzt t ∈ T (4.18)

∑
j|(i,j)∈A

ytij = zti i ∈ C, t ∈ T (4.19)

∑
j|(i,j)∈A

ytij =
∑

j|(j,i)∈A

ytji i ∈ N, t ∈ T (4.20)

∑
j|(i,j)∈A

ltij −
∑

j|(j,i)∈A

ltji =


−qti , i ∈ C∑
i′∈C

qti′ , i = 0
i ∈ N, t ∈ T (4.21)

ltij ≤ Qytij (i, j) ∈ A, t ∈ T (4.22)∑
j|(0,j)∈A

yt0j ≤ m t ∈ T (4.23)

zt =
∑
i∈C

yt0i t ∈ T (4.24)

∑
t∈T

qti = Wi i ∈ C (4.25)

qti ≥ 0 i ∈ C, t ∈ T (4.26)

zt ∈ Z t ∈ T (4.27)

zti ∈ {0, 1} i ∈ C, t ∈ T (4.28)

ytij ∈ {0, 1}, ltij ≥ 0 (i, j) ∈ A, t ∈ T. (4.29)

The objective function (4.16) minimizes the routing costs. Constraints (4.17) im-

pose that none of the quantities delivered to each customer exceeds wi. Constraints
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(4.18) establish that the total quantity delivered at time t does not exceed the total

capacity of the vehicles used at time t. Constraints (4.19) state that, at each time

period, one arc has to exit from the node of every visited customer. Constraints

(4.20) are flow conservation constraints on the entering and leaving arcs at each

customer and time period. Constraints (4.21) are the load conservation constraints,

which are imposed for each customer and time period. Constraints (4.22) impose

that the vehicles loads do not exceed their capacity; they also link the y and the

l variables. Constraints (4.23) ensure that the number of vehicles used is at most

m. Constraints (4.24) guarantee that the value of variables zt coincides with the

number of vehicles used at each time period. Constraints (4.25) impose that the

total quantity delivered to each customer at the end of the time horizon is equal to

Wi. Finally, Constraints (4.26)–(4.29) define the domain of the variables.

The above formulation has |T | (|C|+ |A|) binary variables, |T | general integer

variables, and |T | (|C|+ |A|) continuous variables. The number of constraints is

|T | (6|C|+ 2|A|+ 6) + |C|.

4.2.1 Valid inequalities and optimality cuts

The families of inequalities proposed to strengthen formulation (4.16)–(4.29) are

listed below.

Inequalities I1. Sum of final loads : All vehicles return to the depot with an empty

load. Indeed, these inequalities are not valid, since there are feasible FPVRP

solutions that do not satisfy them. Instead, they are optimality cuts, since there

is at least an optimal solution that satisfies them. Therefore, they can be used to

reduce the domain of the solutions that are explored.

∑
t∈T

∑
j∈C

ltj0 = 0 (4.30)

Inequalities I2. Symmetry-breaking of routes : The following inequalities partially

break the symmetry of the routes by exploiting the fact that arc costs are symmetric.

According to them only the routes with a certain orientation will be considered (as
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the same route in the opposite orientation will have the same cost). Among the two

possible orientations for a route, the one that starts with the lowest-index customer

is chosen. For this, it is imposed that

yti0 ≤
∑
r≤i

yt0r, ∀i ∈ C, ∀t ∈ T (4.31)

That is, if arc (i, 0) enters the depot at time period t, then there must be a lowest

index arc (0, r) with r ≤ i which exits the depot at this time period. The symmetry-

breaking inequalities are also optimality cuts, but not valid inequalities.

Valid Inequalities I3: The relation between variables y and z can be imposed in

several ways. In the FPVRP formulation this is done in a two-step fashion. On

the one hand, the flow balance constraints (4.21) relate the load variables l to the

q, which, in turn, activate the z. On the other hand, constraints (4.22) relate the

load variables l to the arc variables y. Nevertheless, this relation can be stated in

a more direct way, similarly to the constraints imposed in Christofides and Beasley

(1984) for the PVRP. In particular, no arc yij can be used at time period t unless

customers i and j are visited at the same time period. Therefore, the following

inequalities are valid:

ytij ≤
zti + ztj

2
, ∀i, j ∈ C, ∀t ∈ T (4.32)

Taking into account that no arc will be traversed in both directions in the same

time period the above inequalities can be reinforced to:

ytij + ytji ≤
zti + ztj

2
, ∀i < j ∈ C, ∀t ∈ T (4.33)

4.3 Load-based formulation for the FPVRP-IC

Below a load-based formulation for the FPVRP-IC is presented, which is largely

based on the formulation for the IRP proposed by Archetti et al. (2014). The

inventory levels are evaluated after the delivery of qti and the consumption of dti.
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Note that inventory levels cannot exceed wi − qti . In addition to the l, q, y, and

z variables used in the FPVRP formulation (4.16)–(4.29), the formulation for the

FPVRP-IC uses another set of continuous variables that represent the customers

inventory levels at each time period.

• I ti : Inventory level at customer i ∈ C at the end of time period t ∈ T .

The FPVRP-IC formulation is the following:

min
∑
t∈T

∑
(i,j)∈A

cijy
t
ij (4.34)

s.t. I ti = I t−1i − dti + qti i ∈ C, t ∈ T (4.35)

qti ≤ wi − I t−1i i ∈ C, t ∈ T (4.36)

qti ≤ wiz
t
i i ∈ C, t ∈ T (4.37)∑

i∈C

qti ≤ Qzt t ∈ T (4.38)

∑
j|(i,j)∈A

ytij = zti i ∈ C, t ∈ T (4.39)

∑
j|(i,j)∈A

ltij −
∑

j|(j,i)∈A

ltji =

 −q
t
i , i ∈ C∑

i∈C
qti , i = 0

i ∈ N, t ∈ T (4.40)

ltij ≤ Qytij (i, j) ∈ A, t ∈ T (4.41)∑
j|(i,j)∈A

ytij =
∑

j|(j,i)∈A

ytji i ∈ N, t ∈ T (4.42)

∑
j|(0,j)∈A

yt0j ≤ m t ∈ T (4.43)

zt =
∑
i∈C

yt0i t ∈ T (4.44)

I ti ≥ 0 i ∈ N, t ∈ T (4.45)

qti ≥ 0 i ∈ C, t ∈ T (4.46)

zti ∈ {0, 1} i ∈ C, t ∈ T (4.47)

zt ∈ Z t ∈ T (4.48)

ytij ∈ {0, 1}, ltij ≥ 0 (i, j) ∈ A, t ∈ T. (4.49)
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The objective function (4.34) is the minimization of the total routing cost.

Constraints (4.35) and (4.45) determine the inventory levels over time and avoid

stock–out situations. Since T = {1, . . . , H}, when t = 1, I t−1i = I0i corresponds to

the initial inventory at customer i. Constraints (4.36) ensure that delivered quan-

tities do not exceed the maximum quantity needed by each customer at each time

period. The remaining constraints have the same meaning as in the FPVRP formu-

lation.

4.4 Load-based formulation for the PVRP

A new formulation for the PVRP, which has been used in the computational ex-

periments is presented. To the best of our knowledge this is the first load-based

formulation in the literature for the classical PVRP. It uses the same y, z and l vari-

ables as the FPVRP formulation. In addition, the following set of binary decision

variables is defined to determine the schedule that is chosen for each customer:

• vsi =

 1 If customer i ∈ C is visited according to schedule s ∈ Si,
0 otherwise.

Then, the load-based formulation for the PVRP is:

min
∑
t∈T

∑
(i,j)∈A

cijy
t
ij (4.50)

s.t.
∑
s∈Si

vsi = 1 i ∈ C (4.51)

zti =
∑
s∈Si

vsi ast t ∈ T, i ∈ C (4.52)

ytij ≤
zti + ztj

2
t ∈ T ; i 6= j ∈ C (4.53)∑

j|(i,j)∈A

ytij =
∑

j|(j,i)∈A

ytji i ∈ N, t ∈ T (4.54)

∑
j|(i,j)∈A

ytij = zti i ∈ C, t ∈ T (4.55)

∑
j|(i,j)∈A

ltij −
∑

j|(j,i)∈A

ltji =


−wizti , i ∈ C∑
j∈C

wjz
t
j, i = 0

i ∈ N, t ∈ T (4.56)
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ltij ≤ Qytij (i, j) ∈ A, t ∈ T (4.57)∑
j∈C

yt0j ≤ m t ∈ T (4.58)

vsi ∈ {0, 1} i ∈ C, s ∈ Si (4.59)

zti ∈ {0, 1} i ∈ C, t ∈ T (4.60)

ytij ∈ {0, 1} (i, j) ∈ A, t ∈ T (4.61)

ltij ≥ 0 (i, j) ∈ A, t ∈ T. (4.62)

The objective function (4.50) minimizes the total routing costs. Constraints

(4.51) ensure that a schedule is assigned to each customer. Constraints (4.52) relate

the selected schedules with customer visits. Constraints (4.53) allow to connect two

customers only if both are served in the same period. Constraints (4.54) are the

flow conservation constraints. Constraints (4.55) ensure that exactly one arc leaves

each visited customer at each time period. Constraints (4.56) are load conservation

constraints. Constraints (4.57) ensure that the load of vehicles does not exceed

their capacity. Constraints (4.58) indicate that the number of vehicles used must

be at most the maximum number of vehicles available at each time period. Finally,

Constraints (4.59)-(4.62) determine the domain of variables.



Chapter 5

Exact solution algorithms for the

FPVRP

This chapter describes the exact methods developed to solve the MILP formulations

for the FPVRP presented in Chapter 4, as well as some valid inequalities and op-

timality cuts added for their reinforcement. Furthermore, the benchmark instances

and the computational experiments performed for the proposed exact solution algo-

rithms are described.

5.1 Description of the algorithms

Figure 5.1 shows the general scheme of the exact algorithms that are proposed for

solving the FPVRP formulations.

The vehicle-index FPVRP formulation requires the set of constraints (4.7) to

avoid the creation of subtours. Adding SECs directly to the formulation becomes

impracticable, since their number grows exponentially with the number of customers.

Therefore, only the SECs that are needed are incorporated to the formulation. For

this we apply an iterative algorithm that solves at each iteration the LP relaxation

of formulation (4.1)–(4.6), (4.8)–(4.11) reinforced with only a subset of inequalities

(4.7), and applies a separation procedure that identifies whether or not any not yet

considered inequality (4.7) is violated by the current solution. If so, the violated

inequality is added to the current formulation and the process is repeated. Further-

more, in order to strengthen the formulation, other families of inequalities are also

included.

On the contrary, SECs are not needed for the load-based formulation, since its

feasible solutions already satisfy them. Hence the load-based formulation is only

36



Chapter 5. Exact solution algorithms for the FPVRP 37

reinforced with valid inequalities and optimality cuts.

Figure 5.1: Exact solution method for the FPVRP.

Below we describe the separation of SECs and the valid inequalities and optimal-

ity cuts used to reinforce the formulations.

5.1.1 Separation of SECs

The separation procedure applied to identify violated SECs differs depending on

whether or not the current LP solution is integer or fractional. For each each vehicle

k ∈ K and time period t ∈ T , let Gkt = (Skt, Akt) denotes the subgraph induced by

the solution of the LP relaxation of the current formulation, where Skt ⊆ N denote

the set of nodes visited by vehicle k (i.e. zkti > 0), and Akt the set of arcs used by

vehicle k (i.e. yktij > 0). Figure 5.2 shows an example of an induced graph.

01 2

3

1

11

Figure 5.2: Induced graph Gkt (visited {0,1,3}, non visited {2}).

• Integer solution:

When the current LP solution is integer, violated SECs can be obtained by

identifying the connected components of each graph Gkt. If there are two or

more components, a violated SEC is associated with each of them. To find
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these connected components, the disjoint–set data structures (Galler and Fisher,

1964) are used.

• Fractional solution:

When the current LP solution is fractional, violated SECs can be found, if

they exist, from the tree of min–cuts of each subgraph Gkt. In particular, each

cut–set of value strictly smaller than 1, defines a violated SEC (Drexl, 2013).

It is well–known that the tree of min–cuts of a given graph can be found by

solving a series of Max–Flow problems (Ford and Fulkerson, 1956). In our case

we apply the Gusfield algorithm (Gusfield, 1990). Figure 5.3 shows an example

of the graph Gkt and the min-cuts tree T̂ obtained after applying the Gusfield

algorithm.
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(a) Induced graph Gkt.
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(b) Cut tree T̂ .

Figure 5.3: Generation of a Gusfield tree of min–cuts.

The set of constraints (4.15) is of exponential size in the number of customers,

so it must be handled in a similar way as SECs. We have implemented three al-

ternative algorithms to find violated cuts from this family: a Greedy Shrinking

heuristic (Augerat et al., 1998), an Extended Shrinking heuristic (Nagamochi

and Ibaraki, 1992), and the Gusfield algorithm (Gusfield, 1990) as a last option.
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5.2 Benchmark instances

In the development of this thesis several series of computational experiments have

been run in order to test the proposed formulations and the performance of the

solution algorithms. Before presenting the numerical results we describe the sets of

benchmark and new instances used in the experiments.

5.2.1 Description of the set of instances

We have classified the instances into five different sets:

• Set 1 (S1): The IRP instances proposed by Archetti et al. (2014). This set

consists of 40 benchmark instances with |C| ∈ {5, 10, 15, 20} and a 3–period

time horizon, i.e. |T | = 3.

• Set 2 (S2): The PVRP instances proposed by Francis et al. (2006). This set

consists of 24 instances with |C| ∈ {7, 9, 11, 15, 49} and time horizon |T | = 5.

Instances were generated in a similar way to those used by Francis et al. (2006)

and according to the database provided by one of the authors. Schedules for

each customer are assigned according to their frequency of visits as explained

in the following.

• Set 3 (S3): A newly generated set of 35 PVRP instances of medium size

with clustered customers. The time horizon used in the whole set is |T | = 5.

Other parameters are: the number of customers |C|, the vehicle capacity Q, the

number of clusters p, a radius r, which determines the coverage area of each

cluster, and a parameter β, which together with r determines the minimum

distance β×r among the centers of the clusters. Five instances were generated

for each combination of |C| ∈ {10, 15, 20} and r ∈ {0.15, 0.30}, plus five more

instances with |C| = 20 and r = 0.50. Vehicles capacities, Q, have been set to

200, 250 and 300 for 10, 15 and 20 customers, respectively. For |C| = 10, the

number of clusters is set to p = 2, whereas for instances with |C| ∈ {15, 20} is

set to p = 3. When r ∈ {0.15, 0.30}, the value of β has been set to 2, which
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avoids clusters overlapping. Instead, for r = 0.50 is fixed to β = 1, allowing

customers to belong to more than one cluster.

• Set 4 (S4): A set of 10 larger instances, generated in a similar way to the

ones in S3, with |C| ∈ {50, 100}, r ∈ {0.15} and vehicle capacity of Q = 500.

• Set 5 (S5): A set of 5 PVRP benchmark instances from the literature (Chao

et al., 1995; Baldacci et al., 2011) and available in http://neumann.hec.ca/

chairedistributique/data/pvrp/old/.

Section 5.2.2 shows the procedure of generating instances of sets S3 and S4.

5.2.2 Generation of FPVRP instances

The generation of instances of the sets S3 and S4 is done according to the following

steps (see Figure 5.4 for a graphical example):

• The depot is located at the center of the unit square.

• p centers (one for each cluster) are randomly generated from a uniform distri-

bution in the unit square. Each generated center must satisfy the minimum

distance condition β × r with respect to the others.

• Once all the centers have been fixed, the customers are generated in such a

way that clusters are balanced, i.e. each cluster contains up to
⌈
|C|
p

⌉
cus-

tomers. Clusters are progressively filled: first, one customer is generated for

each cluster; then, a second one; and so on, until |C| customers have been

randomly generated using an uniform distribution in the circles around the

clusters’ centers of radius r.

• A storage capacity wi, i ∈ C, is randomly generated from an integer uniform

distribution in [1, Q].

• A number of visits is randomly associated with each customer according to the

following options: fi = 5, 3 or 2.

http://neumann.hec.ca/chairedistributique/data/pvrp/old/
http://neumann.hec.ca/chairedistributique/data/pvrp/old/
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• A set of schedules Si is assigned to each customer according to its frequency fi,

which is randomly selected. The number of visits associated with each schedule

is fi = 5, 3 or 2. This step is needed because the comparisons with the PVRP

require a predefined schedule. For FPVRP tests, this is not necessary as the

FPVRP does not depend on predefined schedule.

– Schedules for S2, S3 and S4: Different schedule options are considered

for the tests.

∗ fi = 2 : Si = {(0,0,1,0,1),(0,1,0,0,1),(0,1,0,1,0),(1,0,0,1,0),(1,0,1,0,0)},
∗ fi = 3 : Si = {(0,1,0,1,1),(0,1,1,0,1),(1,0,1,0,1),(1,0,1,1,0),(1,1,0,1,0)},
∗ fi = 5 : Si = {(1,1,1,1,1)}.

• Once all the customer demands are generated, the number of vehicles is set to

m =
⌈∑

i∈C wi
Q

⌉
for S3 and to m = 1+

∑
i∈C wifi
QH

for S4.

Figure 5.4 shows an example of an instance with |C| = 10, Q = 10 and p = 4. As

it can be seen, two clusters have three customers each and the remaining ones have

two customers each. Nodes with the same color represent customers with the same

assigned schedule. The number inside each node represents the assigned storage

capacity wi.
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Figure 5.4: Clustered instance with |C| = 10, Q = 10, p = 4, and |S| = 3.
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5.3 Computational experience

In this chapter we present and discuss the numerical results obtained with the exact

algorithms. The aim of the experiments that were run was twofold: on the one hand

to analyze the computational difficulty of the FPVRP and the effectiveness of the

proposed formulations. On the other hand, to highlight the benefits derived from

allowing flexibility in the PVRP and the FPVRP-IC, by comparing the solutions

produced by the proposed models.

For the computational experiments, all formulations were implemented in

C++ with ILOG Concert Technology API and CPLEX 12.5.0.0, running on a HP

Intel(R)-Xeon(R) 2.4GHz Workstation with 32GB RAM (Win Server 2012, 64 bits).

Default parameters were used. All computing times were limited to 14400 seconds.

The sets of instances used for these tests were S1, S2, and S3.

5.3.1 Vehicle–index vs load–based formulations

A preliminary test was performed in order to compare the effectiveness of the pro-

posed vehicle–index and load–based FPVRP formulations. The one with the best

performance was considered for later experiments. Table 5.1 shows the results ob-

tained for both formulations. They were applied to a small subset of instances of S3

(r = 0.15). The vehicle-index formulation includes all the valid inequalities proposed

in Chapter 4.1.1.

It is clear that the load–based formulation is much better than the vehicle–index

version as it was able to obtain feasible solutions for all instances (Status column)

and the optimality gaps were much better (Gap% column). Thus, the vehicle–index

formulation was excluded from any further consideration in our experiments.
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Instance
Vehicle–index Load–based

Status BestSol Gap% Time Status BestSol Gap% Time

n10k5t5 1 F 20.79 2.03 14399 F 20.78 2.31 14400

n10k4t5 2 F 12.44 7.64 14399 F 12.44 2.58 14400

n10k5t5 3 F 13.45 4.66 14400 F 13.23 2.71 14400

n10k4t5 4 F 13.53 5.75 14399 F 13.53 3.55 14400

n10k8t5 5 F 26.64 2.69 14399 F 25.91 1.28 14400

n15k10t5 1 F 35.26 13.23 14400 F 34.26 2.53 14403

n15k6t5 2 F 18.44 12.54 14401 F 17.42 5.23 14400

n15k10t5 3 I — — 14401 F 25.25 3.17 14400

n15k8t5 4 F 32.72 11.15 14402 F 32.11 2.66 14400

n15k7t5 5 F 24.21 9.12 14400 F 23.89 4.39 14400

n20k10t5 1 I — — 14400 F 24.58 4.06 14402

n20k12t5 2 I — — 14400 F 36.10 1.82 14400

n20k11t5 3 I — — 14400 F 23.70 3.82 14404

n20k10t5 4 I — — 14400 F 35.35 2.32 14401

n20k10t5 5 I — — 14400 F 29.45 1.91 14399

Table 5.1: Comparison between vehicle–index and load-based FPVRP formulations.

5.3.2 Evaluation of inequalities and optimality cuts for the FPVRP

The first set of experiments was focused on the evaluation of the effectiveness of the

different inequalities for the load–based FPVRP formulation.

Initially, several variants of the formulation presented in Chapter 4.2 were tested

and the obtained results indicated that the best performance was attained with

formulation (4.16)-(4.29). Then, a comparison of this base formulation against al-

ternative reinforcements resulting from the addition of different combinations of

inequalities presented in Chapter 4.2.1 was made. For this test, a subset of bench-

mark instances whose optimality was particularly difficult to prove with the base

formulation was selected. This subset consists of 16 S2 instances (with |K| ∈ {3, 4})
plus the 35 new S3 instances.

Average results (over all instances in each group) of the percentage optimality

gaps at termination are summarized in Table 5.2. These optimality gaps have been

computed as 100 × BestSol−LB
BestSol

, where BestSol is the best-known feasible solution

value for each instance (among all tested versions), and LB is the lower bound at

termination of the tested version. Each row corresponds to a group of instances. The
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first column indicates the set to which the group of instances belongs. The next three

columns give some characteristics of the instances of each group: r (for instances

in S3 ), |C| and Q (an average value is reported for S2). The number of instances

in each group is given in column Inst. Average results over all the combinations

tested are given in the following six columns: entries in column Base correspond to

the base formulation (4.16)-(4.29), whereas under I1, I2, I3, the results of the base

formulation reinforced respectively with (i) the empty load return inequalities (4.30);

(ii) the symmetry breaking inequalities (4.31); and, (iii) the valid inequalities (4.33)

are shown. The last two columns correspond to the combinations of (i) with (ii) and

of (i) with (iii). In each case, the number of instances optimally solved, within the

allowed computing time, is given in parenthesis next to the percentage optimality

gap. These values are only given for the groups of instances of S2 because it was

never possible to prove the optimality for any of the instances in S3.

Other combinations of inequalities were also tested but did not give significantly

different results (see Appendix C.1).

Set r |C| Q Inst. Base I1 I2 I3 I1+I2 I1+ I3

S2 15
999.38

8 0.43 (3) 0.30 (3) 0.38 (5) 0.45 (3) 0.26 (5) 0.36 (3)

15 8 0.32 (3) 0.29 (4) 0.31 (5) 0.52 (3) 0.26 (5) 0.35 (3)

S3 0.15 10 200 5 2.58 2.78 2.65 3.16 2.49 2.93

15 250 5 3.83 3.82 3.76 4.15 3.55 3.90

20 300 5 5.71 5.71 5.67 5.68 5.65 5.57

0.30 10 200 5 1.51 1.56 1.54 1.92 1.51 1.71

15 250 5 1.97 1.97 1.94 2.15 1.89 2.05

20 300 5 2.09 2.15 2.16 2.35 2.15 2.26

0.5 20 300 5 2.59 2.50 2.55 2.97 2.49 2.85

Table 5.2: Summary of results of FPVRP for different combinations of inequalities.

Results show that strengthened formulations reduced the percentage gap in nearly

all cases. Broadly speaking, both the empty load return inequalities (4.30) and the

symmetry breaking inequalities (4.31) are effective. The effectiveness of inequalities

(4.33) that relate y and z variables is not so clear and in some cases the base formu-
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lation alone gives better results than if they are used. This behavior may be due to

the high number of inequalities of this family (O(|C|2|T |)). As can be seen, the best

results are those of column I1+I2, which corresponds to the base formulation rein-

forced with (4.30) and (4.31). Therefore, all subsequent tests used the corresponding

strengthened FPVRP formulation.

The results obtained with the strengthened FPVRP formulation for the full set

of benchmark instances are summarized in Table 5.3. Again, rows correspond to

groups of instances with similar characteristics. The first five columns describe the

characteristics of the instances: r (for instances in S3), |C|, |K|, Q, and Dt (the total

demand that must be distributed at each time period). When not all the instances in

the group have the same parameters, minimum and maximum values are displayed.

In the following columns, Inst. gives the number of instances in each group, and

O/F gives the number of instances of the group that terminated with a solution with

proven optimality (O) and with only a feasible solution (F). The average percentage

optimality gaps at termination are given in column %Gap. Finally, the last two

columns refer to the computing times: avrg. for the average times and range for the

minimum and maximum of such values.
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Set r |C| |K| Q Dt Inst. O/F %Gap
Time

avrg. range

S1 5 2 - 3 79 - 175 193 - 304 10 10/0 0.00 1.40 0 - 7

10 2 - 3 272 - 480 458 - 640 10 10/0 0.01 202.90 7 - 942

15 2 - 3 340 - 619 681 - 845 10 9/1 0.34 3086.80 101 - 14400

20 2 - 3 512 - 867 999- 1156 10 6/4 2.32 7214.50 147 - 14400

S2 7 3 496 - 871 699 4 4/0 0.00 0.25 0 - 1

9 3 1037 - 1208 1206 4 4/0 0.00 27.25 9 - 57

11 3 546 - 1521 851 8 7/1 0.26 1965.50 22 - 14400

15 3 757 - 1240 1360 8 5/3 0.24 6313.88 17 - 14400

49 4 1111 4443 1 0/1 49.76 14400 14400

S3 0.15 10 4 - 8 200 664 - 1401 5 0/5 2.49 14400 14400

15 6 - 10 250 1495 - 2484 5 0/5 3.55 14400 14400

20 10 - 12 300 2813 - 3408 5 0/5 5.65 14400 14400

0.30 10 5 - 8 200 820 - 1436 5 0/5 1.51 14400 14400

15 6 - 9 250 1488 - 2225 5 0/5 1.89 14400 14400

20 10 - 13 300 2824 - 3691 5 0/5 2.15 14400 14400

0.50 20 7 - 14 300 2059 - 4076 5 0/5 2.49 14400 14400

Table 5.3: Summary of results of the FPVRP for the complete set of instances.

The obtained results highlight the difficulty of the FPVRP. This will become

more evident when the results of the FPVRP are compared with the results of the

FPVRP-IC and the PVRP. Still, it was possible to optimally solve 35 out of the

40 S1 instances and 20 out of the 24 S2 instances. For the set S1, the percentage

optimality gap at termination was always below 5%, except for one 20 customer

instance (abs1n20 2). Optimality gaps of unsolved S2 instances were always below

1%, except for a 11 customer instance (Instn12t5k3 1), with a 2.11% gap, and the

largest 49 customer instance for which the relative percentage deviation between

the upper and lower bounds at termination was of nearly 25%. The results of the

individual instances in S1 and S2 (see Tables 5.4, 5.5, and 5.6 below) show that, when

all other parameters are similar, a clear indicator of the difficulty of an instance is

the fleet size.

As can be seen, the new instances of set S3 are considerably harder to solve than

those of sets S1 and S2 of similar sizes. This is possibly due to two factors. The first

one is the fleet size which is much larger in S3 than in S1 and S2. The second one
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is the proximity of the clustered customers (particularly for the small radius 0.15),

which makes it particularly difficult to discriminate among solutions that permute

the order in which neighboring customers are visited.

5.3.3 Comparison of the FPVRP with other VRPs with periodic

demand

The following series of experiments was oriented to analyze the potential advantage

of the FPVRP relative to the FPVRP-IC and the PVRP. Since all three models focus

on the overall routing costs throughout the time horizon, potential advantages can

be quantified in terms of the percentage relative reduction in the objective function

value of the compared models. In particular, this value will be computed as follows:

%Imp = max

{
0,
ZMod − ZFPVRP

ZMod

}
× 100,

where ZFPVRP and ZMod are the best-known values for the FPVRP and the compared

model, respectively.

Comparison between the FPVRP and the FPVRP-IC

For the comparison between the FPVRP and the FPVRP-IC, the set of benchmark

instances S1 was used. Each instance was run with both the strengthened FPVRP

formulation and the FPVRP-IC formulation with a time limit of 14400 seconds.

The results are shown in Table 5.4 where the first five columns show the name of

the instances and their characteristics. The next two blocks of four columns each

correspond to the FPVRP and to the FPVRP-IC results, respectively. Column

Status, indicates whether the instance was solved to proven optimality (O), or a

feasible solution was found but its optimality was not proven (F); BestSol gives

the value of the best solution obtained in the run, BestLB is the lower bound at

termination, and Time is the computing time consumed (in seconds). The last

column of the table, %Imp, gives the percentage relative improvement obtained

with the FPVRP with respect to the FPVRP-IC.
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FPVRP FPVRP-IC
%Imp

Instance |C| |K| Q Dt Status BestSol BestLB Time Status BestSol BestLB Time

abs1n5 1 5 2 144 193 O 1301.85 1301.85 0 O 1301.85 1301.85 0 0.00

abs1n5 2 3 96 193 O 1335.88 1335.86 0 O 1335.88 1335.88 0 0.00

abs2n5 1 2 118 158 O 1088.72 1088.72 0 O 1088.72 1088.72 0 0.00

abs2n5 2 3 79 158 O 1494.37 1494.37 2 O 1494.37 1494.23 4 0.00

abs3n5 1 2 228 304 O 2109.51 2109.51 1 O 2302.82 2302.82 2 8.39

abs3n5 2 3 152 304 O 2864.95 2864.87 1 O 2864.95 2864.95 0 0.00

abs4n5 1 2 134 179 O 1504.27 1504.27 7 O 1650.73 1650.59 0 8.87

abs4n5 2 3 89 179 O 2224.13 2223.94 3 O 2224.13 2224.13 1 0.00

abs5n5 1 2 175 234 O 1091.97 1091.97 0 O 1091.97 1091.97 0 0.00

abs5n5 2 3 117 234 O 1386.18 1386.18 0 O 1386.18 1386.18 4 0.00

abs1n10 1 10 2 476 635 O 1936.15 1936.01 96 O 1960.99 1960.82 18 1.27

abs1n10 2 3 317 635 O 2369.40 2369.16 737 O 2429.55 2429.55 31 2.48

abs2n10 1 2 408 545 O 2491.71 2491.52 7 O 2554.79 2554.79 14 2.47

abs2n10 2 3 272 545 O 3194.02 3193.71 185 O 3214.05 3213.88 19 0.62

abs3n10 1 2 343 458 O 1980.71 1980.71 17 O 1980.71 1980.71 6 0.00

abs3n10 2 3 229 458 O 2372.91 2372.73 13 O 2410.50 2410.50 39 1.56

abs4n10 1 2 411 548 O 2115.97 2115.78 9 O 2240.93 2240.73 35 5.58

abs4n10 2 3 274 548 O 2756.47 2756.20 942 O 2943.14 2942.87 279 6.34

abs5n10 1 2 480 640 O 1746.02 1746.02 11 O 1848.20 1848.20 14 5.53

abs5n10 2 3 320 640 O 2014.42 2014.42 12 O 2151.45 2151.45 19 6.37

abs1n15 1 15 2 619 826 O 1915.91 1915.77 175 O 1915.91 1915.89 21 0.00

abs1n15 2 3 413 826 O 2349.28 2349.05 5437 O 2402.36 2402.14 295 2.21

abs2n15 1 2 592 790 O 2161.09 2160.89 898 O 2185.68 2185.46 194 1.13

abs2n15 2 3 395 790 O 2388.97 2388.73 719 O 2388.97 2388.97 39 0.00

abs3n15 1 2 633 845 O 2373.10 2372.90 101 O 2373.10 2373.10 11 0.00

abs3n15 2 3 422 845 O 2646.11 2645.86 116 O 2646.11 2646.11 20 0.00

abs4n15 1 2 538 718 O 2064.15 2063.95 455 O 2199.78 2199.57 188 6.17

abs4n15 2 3 359 718 O 2403.11 2402.87 7297 O 2572.55 2572.30 705 6.59

abs5n15 1 2 510 681 O 2192.45 2192.23 1271 O 2309.75 2309.53 88 5.08

abs5n15 2 3 340 681 F 2678.85 2634.11 14399 O 2959.31 2959.02 5829 9.48

abs1n20 1 20 2 799 1066 O 2345.27 2345.04 6768 O 2410.91 2410.70 6343 2.72

abs1n20 2 3 533 1066 F 3004.62 2741.40 14399 F 3103.40 2867.75 14399 3.18

abs2n20 1 2 782 1043 O 2148.82 2148.63 156 O 2148.82 2148.82 18 0.00

abs2n20 2 3 521 1043 O 2365.64 2365.40 4511 O 2393.13 2392.90 658 1.15

abs3n20 1 2 768 1024 O 2283.53 2283.31 615 O 2283.53 2283.53 23 0.00

abs3n20 2 3 512 1024 O 2529.42 2529.19 147 O 2529.42 2529.28 16 0.00

abs4n20 1 2 749 999 F 2888.29 2858.71 14399 O 3136.22 3135.91 2782 7.91

abs4n20 2 2 499 999 F 3408.32 3287.19 14399 F 3664.52 3602.53 14399 6.99

abs5n20 1 3 867 1156 O 2854.24 2853.96 2352 O 2859.60 2859.35 379 0.19

abs5n20 2 3 578 1156 F 3562.11 3403.85 14399 F 3567.47 3507.53 14399 0.15

Average Improvement 2.56

Table 5.4: Comparison between FPVRP and FPVRP-IC with S1 instances.
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The results of Table 5.4 show that, except for the small instances with only five

customers, in general, the computing times required by the FPVRP are substantially

greater than those of the FPVRP-IC. This becomes more evident as the size of the

instances increases and is reflected by the fact that five instances were not optimally

solved for the FPVRP within the maximum computing time, whereas this number

reduces to three for the FPVRP-IC. The entries in column %Imp show that there are

instances where both models have the same optimal value, although in most cases

the FPVRP produces an improvement (up to 9.48%) with respect to the FPVRP-

IC, which increases with the size of the instances. It is worth noting that, even

for the two instances that were not optimally solved with the FPVRP but were

optimally solved with the FPVRP-IC, the best FPVRP solution at termination was

considerably better than the optimal FPVRP-IC solution. These results show that,

if possible, it is worthwhile to increase flexibility and not consider inventory levels,

as done in the FPVRP, as this may lead to remarkable savings.

Comparison between the FPVRP and the PVRP

For the comparison between the FPVRP and the PVRP, instances of both S2 and S3

were used. Each instance in these two sets was run with the strengthened FPVRP

formulation (4.16)-(4.29) and with the PVRP formulation (4.50)-(4.59). Again, the

time limit for each run was 14400 seconds. The results for the instances of set S2

are presented in Table 5.5, where instances with the same number of customers are

ordered by decreasing capacity of the vehicles. The columns labeled as %Gap show

the relative percentage optimality gap at termination of each optimization.

Most of the instances with |C| = 7, |C| = 9 and |C| = 11 were solved to opti-

mality with both the FPVRP and the PVRP formulations. Once more, it can be

observed that, in terms of the computing times, the FPVRP formulation is more

demanding than that for the PVRP. This could be expected as the FPVRP incor-

porates additional decisions to the ones of the PVRP. While the computing times

to optimally solve the PVRP instances remain negligible, they become significant

for the FPVRP as the size of the instances increases. In particular, for five of the

instances the optimality of the best solution found could not be proven within the
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allowed computing time. Concerning the improvement of the FPVRP with respect

to PVRP, it is noticed that no improvement can be perceived related to the flex-

ibility in the delivered quantities since the total vehicles capacities are enough to

cover the demand of all customers in the same day. Nevertheless, the FPVRP still

shows slight improvements related to the non-dependency of schedules. Moreover,

although the FPVRP produced no improvement in the large 49 customers instance,

it was able to find a feasible solution within the time limit. On the contrary, the

PVRP produced no solution for that instance.

FPVRP PVRP
%Imp

Instance |C| |K| Dt Q Status BestSol BestLB %Gap Time Status %Gap Time

Instn8t5k3 1 7 3 699 871 O 5.82 5.82 0 0 O 0 0 0.00

Instn8t5k3 3 765 O 5.82 5.82 0 1 O 0 0 0.00

Instn8t5k3 2 705 O 5.82 5.82 0 0 O 0 0 0.00

Instn8t5k3 4 496 O 6.30 6.30 0 0 O 0 0 0.00

Instn10t5k3 3 9 3 1206 1208 O 6.76 6.76 0 9 O 0 6 0.05

Instn10t5k3 1 1058 O 6.86 6.86 0.01 17 O 0.01 7 0.57

Instn10t5k3 2 1045 O 6.90 6.90 0.01 26 O 0 6 0.00

Instn10t5k3 4 1037 O 6.90 6.90 0.01 57 O 0 7 0.00

Instn12t5k3 6 11 3 851 1521 O 4.47 4.47 0.01 22 O 0 6 0.00

Instn12t5k3 5 1491 O 4.47 4.47 0.01 31 O 0 7 0.00

Instn12t5k3 7 1399 O 4.47 4.47 0.01 37 O 0 9 0.00

Instn12t5k3 8 1146 O 4.47 4.47 0.01 26 O 0 9 0.00

Instn12t5k3 4 925 O 4.47 4.47 0.01 44 O 0 8 0.00

Instn12t5k3 2 802 O 4.50 4.50 0.01 102 O 0.01 30 0.67

Instn12t5k3 3 748 O 4.54 4.54 0.01 1062 O 0.01 29 0.47

Instn12t5k3 1 546 F 4.83 4.73 2.01 14400 O 0.01 1404 0.59

Instn16t5k3 3 15 3 1360 1240 O 5.62 5.62 0.01 52 O 0 22 0.00

Instn16t5k3 4 1232 O 5.62 5.62 0 17 O 0 26 0.00

Instn16t5k3 1 1056 O 5.62 5.62 0 31 O 0 33 0.00

Instn16t5k3 2 1030 O 5.63 5.63 0.01 2100 O 0.01 1743 0.40

Instn16t5k3 8 1027 O 5.63 5.63 0.01 5113 O 0.01 1356 0.40

Instn16t5k3 7 851 F 5.74 5.70 0.73 14400 O 0.01 8054 0.38

Instn16t5k3 5 802 F 5.76 5.72 0.76 14400 O 0 37 0.07

Instn16t5k3 6 757 F 5.78 5.75 0.45 14399 O 0 26 0.00

Instn50t5k4 49 4 4443 1111 F 18.69 12.48 33.25 14400 I — — 0.00

Average Improvement 0.14

Table 5.5: Comparison between FPVRP and PVRP formulations with S2 instances.
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On the other hand, Table 5.6 shows the results of the comparison between the

FPVRP and the PVRP with the S3 instances. For the PVRP instances, computing

times increased significantly in some of them. The exception was instance n10k5t5 1,

for which no feasible PVRP solution could be found in the 14400 seconds allowed.

The strengthened FPVRP formulation was not able to prove the optimality of the

best solution found for any of the instances in the set, although it was always able

to find a feasible solution. In general, the percentage optimality gaps at termination

are small, with higher values (up to 5.51%) for the instances with the smallest radius

r = 0.15. Despite not knowing whether or not the best-known FPVRP solutions

are optimal, in all cases they produce substantial improvements in the routing costs

with respect to the optimal PVRP solutions. In these instances the benefit of using

FPVRP is more noticeable for instances of S2 because of their structure. In fact, the

improvement is significant since it is allowed to partition customers demands into

several periods. The range of such improvements is 3.03%- 12.27%, with an average

improvement of 7.43% in comparison to the PVRP.
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FPVRP PVRP
%Imp

Instance r |C| |K| Q Dt Status BestSol BestLB % Gap Time Status % Gap Time

n10k5t5 1 0.15 10 5 200 938 F 20.78 20.30 2.36 14400 I — 14399 —

n10k4t5 2 4 664 F 12.44 12.12 2.64 14400 O 0.01 145 4.37

n10k5t5 3 5 874 F 13.23 12.87 2.80 14400 O 0 11 4.10

n10k4t5 4 4 738 F 13.53 13.05 3.68 14400 O 0.01 35 10.81

n10k8t5 5 8 1401 F 25.91 25.58 1.29 14400 O 0 1 6.60

n15k10t5 1 15 10 250 2317 F 34.26 33.39 2.61 14403 O 0.01 2445 5.55

n15k6t5 2 6 1495 F 17.42 16.51 5.51 14400 F 1.69 14399 12.27

n15k10t5 3 10 2484 F 25.25 24.45 3.27 14400 O 0.01 1213 10.12

n15k8t5 4 8 1767 F 32.11 31.25 2.75 14400 O 0.01 4587 5.81

n15k7t5 5 7 1606 F 23.89 22.84 4.60 14400 F 1.54 14399 7.28

n20k10t5 1 20 10 300 2813 F 24.58 23.58 4.24 14402 F 2.33 14399 5.25

n20k12t5 2 12 3408 F 36.10 35.45 1.83 14400 F 0.48 14399 7.71

n20k11t5 3 11 3138 F 23.70 22.79 3.99 14404 F 2.47 14399 11.03

n20k10t5 4 10 2957 F 35.35 34.53 2.37 14401 F 4.81 14399 10.34

n20k10t5 5 10 2874 F 29.45 28.89 1.94 14399 F 4.31 14399 6.36

n10k6t5 1 0.3 10 6 200 1028 F 19.04 18.97 0.37 14400 O 0.01 79 5.58

n10k6t5 2 6 1176 F 13.89 13.59 2.21 14399 O 0.01 122 11.05

n10k5t5 3 5 922 F 14.50 14.16 2.40 14400 O 0.01 269 7.03

n10k5t5 4 5 820 F 14.38 14.04 2.42 14400 O 0 19 4.39

n10k8t5 5 8 1436 F 19.40 19.34 0.31 14400 O 0.01 8 10.08

n15k9t5 1 15 9 250 2116 F 27.16 26.64 1.95 14400 O 0.01 105 3.03

n15k9t5 2 9 2225 F 29.72 29.19 1.82 14401 O 0.01 161 9.60

n15k7t5 3 7 1692 F 27.84 27.38 1.68 14400 F 1.68 14399 4.57

n15k7t5 4 7 1530 F 17.43 17.06 2.17 14401 O 0.01 8992 4.58

n15k6t5 5 6 1488 F 20.59 20.18 2.03 14400 F 0.88 14399 7.70

n20k10t5 1 20 10 300 2824 F 29.57 28.97 2.07 14400 F 3.44 14399 9.41

n20k12t5 2 12 3537 F 31.55 30.78 2.50 14400 F 0.58 14399 5.94

n20k10t5 3 10 2849 F 26.07 25.18 3.53 14400 F 4.27 14399 8.89

n20k13t5 4 13 3691 F 42.61 41.62 2.38 14407 F 1.47 14399 8.07

n20k12t5 5 12 3308 F 34.05 33.76 0.86 14400 F 2.30 14403 8.41

n20k14t5 1 0.5 20 14 300 4076 F 32.30 31.57 2.31 14400 F 0.69 14400 6.32

n20k10t5 2 10 2786 F 29.33 28.77 1.95 14400 F 5.46 14399 9.55

n20k7t5 3 7 2059 F 23.25 22.68 2.51 14400 F 1.61 14399 5.12

n20k10t5 4 10 2825 F 24.80 24.02 3.25 14400 F 4.09 14399 11.45

n20k11t5 5 11 3043 F 36.45 35.50 2.68 14400 F 2.38 14399 4.22

Average Improvement 7.43

Table 5.6: Comparison between FPVRP and PVRP formulations with S3 instances.
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5.3.4 Analysis of the FPVRP benefits

This section focuses on the analysis of the benefits of the FPVRP with respect to

the FPVRP-IC and to the PVRP that emerged in the computational experiments

described in the previous section. To this aim, the improvements of the FPVRP

objective function relative to the compared models are summarized for different

instance parameters. First we focus on the comparison between the FPVRP and the

FPVRP-IC on the instances of set S1. Results are shown in Table 5.7 where instances

are clustered on the basis of the number of customers, first, and fleet size, second.

For each cluster of instances, the average and maximum improvements achieved by

the FPVRP are reported.

|C| Avrg. Improvement Max. Improvement

5 1.73% 8.87%

10 3.22% 6.37%

15 3.07% 9.48%

20 2.23% 7.91%

|K| Avrg. Improvement Max. Improvement

2 3.11% 8.87%

3 2.02% 9.48%

Table 5.7: Improvement of FPVRP versus FPVRP-IC on S1 instances.

Table 5.7 shows that the improvements increase with the number of customers

except for the case with |C| = 20, while they slightly decrease when the number of

vehicles increases. The maximum improvement is 9.48%.

Now, the benefits of the FPVRP with respect to the PVRP are analyzed. Table

5.8 summarizes the results for the instances of set S2. Instances are clustered by

number of customers only as all instances have the same number of vehicles. Instance

Instn50t5k4 is not considered in this analysis.
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|C| Avrg. Improvement Max. Improvement

7 0.00% 0.00%

9 0.16% 0.57%

11 0.43% 0.67%

15 0.21% 0.40%

Table 5.8: Improvement of FPVRP versus PVRP on S2 instances.

The results show that the FPVRP benefits are quite fluctuating with respect to

the number of customers. Nevertheless, the FPVRP still shows slight improvements

with respect to the PVRP.

Finally, Table 5.9 focuses on the comparison between the FPVRP and the PVRP

on the instances of Set S3. Instances are clustered by the number of customers and

radius. The number of vehicles for these instances is not considered as it varies with

the number of customers.

|C| Avrg. Improvement Max. Improvement

10 7.11% 11.05%

15 7.05% 12.27%

20 7.87% 11.45%

r Avrg. Improvement Max. Improvement

0.15 7.69% 12.27%

0.30 7.22% 11.05%

0.50 7.33% 11.45%

Table 5.9: Improvement of FPVRP versus PVRP on S3 instances.

For the instances of set S2 it can be noticed that the benefits are quite fluctuating

with respect to the number of customers and the radius. The maximum savings are

12.27%.

When comparing the benefits of the FPVRP versus the FPVRP–IC and PVRP,

respectively, it can be noticed that much larger improvements are achieved by the

FPVRP with respect to the PVRP than with respect to FPVRP–IC. This is clearly

due to the way the instances are constructed and also to the fact that the PVRP
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suffers from the rigidity derived from fixed schedules and fixed delivery quantities.

Part of this rigidity is overcome with the FPVRP–IC. However, the improvements of

the FPVRP versus the FPVRP–IC show that inventory constraints may remarkably

affect solution costs.

Finally, additional computational experiments were run in order to investigate the

impact of customer demands on the benefits produced by the PVRP. The results

confirm that the highest savings can be attained when the capacity is tight and

demands are rather homogeneous, whereas the smallest savings are obtained with

larger capacities and high variations in the demands. A similar observation was

made in Archetti et al. (2008b) concerning the benefits of the SDVRP with respect

to the VRP.



Chapter 6

A two-phase solution algorithm

As it was seen in the previous chapter, the exact solution algorithms based on the

mathematical formulations can be highly demanding in terms of the computing time

they may require, particularly as the size of the instances increases. In this chapter,

an approximate solution method that can be used to solve medium to large size

FPVRP instances is proposed.

6.1 Description of the algorithm

We developed a two–phase solution algorithm, classified as a matheuristic, that

operates according to an iterative scheme. At each iteration a MILP is solved to

determine a plan for the periods to visit the customers and their corresponding quan-

tities. Then suitable routes consistent with the distribution plan are designed with

a TS heuristic. Figure 6.1 shows the main components of the proposed approach.

Figure 6.1: A two-phase heuristic scheme to solve the FPVRP.

56
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These two main phases are described below:

1. Phase 1 – Distribution Plan (DP) Generation: Builds an initial feasible solution

by solving independent subproblems limited to only a subset of the FPVRP

decisions.

2. Phase 2 – Tabu Search: Improving phase, which applies a TS algorithm taking

as input the solution produced by Phase 1.

Algorithm 1 shows the general framework of the proposed approach.

Algorithm 1 Two-phase matheuristic

1: Ĉti = 1 i ∈ C, t ∈ T
2: λt = 1 t ∈ T
3: s∗ ← ∅
4: BestSolCost = BigNumber

5: while a stopping condition is not true do
6: s← DP-Generation(Ĉ, λ)
7: s̄← TS(s)
8: if f(s̄) < BestSolCost then
9: BestSolCost = f(s̄)

10: s∗ ← s̄
11: end if
12: Update Ĉ
13: end while
14: return (s∗)

The two main phases (lines 6 and 7) are applied iteratively until a stopping

criterion is met. At each iteration, in the first phase, an initial solution s is obtained

by applying the DP-Generation. Then, in the second phase, a TS procedure is

applied to s to obtain a new solution s̄. If s̄ improves the solution cost of s∗, then

s∗ is updated. Values of Ĉ and λ, where

• Ĉt
i is the approximated routing cost for visiting customer i in period t, and

• λt is a parameter greater than or equal to 1 used to penalize infeasibility at

time t,

are set as follows. At the beginning of the matheuristic they are set to 1. At the

following iterations (line 12), if the solution cost f(s̄) is different from the solution

cost obtained in the previous iteration, then the removal savings are computed, i.e.,

if i is visited in period t then Ĉt
i = cρs − (cρi + ciς), where ρ and ς denote the
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predecessor and successor of customer i in its route in period t. If i is not visited

at t, Ĉt
i is equal to the cheapest insertion cost of i at time t. On the other hand, if

f(s̄) remains the same, the values of Ĉ are generated randomly between [-1,-100].

The rationale for this is to provide different initial solutions to the TS performed

in Phase 2. The value of coefficients λ remains the same as the ones computed in

the last call to the DP-Generation phase. At the end of the matheuristic, the best

solution found is reported as the final solution. Below, each phase is described in

detail.

6.1.1 Phase 1: DP-Generation

The first phase aims at building an initial feasible solution to the problem. Note

that three main decisions have to be taken when dealing with the FPVRP:

1. Visiting periods: The periods at which each customer is visited.

2. Delivered quantities: The quantity to deliver to each customer at each visit.

3. Routing: Vehicle routes at each time period, i.e., determining the assignment

of customers to vehicles and, for each vehicle, the sequence in which customers

must be visited.

The DP-Generation phase works in two steps. In the first step, it builds a

distribution plan handling the first two decisions, i.e., it determines the visiting

periods for each customers and the delivered quantities. The DP is then taken as

input to the second step which builds vehicle routes.

In particular, the first step consists in solving a MILP called, from now on,

DP-MILP, which determines the visiting periods (calendar) and the quantities to be

delivered to all customers.

The formulation of the DP-MILP is as follows:

min
∑
t∈T

∑
i∈C

Ĉt
iz
t
i + ztQλt (6.1)

s.t. qti ≤ wiz
t
i i ∈ C, t ∈ T (6.2)∑

i∈C

qti ≤
⌊Q
λt

⌋
zt t ∈ T (6.3)
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t∈T

qti = Wi i ∈ C (6.4)

zt ≤ m t ∈ T (6.5)

zti ≤ 1 i ∈ C, t ∈ T (6.6)

qti ≥ 0 i ∈ C, t ∈ T (6.7)

zti ∈ {0, 1} i ∈ C, t ∈ T (6.8)

zt ∈ Z t ∈ T. (6.9)

Variables z and q have the same meaning as described in Chapter 4.2. The

objective function (6.1) aims at minimizing the sum of the approximated routing

costs and the number of vehicles used. Constraints (6.2) establish the maximum

deliverable quantity to each customer while (6.3) are vehicle capacity constraints.

In particular, constraints (6.3) are aggregated vehicle capacity constraints that fix

the maximum quantity that can be delivered in each time period. This maximum

amount corresponds to
⌊
Q
λt

⌋
multiplied by the number of vehicles used, with λt ≥

1. Note that a solution satisfying constraints (6.3) may not produce a feasible

FPVRP solution because it may not exist a feasible way to pack quantities qti into zt

vehicles. The total demand of each customer is satisfied through constraints (6.4).

Constraints (6.5) fix the maximum number of vehicles used to m while split deliveries

are forbidden through (6.6) since at most one vehicle can serve each customer demand

at each time period. Constraints (6.7)–(6.9) define the variable domain.

The solution of the DP-MILP determines, for each time period, the subset of visited

customers and the amount delivered to each of them. This information provides the

distribution plan. The DP is then taken as input to the second step which aims at

building vehicle routes. In particular, the second step consists in solving a CVRP

for each time period on the basis of the information provided by the DP. Each

CVRP is solved by applying the Clarke and Wright (1964) heuristic implemented

with the VRPH package of the Coin OR library (Groër et al., 2010). Given that this

algorithm works for the case where there is no limit for the fleet size, it may obtain

a solution where the number of vehicles used in a given period is higher than m. In

this case, another iteration is made by updating the values of Ĉ and λ and solving
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the DP-MILP again. Finally, if after a certain number of iterations the solution is still

infeasible, a procedure to recover feasibility in which customers of the surplus routes

are reallocated in different periods, is applied. The scheme of the DP-Generation

phase is sketched in Algorithm 2 where

• DP-MILP(Ĉ, λ) returns the optimal solution of the DP-MILP when the values of

the approximated routing costs and the infeasibility penalties are specified by

Ĉ and λ, respectively.

• Routing(DP ) returns the solution of the CVRP for each time period on the

basis of the distribution plan DP obtained through the VRPH package (Groër

et al., 2010).

• RecoverFeasibility(s) transforms an infeasible solution s into a feasible one.

This procedure works as follows.

– Select one of the periods in which the number of routes is more than m.

– Select the route with fewer customers and sequentially remove customers

by redistributing in other periods the quantity they received.

– If all customers of the selected route are reallocated, remove the empty

route and follow the same procedure until the number of vehicles used is

at most m for all periods.

• LK(s) returns an improved solution by applying the Lin-Kernighan algorithm

(Lin and Kernighan, 1973, LK) to each route of the solution s. The implemen-

tation code for this routine is provided in http://www.akira.ruc.dk/~keld/

research/LKH/ (Helsgaun, 2000).

• s is the solution obtained at the end of the second step.

As shown in Algorithm 2, if an infeasible solution is obtained, the values of Ĉ

and λ are updated (line 7) as follows:

a) Ĉ: if customer i is visited at time t, then Ĉt
i is equal to the removal savings

Ĉt
i = (cρi + ciς) − cρς , where ρ and ς denote the predecessor and successor of

customer i in its route at period t. Instead, if customer i is not visited at time

t, then Ĉt
i is equal to the cheapest insertion cost of i at time t.

http://www.akira.ruc.dk/~keld/research/LKH/
http://www.akira.ruc.dk/~keld/research/LKH/
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Algorithm 2 DP-Generation(Ĉ, λ)

1: while a stopping condition is not true do
2: DP ←DP-MILP(Ĉ, λ)
3: s← Routing(DP )
4: if s is a feasible FPVRP solution then
5: Stop and Go to line 13
6: else
7: Update the values of Ĉ and λ
8: end if
9: end while

10: if s is not feasible then
11: RecoverFeasibility(s)
12: end if
13: Return LK(s)

b) λ: if at t the number of vehicles is not greater than m, then the value of

λt remains unchanged, otherwise it is increased by ε, i.e., λt = λt + ε. If

the DP-MILP becomes infeasible (because of a very large value of λt), then,

λt = max {1, λt − ε}.

Note that, once a feasible solution s is obtained, the LK algorithm is applied to

each route in s in an attempt to reduce the routing cost (line 13).

6.1.2 Phase 2: Tabu Search heuristic

The aim of the Phase 2 is to improve the solution obtained at the end of the first

phase. The idea is to define different neighborhoods and embed them in a TS scheme

where each selected move is recorded and considered tabu for a certain number of it-

erations (tenure) to avoid cycling. Each neighborhood is explored exhaustively (best

improvement), unless a selected move improves the incumbent (aspiration criterion).

In that case the exploration stops and the improved solution is chosen as the next

solution. Otherwise, the best non–tabu move found among all neighborhoods will

be chosen. The selected move is considered tabu for a certain number of iterations.

Let N = {N1, ..., Nl} be the set of neighborhoods with |N | = l. The proposed

TS scheme is shown in Algorithm 3.
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Algorithm 3 TS(s)

Require: Initial Solution s

Ensure: Best solution found s∗

1: BestSolCost = f(s), Iter = 1

2: s← SplitOperator(s)

3: while a stopping condition is not true do

4: BestLocalCost = BigNumber

5: Tenure = computeTenure()

6: l̃ = 1

7: repeat

8: s′ ← Explore Neighborhood Nl̃(s)

9: if f(s′) < BestLocalCost then

10: BestLocalCost=f(s′)

11: s̃← s′

12: if f(s̃) < BestSolCost then

13: Go to line 18

14: end if

15: end if

16: l̃ = l̃ + 1

17: until l̃ ≤ lmax

18: Update tabu list TL(s̃) = Iter + Tenure

19: s̃← LK(s̃), Iter = Iter + 1

20: if f(s̃) < BestSolCost then

21: BestSolCost = f(s̃)

22: s∗ ← s̃

23: end if

24: end while

25: Return s∗

The TS begins with an initial feasible solution obtained in Phase 1. If possible,

the routes of this solution are split using the SplitOperator in order to increase the

possibility of applying moves which may improve the solution during the search. The
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resulting solution is taken as the initial solution to be applied for all neighborhoods

in N . The neighborhoods are explored independently and the best solution among

all of them is selected. The corresponding move is considered tabu for a certain

number of iterations (line 18). Then, the LK algorithm is applied to the best solution

found (line 19). This procedure stops when a stopping criterion is reached (line 3).

The three main ingredients of the proposed TS are: the SplitOperator, the set of

neighborhoods N and the tabu lists. They are explained below.

A) The SplitOperator: This operator splits one route into two without increasing

the solution cost. This situation happens when a route travels through an edge (i, j)

whose cost cij is equal to ci0 + c0j. In this case, the route is split in two smaller

routes, traversing the edge (i, 0) (first route) and the edge (0, j) (second route).

This is done only if the total number of routes used is lower than mH. The idea

behind this operator is to create routes with a larger residual capacity to allow a

wide range of modifications when the neighborhoods described in the following are

applied. When a route at time t is split, two situations may happen:

• The number of routes used at time period t is lower than m. In this

case, the two new routes are both performed at time period t and no further

change is made.

• The number of routes used at time period t is m. In this case, we

cannot assign both new routes to time period t. Thus, at least one route must

be performed in a different day. Let us define:

– r1 and r2: the two routes obtained from the splitting.

– Sr: subset of customers served in route r.

– S(t): subset of customers served at time period t.

– q̃r: residual capacity of route r.

– rti : route serving customer i at time period t.

Then, a route r can be moved from period t to period t′ 6= t if Sr ∩ S(t′) = ∅
or the following holds for each customer i ∈ Sr ∪ S(t′):

1. qti + qt
′
i ≤ wi and
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2. either qti ≤ ˜qrt′i
or qt

′
i ≤ q̃r.

Thus, if either r1 or r2 satisfies the above conditions the split is performed,

otherwise it is discarded.

B) Neighborhoods N : They are listed in the order they are applied according to

Algorithm 3.

1. Intra-period moves: The following moves are applied to each period indepen-

dently.

(a) 1-move (N1): Consider a customer visited in period t. Remove the cus-

tomer from the route that currently serves it and insert it in another route,

using the cheapest insertion rule. The best route (in terms of insertion cost)

that can feasibly accommodate the quantity delivered to the customer is

chosen.

(b) 1-swap (N2): Consider two customers i and j served in two different routes,

r and r′, in period t and swap the two customers. The swap is made as

follows. First, remove both customers from their current route and then

insert them in the new route through the cheapest insertion method, as

done in the 1-move.

2. Inter-period moves: These moves are applied to pairs of periods t and t′ in

order to change the visit plan of customers. Similarly to the intra-period

moves, there are two neighborhoods considered.

(a) 1-move (N3): Consider a customer visited in period t. Remove the cus-

tomer from the route that currently serves it and insert it in a route in

period t′, using the cheapest insertion rule as done in the 1-move intra-

period.

(b) 1-swap (N4): Consider customer i served in t and customer j served in

t′ and swap them. The swap is made as follows. First, remove both

customers from their current route. The insertion is made by applying the

cheapest insertion criterion to all routes performed in the period where the

customer has to be inserted choosing the best one.



Chapter 6. A two-phase solution algorithm 65

In any of the above mentioned neighborhoods, every time a customer is removed

from a route and inserted into another one, the same quantity delivered in the

original route is moved to the newly assigned route, if this is feasible. If this is not

feasible (either because the vehicle capacity or the customer capacity are exceeded),

then the excess quantity is assigned to the other customer visits if feasible, i.e., if

neither vehicle capacity nor customer capacity are exceeded and the move made in

the corresponding period is not tabu. The assignment is done in chronological order,

i.e., from the first to the last visit. If the excess quantity cannot be reassigned, then

the move is infeasible and, thus, discarded.

For each neighborhood, all feasible non-tabu moves are evaluated and the best one is

chosen, unless there is a move which improves the incumbent (aspiration criterion).

In that case, the evaluation stops (for all neighborhoods) and the solution obtained

with that move is chosen as the best one. That is, the algorithm exits from the loop

in lines 7–17 in Algorithm 3 and goes to line 19. If this is not the case, once all the

neighborhoods are explored, the best non-tabu solution is chosen and it becomes

tabu for a certain number of iterations as detailed in Algorithm 3.

C) Tabu lists: There are two different tabu lists, one for intra–period moves and

another one for inter–period moves:

• Intra–period list TL(i, r, t): If customer i is removed from route r in period t,

then it is tabu to reinsert i in r in period t for a certain number of iterations.

• Inter–period list TL(i, t): If customer i is removed from period t, then it is tabu

to reinsert i in period t for a certain number of iterations.

The number of iterations for which a move remains tabu is determined by the tabu

tenure.

6.2 Computational experience

In this chapter, we present and analyze the results obtained with the computational

experiments that were performed in order to test the behavior of the matheuristic
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with different sets of instances. The computational environment and the benchmark

instances used for the tests are first described in Section 6.2.1. Then, Section 6.2.2

describes the tests run in order to calibrate the parameters of the matheuristic.

Finally, Section 6.2.3 presents and analyzes the results of several tests that were run

to show the efficiency of the proposed solution approach.

6.2.1 Initial data

The matheuristic was implemented in C++ and for the DP-MILP the ILOG Concert

Technology API (CPLEX 12.5.0.0) was used. All tests were carried out on a HP

Intel(R)-Xeon(R) 2.4GHz Workstation with 32GB RAM (Win Server 2012, 64 bits).

The set of instances used for the tests of this chapter are S3, S4, and S5. Note that

for S3, all the instances have been slightly modified, in particular, they differ in the

number of available vehicles which is now computed as m = 1 +
∑
i∈C wifi
QH

(the same

as S4) while in Chapter 5.3 it was set to m =
∑
i∈C wi
Q

. The reason for this change

is that the number of vehicles used in the optimal solutions was much smaller than

the number of available vehicles. Table 6.1 shows the detailed information about

instances used in this chapter including the modifications made for S3.
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Set r Instance |N | |T | fi Q |K| ∑
i∈CWi

S3

0.15

n10k5t5 1

11 5 2,3,5 200

5 3760
n10k4t5 2 4 2640
n10k5t5 3 4 2869
n10k4t5 4 4 2363
n10k8t5 5 7 5107

n15k10t5 1

16 5 2,3,5 250

9 9015
n15k6t5 2 5 4684
n15k10t5 3 7 7202
n15k8t5 4 7 7175
n15k7t5 5 6 5526

n20k10t5 1

21 5 2,3,5 300

7 8842
n20k12t5 2 9 11334
n20k11t5 3 9 10957
n20k10t5 4 9 11102
n20k10t5 5 7 8976

0.3

n10k6t5 1

11 5 2,3,5 200

5 3562
n10k6t5 2 5 3922
n10k5t5 3 5 3114
n10k5t5 4 5 3038
n10k8t5 5 7 5139

n15k9t5 1

16 5 2,3,5 250

7 6877
n15k9t5 2 8 7642
n15k7t5 3 6 5973
n15k7t5 4 5 4621
n15k6t5 5 6 4947

n20k10t5 1

21 5 2,3,5 300

8 9551
n20k12t5 2 9 11675
n20k10t5 3 7 8047
n20k13t5 4 10 12723
n20k12t5 5 9 11996

0.5

n20k14t5 1

21 5 2,3,5 300

10 13225
n20k10t5 2 7 8862
n20k7t5 3 6 7490
n20k10t5 4 7 8373
n20k11t5 5 9 11437

S4 0.15

n50k10t5 1

51 5 2,3,5 500

10 22226
n50k8t5 2 8 15690
n50k9t5 3 9 19145
n50k9t5 4 9 19737
n50k11t5 5 11 23282

n100k17t5 1

101 5 2,3,5 500

17 38700
n100k18t5 2 18 40870
n100k20t5 3 20 46018
n100k21t5 4 21 48959
n100k18t5 5 18 40782

S5

p01 51 2 1 160 2 937
p14 21 4 1,2,4 20 2 120
p15 39 4 1,2,4 30 2 200
p16 57 4 1,2,4 40 2 280
p32 154 6 2,3,5 20 9 1134

Table 6.1: Instance information.



Chapter 6. A two-phase solution algorithm 68

6.2.2 Calibration of parameters

Several preliminary tests were run in order to establish the best setting for the

matheuristic. The following parameter values were used:

• Overall parameters:

– The overall solution algorithm is repeated for five global iterations, pro-

vided that it does not exceed a maximum computing time of 14400 seconds.

That is, the algorithm stops when one of the two conditions is verified.

• DP-Generation:

– The maximum number of DP-MILP solved in Algorithm 2 is set to 5.

– The maximum number of iterations of the initialization is set to 5.

– ε = 0.1.

• TS:

– The maximum number iterations without improvement is IterNImp =

15n.

– Tenure=10.

The maximum number of DP-MILP solved in Algorithm 2 indicates the maximum

number of times the loop in lines 1–9 of Algorithm 2 is repeated. The limit will not

be reached if the current DP-MILP produces a feasible solution. Parameter ε is used

when updating the value of λt as specified in Section 6.1.1. Concerning the TS,

the stopping criterion is reached when the maximum number of iterations without

improvement is equal to 15n or when the time limit is reached.

Test 1: Neighborhood performance

A first test was carried out to analyze the performance of each of the neighborhoods

used in the TS. Only a small subset of the benchmark instances was used. The re-

sults are summarized in Table 6.2. Columns in blocks (N1 - N4) show the frequency

of use (Freq), computed as the number of iterations when a move from that neighbor-

hood was chosen as the best one, and the computing time (Time) required by each

neighborhood in the overall computation. According to the results, N4 is the most
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resource-consuming neighborhood for the TS, with a small average frequency of use

of 77.43 but a high computation time requirement of 2143.21 seconds on average.

This is more than 8 times the computing time of using N3, more than 7 times of N2

and more than 64 times of N1.

N1 N2 N3 N4 Total

Instance |N | Freq Time Freq Time Freq Time Freq Time Freq Time

p01 51 665 25.42 279 431.12 4901 51.31 79 3888.8 5924 4396.64

p14 21 0 1.17 0 22.70 1714 10.79 21 291.25 1735 325.91

p15 39 0 12.29 0 198.70 3053 65.33 32 2731.50 3085 3007.81

p16 57 0 36.09 0 854.75 4575 193.47 26 10775.00 4601 11859.30

p32 154 212 88.11 95 1563.71 1451 2282.47 36 6952.50 1794 10886.79

n10k5t5 1 11 197 3.42 347 7.76 651 10.24 46 46.18 1241 67.60

n15k10t5 1 16 764 29.07 255 43.09 642 67.57 41 138.76 1702 278.50

n20k10t5 1 21 292 52.71 96 153.56 2269 162.98 47 1178.06 2704 1547.31

n10k6t5 1 11 182 3.73 50 4.55 780 7.21 37 51.44 1049 66.93

n15k9t5 1 16 422 16.11 352 39.82 913 53.61 116 281.14 1803 390.67

n20k10t5 1 21 61 54.00 17 120.97 1742 123.96 11 673.29 1831 972.21

n20k14t5 1 21 89 55.99 26 113.64 1540 164.27 425 1108.97 2080 1442.86

n20k10t5 2 21 264 28.58 141 117.68 1738 88.87 111 852.90 2254 1088.02

n20k7t5 3 21 417 60.41 19 177.30 2235 137.02 56 1035.09 2727 1409.82

Average 254.64 33.36 119.79 274.95 2014.57 244.22 77.43 2143.21 2466.43 2695.74

Total 3565 467.08 1677 3849.33 28204 3419.08 1084 30005.37 34530 37740

Table 6.2: Individual neighborhood performance.

Given the above results, another set of tests was run, excluding neighborhood N4.

The results, which are summarized in Table 6.3, allow to compare the performance

of the two-phase algorithm with and without the use of N4. Column labeled Best–

Known gives the value of the best-known solution for each instance. These values

were obtained with the FPVRP formulation of Archetti et al. (2017a), except for

instance p32, for which it was taken from Baldacci et al. (2011). The next two

columns give the best solution values (BestSol) and the best lower bounds (BestLB)

produced by the FPVRP formulation of Archetti et al. (2017a). Then, there are two

blocks of three columns each, one labeled N and another one N \N4, corresponding

to the results of TS with and without the use of the interperiod swap neighborhood

(N4). Each block gives the values of the best solution produced by the corresponding

version of TS, the computing times and the percentage gaps between the values of



Chapter 6. A two-phase solution algorithm 70

the best solutions obtained and the best-known values of column Best–Known. The

latter are computed as follows.

Gap =
ZHeur − ZBEST

ZHeur

× 100%, (6.10)

where ZBEST and ZHeur are the best–known solution value and the one produced by

the heuristic, respectively.

The results of Table 6.3 clearly indicate that removing N4 from the TS reduces

significantly the computing time (almost 44%) and the average solution quality is not

affected; on the contrary, it improves. Therefore, all subsequent tests were carried

out with TS without N4.

FPVRP N N \N4

Instance |N | Best–

Known

BestSol BestLB BestSol Time Gap BestSol Time Gap

p01 51 524.61 524.93 510.46 533 6389.90 1.57% 538.12 2699.76 2.51%

p14 21 954.81 954.81 954.71 954.80 525.41 0.00% 954.80 587.96 0.00%

p15 39 1862.63 1862.63 1825.04 1916.90 3797.25 2.83% 1890.70 1920.70 1.48%

p16 57 2875.24 2875.24 2814.29 2939.29 13705.90 2.18% 2981.45 3764.68 3.56%

p32 154 78072.88 — — 86371.20 14454 9.61% 84763.20 14451.70 7.89%

n10k5t5 1 11 20.79 20.79 20.27 21.90 98.85 5.10% 21.48 54.26 3.24%

n15k10t5 1 16 34.28 34.28 33.48 35.08 324.41 2.29% 35.05 168.31 2.21%

n20k10t5 1 21 24.58 24.58 23.57 25.62 1653.20 4.03% 25.58 471.83 3.89%

n10k6t5 1 11 19.04 19.04 18.99 19.63 92.18 2.99% 19.57 54.00 2.72%

n15k9t5 1 16 27.16 27.16 26.65 27.17 425.34 0.07% 27.53 142.75 1.37%

n20k10t5 1 21 29.59 29.59 29.06 31.77 1021.75 6.86% 31.05 391.41 4.71%

n20k14t5 1 21 32.30 32.30 31.61 33.05 1484.67 2.27% 32.98 423.16 2.05%

n20k10t5 2 21 29.37 29.37 28.78 30.46 1419.93 3.58% 30.47 615.46 3.61%

n20k7t5 3 21 23.25 23.25 22.65 24.09 1826.29 3.49% 24.14 705.16 3.68%

Average 3372.79 3.35% 1889.37 3.07%

Table 6.3: TS performance with/without N4.

Test 2: Tenure selection

Another preliminary test was run to analyze the impact of the Tenure value in the

performance of the TS. The following options of Tenure were considered:

• Tenure1 = 10.
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• Tenure2 = 5 + brandN(1, α ·
√
|C|R(s′))c, similar to the proposed by Archetti

et al. (2012).

• Tenure3 = bα · (|N |+ randN(1,
√
|C|R(s′)))c.

• Tenure4 = brandN(1, α · IterNImp)c.

In all cases α = 0.5. Table 6.4 shows that the best average results are obtained

using Tenure3 with 2.44% in 1984.87 seconds on average. Tenure4 is the second

best option with a percentage gap of 2.55% in 1740.23 seconds. Even though the

results of instance p32 are not considered (the atypical values), Tenure3 is still the

best option among all candidates. It is clear that Tenure1 and Tenure2 produced

worse results in terms of average percentage gaps. Moreover, unlike the remaining

tenure values considered, Tenure3 only needs the calibration of the value of α, and

does not depends on any constant apart from those related to the instance, which

reduces the complexity of its calibration process. Hence, the formula for the Tenure3

is the one considered for further tests.

FPVRP Tenure1 Tenure2 Tenure3 Tenure4

Instance |N | Best

Known

BestSol BestLB BestSol Time Gap BestSol Time Gap BestSol Time Gap BestSol Time Gap

p01 51 524.61 524.93 510.46 538.12 2699.76 2.51% 530.32 3835.95 1.08% 532.60 2528.45 1.50% 555.37 855.19 5.54%

p14 21 954.81 954.81 954.71 954.80 587.96 0.00% 956.69 711.65 0.20% 954.80 943.83 0.00% 958.58 264.81 0.39%

p15 39 1862.63 1862.63 1825.04 1890.70 1920.70 1.48% 1915.01 1624.55 2.74% 1888.82 2125.45 1.39% 1898.05 1990.75 1.87%

p16 57 2875.24 2875.24 2814.29 2981.45 3764.68 3.56% 2961.99 4075.00 2.93% 2875.24 3856.35 0.00% 2902.29 3796.90 0.93%

p32 154 78072.88 — — 84763.20 14451.70 7.89% 89303.70 14453.30 12.58% 88813.70 14439.80 12.09% 86712.20 14444.20 9.96%

n10k5t5 1 11 20.79 20.79 20.27 21.48 54.26 3.24% 21.48 53.44 3.24% 21.55 61.72 3.53% 21.15 60.48 1.70%

n15k10t5 1 16 34.28 34.28 33.48 35.05 168.31 2.21% 34.99 195.79 2.02% 34.83 191.03 1.58% 34.94 207.46 1.89%

n20k10t5 1 21 24.58 24.58 23.57 25.58 471.83 3.89% 24.86 508.36 1.13% 24.87 597.14 1.15% 24.94 536.79 1.43%

n10k6t5 1 11 19.04 19.04 18.99 19.57 54.00 2.72% 19.54 77.88 2.58% 19.58 57.48 2.76% 19.43 59.07 2.03%

n15k9t5 1 16 27.16 27.16 26.65 27.53 142.75 1.37% 27.24 192.75 0.32% 27.27 209.55 0.43% 27.18 162.94 0.07%

n20k10t5 1 21 29.59 29.59 29.06 31.05 391.41 4.71% 31.09 514.27 4.84% 30.26 719.13 2.23% 29.97 465.81 1.26%

n20k14t5 1 21 32.30 32.30 31.61 32.98 423.16 2.05% 32.98 634.8 2.05% 32.60 665.33 0.90% 32.93 448.35 1.90%

n20k10t5 2 21 29.37 29.37 28.78 30.47 615.46 3.61% 30.69 658.06 4.30% 30.44 763.94 3.52% 29.91 496.46 1.79%

n20k7t5 3 21 23.25 23.25 22.65 24.14 705.16 3.68% 24.61 1057.32 5.51% 24.00 628.99 3.11% 24.47 574.00 4.98%

Average 1889.37 3.07% 2042.37 3.25% 1984.87 2.44% 1740.23 2.55%

Average1 923.03 2.69% 1087.68 2.53% 1026.80 1.70% 763.00 1.98%

1Average values without considered the atypical results obtained for the p32 instance.

Table 6.4: Comparison among different Tenure options.

Test 3: calibration of α

Finally, an evaluation of different values of α was considered to calibrate Tenure3.

Five different values were compared, α ∈ {0.10, 0.30, 0.50, 0.70, 1.0}. The results

presented in Table 6.5 show that α = 0.7 outperforms the remaining options, with
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an average percentage gap of 1.92%. Thus, α = 0.7 was the value selected for the

following tests.

FPVRP α = 0.10 α = 0.30 α = 0.50 α = 0.70 α = 1.0

Instance |N | Best–

Known

BestSol BestLB BestSol Time Gap BestSol Time Gap BestSol Time Gap BestSol Time Gap BestSol Time Gap

p01 51 524.61 524.93 510.46 549.31 1963.55 4.50% 531.14 3810.42 1.23% 532.60 2528.45 1.50% 535.90 2964.23 2.11% 550.36 1454.59 4.68%

p14 21 954.81 954.81 954.71 958.58 269.11 0.39% 956.69 443.93 0.20% 954.80 943.83 0.00% 954.80 487.96 0.00% 954.80 532.91 0.00%

p15 39 1862.63 1862.63 1825.04 1915.01 1599.29 2.74% 1924.24 1668.07 3.20% 1888.82 2125.45 1.39% 1862.62 2101.34 0.00% 1862.62 2607.29 0.00%

p16 57 2875.24 2875.24 2814.29 2960.87 3040.32 2.89% 2902.29 3351.63 0.93% 2875.24 3856.35 0.00% 2875.24 3485.94 0.00% 2875.24 7210.40 0.00%

p32 154 78072.88 — — 86458.30 14450.40 9.70% 88181.50 14436.30 11.46% 88813.70 14439.80 12.09% 86389.80 14452.30 9.63% 86604.70 14451.90 9.85%

n10k5t5 1 11 20.79 20.79 20.27 22.01 49.66 5.55% 22.01 51.12 5.55% 21.55 61.72 3.53% 21.34 56.89 2.61% 21.34 55.00 2.61%

n15k10t5 1 16 34.28 34.28 33.48 35.28 151.59 2.84% 34.82 241.21 1.55% 34.83 191.03 1.58% 34.97 188.84 1.98% 35.14 242.49 2.46%

n20k10t5 1 21 24.58 24.58 23.57 26.23 446.75 6.29% 24.95 498.77 1.47% 24.87 597.14 1.15% 24.83 767.49 1.01% 24.76 918.08 0.70%

n10k6t5 1 11 19.04 19.04 18.99 19.97 41.15 4.68% 19.39 79.28 1.83% 19.58 57.48 2.76% 19.42 64.62 1.95% 19.35 57.33 1.60%

n15k9t5 1 16 27.16 27.16 26.65 27.95 126.93 2.83% 27.24 161.15 0.32% 27.27 209.55 0.43% 27.24 177.41 0.31% 27.18 154.50 0.08%

n20k10t5 1 21 29.59 29.59 29.06 32.07 391.28 7.74% 31.13 561.54 4.94% 30.26 719.13 2.23% 30.65 623.25 3.48% 30.61 512.78 3.35%

n20k14t5 1 21 32.30 32.30 31.61 34.05 406.41 5.14% 32.60 505.80 0.90% 32.60 665.33 0.90% 32.59 583.72 0.89% 32.72 463.25 1.27%

n20k10t5 2 21 29.37 29.37 28.78 30.65 460.35 4.19% 30.09 473.00 2.40% 30.44 763.94 3.52% 29.78 562.79 1.37% 30.19 537.76 2.71%

n20k7t5 3 21 23.25 23.25 22.65 24.81 538.86 6.28% 23.91 555.56 2.76% 24.00 628.99 3.11% 23.61 997.25 1.52% 23.86 669.87 2.57%

Average 1709.69 4.70% 1916.98 2.77% 1984.87 2.44% 1965.29 1.92% 2133.44 2.28%

Table 6.5: Calibration of α value (Tenure3).

6.2.3 Matheuristic performace

The final computational test was carried out with the calibrated two-phase algo-

rithm, using the complete set of benchmark instances. The main objective was to

assess the effectiveness of the heuristic and to compare the results it produces with

the results of the FPVRP formulation. Table 6.6 summarizes this comparison.

Again, column Best–Known shows the value of the best-known solution for each

instance, columns in block FPVRP reproduce the results obtained with the FPVRP

formulation, columns in Heur-FPVRP give information related to the performance

of the proposed algorithm, and the two columns of block Gap, give the percent-

age deviation gaps of the best solution produced by the heuristic with respect to

best-known solutions (column BK ), and to the lower bound (LB) produced by the

FPVRP formulation of Archetti et al. (2017a) after four hours of computing time.

The entries of column BK have been computed with the expression (6.10). Note

that negative entries in this column indicate that the heuristic results improve the

solutions obtained with the formulation. Percentage deviations in column LB have

been computed with the expression ZHeur−ZBestLB

ZBestLB
× 100%. Average BK gaps range

between -7.96% and 2.75%, with a total average gap of 0.69%. No BK gaps are

reported for the largest instances since CPLEX is not able to obtain any feasible

solution within the allowed computing time. Percentage deviations relative to lower
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FPVRP Heur-FPVRP Gap

Instance r |N | Best Known BestSol BestLB Time BestSol Time BK LB

p01 51 524.61 524.93 510.46 14399 535.90 2964.23 2.11% 4.98%
p14 20 954.81 954.81 954.71 11525 954.80 545.83 0.00% 0.01%
p15 28 1862.63 1862.63 1825.04 14399 1862.62 2137.65 0.00% 2.06%
p16 56 2875.24 2875.24 2814.29 14399 2875.24 3080.64 0.00% 2.17%
p32 154 78072.88 — 40990.75 14400 86389.80 14448.70 9.63% 110.75%

Avg. 2.35% 2.30%

n10k5t5 1

0.15

11 20.79 20.79 20.27 14400 21.34 56.29 2.61% 5.29%
n10k4t5 2 12.44 12.44 12.35 14400 12.44 49.85 0.00% 0.74%
n10k5t5 3 13.23 13.23 12.91 14400 13.45 205.81 1.65% 4.18%
n10k4t5 4 13.53 13.53 13.05 14400 13.93 78.57 2.91% 6.71%
n10k8t5 5 25.91 25.91 25.58 14400 27.74 58.44 6.59% 8.44%

Avg. 2.75% 5.07%

n15k10t5 1 16 34.28 34.28 33.48 14400 34.97 202.90 1.98% 4.45%
n15k6t5 2 17.41 17.41 16.54 14400 17.43 483.24 0.10% 5.42%
n15k10t5 3 25.24 25.24 24.42 14400 25.33 392.46 0.34% 3.71%
n15k8t5 4 32.12 32.12 30.97 14400 32.73 414.56 1.88% 5.68%
n15k7t5 5 23.92 23.92 22.87 14400 24.44 218.01 2.12% 6.86%

Avg. 1.29% 5.22%

n20k10t5 1 21 24.58 24.58 23.57 14400 24.83 836.93 1.01% 5.36%
n20k12t5 2 36.08 36.08 35.49 14400 36.27 986.62 0.51% 2.19%
n20k11t5 3 23.69 23.69 22.76 14400 25.36 720.79 6.57% 11.41%
n20k10t5 4 35.36 35.36 34.60 14400 36.23 557.28 2.41% 4.73%
n20k10t5 5 29.44 29.44 28.88 14400 30.27 538.46 2.76% 4.81%

Avg. 2.65% 5.70%

n10k6t5 1

0.30

11 19.04 19.04 18.99 14400 19.42 67.07 1.95% 2.28%
n10k6t5 2 13.89 13.89 13.63 14400 13.89 74.90 0.02% 1.90%
n10k5t5 3 14.50 14.50 14.10 14400 14.67 69.08 1.19% 4.06%
n10k5t5 4 14.39 14.39 14.11 14400 14.42 86.32 0.27% 2.19%
n10k8t5 5 19.39 19.39 19.33 14400 19.83 64.39 2.18% 2.56%

Avg. 1.12% 2.60%

n15k9t5 1 16 27.16 27.16 26.65 14400 27.24 193.37 0.31% 2.19%
n15k9t5 2 29.72 29.72 29.20 14400 30.28 309.82 1.87% 3.70%
n15k7t5 3 27.84 27.84 27.38 14400 28.12 325.31 1.02% 2.72%
n15k7t5 4 17.42 17.42 17.07 14400 17.42 302.75 0.01% 2.07%
n15k6t5 5 20.58 20.58 20.22 14400 20.63 206.45 0.24% 2.03%

Avg. 0.69% 2.54%

n20k10t5 1 21 29.59 29.59 29.06 14400 30.65 674.94 3.48% 5.48%
n20k12t5 2 31.50 31.50 30.82 14400 32.38 591.02 2.72% 5.06%
n20k10t5 3 26.09 26.09 25.17 14400 26.34 549.93 0.95% 4.67%
n20k13t5 4 42.62 42.62 41.69 14400 43.31 676.45 1.60% 3.88%
n20k12t5 5 34.07 34.07 33.80 14400 34.60 480.37 1.52% 2.36%

Avg. 2.05% 4.29%

n20k14t5 1

0.50

21 32.30 32.30 31.61 14400 32.59 635.37 0.89% 3.10%
n20k10t5 2 29.37 29.37 28.78 14400 29.78 624.37 1.37% 3.47%
n20k7t5 3 23.25 23.25 22.65 14400 23.61 1211.97 1.52% 4.22%
n20k10t5 4 24.81 24.81 24.12 14400 25.29 921.68 1.91% 4.87%
n20k11t5 5 36.45 36.45 35.60 14400 36.74 791.52 0.79% 3.19%

Avg. 1.30% 3.77%

n50k10t5 1

0.15

51 44.65 44.65 36.04 14400 38.56 14440.30 -15.78% 7.00%
n50k8t5 2 32.91 32.91 30.36 14400 32.26 14430.50 -2.01% 6.26%
n50k9t5 3 33.13 33.13 28.84 14400 31.55 14438.80 -5.01% 9.39%
n50k9t5 4 29.61 29.61 27.04 14400 29.42 14445.10 -0.65% 8.77%
n50k11t5 5 39.29 39.29 31.04 14400 33.77 14433.80 -16.36% 8.79%

Avg. -7.96% 8.04%

n100k17t5 1 101 — — 61.78 14400 67.22 14457.70 — 8.80%
n100k18t5 2 — — 72.28 14400 78.04 14465.70 — 7.97%
n100k20t5 3 — — 75.39 14400 82.83 14457.70 — 9.87%
n100k21t5 4 — — 68.57 14400 74.00 14460.60 — 7.91%
n100k18t5 5 — — 84.44 14400 91.10 14492.60 — 7.89%

Avg. 8.49%

Total Average Gap 0.69% 4.85%

Table 6.6: Performance of the two-phase algorithm.
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bounds, given in column LB, range between 2.30% and 8.49%, with a total average

gap of 4.85%. These values indicate that the two-phase algorithm produces high

quality solutions. In addition, the lower bounds produced by the FPVRP formula-

tion of Archetti et al. (2017a) are, in general, pretty tight. The only exception is the

lower bound for the largest instance, p32, which is an atypical case that has been

left out of the calculation of the average.

In general, the computing times required by the heuristic are moderate, taking

into account the difficulty and dimensions of the considered instances. Still, it was

able to find good quality feasible solutions for all the considered benchmark instances,

whereas the FPVRP formulation was not.

To illustrate the evolution of the optimization process, two large instances, one

with 50 customers and one with 100 customers, are used. Figure 6.2 shows the

reduction in the value of the objective function of the incumbent solution found by

the TS during the computation for the two considered instances. Figure 6.2a refers

to the instance with 50 customers, whereas Figure 6.2b to the instance with 100

customers. On the vertical axis, the objective function value of the best solution

found by the TS is reported, while on the horizontal axis the number of iterations

performed by the TS is shown. Also, the value of the objective function of the best

solution found by the TS for each DP generation is provided. In particular, for the

instance with 50 customers, 3 DP generations (DP1, DP2 and DP3 in Figure 6.2a)

were performed before the maximum computing time was reached. For the instance

with 100 customers, the maximum computing time was reached during the first

run of the TS. It can be observed that large improvements occur before iteration

1000, which is reached after 4108 seconds for the 100 customer instance. For the

50 customer instance, 1000 iterations are reached after 861 seconds for DP1, 841

seconds for DP2 and 969 seconds for DP3. Note that, for the 50 customer instance,

the incumbent solution after 1000 iterations is better than the solution produced

by the FPVRP formulation after 4 hours of optimization. For the 100 instance no

comparison can be done since the formulation does not produce any feasible solution

within 4 hours of computation.
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Figure 6.2: Value of the incumbent solution for a 50/100 customers instance.



Chapter 7

Conclusions and future directions

Many real-world situations give rise to vehicle routing problems in which it is neces-

sary to deliver products to customers in different days over a specific time horizon.

Such problems are usually addressed with classical PVRP models. Multiple elements

may give rise to various extensions, which, broadly speaking, usually differ on how

strictly delivery schedules are defined. As could be seen in Chapter 2.4, several works

in the literature have considered models that allow some flexibility as for when to

provide service to customers. In general, most of these works resort to inventory

levels or service choice to incorporate flexible service policies.

In this thesis we have defined the Flexible Periodic Vehicle Routing Problem in

which flexible service policies are considered to decide the frequency of the visits

to each customer as well as the quantities delivered at each time visit. Unlike

previous work in the literature, our problem addresses these service policies without

considering inventory levels or service choice, and it does not depend on predefined

schedules and fixed delivery quantities at each visit. In the FPVRP, three important

decisions are simultaneously addressed: when to visit customers (schedule), what

amount of product to deliver at each visit (delivery), and what are the routes that

vehicles must perform in order to visit those customers (routing). The aim of the

FPVRP is to minimize the total routing cost over the time horizon.

In Chapter 3.4, a worst-case analysis that shows the theoretical advantages of

allowing flexible service policies in periodic routing problems, has been presented.

According to this analysis, the savings provided by the FPVRP are significant with

respect to both the PVRP and the IRP. In the remainder of the thesis we have

presented formulations and developed algorithmic proposals for dealing with this

type of models and analyzed their respective performance.
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In Chapter 4, we have proposed two different MILP formulations for the FPVRP

and families of inequalities to reinforce them. The main difference between both

formulations is the way in which vehicle information is represented. The first for-

mulation uses decision variables with a vehicle index and includes a family of SECs

of exponential size, which need to be separated. In the second one, instead, decision

variables identify the arcs used in the solutions without making explicit the vehicles

that traverse them, at the expenses of using an additional set of continuous variables

to indicate the load of the vehicles when traversing the arcs. Such load-based formu-

lations tend to be quite effective in practice. On the one hand, they have a smaller

number of variables. On the other hand, the number of constraints is polynomially

bounded. An adapted version of the IRP called FPVRP-IC has been proposed in

order to compare the FPVRP with IRP instances in which an inventory level is

defined. Furthermore, a new formulation for the classical PVRP has been proposed

in order to compare the FPVRP with this classical problem in which schedules and

delivery quantities are known.

The results of the computational experiments that have been carried out show

that, also in practice, the FPVRP may produce substantial improvements in the

routing costs in comparison to both the PVRP and the IRP. Even if, in practice,

the LP relaxation of load-based formulations is in general weaker than its classical

counterpart, the computational results show that the lower bounds obtained for the

load-based FPVRP are very good.

Given the difficulty of solving to optimality FPVRP instances of relatively small

sizes, an efficient matheuristic, able of producing high quality solutions in small

computing times, has been proposed to handle medium and large size instances.

The proposed matheuristic consists of two main phases: the DP-Generation and

the Improvement phase. In the DP-Generation, the original problem is divided in

two subproblems. The solution of the first subproblem produces the schedule of visits

or calendar and the quantity to be delivered to each customer at each visit. The

second subproblem takes the solution of the first subproblem to obtain a consistent

set of routes to be performed by the vehicles. It applies a Tabu Search which explores

different neighborhoods. The results obtained with the matheuristic showed that it
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can produce good quality solutions efficiently. The total average percentage gap with

respect to the best–known solutions is 0.69% and the average gaps for the groups

of instances of different sizes range within -7.96% and 2.75%, where negative values

indicate that the solutions produced by the two–phase algorithm are better than

the ones obtained with the formulations. The greater savings are obtained with

the larger instances, for which the FPVRP formulation is not able to find a better

solution after 4 hours of optimization 50 customers instances, and is not even able

to find at least one feasible solution for instances with 100 customers.

Future research directions aim at considering similar types of formulations for

other periodic VRPs like, for instance, the multi–depot PVRP, the PVRP with

heterogeneous fleet of vehicles, PVRPs with Time Windows, and PVRPs with Inter-

mediate Facilities, to mention just a few. Given that most real–world applications

of the VRPs with periodic demands are highly related to the collection of garbage,

recyclables, wastes, oil, etc., another avenue for future research is to extend the

FPVRP to a closely related problem, called the Green VRP (Lin et al., 2014), which

extends the classical VRP taking into account environmental and social impacts

rather than just transportation costs.



Appendix A

Alternative formulation for the PVRP

Christofides and Beasley (1984) developed the first mathematical programming for-

mulation for the PVRP, defined as the problem of designing a set of routes for each

day of a given |T |-day planning period to meet the required customer visit frequency.

Recall from Chapter 3.1.2 that it is assumed that the set of possible schedules for

each customer i ∈ C, Si is known. Furthermore, each schedule s ∈ Si, i ∈ C consists

of the set of days when customer i is visited according to schedule s, and is repre-

sented by a set of binary coefficients ast, indicating whether or not day t ∈ T belongs

to schedule s. The formulation that we propose uses three sets of decision variables:

one for the selection of the schedule, one for the visits to customers, and the other one

for the routing criterion. Given that the PVRP formulation proposed by Christofides

and Beasley (1984) uses several aggregated variables and constraints, we propose a

disaggregate formulation, which includes, in addition, the stronger version of the

SECs (4.7).

A.1 Vehicle–index formulation for the PVRP

The following sets of variables are considered:

• psik =

 1 If vehicle k ∈ K visits customer i ∈ C on schedule s ∈ Si,
0 otherwise.

• yktij =

 1 If vehicle k ∈ K traverses arc (i, j) ∈ A on day t ∈ T,
0 otherwise.

• zkti =

 1 If customer i ∈ C is visited on day t ∈ T per vehicle k ∈ K,
0 otherwise.
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The disaggregated PVRP formulation (PVRP–D) is as follows:

min
∑
t∈T

∑
(i,j)∈A

∑
k∈K

cijy
kt
ij (A.1)

s.t.
∑
s∈Si

∑
k∈K

psik = 1 i ∈ C (A.2)

zkti =
∑
s∈Si

psikast k ∈ K, t ∈ T, i ∈ C (A.3)

yktij ≤
zkti + zktj

2
k ∈ K; t ∈ T ; i, j ∈ C(i 6= j) (A.4)∑

j∈N

yktij =
∑
j∈V

yktji i ∈ N ; k ∈ K; t ∈ T (A.5)

∑
i∈N

yktij =

 zktj , j ∈ C
1, j = 0

k ∈ K, t ∈ T (A.6)

∑
i,j∈P

yktij ≤
∑
i∈P

zkti − zkti′ P ⊆ C, i′ ∈ P, k ∈ K, t ∈ T (A.7)

∑
i∈C

wi
∑
j∈N

yktij ≤ Q k ∈ K, t ∈ T (A.8)

zkti ∈ {0, 1} i ∈ C, k ∈ K, t ∈ T (A.9)

psik ∈ {0, 1} s ∈ Si, i ∈ C, k ∈ K (A.10)

yktij ∈ {0, 1} (i, j) ∈ A, k ∈ K, t ∈ T. (A.11)

The objective function (A.1) minimizes the total travel costs. Constraints (A.2)

ensure that there is a feasible schedule for each customer. Constraints (A.3) define

the days within the assigned schedule in which each customer will be visited by

vehicle k. Constraints (A.4) restrict arc traversals to those where both end-nodes

are customers visited by vehicle k ∈ K at day t ∈ T . Constraints (A.5) are the

flow conservation constraints. Constraints (A.6) relate the y and z variables. Con-

straints (A.7) are the SECs. Constraints (A.8) are the capacity constraints. Finally,

Constraints (A.9)–(A.11) define the domain of the variables.



Appendix A. Alternative formulation for the PVRP 81

A.2 Comparison among PVRP formulations

For this test, we compare the results obtained with the aggregated formulation of

Christofides and Beasley (1984) (PVRP–A) and the proposed disaggregated (PVRP–

D) and load–based formulations (PVRP) using a small subset of the FPVRP in-

stances (r = 0.15). The time limit was set to 4 hours (14400 sec).

According to results shown in Table A.1, formulations PVRP–D and PVRP pro-

duced better quality solutions than those produced by formulation PVRP–A. More-

over, formulation PVRP also outperformed PVRP–D. One of the reasons is that

PVRP does not impose that all vehicles must be used at each time period (Figures

A.1-A.2), while in PVRP–D it is constrained by (A.6) when j = 0. This set of

constraints represents the disaggregated form of those used in PVRP–A.

Instance
PVRP–A PVRP–D PVRP

Status BestSol Gap% Time Status BestSol Gap% Time Status BestSol Gap% Time

n10k5t5 1 I — — 0.8 I — — 44.98 I — — 14400

n10k4t5 2 F 15.46 5.49 14400 O 15.63 0.01 1080 O 13.01 0.01 145

n10k5t5 3 F 16.36 3.87 14400 O 16.82 0.01 1301 O 13.80 0.00 11

n10k4t5 4 F 17.80 2.84 14400 O 17.95 0.01 869 O 15.17 0.01 35

n10k8t5 5 I — — 0.08 I — — 0.14 O 27.74 0.00 1

n15k10t5 1 F 36.77 7.93 14400 F 37.04 8.52 14400 O 36.27 0.01 2445

n15k6t5 2 I — — 14400 F 22.21 15.91 14400 F 19.86 1.69 14400

n15k10t5 3 I — — 0.17 I — — 0.53 O 28.09 0.01 1213

n15k8t5 4 F 37.00 1.12 14400 O 37.00 0.01 206 O 34.09 0.01 4587

n15k7t5 5 F 31.18 9.41 14400 F 30.89 6.43 14400 F 25.77 1.54 14400

n20k10t5 1 F 31.32 1.32 14400 F 31.40 1.04 14400 F 25.94 2.33 14400

n20k12t5 2 F 47.02 2.75 14400 F 47.49 3.52 14400 F 39.12 0.48 14400

n20k11t5 3 F 29.56 3.59 14400 F 31.53 9.39 14400 F 26.64 2.47 14400

n20k10t5 4 F 42.61 12.26 14400 F 43.69 14.34 14400 F 39.43 4.81 14400

n20k10t5 5 F 40.72 4.96 14400 F 42.28 8.42 14400 F 31.45 4.31 14400

Table A.1: Comparison among PVRP formulations.
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Figure A.1: Optimal solution obtained using the PVRP-D formulation.
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Figure A.2: Optimal solution obtained using the load-based PVRP formulation.
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Alternative formulation for the

FPVRP-IC

B.1 Vehicle–index formulation for the FPVRP-IC

min
∑
t∈T

∑
k∈K

∑
(i,j)∈A

cijy
kt
ij (B.1)

s.t. Iit = I t−1i − dit +
∑
k∈K

qkti i ∈ C, t ∈ T (B.2)∑
k∈K

qkti ≤ wi − I t−1i i ∈ C, t ∈ T (B.3)

qkti ≤ wiz
kt
i i ∈ C, k ∈ K, t ∈ T (B.4)∑

i∈C

qkti ≤ Qzkt0 k ∈ K, t ∈ T (B.5)∑
k∈K

zkti ≤ 1 i ∈ C, t ∈ T (B.6)∑
j|(i,j)∈A

yktij = zkti i ∈ N, k ∈ K, t ∈ T (B.7)∑
j|(i,j)∈A

yktij =
∑

j|(j,i)∈A

yktji i ∈ N, k ∈ K, t ∈ T (B.8)∑
(i,j)∈A
i,j∈S

yktij ≤
∑
i∈S

zkti − zkts s ∈ S, S ⊆ C, k ∈ K, t ∈ T (B.9)

Iit ≥ 0 i ∈ C, t ∈ T (B.10)

zkti ∈ {0, 1} i ∈ N, k ∈ K, t ∈ T (B.11)

qkti ≥ 0 i ∈ C, k ∈ K, t ∈ T (B.12)

yktij ∈ {0, 1} (i, j) ∈ A, k ∈ K, t ∈ T (B.13)

ykt0j ∈ {0, 1, 2} j ∈ C, k ∈ K, t ∈ T. (B.14)

83



Appendix B. Alternative formulation for the FPVRP-IC 84

The objective function (B.1) minimizes the total routing costs. Constraints (B.2)

and (B.10) determine the inventory level over time and avoid stock–out. Constraints

(B.3) impose that, at each time period, no vehicle delivers customer i ∈ C a quantity

that exceeds wi − I t−1i . Constraints (B.5) impose that the vehicle capacity is not

violated. Constraints (B.6), (B.7), (B.8), and (B.9) are the number of vehicles

used for each visited customer, the node degree constraints, the flow conservation

constraints, and the SECs for each vehicle route and each time period, respectively.

B.2 Comparison between FPVRP-IC formulations

Table B.1 shows the comparison between both vehicle–index and load–based

FPVRP-IC formulations. The set S1 of instances is used and a time limit was

set to 2 hours (7200 sec). It can be observed that in most of the instances the

load–based formulation outperformed its vehicle–index version. The optimality gap

of feasible solutions is much smaller than the vehicle–index counterpart (except for

instance abs5n15 2).
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Instance
Vehicle–index FPVRP-IC Load–based FPVRP-IC

Status Time TotCuts* BestSol BestLB Gap % Status Time TotCuts BestSol BestLB Gap %

abs1n5 1 O 2 13 1301.85 1301.85 0.00 O 0 0 1301.85 1301.85 0.00

abs1n5 2 O 1 10 1335.88 1335.88 0.00 O 0 0 1335.88 1335.88 0.00

abs2n5 1 O 1 9 1088.72 1088.72 0.00 O 0 0 1088.72 1088.72 0.00

abs2n5 2 O 9 24 1494.37 1494.37 0.00 O 4 0 1494.37 1494.23 0.01

abs3n5 1 O 4 25 2302.82 2302.82 0.00 O 2 0 2302.82 2302.82 0.00

abs3n5 2 O 2 20 2864.95 2864.95 0.00 O 0 0 2864.95 2864.95 0.00

abs4n5 1 O 1 6 1650.73 1650.73 0.00 O 0 0 1650.73 1650.59 0.01

abs4n5 2 O 4 9 2224.13 2224.13 0.00 O 1 0 2224.13 2224.13 0.00

abs5n5 1 O 1 12 1091.97 1091.95 0.00 O 0 0 1091.97 1091.97 0.00

abs5n5 2 O 5 19 1386.18 1386.18 0.00 O 4 0 1386.18 1386.18 0.00

abs1n10 1 O 56 462 1960.99 1960.99 0.00 O 18 0 1960.99 1960.82 0.01

abs1n10 2 O 184 844 2429.55 2429.37 0.01 O 31 0 2429.55 2429.55 0.00

abs2n10 1 O 19 117 2554.79 2554.79 0.00 O 14 0 2554.79 2554.79 0.00

abs2n10 2 O 100 277 3214.05 3213.77 0.01 O 19 0 3214.05 3213.88 0.01

abs3n10 1 O 10 59 1980.71 1980.71 0.00 O 6 0 1980.71 1980.71 0.00

abs3n10 2 O 81 387 2410.50 2410.26 0.01 O 39 0 2410.50 2410.50 0.00

abs4n10 1 O 60 384 2240.93 2240.93 0.00 O 35 0 2240.93 2240.73 0.01

abs4n10 2 O 338 844 2943.14 2942.90 0.01 O 279 0 2943.14 2942.87 0.01

abs5n10 1 O 7 23 1848.20 1848.20 0.00 O 14 0 1848.20 1848.20 0.00

abs5n10 2 O 17 38 2151.45 2151.45 0.00 O 19 0 2151.45 2151.45 0.00

abs1n15 1 O 19 86 1915.91 1915.91 0.00 O 21 0 1915.91 1915.89 0.00

abs1n15 2 O 279 678 2402.36 2402.18 0.01 O 295 0 2402.36 2402.14 0.01

abs2n15 1 O 115 229 2185.68 2185.51 0.01 O 194 0 2185.68 2185.46 0.01

abs2n15 2 O 229 905 2388.97 2388.97 0.00 O 39 0 2388.97 2388.97 0.00

abs3n15 1 O 93 410 2373.10 2373.10 0.00 O 11 0 2373.10 2373.10 0.00

abs3n15 2 O 129 436 2646.11 2645.91 0.01 O 20 0 2646.11 2646.11 0.00

abs4n15 1 O 87 255 2199.78 2199.78 0.00 O 188 0 2199.78 2199.57 0.01

abs4n15 2 O 296 349 2572.55 2572.55 0.00 O 705 0 2572.55 2572.30 0.01

abs5n15 1 O 164 520 2309.75 2309.75 0.00 O 88 0 2309.75 2309.53 0.01

abs5n15 2 O 903 1003 2959.31 2959.04 0.01 F 7199 0 2959.31 2846.19 3.82

abs1n20 1 O 1388 3413 2410.91 2410.91 0.00 O 6343 0 2410.91 2410.70 0.01

abs1n20 2 F 7200 10538 3118.53 2562.24 17.84 F 7199 0 3138.27 2885.98 8.04

abs2n20 1 O 57 206 2148.82 2148.82 0.00 O 18 0 2148.82 2148.82 0.00

abs2n20 2 O 852 1199 2393.13 2392.92 0.01 O 658 0 2393.13 2392.90 0.01

abs3n20 1 O 125 209 2283.53 2283.53 0.00 O 23 0 2283.53 2283.53 0.00

abs3n20 2 O 127 309 2529.42 2529.42 0.00 O 16 0 2529.42 2529.28 0.01

abs4n20 1 O 5680 10894 3136.22 3135.91 0.01 O 2782 0 3136.22 3135.91 0.01

abs4n20 2 F 7200 13530 3874.55 3083.57 20.41 F 7200 0 3664.52 3566.13 2.68

abs5n20 1 O 1370 4638 2859.60 2859.46 0.00 O 379 0 2859.60 2859.35 0.01

abs5n20 2 F 7200 11252 3738.12 3171.80 15.15 F 7200 0 3567.47 3473.76 2.63

Gap: Cplex MIP gap %. *SECs and FCC.

Table B.1: Comparison between vehicle-index and load-based FPVRP-IC formulations.



Appendix C

Additional computational experience

for the FPVRP

In this Appendix, results from additional computational experiments are provided

to complement the results shown in Chapter 5.3.

C.1 Comparison of inequalities for the load-based

FPVRP formulation

We present detailed results of the tests carried out to evaluate the effect of the

inequalities and optimality cuts described in Chapter 4.2.1 and discussed in Chapter

5.3.2.

Column description:

• FPVRP: load–based FPVRP formulation without valid inequalities.

• (1): FPVRP + inequalities (4.30)

• (2): FPVRP + (yt0j + yti0 ≤ 1 +
∑

r≤i y
t
0r, i ∈ C, t ∈ T ).

• (3): FPVRP + inequalities (4.32).

• (2S): FPVRP + inequalities (4.31).

• (3S): FPVRP + inequalities (4.33).

• (1&2): Combination of (1) and (2).

• (1&3): Combination of (1) and (3).

• (1&2S): Combination of (1) and (2S).

• (1&3S): Combination of (1) and (3S).
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• Relative percentage optimality gap (RGap)

– RGap% = |LB − Best UB|
(1e−10 + |Best UB|) × 100.
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