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Spatial behavior in high order partial

di�erential equations

M. C. Leseduarte�, R. Quintanilla

In this paper we study the spatial behavior of solutions to the equations obtained by taking formal Taylor approximations

to the heat conduction dual-phase-lag and three-phase-lag theories, reecting Saint-Venant's principle. In a recent paper,

two families of cases for high order partial di�erential equations were studied. Here we investigate a third family of cases

which corresponds to the fact that a certain condition on the time derivative must be satis�ed. We also study the spatial

behavior of a thermoelastic problem. We obtain a Phragm�en-Lindel�of alternative for the solutions in both cases. The main

tool to handle these problems is the use of an exponentially weighted Poincar�e inequality. Copyright c 2009 John Wiley

& Sons, Ltd.

Keywords: models in heat conduction; spatial stability; Saint-Venant's principle

1. Introduction

It is well known that the juxtaposition of the Fourier constitutive equation of heat ux vector with the classical energy equation

� div q(x; t) = c�t(x; t); c > 0; (1)

brings about paradoxical behavior on the solutions. In particular, it has been shown that the perturbations at one point of a solid

can be observed in any other point of it instantly, however distant. This is a drawback of the model and to overcome it and,

at the same times, to satisfy the principle of causality, several modi�cations of the model have been suggested recently (see,

for example, the reviews [1, 2, 3]). These modi�cations gave rise to new thermoelastic theories which are still being the aim of

study of mathematicians, physicists and engineers. The applicability of these alternative thermoelastic theories to the real world

situations has been analised in many works, including the books of Ignaczak et al. [4], Straughan [5] and Wang et al. [6].

One of these modi�cations was suggested in 1995 by Tzou [7]. He proposed a theory where the thermal ux and the gradient

of temperature have a delay. The constitutive equation is:

q(x; t + �q) = �kr�(x; t + ��); k > 0: (2)

Here q is the heat ux vector, � is the temperature and �q; �� are the delay parameters which are assumed to be positive. This

equation says that the temperature gradient established across a material volume at the position x at time t + �� results in a

heat ux to ow at a di�erent instant of time t + �q. The delays are understood in terms of the microstructure of the material.
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Choudhuri [8] proposed an extension of Tzou's equation. His constitutive equation for the heat ux vector is

q(x; t + �q) = � (kr�(x; t + ��) + k�r�(x; t + ��)) : (3)

The new variable � is the thermal displacement, and it satis�es �t = �, k� is the rate of thermal conductivity, a new parameter

which is typical in the type II and III thermoelastic theories proposed by Green and Naghdi [9, 10], and �� is another delay

parameter which is also assumed to be positive.

These two theories are strongly based on an intuitive point of view, but there are no a priori thermomechanical foundations

for them. Furthermore, it can be proved that, when the proposed constitutive equations are combined with the classical energy

equation (1), a sequence of solutions of the form

�n(x; t) = exp(!nt)�n(x)

can be found with the real part of !n tending to in�nity [11]. Therefore continuous dependence on initial data cannot be

obtained, and the associated mathematical problem is ill posed in the sense of Hadamard. This kind of result is not expected a

priori. For this reason a big interest has been developed to understand di�erent formal Taylor approximations to these equations

[12, 13, 14, 15, 16, 17, 18, 19]. In fact, the literature concerning these topics is increasing quickly because many researchers are

interested in these proposals. These new theories allow to obtain stability of solutions and the well-posedness of the problems,

provided that certain conditions on the parameters hold.

In a couple of recent papers Quintanilla [20, 21] proposed a modi�cation of the theories of Tzou and Choudhuri by means of

the energy equation usual for the two temperature theories (see [22, 23, 24, 25]):

� div q(x; t) = c�t(x; t); c > 0; � = � � a��; a > 0: (4)

In this case, the associated mathematical problem is well posed. It is also interesting to consider di�erent formal Taylor

approximations to the equations proposed at [26, 27]; in this way, we obtain models which are currently under study (see

for instance [28, 29, 30, 31]).

We consider general Taylor approximations to the dual-phase-lag or three-phase-lag theories. Plugging these into the energy

equation (1), we obtain the heat equationy:

a0� + a1�
(1) + a2�

(2) + � � �+ an�
(n) = b0�� + b1��

(1) + � � �+ bm��
(m): (5)

where a0; : : : ; an; b0; : : : ; bm are constants. It is worth noting that the case n = m arises naturally for the Taylor approximations

to the theories proposed by Quintanilla [20, 21].

The study of the spatial behavior for partial di�erential equations is related to Saint-Venant's principle. This topic has been

investigated from the mathematical and thermomechanical viewpoints. Spatial decay estimates have been obtained for elliptic

[32], parabolic [33, 34], hyperbolic [35] equations and/or combinations of them [36] in the last years. The authors try to

describe how the perturbations on a part of the boundary are damped far away from the place where they were applied. From

a mathematical viewpoint, it is usual to consider a semi-in�nite cylinder whose �nite end is perturbed and to study how the

solutions decay when the large spatial variable tends to in�nity. From a mathematical perspective, the spatial behavior of the

solutions is an important issue to be studied [37, 38, 39, 40, 41, 42]. It is worth noting that the uniqueness of solutions cannot

be expected in this context. In fact, the problem is ill posed in the sense of Hadamard and only a Phragm�en-Lindel�of alternative

for the solutions can be obtained.

Although the spatial behavior for dual-phase-lag or three-phase-lag models have been studied in several cases [43, 44, 26, 27],

only equations up to fourth order with respect to the time variable were analysed. Arguments for a general type of higher-order

equations have been restricted to the case n �m = 1; 2 [45]. In this paper, we will obtain spatial estimates for solutions of higher

order equations when m � n. In the second part of the paper we consider the particular case n = m + 1 in the thermoelastic

yHere and from now on, g(k) denotes the k-th derivative of the function g with respect to time.
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context and we also obtain spatial decay estimates. It is worth recalling that the existence of solutions for the thermoelastic

problem we consider here has been obtained by means of the semigroup approach [46].

The plain of the paper is as follows. In Section 2 we propose the basic problems we are going to work with and we recall

the exponentially weighted Poincar�e inequality because it will be a fundamental tool in our approach. We obtain a Phragm�en-

Lindel�of alternative in Section 3 for a certain heat equation. Later, in Section 4 we describe how to obtain an upper bound for

the amplitude term when the solution decays in the spatial variable. In Section 5 we consider a thermoelastic problem and we

obtain again a Phragm�en-Lindel�of alternative for the solutions. Section 6 is devoted to compute the corresponding upper bound

for the amplitude term in terms of the boundary data when the solution decays. Last section exposes the conclusions of the

work.

2. Preliminaries

In this section we de�ne the two problems that we will study, and we recall a fundamental tool that we use in our approach:

the exponentially weighted Poincar�e inequality. The spatial domain is the semi-in�nite cylinder R = [0;1)�D, where D is a

bounded domain in the two-dimensional Euclidean space, being smooth enough to guarantee the use of the divergence theorem.

The �rst problem is de�ned by the equation

a0� + a1�
(1) + a2�

(2) + � � �+ am�
(m) = b0�� + b1��

(1) + � � �+ bm��
(m); (6)

where m is an arbitrary positive natural number, bm is strictly positive and am � 0.

We do not consider the existence of solutions question, but we will assume the existence of solutions as well as the necessary

regularity required to carry out our calculations.

In addition to the di�erential equation (6), we impose the initial conditions

�(x; 0) = �(1)(x; 0) = � � � = �(m�1)(x; 0) = 0; x 2 R; (7)

and the boundary conditions

�(x1; x2; x3; t) = 0; (x2; x3) 2 @D; t � 0; (8)

�(0; x2; x3; t) = f (x2; x3; t); (x2; x3) 2 D; t � 0: (9)

To assure the compatibility, we naturally assume

f (x2; x3; t) = 0; (x2; x3) 2 @D; t � 0:

It is worth covering the case where the parameters can be negative. In this sense we allow the parameters ai (i = 0; : : : ; m � 1)

and bj (j = 0; : : : ; m � 1) to be positive, zero or negative. But, we want to point out that our results are new even if all the

coe�cients are positive.

The second problem we study in this paper comes from a thermoelastic situation. The system of equations that we obtain,

following the arguments used by Chandrasekharaiah [1], p.723, are

��ui = (Ci jkluk;l � �i j�);j ; (10)

c
d

dt
(a0� + � � �+ am�

(m)) + �i j(a0vi ;j + � � �+ amv
(m)
i ;j ) = (b0i j�;i + b1i j�

(1)
;i + � � �+ bmij �

(m)
;i );j : (11)

Here Ci jkl is the elasticity tensor satisfying the symmetry Ci jkl = Ckl i j , � is the mass density, �i j is the coupling tensor, the tensors

bli j are symmetric for l = 0; :::; m, the constant c is the thermal capacity, ui is the displacement and vi = _ui .

Math. Meth. Appl. Sci. 2009, 00 1{14 Copyright c 2009 John Wiley & Sons, Ltd. 3

Prepared using mmaauth.cls



Mathematical

Methods in the

Applied Sciences

To set the problem we also need to impose initial and boundary conditions. Apart from conditions (7), (8) and (9), we will

impose

ui(x; 0) = _ui(x; 0) = �(m)(x; 0) = 0; x 2 R; (12)

and the boundary conditions

ui(x1; x2; x3; t) = 0; (x2; x3) 2 @D; t � 0; (13)

ui(0; x2; x3; t) = gi(x2; x3; t); (x2; x3) 2 D; t � 0: (14)

To assure the compatibility, we also assume

gi(x2; x3; t) = 0; (x2; x3) 2 @D; t � 0:

In all this paper Greek sub-indices are restricted to the values 2 and 3.

As we said before, a relevant tool in our analysis is the following result (see the appendix of [47] for a proof), the exponentially

weighted Poincar�e inequality:

Assume that f : [0; t]! R is di�erentiable such that f (0) = 0. Then the following inequality

∫ t

0

exp(�2!s)f 2(s) ds �
4t2

�2 + 4t2!2

∫ t

0

exp(�2!s)
(
f (1)(s)

)2

ds; (15)

holds, for every ! > 0. We note that '(t) =
4t2

�2 + 4t2!2
is a growing function, hence

∫ t

0

exp(�2!s)f 2(s) ds � !�2

∫ t

0

exp(�2!s)
(
f (1)(s)

)2

ds: (16)

As a consequence, we obtain for n > k + 1 and for f satisfying f (k)(0) = � � � = f (n�1)(0) = 0, that the estimate∫ t

0

exp(�2!s)jf (k)(s)j2 ds � !�2(n�k�1)

∫ t

0

exp(�2!s)jf (n�1)(s)j2ds; (17)

holds. These inequalities will allow us to deal with lower-order time derivatives in a comparison with higher-order terms.

3. Spatial estimates

In this section we obtain an alternative of Phragm�en-Lindel�of type for the solutions of the problem determined by equation (6),

initial conditions (7) and boundary conditions (8), (9).

The function, the properties of which will describe the spatial behavior, is given, for z � 0, t � 0, by

G!(z; t) = �

∫ t

0

∫
D(z)

exp(�2!s)
(
b0�;1 + b1�

(1)
;1 + � � �+ bm�

(m)
;1

)
�(m)dads; (18)

where ! is a positive constant to be chosen later.

Using the divergence theorem we see that

G!(z + h; t)� G!(z; t)

= �

∫ t

0

∫ z+h

z

∫
D

exp(�2!s)
[
Q+ amj�

(m)j2 + bmjr�
(m)j2)

]
dvds;

(19)

where

Q := (b0r� + b1r�
(1) + � � �+ bm�1r�

(m�1))r�(m) + (a0� + a1�
(1) + � � �+ am�1�

(m�1))�(m): (20)

4 Copyright c 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009, 00 1{14
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Thus, we get

@G!

@z
(z; t) = �

∫ t

0

∫
D

exp(�2!s)
[
Q+ amj�

(m)j2 + bmjr�
(m)j2)

]
da ds: (21)

To control the function Q we can use a similar argument to the one proposed in [45]. If we consider the exponentially weighted

Poincar�e inequality, we have that∣∣∣∣∫ t

0

∫
D

exp(�2!s)bkr�
(k)r�(m)dads

∣∣∣∣
� jbk j

(∫ t

0

∫
D

exp(�2!s)jr�(k)j2dads

)1=2 (∫ t

0

∫
D

exp(�2!s)jr�(m)j2dads

)1=2

� jbk jb
�1
m !k�m

∫ t

0

∫
D

exp(�2!s)bmjr�
(m)j2dads;

(22)

for k = 0 : : : m � 1. In a similar way we see that∣∣∣∣∫ t

0

∫
D

exp(�2!s)ak�
(k)�(m)dads

∣∣∣∣ � ��11 jak j!
k�m

∫ t

0

∫
D

exp(�2!s)jr�(m)j2dads; (23)

for k = 0 : : : m � 1. Here, �1 is the �rst eigenvalue of the negative Laplace operator �� with Dirichlet boundary conditions

(clamped membrane) in the domain D. It arises in estimating the integral of the square of �(m) by means of the integral of the

square of r�(m).

Therefore, we can obtain the existence of two polynomials Q1 and Q2 satisfying Qi(0) = 0, i = 1; 2 such that

@G!

@z
(z; t) � �

∫ t

0

∫
D

exp(�2!s)
[
(bm � ��11 Q1(!

�1)�Q2(!
�1))jr�(m)j2)

]
da ds: (24)

We can see that, for ! large enough, the estimate

@G!

@z
� �

∫ t

0

∫
D

exp(�2!s)(bm � �)jr�(m)j2dads (25)

holds. In particular, when � = bm=2, we obtain

@G!

@z
� �

1

2

∫ t

0

∫
D

exp(�2!s)bmjr�
(m)j2da ds � 0: (26)

We want to evaluate now the absolute value of G! in terms of its spatial derivative. With a su�ciently small �, obtained for

! large enough, we have that

∣∣∣∣∫ t

0

∫
D

exp(�2!s)bk�
(k)
;1 �(m)dads

∣∣∣∣ �jbk j(∫ t

0

∫
D

exp(�2!s)j�
(k)
;1 j

2dads

)1=2 (∫ t

0

∫
D

exp(�2!s)j�(m)j2dads

)1=2

�jbk j(bm � �)�1�
�1=2
1 !k�m

(∫ t

0

∫
D

exp(�2!s)(bm � �)�
(m)
;1 �

(m)
;1 dads

)1=2

�

(∫ t

0

∫
D

exp(�2!s)(bm � �)�(m)
;� �(m)

;� dads

)1=2

�jbk j(2(bm � �))�1�
�1=2
1 !k�m

(∫ t

0

∫
D

exp(�2!s)(bm � �)�
(m)
;i �

(m)
;i dads

)
:

(27)

Therefore, we can obtain positive constants

Dk := jbk j(4(bm � �)2�1)
�1=2; 
! :=

m∑
k=0

Dk!
(k�m); (28)

Math. Meth. Appl. Sci. 2009, 00 1{14 Copyright c 2009 John Wiley & Sons, Ltd. 5
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such that

jG!j � �
!
@G!

@z
: (29)

This inequality is well known in the study of spatial estimates. It implies that

G! � �
!
@G!

@z
(30)

and

� G! � �
!
@G!

@z
: (31)

For �xed t, we distinguish two cases:

(I) If there exists z0 � 0 such that G!(z0; t) < 0, it follows that G!(z; t) < 0 for every z � z0. From (31) we conclude that

� G!(z; t) � �G!(z0; t) exp

(
z � z0

!

)
; z � z0: (32)

(II) Otherwise, we see that G!(z; t) � 0 for every z � 0. From (30), it follows the spatial decay estimate

G!(z; t) � G!(0; t) exp

(
�

z


!

)
; z � 0: (33)

We can summarize this result in the following way:

Theorem Let � be a solution of the initial-boundary-value problem (6){(9). Then, for ! large enough, either the function

�G!(z; t) satis�es the asymptotic condition (32), or the function

0 � G!(z; t) =

∫ t

0

∫
R(z)

exp(�2!s)
[
Q+ amj�

(m)j2 + bmjr�
(m)j2)

]
dv ds (34)

satis�es the decay estimate (33).

Remark It is worth noting that when ! increases, the parameter (
!)
�1 tends to 2(�1)

1=2. If am is strictly positive we can

improve the value of the constants Dk and therefore the value of 
!. At the same time we note that the proposed analysis can

be adapted for am negative whenever bm + am�
�1
1 is positive.

4. The amplitude term

In this section we will describe how to obtain an upper bound for the amplitude term obtained in the previous section, G!(0; t),

in terms of the boundary data. To make the calculations easier we assume in this section that am is also strictly positive, but we

want to point out that this is not a relevant assumption, because the analysis can be carried out, mutatis mutandis, for am = 0.

From now on, we restrict our attention to solutions satisfying the decay estimate (33) where ! is large enough to guarantee

that

G!(z; t) �
1

2

∫ t

0

∫
R(z)

exp(�2!s)
[
amj�

(m)j2 + bmjr�
(m)j2)

]
dv ds: (35)

We denote by � = �(x; t) a function which tends uniformly to zero, rapidly, as x1 !1, and satis�es the same boundary conditions

as �. Typically, � is choosen as

�(x; t) := exp(�dx1)f (x2; x3; t);

where d is a positive constant.

Then we have

G!(0; t) = �

∫ t

0

∫
D(0)

exp(�2!s)(b0�;1 + � � �+ bm�
(m)
;1 )�(m)dads: (36)

6 Copyright c 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009, 00 1{14
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After the use of the boundary, asymptotic and the initial conditions, and the divergence theorem, we see that

G!(0; t) =

∫ t

0

∫
R

exp(�2!s)
[
b0r� + � � �+ bmr�

(m)
]
r�(m)dvds +

∫ t

0

∫
R

exp(�2!s)
[
a0� + � � �+ am�

(m)
]
�(m)dvds: (37)

We obtain

G!(0; t) = I1 + I2; (38)

where

I1 :=

∫ t

0

∫
R

exp(�2!s)
[
b0r� + � � �+ bmr�

(m)
]
r�(m)dvds; (39)

I2 :=

∫ t

0

∫
R

exp(�2!s)
[
a0� + � � �+ am�

(m)
]
�(m)dv ds: (40)

By choosing ! large enough, we can take �i ; i = 1; 2 as small as we want and such that

I1 � �1

∫ t

0

∫
R

exp(�2!s)bmjr�
(m)j2dvds + C�

1

∫ t

0

∫
R

exp(�2!s)jr�(m)j2dvds; (41)

I2 � �2

∫ t

0

∫
R

exp(�2!s)amj�
(m)j2dvds + C�

2

∫ t

0

∫
R

exp(�2!s)j�(m)j2dvds: (42)

Here C�
i ; i = 1; 2, are two constants which can be computed in terms of the data of the problem, ! and �i . Taking into account

(35), it then follows that

G!(0; t) � 2(�1 + �2)G!(0; t) + C�
1J1 + C�

2J2; (43)

where

J1 :=

∫ t

0

∫
R

exp(�2!s)jr�(m)j2dvds; (44)

J2 :=

∫ t

0

∫
R

exp(�2!s)j�(m)j2dvds: (45)

If we select �i such that �1 + �2 < 1=4, we obtain that

G!(0; t) � 2(C�
1J1 + C�

2J2): (46)

To obtain a precise upper bound for the Ji , we recall the choice of the function �, given previously, and we note that

�(m) = exp(�dx1)f
(m)(x2; x3; t); (47)

and

r�(m) = exp(�dx1)
(
�df (m)(x2; x3; t); f

(m)
;2 (x2; x3; t); f

(m)
;3 (x2; x3; t)

)
: (48)

We conclude that

J1 �

∫ t

0

∫
D(0)

(
d

2
jf (m)j2 +

1

2d
(jf

(m)
;2 j2 + jf

(m)
;3 j2)

)
dads (49)

and

J2 �
1

2d

∫ t

0

∫
D(0)

jf (m)j2dads: (50)

From the previous inequalities, we �nally obtain

G!(0; t) �

(
dC�

1 +
C�
2

d

)∫ t

0

∫
D(0)

∣∣∣f (m)
∣∣∣2 dads + C�

1

d

∫ t

0

∫
D(0)

f (m)
;� f (m)

;� dads: (51)

We remark that one could optimize the right-hand side by taking a suitable value of the parameter d , but it does not seem to

be an easy task.
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5. A thermoelastic system

In this section we investigate the spatial behavior of the solutions of the problem determined by the system (10)-(11) with the

initial conditions (7), (12) and the boundary conditions (8), (9), (13) and (14).

In this section we assume that � is a positive constant and that the elasticity tensor is positive de�nite, that is, there exists a

positive constant M1 such that

Ci jkl�i j�kl � M1�i j�i j ; for every tensor (�i j): (52)

We also assume that am is a positive constant and that the tensor b
(m)
i j is positive de�nite, that is, there exists a positive constant

b such that

bmij �i�j � b�i�i ; for every tensor (�i): (53)

We note that the existence of solutions to the problem proposed here could be obtained by following the arguments proposed

in [46].

If we introduce the notation

~g = a0g + � � �+ amg
(m); (54)

therefore, equation (10) implies

��~ui = (Ci jkl ~uk;l � �i j
~�);j : (55)

We now de�ne the function which will describe the spatial behavior. It is

G!(z; t) = �

∫ t

0

∫
D(z)

exp(�2!s)(L1 + L2)dads; (56)

where

L1 = (Ci1kl ~uk;l � �i1
~�) _~ui ; (57)

and

L2 = (b0i1�;i + b1i1�
(1)
;i + � � �+ bmi1�

(m)
;i )~�; (58)

again ! is a positive constant to be chosen later. After the use of the divergence theorem we see that

G!(z + h; t)� G!(z; t) =�
exp(�2!t)

2

∫ z+h

z

∫
D

(
c(~�)2 + � _~ui _~ui + Ci jkl ~ui ;j ~uk;l

)
dv

� !

∫ t

0

∫ z+h

z

∫
D

exp(�2!s)
(
c(~�)2 + � _~ui _~ui + Ci jkl ~ui ;j ~uk;l

)
dvds

�

∫ t

0

∫ z+h

z

∫
D

exp(�2!s)
(
Q� + bmij am�

(m)
;i �

(m)
;j

)
dvds;

(59)

where

Q� = a0b
0
i j�;i�;j + a1b

0
i j�;i�

(1)
;j + � � �+ amb

0
i j�;i�

(m)
;j

+ a0b
1
i j�

(1)
;i �;j + a1b

1
i j�

(1)
;i �

(1)
;j + � � �+ amb

1
i j�

(1)
;i �

(m)
;j

: : :

+ a0b
m
ij �

(m)
;i �;j + a1b

m
ij �

(m)
;i �

(1)
;j + � � �+ am�1b

m
ij �

(m)
;i �

(m�1)
;j :

(60)

Thus, we get

@G!

@z
(z; t) =�

exp(�2!t)

2

∫
D

(
c(~�)2 + � _~ui _~ui + Ci jkl ~ui ;j ~uk;l

)
da

� !

∫ t

0

∫
D

exp(�2!s)
(
c(~�)2 + � _~ui _~ui + Ci jkl ~ui ;j ~uk;l

)
dads �

∫ t

0

∫
D

exp(�2!s)
(
Q� + bmij am�

(m)
;i �

(m)
;j

)
dads:

(61)
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A similar argument to the one proposed in Section 3 shows that∣∣∣∣∫ t

0

∫
D

exp(�2!s)alb
k
ij�

(k)
;i �

(l)
;j dads

∣∣∣∣ � Nkl!
k+l�2m

∫ t

0

∫
D

exp(�2!s)bmij am�
(m)
;i �

(m)
;j dads; (62)

where Nkl are calculable constants depending on the constitutive parameters and tensors, but independent of the time and the

parameter ! and whenever k + l < 2m. We obtain the existence of a polynomial Q�
1, vanishing at zero, such that

@G!

@z
(z; t) ��

exp(�2!t)

2

∫
D

(
c(~�)2 + � _~ui _~ui + Ci jkl ~ui ;j ~uk;l

)
da

� !

∫ t

0

∫
D

exp(�2!s)
(
c(~�)2 + � _~ui _~ui + Ci jkl ~ui ;j ~uk;l

)
dads

�

∫ t

0

∫
D

exp(�2!s)
(
bmij am(1�Q�

1(!
�1))�

(m)
;i �

(m)
;j

)
dvds:

(63)

Again, we want to evaluate the absolute value of G! by means of its spatial derivative. We note that∣∣∣∣∫ t

0

∫
D(z)

exp(�2!s)L1(a; s)dads

∣∣∣∣ � K1

∫ t

0

∫
D(z)

exp(�2!s)
(
� _~ui _~ui + Ci jkl ~ui ;j ~uk;l + c(~�)2

)
dads; (64)

and ∣∣∣∣∫ t

0

∫
D(z)

exp(�2!s)L2(a; s)dads

∣∣∣∣ � K2

∫ t

0

∫
D(z)

exp(�2!s)
(
amb

m
ij (1� �)�

(m)
;i �

(m)
;j + c(~�)2

)
dads; (65)

with � su�ciently small, obtained for su�ciently large !. Here, K1 and K2 can be determined in terms of the constitutive tensors

and �, but independent of the time. By taking ! large enough we can determine a positive constant K� (which depends on !)

such that

jG!j � �K
� @G!

@z
: (66)

It implies that

G! � �K
� @G!

@z
; (67)

and

� G! � �K
� @G!

@z
: (68)

For �xed t, we distinguish two cases:

(I) If there exists z0 � 0 such that G!(z0; t) < 0, it follows that G!(z; t) < 0 for every z � z0. We conclude that

� G!(z; t) � �G!(z0; t) exp

(
z � z0
K�

)
; z � z0: (69)

(II) Otherwise, we see that G!(z; t) � 0 for every z � 0. It then follows the spatial decay estimate

G!(z; t) � G!(0; t) exp
(
�

z

K�

)
; z � 0: (70)

If the estimate (70) holds, the function G!(z; t) can be written as

G!(z; t) =
exp(�2!t)

2

∫
R(z)

(
c(~�)2 + � _~ui _~ui + Ci jkl ~ui ;j ~uk;l

)
dv

+ !

∫ t

0

∫
R(z)

exp(�2!s)
(
c(~�)2 + � _~ui _~ui + Ci jkl ~ui ;j ~uk;l

)
dvds

+

∫ t

0

∫
R(z)

exp(�2!s)
(
Q� + bmij am�

(m)
;i �

(m)
;j

)
dvds:

(71)
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In particular, we obtain that for ! large enough∫ t

0

∫
R(z)

exp(�2!s)
(
bmij am(1� �)�

(m)
;i �

(m)
;j

)
dvds � G!(0; t) exp

(
�

z

K�

)
; (72)

which gives a decay estimate for the gradient of the temperature � and its time derivatives.

We also need to obtain an estimate for the displacement. We point out that∣∣∣∣∫ t

0

∫
R(z)

exp(�2!s)�akalu
(k)
i u

(l)
i dvds

∣∣∣∣ � Pkl!
k+l�2m

∫ t

0

∫
R(z)

exp(�2!s)�a2mu
(m+1)
i u

(m+1)
i dvds; (73)

for 0 � k + l < 2m, where Pkl = jakal ja
�2
m . In a similar way we have that∣∣∣∣∫ t

0

∫
R(z)

exp(�2!s)akalCi j rnu
(k)
i ;j u

(l)
r;ndvds

∣∣∣∣ � Qkl!
k+l�2m

∫ t

0

∫
R(z)

exp(�2!s)a2mCi j rnu
(m)
i ;j u(m)

r;n dvds; (74)

where Qkl depends on the constitutive constants and tensors, but does not depend on ! neither on the time. By taking ! large

enough we see that∫ t

0

∫
R(z)

exp(�2!s)
(
� _~ui _~ui + Ci jkl ~ui ;j ~uk;l

)
dvds � a2m(1� �)

∫ t

0

∫
R(z)

exp(�2!s)
(
�u

(m+1)
i u

(m+1)
i + Ci jklu

(m)
i ;j u

(m)
k;l

)
dvds: (75)

We then obtain that∫ t

0

∫
R(z)

exp(�2!s)
(
� _u

(m)
i _u

(m)
i + Ci jklu

(m)
i ;j u

(m)
k;l

)
dvds � (a2m(1� �))�1G!(0; t) exp

(
�

z

K�

)
; (76)

which gives a description of the spatial behavior of the mechanical part. Thus, we have obtained the following theorem.

Theorem Let us consider (ui ; �) be a solution of the problem determined by the system (10)-(11) with the initial conditions

(7), (12) and the boundary conditions (8), (9), (13) and (14). Then, for ! large enough, either the solution satis�es the condition

(69) or it satis�es the decay estimates (72) and (76).

6. The amplitude term for the thermoelastic problem

In this section we obtain an upper bound for the amplitude term G!(0; t) in terms of the boundary conditions when the solution

satis�es the estimate (70). We assume that ! is large enough to guarantee that the polynomial considered in the previous

section, Q�
1(!

�1), is less than �, where � is a positive real number much smaller than one.

We �rst note that

G!(0; t) = �

∫ t

0

∫
D(0)

exp(�2!s)(R1 + R2)dads; (77)

where

R1 = (Ci1kl ~uk;l � �i1
~�) _~�i ; (78)

and

R2 = (b0i1�;i + b1i1�
(1)
;i + � � �+ bmi1�

(m)
;i )~�: (79)

Here, �i(x; t) and �(x; t) are functions which tend uniformly to zero, rapidly, as x1 tends to 1 and satisfying the boundary

conditions for ui and � respectively.

After the use of the boundary, asymptotic and the initial conditions, we �nd that

G!(0; t) = I1 + I2 + I3 + I4; (80)
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where

I1 =

∫ t

0

∫
R

exp(�2!s)
(
Ci jkl ~uk;l � �i j

~�
) _~�i ;jdvds; I2 =

∫ t

0

∫
R

exp(�2!s)��~ui
_~�idvds; (81)

I3 =

∫ t

0

∫
R

exp(�2!s)
(
b0i j�;i + � � �+ bmij �

(m)
;i

)
~�;jdvds; I4 =

∫ t

0

∫
R

exp(�2!s)
(
c _~� + �i j ~vi ;j

)
~�dvds: (82)

It is worth noting that I2 = I21 + I22 + I23 and I4 = I41 + I42 + I43, where

I21 = exp(�2!t)

∫
R

� _~ui
_~�idv; I22 = 2!

∫ t

0

∫
R

exp(�2!s)� _~ui
_~�idv; I23 = �

∫ t

0

∫
R

exp(�2!s)� _~ui
�~�idv; (83)

I41 = exp(�2!t)

∫
R

(
c~� + �i j ~ui ;j

)
~�dv; I42 = 2!

∫ t

0

∫
R

exp(�2!s)
(
c~� + �i j ~ui ;j

)
~�dvds; (84)

and

I43 = �

∫ t

0

∫
R

exp(�2!s)
(
c~� + �i j ~ui ;j

) _~�dvds: (85)

We see that

jI1j � �1!
�1G!(0; t) + C�

1

∫ t

0

∫
R

exp(�2!s) _~�i ;j
_~�i ;jdvds; (86)

jI21j � �2G!(0; t) + C�
21 exp(�2!t)

∫
R

� _~�i
_~�idv; (87)

jI22j � �3G!(0; t) + C�
22!

∫ t

0

∫
R

exp(�2!s)� _~�i
_~�idvds; (88)

jI23j � �4!
�1G!(0; t) + C�

23

∫ t

0

∫
R

exp(�2!s)��~�i
�~�idvds; (89)

jI3j � �5G!(0; t) + C�
3(!

�1)

∫ t

0

∫
R

exp(�2!s)~�i ~�idvds; (90)

jI41j � �6G!(0; t) + C�
41 exp(�2!t)

∫
R

j~�j2dv; (91)

jI42j � �7G!(0; t) + C�
42! exp(�2!t)

∫ t

0

∫
R

exp(�2!s)j~�j2dvds; (92)

jI43j � �8!
�1G!(0; t) + C�

43! exp(�2!t)

∫ t

0

∫
R

exp(�2!s)j _~�j2dvds: (93)

Here, the parameters C�
i and C�

i j are calculable positive constants or functions depending on !�1. We then obtain that

G!(0; t) � (�1!
�1 + �2 + �3 + �4!

�1 + �5 + �6 + �7 + �8!
�1)G!(0; t)

+ C�
1

∫ t

0

∫
R

exp(�2!s) _~�i ;j
_~�i ;jdvds + C�

21 exp(�2!t)

∫
R

� _~�i
_~�idv

+ C�
22!

∫ t

0

∫
R

exp(�2!s)� _~�i
_~�idvds + C�

23

∫ t

0

∫
R

exp(�2!s)��~�i
�~�idvds

+ C�
3(!

�1)

∫ t

0

∫
R

exp(�2!s)~�;i ~�;idvds + C�
41 exp(�2!t)

∫
R

j~�j2dv

+ C�
42! exp(�2!t)

∫ t

0

∫
R

exp(�2!s)j~�j2dvds

+ C�
43! exp(�2!t)

∫ t

0

∫
R

exp(�2!s)j _~�j2dvds:

(94)

We can select �i and ! such that �1!
�1 + �2 + �3 + �4!

�1 + �5 + �6 + �7 + �8!
�1 = 1=2. It follows that
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G!(0; t) � 2C�
1

∫ t

0

∫
R

exp(�2!s) _~�i ;j
_~�i ;jdvds + 2C�

21 exp(�2!t)

∫
R

� _~�i
_~�idv

+ 2C�
22!

∫ t

0

∫
R

exp(�2!s)� _~�i
_~�idvds + 2C�

23

∫ t

0

∫
R

exp(�2!s)��~�i
�~�idvds

+ 2C�
3!

�1

∫ t

0

∫
R

exp(�2!s)~�;i ~�;idvds + 2C�
41 exp(�2!t)

∫
R

j~�j2dv

+ 2C�
42!

∫ t

0

∫
R

exp(�2!s)j~�j2dvds + 2C�
43!

∫ t

0

∫
R

exp(�2!s)j _~�j2dvds:

(95)

Now, we select

�i(x; t) = gi(x2; x3; t) exp(��x1) and �(x; t) = f (x2; x3; t) exp(��x1); (96)

where � is a positive parameter. We see that∫ t

0

∫
R

exp(�2!s) _~�i ;j
_~�i ;jdvds =

∫ t

0

∫
D(0)

exp(�2!s)

(
_~gi ;� _~gi ;�
2�

+
� _~gi _~gi
2

)
dads; (97)

∫
R

� _~�i
_~�idv = �

∫
D(0)

_~gi _~gi
2�

da; (98)

∫ t

0

∫
R

exp(�2!s)� _~�i
_~�idvds = �

∫ t

0

∫
D(0)

exp(�2!s)
_~gi _~gi
2�

dads; (99)

∫ t

0

∫
R

exp(�2!s)��~�i
�~�idvds = �

∫ t

0

∫
D(0)

exp(�2!s)
�~gi �~gi
2�

dads; (100)

∫ t

0

∫
R

exp(�2!s)~�;i ~�;idvds =

∫ t

0

∫
D(0)

exp(�2!s)

(
~f;� ~f;�
2�

+
�(j~f j2

2

)
dads; (101)

∫
R

j~�j2dv =

∫
D(0)

j~f j2

2�
da; (102)

∫ t

0

∫
R

exp(�2!s)j~�j2dvds =

∫ t

0

∫
D(0)

exp(�2!s)
j~f j2

2�
dads; (103)

∫ t

0

∫
R

exp(�2!s)j _~�j2dvds =

∫ t

0

∫
D(0)

exp(�2!s)
j _~f j2

2�
dads: (104)

We then obtain that

G!(0; t) �

(
C�
1� +

�C�
22!

�

)∫ t

0

∫
D(0)

exp(�2!s) _~gi _~gidads

+
C�
1

�

∫ t

0

∫
D(0)

exp(�2!s) _~gi ;� _~gi ;�dads +
�C�

12

�
exp(�2!t)

∫
D(0)

_~gi _~gida

+
�C�

23

�

∫ t

0

∫
D(0)

exp(�2!s)�~gi �~gidads

+

(
C�
3!

�1� +
C�
42!

�

)∫ t

0

∫
D(0)

exp(�2!s)j~f j2dads

+
C�
3!

�1

�

∫ t

0

∫
D(0)

exp(�2!s)~f;� ~f;�dads

+
C�
41

�
exp(�2!t)

∫
D(0)

j~f j2da +
C�
43!

�

∫ t

0

∫
D(0)

exp(�2!s)j _~f j2dads:

(105)

We could obtain an estimate independent of � after an optimization. However it seems a very cumbersome task.
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7. Conclusions

In this paper we have analysed two thermomechanical situations. One of them comes from considering the heat conduction

theory proposed by the equation (6) and the other one from the thermoelastic system proposed by the equations (10)-(11).

For both cases, we have obtained a Phragm�en-Lindel�of alternative for the solutions, which is the mathematical counterpart of

the well known Saint-Venant's principle in thermomechanics. That is, we have seen that the thermomechanical perturbations

considered in a part of the boundary are strongly damped for the points which are far away from the place where the perturbations

occur. The decay estimate is given (in both cases) by means of a negative exponential. Moreover, to have a measure of the

damping, we also give an upper bound for the amplitude term by means of the disturbances.
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