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ABSTRACT 

A huge amount of genetic information is available thanks to the recent advances in sequencing 

technologies and the larger computational capabilities, but the interpretation of such genetic data 

at phenotypic level remains elusive. One of the reasons is that proteins are not acting alone, but 

are specifically interacting with other proteins and biomolecules, forming intricate interaction 

networks that are essential for the majority of cell processes and pathological conditions. Thus, 

characterizing such interaction networks is an important step in understanding how information 

flows from gene to phenotype. Indeed, structural characterization of protein-protein interactions 

at atomic resolution has many applications in biomedicine, from diagnosis and vaccine design, to 

drug discovery. However, despite the advances of experimental structural determination, the 

number of interactions for which there is available structural data is still very small. In this 

context, a complementary approach is computational modeling of protein interactions by docking, 

which is usually composed of two major phases: i) sampling of the possible binding modes 

between the interacting molecules, and ii) scoring for the identification of the correct orientations. 

In addition, prediction of interface and hot-spot residues is very useful in order to guide and 

interpret mutagenesis experiments, as well as to understand functional and mechanistic aspects 

of the interaction. Computational docking is already being applied to specific biomedical 

problems within the context of personalized medicine, for instance, helping to interpret 

pathological mutations involved in protein-protein interactions, or providing modeled structural 

data for drug discovery targeting protein-protein interactions. 
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1. Importance of protein-protein interactions in cell 

A cell is the basic structural and functional unit of any living organism. From single cell 

organisms to multicellular organisms, most of the cells have information stored in the DNA, 

coded in the form of nucleotide sequences, which must be transcribed into RNA, and then in turn 

into a chain of amino acids, the building blocks of proteins. This straightforward flux of 

information is the so-called “central dogma” Crick (1970). However, this linear view of the flow 

of information is incomplete. In nature, self-interacting elements capable of modifying the above 

described flux of information challenge the idea of the central dogma. This is the case of 

ribozymes with self-catalytic activity (Lilley & Eckstein, 2007), and prions (Derkatch & 

Liebman, 2007), misfolded proteins that can alter the structure and function of other proteins. 

These self-interacting elements add loops to the straight line in the central dogma. Even with 

these added loops, this view does not fully depict the crowded and dynamic environment inside 

the cell. There are additional genetic mechanisms that regulate the levels of proteins. An example 

of this is the field of epigenetics where the marks found in the DNA nucleosomes, such as 

methylation, prevents the transcription of DNA (Bharathy & Taneja, 2012). Proteins themselves 

appear to have an active role to protect the balance of gene products when the cell presents an 

abnormal load of the genetic material like in polyploidy Stingele et al. (2012). Among all of the 

interactions and factors that are driving all these processes, proteins have a prominent role as 

they can serve as scaffolds, provide protection to RNA or DNA (chaperones and nucleosomes), 

and act as receptors or effectors (such neuropeptides and enzymes). 
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Most proteins do not act as isolated units, and their interactions with biomolecules, 

including other proteins, are essential in the virtual totality of cellular events (Stingele et al., 

2012; Teichmann, 2002). The majority of cell processes require the assembly of protein 

complexes, which constitute the so-called quaternary structure. 

The relationship between the genetic information contained in the DNA and the structure 

of proteins is currently object of intense investigation. Recent sequencing efforts have yielded 

much information on the variants in genes (mutations), and association studies have revealed that 

these variations are tightly linked to the physiological outcome of the organism (Freedman et al., 

2011; Lander, 2011). There are two major approaches to analyze the effect of these variants: a 

reductionist view where the analysis is focused on the molecular effect of a mutation based on 

the 3D atomic structure of the protein of interest, and a systems approach focused on the effect 

on the network generated by the interactions between the elements in the cell (Figure 1). The 

synergy between these two approaches provides understanding on how variations in the genetic 

information can have effects on the phenotype ranging from an atomic level to the entire network 

organization, and for this, understanding protein-protein interactions from structural, dynamics 

and energetics points of view is essential. 

 

[INSERT FIGURE 1 HERE] 

 

2. Protein-protein interactions and human disease 

2.1. From gene to disease: Towards personalized medicine 

High-throughput techniques, like genome sequencing, mass spectroscopy and DNA and 

RNA expression microarrays, are dramatically changing the way we study biological sciences. 
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The first major change arises from the massive data generated by these techniques. Next-

generation sequencing (NGS) technologies have dramatically lowered the costs of gene 

sequencing, and are providing genomic information for an increasing number of healthy 

individuals and patient populations. A biological scientist has to face the overwhelming stream 

of information from different sources, ranging from microorganisms (Venter et al., 2004) to 

patients in health care systems (Baoying, Ruowang, & William, 2015). Computational resources 

are fundamental to efficiently analyze all this data. Institutes like National Center for 

Biotechnology (NCBI) and the European Bioinformatics Institute (EBI) receive data from 

different sources and store it in big public databases such the GenBank (Benson, Karsch-

Mizrachi, Lipman, Ostell, & Wheeler, 2005) and UniProt (UniProt, 2007).  Moreover, they have 

integrated a variety of tools like BLAST (Altschul, Gish, Miller, Myers, & Lipman, 1990) or 

CLUSTAL (Higgins & Sharp, 1988) in publicly available websites with the goal of providing the 

scientific community with analytical tools for their research. This vast amount of information is 

an opportunity for biological sciences to put statistical methods and rigorous mathematical 

models into the molecular details that rule a living organism. 

Following the first human genome completion (Human Genome Sequencing, 2004), the 

scientific community started an international effort known as the “1000 genomes project” 

(Genomes Project et al., 2015). The project, now finished, consisted in obtaining the genome 

sequence from subpopulation around the world, making the genomes available to the scientific 

community for a variety of analysis. It also provides a framework for important questions on 

human genetics. In the past, the study of the genetic variation in the human population or 

genotypes was only possible using the unique gene variants that gave rise to evident distinct 

states or phenotypes. While the term genotype refers to the information stored in the DNA 
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sequences, the term phenotype refers to the product of the genotype or “what we can see”, which 

can mean a protein fold or a cell type or even the look of the whole organism. With the lower 

costs of genome sequences and resources like the "1000 genomes", common genetic traits were 

found to be present in a large proportion of the human population (International HapMap et al., 

2010).  Many of these traits were determined by Single Nucleotide Polymorphisms (SNPs). 

SNPs are single base pair changes in the DNA sequence that occur with high frequency on the 

human genome (Genomes Project et al., 2010) and the field of human genetics now use it as the 

unit for genetic variation in populations. The International HapMap Project aims to identify 

changes among the genomes and to find correlations with the observed phenotypes. The number 

of SNPs per human genome is estimated to be around 10 million, all of them showing a different 

effect. HapMap has so far catalogued 1.6 million SNPs with genotypes from 11 human 

populations, including Japanese population from Tokyo, the Yoruba population from Africa, Han 

Chinese from Beijing, and European descent population (International HapMap et al., 2010; 

Ritchie et al., 2010; The International HapMap, 2005). 

 Genome-Wide Association Studies (GWAS) are a powerful tool to identify a link of a 

relevant SNP with a human disease (Welter et al., 2014). The goal of GWAS is to identify genetic 

risk factors through various association tests, backed by statistical analysis, to make predictions 

about who is predisposed to a given disease, and then determine the genetic interplay of disease 

susceptibility for the development of new therapeutic strategies (Bush & Moore, 2012). The 

most successful application of GWAS has been the identification of DNA sequences that play a 

role in drug response (metabolism, efficacy or adverse effect). Warfarin dosage is an obvious 

example of this success (Cooper et al., 2008). A GWAS study led to discover a set of SNPs in 
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several genes that influence warfarin dosing. This, with further validation studies, became a 

clinical genetic test, which allowed physicians to give the correct amount of warfarin to patients.  

The relationship between genetic analysis and clinical outcome fostered the field of 

personalized medicine. The current project "10K genomes" in the United Kingdom (Koepfli, 

Paten, Genome, & O'Brien, 2015) is a scientific enterprise taken by the British government for a 

personalized medicine in the public health care. The objective is to diagnose patients with rare 

diseases, who otherwise would never get proper treatment. Candidate genes detected through 

GWAS are generating large datasets of genetic variants associated with disorders, which are 

being deposited in public databases, such as Online Mendelian Inheritance in Man (OMIM) 

(Scott, Amberger, Brylawski, & McKusick, 1999), the database of Genotypes and Phenotypes 

(dbGAP) (Tryka et al., 2014) or Humsavar (UniProt, 2007). 

 

2.2. The human protein-protein interactome: A link between gene and system 

The analysis of the data obtained by high-throughput technologies also produced a revolution in 

the biological field. It marked the start of the “OMIC era” (Kandpal, Saviola, & Felton, 2009). 

Genome, Proteome, Peptidome, Exome, Transcriptome, are different ways to profile and classify 

the biological activities of the cell. However, the analysis of any of these profiles in isolation 

does not give the answer to fundamental questions about the genotype-phenotype relationship 

(Vidal, Cusick, & Barabasi, 2011). To infer the physiological effect caused by the changes in 

these profiles is necessary to study how the elements of a cell affect each other. Such “omic” 

sciences require an integrated approach to study the elements on a given condition by analyzing 

the interplay between these elements to achieve a biochemical function within the context of a 

network (Wu, Hasan, & Chen, 2014). The signaling pathways of the cell constitute a well-
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understood example of how the elements of the cell interact to elicit a molecular process. From 

an outside stimulus, receptor proteins transduce the signal using small molecules known as 

second messengers, such as the circular Adenosine Monophosphate (cAMP). Enzymes like 

kinases use the energy stored in Adenosine Triphosphate (ATP) to activate other proteins and 

start a cascade that produces the release of other second messengers, like Inositol Triphosphate 

(IP3) and calcium ions. Second messengers can be sensed by other proteins to inhibit the 

signaling or to start other pathways, in many cases reaching the nucleus and regulating the DNA 

transcription (Lemmon & Schlessinger, 2010). Pathways become interconnected networks when 

components of one pathway interact and control elements of another pathway. Graph theory can 

help to analyze a system as complex as the cell. A young discipline in biology, Systems biology, 

is taking advantage of computational approaches to understand how these interactions can have a 

response (Ma'ayan, 2009). Systems biology is the study of how molecules interact to give rise to 

subcellular machineries that form the functional units capable of performing the physiological 

functions needed for the cell, tissue or organ (Bhalla & Iyengar, 1999). The network analysis in 

systems biology intent to gain biological meaning using a global network diagram derived from 

available data (Wu, Harrison, & Chen, 2009). 

Large-scale studies at proteomic level have become widely accessible to the community 

(Chuang, Kozakov, Brenke, Comeau, & Vajda, 2008; Kuhner et al., 2009; MacBeath, 2002) and 

are generating a diverse and increasing amount of data, including protein binding and pathway 

information (Aranda et al., 2010; Ogata et al., 1999; Szklarczyk et al., 2015). This has facilitated 

the computational construction of genome-wide networks of interactions, or "interactomes" 

(Rolland et al., 2014). Thus, a system-wide approach can point out the essential elements for 

regulating a given biological process (Wu et al., 2014). For example, the response to a stimulus 
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depends on the state of the signaling networks, and this can be used in system biology to predict 

the outcome of such stimulus at molecular level (Janes et al., 2005). An interactome network 

describes the interaction of genes or gene products, which means that to provide some 

explanation of the genotype-phenotype relationships the networks have to include interactions at 

different levels. To make the predictions reliable and unbiased, the macromolecular interactions 

such as DNA-protein, post-translational modification and its target, or protein-protein 

interactions (PPI) need to be of high quality and extensive (Rolland et al., 2014). PPIs are 

probably the most critical networks as they underlie in almost all key cellular events like 

proliferation, cell signalling, regulation or cell morphology alteration (Teichmann, 2002).  

The most widely-used high-throughput laboratory techniques to construct PPI networks 

are perhaps the Yeast Two-hybrid (Y2H), and Tandem Affinity Purification coupled with Mass 

Spectrometry (TAP-MS). Y2H is an ingenious system that uses separable transcriptional factors 

and a reporter gene to prove the interaction between two proteins. The transcriptional factors 

have two separable domains, a DNA-binding domain (BD) and a transcription activation domain 

(AD). The target protein is fused with the BD and is called the bait, the binding partner is fused 

with the AD and is called the prey. The interaction between bait and prey reconstitute the 

function as a transcription factor, which can allow the expression of reporter gene downstream 

from the AD binding sequence (Fields & Song, 1989). TAP-MS relies on tags attached to the N-

terminus of target proteins. The intended target proteins are expressed inside the cell and allowed 

to interact. Then, the target protein complexes are isolated by two steps of affinity purification. 

The proteins that co-purified with the tagged proteins are identified by mass spectrometry (Puig 

et al., 2001). Complementing the initially constructed networks with text mining of the literature 

has facilitated building the interactomes of different organisms, like S. cerevisiae (Ito et al., 
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2000; Uetz & Hughes, 2000), C. elegans (S. Li et al., 2004), A. thaliana (Cui et al., 2008), D. 

melanogaster (Giot et al., 2003; Guruharsha et al., 2011) and human (Ewing et al., 2007).  

The estimated size of the human interactome ranges from 130,000 to around 650,000 

binary protein-protein interactions (Rual et al., 2005; Stumpf et al., 2008). Among them, the 

number of protein-protein interactions that are known with high confidence ranges between 

14,000 PPIs (Rolland et al., 2014) and 93,000 PPIs (Interactome3D January 2017 release; 

http://interactome3d.irbbarcelona.org/), which shows that the human interactome is far from 

being completed. The main challenge in the study of the interaction networks is to extract 

biologically relevant information from an extensive list of interactions taking into account 

different sources of the data, in order to gain insight into the molecular mechanism that drives 

various conditions (Glazko & Emmert-Streib, 2009; Khatri, Sirota, & Butte, 2012). 

Comprehensive integrative approaches that take into account data from DNA microarrays, 

protein expression, PPI information, and interaction with metabolites are added to the complexity 

in the analysis of cellular functions (Ideker et al., 2001; MacBeath, 2002). To gain knowledge 

from this vast source of information, network and pathway analysis can help to interpret the 

changes in the PPIs caused by external stimuli. The first generation of human protein interaction 

sets allowed network-based answers to the genotype-phenotype relationship, however, given 

their limited quality were not useful to make global, accurate interpretations (Rual et al., 2005; 

Stelzl et al., 2005). Network analysis used the topology of the network to highlight key nodes 

and strong interactions between different molecules, known as modules (Hartwell, Hopfield, 

Leibler, & Murray, 1999; G. Li et al., 2014). In network analysis, biological networks are 

described as “small world and scale-free” (Barabasi & Oltvai, 2004). This basically means that 

the human interactome contains several highly connected molecules, i.e. nodes that are known as 
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“hubs.” These proteins usually have a fundamental role in signaling pathways and their function 

is almost essential for the cell. The highly dynamic character of the interactions in the signaling 

pathways is a characteristic that provides robustness to the interactome (Albert, Jeong, & 

Barabasi, 2000). 

In complex networks like the human interactome, there are no clear clusters because of 

the scale-free property. The scale-free property makes biological networks similar to nonlinear 

problems like chaos, phase transitions, and fractals (Strogatz, 2001). In fact, using only 

topological information and a nonlinear dynamical modelling known as the ant colony 

optimization, revealed fractal-like patterns in protein interaction networks in yeast (Wu & Chen, 

2012), Breast Cancer (Wu, Harrison, et al., 2009), and Alzheimer disease (Wu, Huan, Pandey, 

Zhou, & Chen, 2009). 

This indicates that the complexity of the PPI networks changes in a continue manner due 

to the dynamics of the cell. On the other hand, we know that activity in a cell emerges from 

functional modules, defined as a group of different proteins that interact but that are not 

necessarily present in the same space and time (Hartwell et al., 1999; Pizzuti & Rombo, 2014). 

Thus, there must exist some degree of clustering. There are two different ways to detect 

functional modules: graph clustering, or distant-based clustering. Graph clustering takes full 

advantage of the topology itself, as it searches for groups of nodes in the network that have more 

intra-connections than inter-connections. Some graph clustering methods are Highly Connected 

Subgraph (HCS) (Hartuv & Shamir, 2000), Restricted Neighborhood Search Clustering (RNSC) 

(King, Przulj, & Jurisica, 2004) and Markov Clustering (MCL) (Enright, Van Dongen, & 

Ouzounis, 2002). In the distance-based clustering method, some metrics from graph theory 

become the similarity measure that clustering algorithms will use to identify the modules. Some 
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of these metrics are the number of edges (Vazquez, Flammini, Maritan, & Vespignani, 2003), 

shortest path (Arnau, Mars, & Marin, 2005), and shortest path profiles (Maciag et al., 2006). 

 

2.3. Interaction networks are key to understand biological pathways 

Parallel to the network analysis, pathway analysis is a simplified approach that reduces the 

complexity of interpreting all available data and increases the explanatory power. Grouping 

proteins, genes, and PPIs according to the biological process where they participate can reveal 

clustering for a given event. This categorization breaks down long lists into smaller subsets that 

can be used to identify differences between two conditions, thus increasing the explanatory 

power (Glazko & Emmert-Streib, 2009; Khatri et al., 2012). Pathway analysis is different from 

the network analysis, because it uses functional information about the proteins, like cellular 

localization, catalytic activity, and processing aspects. Pathway analysis is more successful when 

it includes PPIs networks, Gene Ontology terms (GO) and expression data. The assumption that 

proteins in the same pathway and with common functions are tightly regulated can lead to the 

discovery of the “pathway network module”. In this way, we can delimit a large set of proteins 

that co-regulate each other to perform a particular cellular function (Wu et al., 2014). 

Additionally, in some biological networks, there is a correlation between GO terms and node 

distance (Y. R. Cho, Hwang, Ramanathan, & Zhang, 2007; Lord, Stevens, Brass, & Goble, 2003; 

Sevilla et al., 2005). On the downside, the annotation of a GO term has a heterogeneous origin, 

based on a variety of experiments and computational methods, which often leads to 

inaccurate/contradictory annotations and interpretation problems due the functional diversity of 

the proteins under different conditions (Luciani & Bazzoni, 2012). 
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There are different databases for protein networks and biological pathways: Biogrid 

(Chatr-Aryamontri et al., 2017), Reactome (Croft et al., 2011),  KEGG (Qiu, 2013), STRING 

(von Mering et al., 2003), PAGED (H. Huang et al., 2012), HPD (Chowbina et al., 2009), 

BioCarta (Nishimura, 2001), or Interactome3D (Mosca, Ceol, & Aloy, 2013). Many of these 

databases provide, in addition to the list of interactions, information like the effect of the 

interaction (inhibition or activation), or the location of the interaction (e.g., nucleus, cytoplasm, 

and so forth). On the other hand, a number of databases provide experimentally obtained 

structures of PPIs but lack the integrating context of the networks: 3D interologs (Lo, Chen, & 

Yang, 2010), 3D complex (Levy, Pereira-Leal, Chothia, & Teichmann, 2006), SCOPPI (Winter, 

Henschel, Kim, & Schroeder, 2006), IBIS (Shoemaker et al., 2012), 3did (Mosca, Ceol, Stein, 

Olivella, & Aloy, 2014), PIFACE (Cukuroglu, Gursoy, Nussinov, & Keskin, 2014). Interestingly, 

STRING and Interactome3D provide the 3D structures of the proteins and the complexes they 

form, in the context of network data.  

 

2.4. Disease-related interaction networks 

Smaller subsets of the human interactome can be used to find answers to the genotype-phenotype 

relationship. Combining GWAS data, technically a “cause-effect” list for genes, with the network 

view has provided the most comprehensive data for complex diseases. As complex diseases are 

caused by several genes (e.g., heart disease, cancer, and diabetes), the use of networks seems a 

natural approach to gain insight on their molecular basis. The human diseasome, which links 

phenotypic features to all known disease genes, is the result of that approach (Goh et al., 2007). 

The human diseasome can be exemplified by a bipartite graph in which a set of disease nodes is 

linked with disease gene nodes (Goh & Choi, 2012). The objective of the construction of a 
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network for each complex disease holds the promise of identifying those interactions altered by 

mutations, which could help to find a treatment to revert the network back to normal state. The 

core of the human diseasome can be identified using a set of PPIs that are affected by a mutation 

leading to a pathological state. It can be obtained by purely computational tools and can help to 

highlight the key players that drive most of the characterized diseases (Janjic & Przulj, 2012). 

Even if the main disease-related proteins are identified, these advances do not mean a way to 

find a magic bullet for all pathologies. The highly dynamic nature of the signaling pathways due 

to their inter-connectivity is a characteristic that adds robustness to the cell (Kitano, 2004a). One 

example of a robust disease is cancer. A cancer tumor is a population of different cell types, each 

harboring their own mutations (Calon et al., 2012; Ding et al., 2012; Gerlinger et al., 2012; Hou 

et al., 2012). In this way, there are intracellular and intercellular interaction networks with 

different dynamics, since not all the proteome is expressed sequentially in a specific cue (S. P. 

Shah et al., 2012). Given the finite number of interactions between nodes in the cellular 

networks, there is a limit to the number of network configurations or states they can adopt. By 

rewiring the connections of a signaling network, cancer mutations are probably creating new 

states that are only present in cancer cells, and that are known as cancer network attractors states 

(Creixell, Schoof, Erler, & Linding, 2012). 

The inter-connectivity of signaling pathways or pathway crosstalk is the underlying 

reason for such high network dynamics and is one of the reasons why a drug specifically 

designed for a key protein in a disease can fail. Thus, when a key pathway is inhibited, the cell 

may use another pathway that can have a similar physiological effect. The multiple layers of 

gene regulatory interactions modified by the alteration of the genetic material and structure (e.g. 

mutations in DNA, or aneuploidy at chromosomal level) combined with feedback loops give rise 
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to the robustness of the cancer cell. Thus, ‘de novo’ mutations during chemotherapy, in 

combination with feedback controls, allow the cancer cell to be resistant to treatment (Kitano, 

2004b). 

This is a problem from a pharmaceutical point of view, since a designed drug will be 

labeled as useless when it fails to stop the disease progression. Traditionally, the pharmacological 

approach to treat a disease has been a reductionist one, i.e. “one disease - one target - one drug”. 

In recent years, this has caused two major problems in the pharmaceutical field: 1) “me-too” 

drugs, when many companies design drugs for the same targets, and 2) poor assignment of 

medication to phenotypes due to multi-target properties (Frail & Barratt, 2012). The combination 

of systems biology with drug discovery, known as network pharmacology, is starting to change 

the approach of “one disease - one target - one drug” (Brown & Okuno, 2012). The generation of 

diseasome networks does not aim exclusively to determine the role of the gene or protein. We 

can add information such as the mutations that cause a given disease or confer susceptibility to a 

drug, in order to determine the role of individual players in the crosstalk context. A recent study 

showed that by using the pathway crosstalk data and available approved drugs it is possible to 

combine certain drugs targeting a particular signaling pathway in order to reduce the dose, while 

still being effective against cancer. As a consequence, this strategy has helped to develop an 

effective treatment less harmful to the patient (Jaeger & Aloy, 2012; Jaeger, Duran-Frigola, & 

Aloy, 2015). 

Progress made with these different approaches has improved the rational design of drugs. 

Most of the designed drugs aim to block the binding sites of a protein. If the expected target of a 

drug is an enzyme, a first approach is to block the catalytic binding site, as in the case of 

neuraminidase inhibitors (Russell et al., 2006; Vavricka et al., 2011). An alternative approach to 
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target protein activity is by interfering protein interaction binding sites, therefore stabilizing or 

disrupting PPIs, like the transthyretin inhibitors (Sant'Anna et al., 2016).  In fact, some mutations 

are lethal by modifying or interfering in a protein binding site, as in the case of the formation of 

amyloid fibrils that precedes the Amielod Lateral Sclerosis or Alzheimer's disease. In these cases, 

a mutation in the protein transthyretin destabilizes the formation of the normal multimer protein 

state, causing the proteins to aggregate in the form of fibrils. In this way, the mechanistic detail 

of how the protein is affected by drugs or mutations can only be given by the 3D structure of the 

protein and the complexes that it forms. Therefore, a high-quality image of the 3D structure of 

the proteins and the complexes they can form is an essential requirement for the design of 

effective drugs, which combined with the network approach, gives rise to new pharmacological 

strategies to treat disease in humans.  

 

3. Structural approach to protein-protein interactions  

Several diseases such as cancer or RASopaties (a group of diseases related to the 

malfunction of Ras signaling pathway), display altered PPIs networks (Kiel & Serrano, 2014). 

Current therapies that only target a single protein are not efficient in restoring the phenotype to 

normal in intricate signaling pathways. It would be needed to use a network-based therapeutic 

strategy to turn back the appearance of a malignant attractor state in the signaling network (Vidal 

et al., 2011). The use of pathway analysis on the network of interest could help to force the 

regression to the normal state. Current network maps give information on the relationships of 

genes or interactions between proteins (Figure 2). However, the vast majority of network 

analyses is done at a level of resolution that makes it difficult to include the three-dimensional 

(3D) structure of the cellular components at atomic level, a fundamental aspect that should be 
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taken into account (Kiel, Beltrao, & Serrano, 2008). From the amino acid sequence (primary 

structure), the inherent physicochemical properties of the polypeptide chain determine the first 

level of folding, known as secondary structure, with elements such as β-sheets or α-helices, as 

well as loops that do not fold into a specific structure. From this, combinations of β -sheets and 

α-helices can form the tertiary structure, where many proteins gain their functionality. The 

assembly of different polypeptide chains in complexes forms the quaternary structure. Databases 

such as STRING (von Mering et al., 2003) and Interactome3D (Mosca et al., 2013) provide 

curated information about the 3D structure of known protein-protein complexes. This type of 

information is of paramount importance for the understanding of biological processes at 

molecular level, as well as for applications in biomedicine such as rational drug design or 

repurposing studies, or interpretation of pathological mutations. Below are described the major 

experimental approaches to characterizing the structural details of protein-protein interactions. 

 

[INSERT FIGURE 2 HERE] 

 

3.1. X-ray Crystallography 

The most widely used and accurate approach for obtaining high-resolution protein structures is 

the crystallography of proteins in combination with X-ray diffraction. A highly concentrated 

purified protein is needed for crystallization. Exposure of the crystal to an x-ray beam provides a 

diffraction spot pattern that gives information about “structures factors”, which allows building a 

map of electron density. The mathematical process to convert the intensities of the diffraction 

spots to the electron map is known as the phase resolution problem. The goal is to build a model 

of the protein based on this map, in which the protein sequence is the input to produce a 
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thermodynamically stable structure (Smyth & Martin, 2000). However, the process is very slow, 

requires a large amount of sample at a high purity quality, and often the protein has to be 

modified to achieve crystallization, with the risk of modifying the natural folding of the protein. 

Obtaining a crystal is not a routine process, since the conditions to find the formation of a crystal 

vary from sample to sample. Even after successfully obtaining a crystal, it might not be 

sufficiently optimal to determine the structure with high definition. Moreover, factors like the 

temperature and pH can affect the folding of the protein so that different structures can be 

obtained (Schiffer et al., 1989). In fact, there are cases where the applicability of this technique is 

extremely hard or unfeasible. Membrane proteins and low affinity complexes fall in this 

categorization since obtaining a crystal requires the stabilization by the membrane bilayer or a 

chemical scaffold to maintain the proteins folded and in close contact altering their natural 

conformation. Also, intrinsically disordered proteins, or very flexible loops present a problem 

since the periodicity required in for solving the phase problem cannot be easily achieved. 

Additionally, in some cases the use of a crystal structure as the representation of the biological 

relevant conformation of the protein in vivo has been challenged and is still under debate 

(Bahadur, Chakrabarti, Rodier, & Janin, 2004; Bahadur, Zacharias, & Janin, 2008; Ofran & Rost, 

2007). 

 

3.2. Nuclear Magnetic Resonance (NMR) 

Another widely used technique to elucidate the 3D structure of a protein is Nuclear Magnetic 

Resonance (NMR). Since the 50’s NMR has evolved from the field of physics to the medical 

application. NMR relies on the use of strong magnetic fields where the nuclei and electrons of 

the atoms absorb the electromagnetic energy and reach a frequency of emission similar to the 
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natural isotopes (typically C13 and H1). However, this signal changes due the surrounding 

environment, thus giving also information of the nearby atoms. The advantage of NMR over the 

crystallography is that protein is in solution, a more natural environment that allows small 

movement of the proteins. It is very useful for determining the motions of proteins, including 

those large portions that do not have specific folding and are called intrinsically disordered. 

NMR experiments are time consuming and expensive, since larger molecules need machines 

with higher and higher frequency magnets. Thus, a major drawback of NMR is the size of the 

sample, since currently structures larger than 35 kDa cannot be determined. Therefore, in 

comparison with X-ray crystallography, very few complete structures of PPIs have been obtained 

by NMR, being especially difficult the case of multi complexes (Marion, 2013; N. Shah, Sattar, 

Benanti, Hollander, & Cheuck, 2006). 

 

3.3. Cryogenic Electron Microscopy (Cryo-EM) 

This technique is based on Electron Microscopy (EM). Standard EM needs to coat the sample 

with some special protector that usually contains metal particles like silver or gold, generating a 

layer with valleys and mountains according to the shape of the sample. Then, a laser is applied to 

the surface produced in the layer, creating the image in slices as it passes like in confocal 

microscopy. However, to enhance the image of minuscule samples, and to prevent degradation, 

and motion, the sample is fixed on a plate at very low temperatures, which is the basis for Cryo-

EM. 

Until recently Cryo-EM was regarded as a low-resolution technique because it presented 

a barrier at 6 Å of resolution and only allowed the inference of huge structures. However, with 

the recent improvement of the sensors, and high-level algorithms for image recognition, the 
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reconstruction of the 3D structure up to 2 Å resolution is possible (Elmlund & Elmlund, 2015). 

Still, many of the structures determined by this method are low-resolution and do not reveal the 

atomic details needed for most biological applications.  

 

3.4. Small angle X-ray scattering 

A recent structure determination development is the small angle X-ray scattering (SAXS). In 

contrast to crystallography, in SAXS the sample is exposed to an X-ray beam of a particular 

wavelength that is moved from 0 to 5 degrees to produce intensity distributions. The generated 

profile contains structural information of the atoms in the protein that can be in three different 

regions: the Guinier region that can be related to the average size of the group of atoms, the 

Fourier regions that contain information about the shape of the atoms in the protein, and the 

Porod region that provides information about the surface occupied in the volume by the atoms 

(Boldon, Laliberte, & Liu, 2015).  The advantage of this method is that proteins can be studied in 

different media and even disordered. Interestingly, for the resolution of protein complexes, this 

technique can be coupled with other computational methods such as molecular dynamics or 

protein docking algorithms (Jimenez-Garcia, Pons, Svergun, Bernado, & Fernandez-Recio, 

2015). 

 

4. Computational modeling of protein-protein interactions 

Despite all the recent advances, the majority of protein complexes are yet to be resolved. 

While there are 3D structures for nearly 50% of the proteins forming the human proteome 

(Muller, MacCallum, & Sternberg, 2002), only a small fraction (<7%) of the complexes forming 

the known human interactome are structurally characterized (Mosca et al., 2013). Thus, an option 
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to fill the structural gap in the human interactome is the use of computational modeling. The first 

attempt would be to construct the 3D structure of a complex from the amino acid sequence based 

on the available structure of complexes formed by similar proteins, using ab initio or homology-

based modeling techniques similar to those used to model individual proteins. In this sense, the 

CASP experiment (Critical Assessment of Techniques for Protein Structure Prediction) 

(Kryshtafovych, Fidelis, & Moult, 2014) aims to assess how accurate is the prediction of current 

modeling programs in blind conditions. One approach is to make fully ab initio predictions from 

the protein sequences, considering the physicochemical properties of the amino acid and the 

energy terms that drive the folding. An alternative approach is to take advantage of the structures 

deposited in the PDB, by comparing gene products of different genes but with similar folding, 

so-called homology modeling. Homology modeling is a powerful tool to determine the 3D 

structure of proteins and complexes with a high degree of similarity. The most successful 

programs in CASP are multithreading software able to use structures deposited in the PDB, 

sequence similarity, and a little ab initio modeling. Winning strategies in the last editions of 

CASP are those of I-Tasser (Y. Zhang, 2008) and QUARK (Y. Zhang, 2014) which are programs 

that integrate fragment search in the PDB with the identification of basic folds that can be used 

as templates, and then fragments can be assembled  into models of proteins.  

 

4.1. Protein-protein docking 

As above described, experimental determination of the structure of a PPI is highly challenging. 

Co-crystallizing two proteins is much more challenging than finding the right conditions for an 

individual protein; NMR has a size limitation, which leaves out mesoscopic protein ensembles, 

and Cryo-EM is still in development. As a consequence, all these experimental procedures can be 
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defined as low-throughput. These limitations create a gap between the number of new PPIs that 

are being discovered with high throughput experiments, and the very few 3D complex structures 

that are being determined. Computational approaches aim to compensate the difficulties in the 

determination of PPIs structures. However, predicting the 3D structure of the complex formed by 

two interacting proteins is a very challenging problem. The issue is similar to the structural 

prediction in individual structures, in the sense that both cases need a description of the 

physicochemical forces that regulate the interactions between the amino acid residues. Features 

such amino acid complementarity, electrostatics, steric clashes, hydrophobic effect, or hydrogen 

bonding, are concepts shared between both problems.  

Unlike the problem of protein folding where the degrees of freedom in which a protein 

sequence can fold makes the space of search extremely large, in complex structure prediction, 

proteins are assumed to have 3D structure. This means that the search space is a six degree 

problem (three translations and three rotations), if we do not consider internal movements (rigid-

body search). Computational tools such as protein-protein docking try to predict ab initio the 

correct orientation of two proteins that interact. Two major technical aspects can be found in the 

majority of docking methods: the generation of a large variety of structural models (sampling) 

and the identification of the correct docking poses with a proper function (scoring) (S. Y. Huang, 

2014) (Figure 3). At the core of several docking protocols resides the idea of geometric 

complementarity in the protein-protein interface. However, in recent years different mechanisms 

have been proposed for protein-protein association: i) A basic mechanism called “lock and key”, 

directly inspired in complementarity, where the unbound monomers have a matching symmetry 

that is energetically favorable for the complex formation. This binding mechanism implies that 

both monomers are rigid, and they fit into one another; ii) The "induced fit" mechanism involves 
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conformational changes after binding of both monomers, before achieving the energetically 

favorable formed complex (Kuser, Cupri, Bleicher, & Polikarpov, 2008); and iii) The 

"conformational selection" mechanism assumes that bound states are naturally samples in the 

individual proteins and the binding partner selects those conformations that are energetically 

favorable for binding (Gianni, Dogan, & Jemth, 2014). 

 

[INSERT FIGURE 3 HERE] 

  

Protein-protein docking aims to predict the structure of a protein complex, inspired on the 

association mechanisms above described. In a real case scenario, the only information available 

is the 3D structure (or a reasonable model) of the unbound proteins. Current sampling strategies 

can be classified in: exhaustive global search, local shape feature matching, and randomized 

search.  

Exhaustive global search over the protein aims to sample the entire possible space around 

a protein using as a probe another protein. In a rigid-body assumption, one needs to account for 

the translation on three axes, and the rotation on three axes, being a six degree of freedom 

problem. Exhaustive search can be achieved by using a grid to convert the surface of a protein 

into a coarse description. Then, Fast Fourier Transform (FFT) calculations (Katchalski-Katzir et 

al., 1992) can be used to reduce the computational cost by simplifying the translational and 

rotational search of the molecules. To completely search the 3D space of both proteins, one of 

the proteins (by convention the biggest one) is fixed and becomes the static molecule, while the 

other one moves in the 3D space through the FFT-based algorithm. The grid representation of the 

molecules allows to distinguish between the inside, the surface, and the outside of each protein. 
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The next step is to obtain a correlation score for all the relative translations between the two 

grids. This correlation score can be calculated on the molecular shape complementarity of the 

grids, by taking only into account the overlapping between surfaces as defined in the protein 

grids. After speeding the correlation calculation by FFT algorithms, a scoring function is applied 

and, this process repeats for each of the rotations of the mobile protein. This performs an 

exhaustive search of the 3D space of the interacting molecules. This method is by far the most 

popular one and has given rise to different programs where the differences are the description of 

the molecules on the grid. Some of these programs are FTDock (Gabb, Jackson, & Sternberg, 

1997), ZDOCK (Chen, Li, & Weng, 2003), SDOCK (C. Zhang & Lai, 2011), PIPER (Kozakov, 

Brenke, Comeau, & Vajda, 2006), MolFit (Redington, 1992). A drawback of this type of 

approach is that it considers both proteins as rigid bodies, therefore, while it is suitable for an 

initial docking approach, it does not take into account the flexibility of both proteins. In fact, 

flexibility is one of the major current challenges for all docking algorithms.  

Another approach is the local shape feature matching, with problem still remaining within 

six degrees of freedom. In this type of approach the molecular surface of both unbound proteins 

is calculated, which helps to identify binding regions. A segmentation algorithm is used to 

identify geometric features, such as convex, concave, and flat zones. Then, the molecular shape 

is represented by a graph in which each node is a representation for a surface region of the 

protein. The next step is to identify matching surfaces, with clique-search based approaches or 

geometric hashing. Programs like Patchdock (Schneidman-Duhovny, Inbar, Nussinov, & 

Wolfson, 2005), DOCK (Kuntz, Blaney, Oatley, Langridge, & Ferrin, 1982), or LZerD 

(Esquivel-Rodriguez, Filos-Gonzalez, Li, & Kihara, 2014) use this type of sampling to produce 

tens of thousands poses in a fast manner. One of the particular problems of this approach is that 
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the generated docking poses often include many atomic clashes, so additional steps of steric 

checking, clustering of solutions to avoid redundancy, or refinement are needed.  

The third approach in sampling is random search. In this case, it is important to define 

several starting points and then drive the sampling towards the optimal positions. Some methods 

such as ICM disco (Fernandez-Recio, Totrov, & Abagyan, 2003), RossetaDock and HADDOCK 

(Dominguez, Boelens, & Bonvin, 2003) use random search as part of their docking strategy. 

Other algorithms are inspired by the swarms observed in the birds or insects, such as the Particle 

Swarm Optimization (PSO) (Clerc, 2010; Krishnanand & Ghose, 2008). For exploring the 

energetic landscape, the best energetic complexes are selected, and they are subsequently used as 

new seeds, with the process iterating until there are no new seeds. During the funnel-like search, 

the process only keeps the energetically favorable conformations and drives the docking proteins 

to the optimal matching pose. This type of algorithms can consider the flexibility of the proteins 

in the final refinement phase, during the minimization, or through normal mode representation of 

the search vectors. These algorithms are very successful to find near-native solutions, but 

computationally expensive. One successful example is the program SwarmDock (Moal & Bates, 

2010).  

 

4.2.  Scoring of docking poses 

Many current protein-protein docking protocols are successful if the interacting proteins undergo 

only small conformational changes upon binding. Even in these conditions, docking algorithms 

generate a large number of incorrect docking poses, so the aim is to place the near-native 

solutions as close to the top as possible within a ranked list. An important part of the success 

depends on the accuracy of the scoring function used to evaluate the docked conformations, 
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which in turns depends on its capabilities to overcome the inaccuracies of the interacting surfaces 

and singling out near-native conformations (Halperin, Ma, Wolfson, & Nussinov, 2002; Vajda & 

Kozakov, 2009). Generally speaking, scoring aims to identify the lowest-energy state among the 

different possible states of a given interaction, and thus, in the case of docking, it should be 

ideally able to describe the energetic aspects of protein-protein association (Moal & Fernandez-

Recio, 2012). For practical predictions, the energy description of a system is estimated by 

approximate functions, and a large variety of scoring functions have been used, defined at 

different resolution levels (atomic or residue) (Tobi & Bahar, 2006). Docking algorithms often 

rely on the geometric complementarity of protein-protein interfaces. The essential zones for 

binding are often pre-formed in the interacting proteins (Levy, 2010), and as a consequence the 

interface of a protein complex could be considered an inherent geometric feature of the protein 

structures. This has made shape complementarity a popular ranking criterion to identify near-

native solutions. Still, many protein-protein interfaces are flat, so complementarity alone is not 

enough to describe the right association mode. This is one of the reasons why a sampling step 

based only on geometry criteria often fails to produce correct models. Indeed, the 

physicochemical nature of the residues has a major role in protein association. Important 

elements include the electrostatic forces with complementary charges helping to provide the 

micro environment needed for the interface formation and the correct orientation of the proteins, 

and the hydrophobic effect with the burial of hydrophobic patches favoring the desolvation of the 

interacting surfaces (Camacho & Vajda, 2001; Camacho, Weng, Vajda, & DeLisi, 1999). Other 

factors are van der Waals attraction and repulsion, and hydrogen bonding. However, scoring 

functions that use energy-based terms to model these effects are not yet accurate enough to 
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reliably select near-native solutions from a pool of decoys, and thus further investigation is 

required to improve the quality of docking predictions.  

Usually sampling and scoring are intimately coupled in a docking procedure. However, in 

many procedures, scoring is performed independently as a post-docking analysis. Basically, this 

approach consists in using a scoring function to re-rank the poses generated by a given docking 

program. This strategy could be considered as a type of refinement of the docking results, but 

using more sophisticated scoring functions than those used during the search phase. The idea 

behind post-docking approaches comes from the reasonable success of sampling algorithms to 

produce at least one near-native solution, also called a hit. In many cases, the in-built scoring 

function during the docking phase cannot be sensitive enough to place the near-native solution 

within the top of a ranked list of possible conformations. The computational problem is 

simplified by detaching the scoring functions from the sampling process, which also adds the 

possibility of combining different scoring functions. Some examples of post-docking methods 

are pyDock (Cheng, Blundell, & Fernandez-Recio, 2007), ZRANK (Pierce & Weng, 2007), 

SIPPER (Pons, Talavera, de la Cruz, Orozco, & Fernandez-Recio, 2011), DARS (Chuang et al., 

2008). Given that docking programs typically report decoys ranked with only one or two scoring 

functions, it remains to be seen whether a given method could further benefit from the 

accumulated knowledge derived from the variety of currently available scoring functions that 

have been reported in the literature, many of which were developed for different modeling 

problems (Tobi, 2010). One example of this is the combination PIE/PIER (Viswanath, Ravikant, 

& Elber, 2013). In some methods, the scoring functions are also combined with the inclusion of 

protein flexibility, like in Fiberdock (Mashiach, Nussinov, & Wolfson, 2010), Firedock 

(Andrusier, Nussinov, & Wolfson, 2007), or RDOCK (L. Li, Chen, & Weng, 2003). 
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Among the different scoring functions applied as post-docking analysis, we note the 

program pyDock (Cheng et al., 2007), which is a well-known protein-protein protocol using the 

FTDock or ZDOCK sampling combined with a highly efficient scoring function. The pyDock 

scoring function is formed by three energy-based terms: Coulombic electrostatics, desolvation 

energy and van der Waals potential. A protein is a charged entity and its surface has to be in 

constant contact with solvent molecules, so considering the electrostatic charges of the proteins 

is the basis of the majority of the scoring functions. But electrostatics alone is not enough to 

place the two interacting proteins in the optimal position, so there is a need for additional terms 

to help to improve the algorithm. Since many of the binding surfaces are flat, and the critical 

contact residues at the interface are often hydrophobic, desolvation plays a major role in creating 

the micro-environment necessary to allow the formation of a strong interaction between proteins. 

On the other side, the van der Waals energy is usually important for the final assembly of two 

given proteins, and it is very dependent on the correct side-chain conformations. When docking 

is rigid-body, this potential is very noisy. The use of all the above mentioned energy descriptors 

makes pyDock a very versatile, non-deterministic, and adaptable docking method.  

 

4.3. Template-based docking 

In addition to ab initio docking, the interface between two interacting proteins could be modeled 

using the existing structural data in the PDB (Sinha, Kundrotas, & Vakser, 2012). Figure 4 shows 

a schematic view of a template-based docking protocol in comparison with ab initio docking. As 

seen in modeling of individual proteins, some evolutionary distant PPIs converged in a structural 

conformation which is optimal for the recognition (interologs) (Matthews et al., 2001). The 

identification of interologs facilitates the study of PPIs. The conservation of the structural 
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conformation of the interface through evolution has also demonstrated a plasticity to changes, 

where only 66% of the interface patch is conserved, leaving the remaining 34% of the interface 

tolerant to residue changes (Faure, Andreani, & Guerois, 2012). However, the interface is also a 

dynamic part of the protein that can change during binding (Hamp & Rost, 2012). In fact, the 

inclusion of evolutionary data in the context of interface predictions seem to give additional 

confidence in the prediction (Hamp & Rost, 2015; Katsonis & Lichtarge, 2014). 

 

[INSERT FIGURE 4 HERE] 

 

It has been recently claimed that there could be available templates for most of the known 

protein complexes (Kundrotas, Zhu, Janin, & Vakser, 2012). However, in the case of remote 

homology, i.e. the twilight zone, the available templates do not provide better modeling than ab 

initio docking (Negroni, Mosca, & Aloy, 2014). 

 

4.4. Interface and hot-spot prediction 

The use of new approaches continues to enable the study of protein interactions from different 

perspectives. The analysis of protein-protein complex structures have aimed to identify different 

properties that can distinguish protein-protein interfaces from the rest of the protein surface 

(Jones & Thornton, 1997). The protein-protein interface is a critical zone for molecular 

recognition, formed by an average of ~28 residues, accounting for around 1000 A2 of the area in 

one protein, and mostly flat. Based on the relative Accessible Surface Area (rASA) of the 

residues in the interface, three different zones could be defined (Levy, 2010), as shown in Figure 

5: i) core, formed by residues that are exposed in the unbound monomers (rASA unbound > 
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25%) and become buried in the complex (rASA complex < 25%), forming the necessary contacts 

for the interaction and contributing largely to the binding energy; ii) rim residues, which are 

exposed in the unbound monomers (rASA unbound > 25%) and, although to a lesser extent, 

remain exposed in the complex (rASA complex > 25%), shielding the core from the solvent and 

providing the micro-environment required for establishing the interaction; and iii) support, 

formed by residues that are largely buried in the unbound monomers (rASA unbound < 25%), 

and become more buried in the complex (rASA complex < 25%), helping to establish the 

interaction.  

 

[INSERT FIGURE 5 HERE] 

 

Interface residues seem to play different roles in disease according to the region they 

belong to. In a recent study, it was found that the core interface residues are more susceptible to 

disease-related mutations, in contrast to those in the rim regions (David & Sternberg, 2015). 

Complementary work showed that about 11% of all known disease-associated SNPs also land 

outside but near to the interface (Gao, Zhou, & Skolnick, 2015). Both studies found that the 

residues that are more vulnerable to disease-related mutations are residues buried in the interface, 

although they seem to differ about the preferred localization of these mutations.  

Alanine scanning (Morrison & Weiss, 2001) can be used to experimentally describe the 

contribution of the different residues to the interaction. The technique consists in performing 

point mutations in the protein sequence for alanine, so that the chemical neutral nature and size 

of the alanine residue mimics the removal of a given residue without perturbing too much the 

secondary structure. Based on this technique, experimental analyses have shown that most of the 
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binding affinity is contributed by just a small number of interface residues, called hot-spots, 

which are often found at the interface core (Clackson & Wells, 1995). The identification of such 

hot-spot residues at protein-protein interfaces in complexes of biomedical interest is relevant for 

drug discovery purposes, as they are suitable targets for small-molecules capable of modulating 

the interaction. However, experimental determination of hot-spots by alanine scanning is costly 

and time consuming. This has fostered the development of many computational approaches that 

aim to complement experimental data. The vast majority of the predictive methods strongly rely 

on the availability of the complex structure. Several energy-based methods have been reported, 

such as ROBETTA (Kortemme & Baker, 2002), FoldX (Schymkowitz et al., 2005), HSPred 

(Lise, Buchan, Pontil, & Jones, 2011) or Molecular Dynamics (MD) with generalized Born 

model in a continuum medium (Moreira, Fernandes, & Ramos, 2007), supported in several MD 

platforms (e.g., AMBER (Salomon-Ferrer, Case, & Walker, 2013) and GROMACS (Pronk et al., 

2013)), which are based on computational alanine scanning of protein-protein interfaces and 

subsequent evaluation of the change in binding affinity.  

Other valuable approaches are based on machine learning. Recently reported methods are 

KFC2 (Zhu & Mitchell, 2011), based on interface solvation, atomic density and plasticity 

features; PCRPi (Assi, Tanaka, Rabbitts, & Fernandez-Fuentes, 2010), combining sequence 

conservation, energy score and contact number information; PPI-Pred (Bradford & Westhead, 

2005), considering surface shape and electrostatics; MINERVA, which weights atomic packing 

density and hydrophobicity (K. I. Cho, Kim, & Lee, 2009) or a neural network-based protocol 

(an adaptation of ISIS), which combines several interface features such as sequence profiles, 

solvent accessibility and evolutionary conservation (Ofran & Rost, 2007). Another well-known 

machine learning-based tool is PocketQuery web-server (Koes & Camacho, 2012), which 
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provides an assortment of metrics (including changes in solvent accessible surface area, energy-

based scores, and sequence conservation) extremely useful for hot-spots, anchor residues and hot 

regions prediction. 

Empirical formula-based methods are also used instead of machine learning algorithms, 

such as MAPPIS (Shulman-Peleg, Shatsky, Nussinov, & Wolfson, 2007), which relies on the 

evolutionary conservation of hot-spots in the interface along different family members; HotSpot 

Wizard (Pavelka, Chovancova, & Damborsky, 2009), based on the integration of structural, 

functional and evolutionary information provided by several databases; DrugScorePPI (Kruger, 

Ignacio Garzon, Chacon, & Gohlke, 2014), derived from experimental alanine scanning results; 

iPRED (Geppert, Hoy, Wessler, & Schneider, 2011), using pairwise potential atom types and 

residue properties; APIS (Xia, Zhao, Song, & Huang, 2010), where the hot-spots identification is 

performed by combining residue physical/biochemical features, such as protrusion index and 

solvent accessibility; HotPoint (Tuncbag, Keskin, & Gursoy, 2010), using occlusion from solvent 

and knowledge-based pair residue potentials; and ECMIS (Shingate, Manoharan, Sukhwal, & 

Sowdhamini, 2014), using a new algorithm combining energetic, evolutionary and structural 

features. 

In spite of their high accuracy in the identification of hot-spot residues, a major limitation 

of all the above cited tools is that they depend on the availability of the protein-protein complex 

structure (or a reliable model). However, for the majority of interactions, the complex structure is 

not available, and as a consequence these tools cannot be used. A very few hot-spot prediction 

methods have been reported that do not need the structure of the complex. One of such methods 

is pyDockNIP (Grosdidier & Fernandez-Recio, 2008), which is based on the analysis of protein-

protein docking models generated with pyDock (Cheng et al., 2007). The method computes the 
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propensity of a given residue to be located at the interface in the 100 lowest-energy rigid body 

docking solutions, and can reach high precision in the prediction of hot-spots, but at the expense 

of low sensitivity. Another method that do not need the complex structure is SIM (Agrawal, 

Helk, & Trout, 2014), which predicts hot-spot residues involved in evolutionarily conserved 

protein-protein interactions.  

All the different methods for computational analysis and prediction of interface and hot-

spot residues have inspired the creation of several databases of computationally predicted hot-

spot residues, such as HotRegion (Cukuroglu et al., 2014), HotSprint (Guney, Tuncbag, Keskin, 

& Gursoy, 2008) and PCRPi-DB (Segura & Fernandez-Fuentes, 2011). 

 

4.5. Assessment of protein-protein docking predictions 

In order to assess the predictive accuracy of a newly developed method, it would be necessary to 

have a reference set widely accepted by the community. In the case of the protein-protein 

docking field, the reference set needs to have the crystal structure of the proteins in a free state 

and that of the complexed or bound state. These structures must have a high resolution, and good 

coverage of the proteins. In addition, the protein set should to be diverse enough, so that it can 

represent as many as the known protein families as possible. The current version of the most 

widely used protein-protein docking benchmark has 231 protein complexes (Vreven et al., 2015). 

Each of those complexes has the crystal structure of the proteins in unbound form and the bound 

form. The protein docking benchmark is divided into subcategories according to the difficulty, 

based on the conformational changes that the proteins undergo from unbound to bound states. 

The most difficult category corresponds to the cases that are the most difficult to predict with 



PROTEIN-PROTEIN DOCKING IN BIOMEDICINE 35 

current protein docking algorithms, mostly due to the large conformational changes of the 

proteins.  

Other benchmarks have been reported to assess different methods for PPI modeling, like 

binding affinity changes upon mutation (Moal & Fernandez-Recio, 2012), scorer sets from 

CAPRI (Lensink & Wodak, 2014), or binding affinity data sets (Kastritis et al., 2011). There are 

other useful databases such as template libraries (DOCKGROUND (Liu, Gao, & Vakser, 2008)), 

structural datasets with similarity between sequences (3D-Complex (Levy et al., 2006)), or 

classification of the domain-domain interaction on protein complexes like SCOPPI (Winter et al., 

2006). 

Protein-protein docking programs are blindly assessed in the Critical Assessment of 

PRedicted Interactions (CAPRI) (Janin et al., 2003), which is an international scientific effort to 

boost the development of different approaches to solve the problem of protein-protein docking. 

After more than fifteen years since the first edition, the CAPRI experiment is now the source of 

standard protein-protein docking sets and quality measurements.  

 

5. Application of computational docking to biomedicine 

5.1. Interpretation of pathological mutations perturbing protein-protein interactions 

As above mentioned, it would be important to estimate the effects of a given gene variant 

at molecular level, which will contribute to understand better the phenotype related to such 

variant, e.g. pathological condition, disease predisposition, altered drug response, etc. as well as 

to rationalize therapeutic intervention, within the context of personalized medicine. For this, it is 

essential to understand the role of the protein interaction networks in a particular biological 

process, and how genetic variants such as non-synonymous single nucleotide polymorphisms 
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(nsSNPs) can affect specific protein-protein interactions (Rual et al., 2005; Wu et al., 2014). 

When a mutation has a strong effect on the folding or stability of a protein, it may disrupt all 

interactions of the mutated protein. However, if the mutation is located at a specific protein-

binding interface, it could affect only some of the interactions of the mutated protein or "edges" 

in a particular network (so called edgetic effect) (David & Sternberg, 2015; Sahni et al., 2015; 

Zanzoni, Soler-Lopez, & Aloy, 2009; Zhong et al., 2009). In each of these situations, the 

observed disorders are ultimately different, as well as their causes, consequences, and therapeutic 

options (Figure 6).  

 

[INSERT FIGURE 6 HERE] 

 

Indeed, large-scale structural analyses show that pathological mutations are enriched on 

the domains that are relevant for protein-protein interactions (Wang et al., 2012) and many 

disease-related mutations are directly involved at protein-protein interfaces (David, Razali, Wass, 

& Sternberg, 2012; David & Sternberg, 2015; Mosca et al., 2015). It has been found that 

missense mutations described in the database OMIM can cause changes in protein-protein 

binding energy (Teng, Madej, Panchenko, & Alexov, 2009). The integration of structural data in 

proteins complexes with interaction network description can help to understand the effect of 

disease-related mutations at molecular level (Fraser, Gross, & Krogan, 2013). Through a 

combination of interaction network analysis, structural data and energetic calculations, many of 

the known pathological mutations involved in cancer and/or RASopathies have been found to 

have a direct effect on the binding affinity in some of the interactions in the RAS/MAPK cascade 

(Kiel & Serrano, 2012, 2014). Moreover, this effect (together with other structural and energetics 
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effects) can provide a first general explanation for some of the differences in phenotype. More 

recently, interaction perturbation profiling of missense mutations across a broad spectrum of 

human disorders suggests that around one third of disease mutations have edgetic effects, that is, 

they only affect to specific interactions of a given protein, as opposed to structural mutations that 

can perturb simultaneously all the interactions (Sahni et al., 2015). Interestingly, mutated 

proteins with edgetic effects have been found to play central roles in the protein network (Sahni 

et al., 2015). This is a direct explanation at molecular level of how dissimilar mutations within 

the same gene may produce distinct interaction profiles and, as a consequence, different disease 

phenotypes (Sahni et al., 2015). 

Understanding the role of pathological mutations in protein-protein interactions can help 

to improve our knowledge of disease at molecular level, which could be very important for 

predicting pathogenicity in missense mutations. The functional prediction of mutations has a 

growing importance in clinical practice, especially when dealing with patient mutations that are 

not annotated or that have unclear diagnosis, prognosis or disease development. In these 

situations, general pathogenicity prediction methods are used, such as PolyPhen-2 (Adzhubei, 

Jordan, & Sunyaev, 2013; Adzhubei et al., 2010), SIFT (Sim et al., 2012), or PON-P2 (Niroula, 

Urolagin, & Vihinen, 2015), which can help physicians to make clinical decisions. These 

methods have good prediction rates in general, but they fail in many specific diseases (Riera, 

Padilla, & de la Cruz, 2016). Indeed, current models cannot correctly describe all the effects that 

amino acid mutations can cause in proteins, such as to what extent the mutation is perturbing the 

interactions to other proteins and biomolecules (Cheng et al., 2012), as above mentioned.  

Thus, for a more complete characterization of a given mutation at molecular level, with 

pathogenicity prediction purposes, it would be needed: i) to structurally characterize the location 
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of the mutation with respect to protein-binding interfaces, and ii) to characterize the energetic 

effect on the binding affinity of the involved interactions. However, one of the big limitations in 

the field is the small number of protein-protein complexes with their 3D structure deposited in 

the Protein Data Bank (PDB) (Berman et al., 2002). The structures of weak or transient 

complexes, dynamic assemblies, or multi-protein associations are particularly difficult to 

determine by crystallography or NMR, as above mentioned. As a consequence, there is a 

growing gap between the number of protein complexes with available experimental structure and 

the number of interactions that are being discovered. While around half of the non-redundant 

proteins in human have available structure (or a reliable model), less than 7% of the estimated 

number of protein-protein interactions in human have available structure (Mosca et al., 2013). In 

this context, computational docking methods (Chen et al., 2003; Cheng et al., 2007; Mashiach et 

al., 2010; C. Zhang & Lai, 2011) are already being used to model the structure of protein-protein 

complexes of biomedical interest, so in principle, they could be very useful for the structural 

characterization of entire interactomes (Mosca, Pons, Fernandez-Recio, & Aloy, 2009). However, 

for many cases, structural prediction by docking is not accurate enough, so its application at 

interactomic scale is not yet practical. More accurate is the prediction of interface residues, 

usually based on sequence conservation or physicochemical properties, which can be more 

useful for large-scale analyses. But not all the interface residues contribute equally to binding 

affinity. Thus, it is important to identify the so-called "hot-spot" residues, which are those that 

contribute the most to the binding energy (Clackson & Wells, 1995). Previous work showed that 

these interface hot-spot residues can be identified based on docking calculations, even if the 

structure of the protein-protein complex is not available (Grosdidier & Fernandez-Recio, 2008). 
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The combination of structural information and docking-based modeling will be essential for the 

interpretation of pathological mutations at interactomic level. 

 

5.2. Chemical perturbation of disease-related protein-protein interactions for drug 

discovery 

As above mentioned, pathological mutations can significantly perturb specific protein-protein 

interactions, either by disrupting these interactions or by stabilizing them (Rolland et al., 2014). 

In either case, such perturbed interactions constitute an attractive target for therapeutic 

intervention. Indeed, the identification of modulators of specific protein-protein interactions (e.g. 

PPI inhibitors) is the next milestone in the drug discovery field (Wells & McClendon, 2007). 

Several examples of PPI peptide inhibitors have been reported based on mimetic peptides that 

replace the interaction surface of one of the proteins. But the lower bioavailability of peptides 

makes them to be not very attractive for therapeutic purposes. Therefore, it is necessary to apply 

structure-based approaches to identify small molecules capable of inhibiting PPI. However, 

protein–protein interactions differ from traditional drug target proteins in that: i) protein-protein 

interfaces are large and involve more atomic interactions and hence higher affinity as compared 

to protein-ligand interfaces; ii) protein-protein interfaces do not have clear binding pockets as in 

the case of traditional protein drug targets; and iii) most often, the location of the interface and 

the binding mode of the targeted interaction is not known. All of the above considerations pose 

clear difficulties to apply standard drug discovery procedures.  

The first difficulty is that protein-protein interfaces (PPIs) are much larger (~1500-3000 

Å2) than protein-small molecule interfaces (~300-1000 Å2), which makes it difficult to find small 

molecules to disrupt PPIs. We have mentioned above the existence of hot-spot residues, which 
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are important in the context of drug discovery because targeting them is the only way for a small-

molecule to compete with a protein-protein interaction. Although there are available 

experimental data about hot-spot residues for a few complexes, it is necessary to complement the 

costly experimental procedures with computational approaches. 

The second difficulty is the absence of natural pockets in protein-protein interfaces. It is 

necessary to describe the possible fluctuations of the interacting molecules in order to find 

transient pockets that can be useful for drug discovery (Eyrisch & Helms, 2007). 

Last but not less important is the absence of structural information for the majority of 

protein-protein interactions. When there is no available structure for the complex, it is necessary 

to know at least the location of the protein-protein interface is in order to narrow the search for 

transient pockets suitable for small-molecule docking (Figure 7). 

 

[INSERT FIGURE 7 HERE] 

   

In order to help solving all the above mentioned difficulties to identify modulators of 

protein-protein interactions, computational approaches such as protein-protein docking and 

molecular dynamics are becoming increasingly important tools in drug discovery. Protein-protein 

docking aims to predict the structure of a protein-protein complex starting from the 3-D 

coordinates of the unbound structures. As mentioned in previous sections, the docking program 

pyDock (Cheng et al., 2007) can be applied to predict protein interfaces and to identify the most 

relevant residues in protein-protein interactions (hot-spots) when there is no structural 

information about the protein-protein complex (Grosdidier & Fernandez-Recio, 2008, 2012). 

Molecular dynamics (MD) is another computational approach that can be also applied to find 
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possible transient pockets within protein-protein interfaces, together with computational tools 

capable of identifying suitable cavities in the protein surfaces, such as Fpocket (Le Guilloux, 

Schmidtke, & Tuffery, 2009), QsiteFinder (Laurie & Jackson, 2005), PASS (Brady & Stouten, 

2000)  and LigSite (Hendlich, Rippmann, & Barnickel, 1997). 
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FIGURE LEGENDS 

 

Figure 1. Study of genetic variants: reductionist vs. systemic approach. A genetic variant like 

a nsSNP can modify the structure and/or dynamics of a protein at molecular level, which in turn 

can alter the interaction network of such protein. The impact in phenotype can be studied just at 

molecular level (reductionist approach) but very often the phenotypic observation is more linked 

with the effects at higher levels of organization, such as interaction network or cell scales 

(systemic approach). 

 

Figure 2. Interaction network of the proteins involved in the RAS-MAPK cascade. In red, 

proteins hosting mutations associated with cancer or RASopathies. They are part of a larger 

interaction network (generated with Interactome3D; http://interactome3d.irbbarcelona.org/), 

involving many more proteins represented here as blue circles. 

 

Figure 3. Basic scheme of a protein-protein docking method. From the coordinates of two 

interacting proteins, computational docking generates thousands of possible complex models, 

ideally containing near-native models. A scoring scheme based on energetic terms or empirical 

potentials will try to identify such correct models. 

 

Figure 4.  Comparison of ab initio and template-based docking approaches. Ab initio 

docking aims to build a protein-protein complex from the structures of the individual interacting 

proteins, using computational sampling and scoring based on energy considerations or empirical 
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parameters. In template-based docking, the protein-protein complex structure is built based on a 

template complex structure in which the components are homologous to the individual 

interacting proteins.  

 

Figure 5. Different types of zones in a protein-protein interface. In a protein-protein complex 

structure, the interface residues can be defined as those that become more buried upon binding. 

Such interface residues can be classified in: i) core, residues exposed in the unbound state and 

buried in the complex; ii) rim, residues exposed in the unbound state and slightly less exposed in 

the complex; and iii) support, residues buried in the unbound state and more buried in the 

complex. 

 

Figure 6. New advances in the interpretation of biological mutational data: from molecules 

to networks. 

Personalized medicine aims to understand the effect of genetic variants on the development and 

onset of pathological conditions and on the response to existing treatments, so that therapeutic 

intervention can be optimally selected for each patient given his genetic profile. In this context, 

disease needs to be described at all levels, from molecular to system, for which understanding 

the interaction networks involved in a given pathology is a key step. Computational methods like 

protein-protein docking are useful tools for characterizing protein-protein interfaces to localize 

pathological variants and predict its effects on binding affinity (left panel). The effect of this 

molecular perturbation on the interaction networks (edgetic effect) can lead to the development 

of more accurate personalized therapies and the developments of new drugs (right panel). 
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Figure 7. Inhibiting protein-protein interactions with small molecules. Two examples of 

protein-protein interactions that are known to be inhibited by small molecules: IL2R/IL2 

complex (left) and XIAP-Bir3/CASPASE9 complex (right). The crystallographic structures of 

the proteins bound to the corresponding small-molecule inhibitors are shown (PDB codes 1PY2 

and 1TFT, respectively), with details of the protein-inhibitor interface (cyan surface). For 

comparison, the orientation of the partner protein in the corresponding protein-protein complex 

structure is shown (orange ribbon; PDB codes 1Z92 and 1NW9, respectively). In both cases, the 

small molecule clearly overlaps with part of the protein-protein interface (blue surface), and 

therefore disrupt the interaction. Inhibitor cavities are not fully open in the unbound protein 

(bottom panel; PDB codes 1M47 and 1F9X, respectively), which makes them highly difficult to 

identify.   
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