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Abstract—In modern optical networks, infrastructure man-
agement is faced with the challenge of using expensive
equipment and communication resources as efficiently as
possible. This now includes keeping power consumption costs
at a minimum and using the available optical links in a
balanced way, in addition to the traditional goals of pro-
viding the best possible performance to the end-customers
while meeting their quality requirements. Accordingly, this
paper presents a heuristic single-step lightpath routing and
wavelength assignment algorithm, handling on-line dynamic
connection requests within a fully distributed network control
plane. By using shortest path routing, the presented scheme
determines the best compromise solution between the users’
and the carrier’s objectives. The former can be mainly
expressed in terms of connection QoS requirements, whilst the
latter comprise network engineering (distributing the load in
order to achieve near-optimum resource usage) and containing
energy consumption. This approach is able to find, in a
polynomial computing time, a multi-objective optimization
solution that maximizes the carriers’ return of investment
(ROI) and supports a high number of users’ request while
drastically reducing the network operational expenditures
(OPEX), as extensively demonstrated through simulation.

Index Terms—Routing and Wavelength Assignment, Wave-
length Routing, Network & Traffic Engineering, Green Net-
working, Energy Consumption.

I. INTRODUCTION

Large scale wide area transport networks are a strategic
component of today’s global communication infrastructure.
Wavelength Division Multiplexing (WDM) and wavelength
routing are among the best available technological options
enabling these networks to offer highly scalable transmis-
sion capacity, protocol transparency, and simplified man-
agement, satisfying at the same time the growing demand
on energy efficiency. In such networks, two adjacent nodes
are connected by one or multiple fibers, each carrying
multiple wavelengths or channels. Each node consists of
a dynamically configurable optical switch (also known
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as Optical Interconnect) that supports fiber switching and
wavelength switching; that is, the data on a specified input
fiber and wavelength can be switched to a specified output
fiber on the same wavelength. In order to transfer data
between generic source-destination node pairs, a dedicated
optical channel or lightpath has to be established by allo-
cating an available wavelength throughout the entire route
of the transmitted data. Allocation takes place according to
a circuit-switched model where an end-to-end connection
is assigned the same wavelength resource for its entire
duration. Benefiting from optical amplifiers and transparent
optical switches, lightpaths can span more than one fiber
link and remain entirely optical from source to destina-
tion, limiting the use of expensive, energy-hungry, signal
regeneration equipment and other intermediate devices con-
verting optical signals into the electronic domain and back.
Network providers aim at using their expensive connections
and equipment as efficiently as possible to maximize their
medium and long-term revenues. This encompasses three
fundamental tasks. The first one, referred as network engi-
neering, corresponds to designing the network to achieve
a correct dimensioning of communication resources and
switching equipment, keeping them continuously up-to-date
with respect to the state of the art technologies and the
expected growth trends. Since the network should be over-
provisioned – to sustain traffic peaks – providers also strive
to take the most from their investments by distributing
the traffic load on all the available resources in order to
use them in a more balanced way, maximize the average
capacity available to customers, and avoid the creation of
bottlenecks.

The second task, commonly known as energy-awareness,
entails dynamic power management throughout the net-
work. The objective is to decrease power consumption as
well as to reduce energy costs by exploiting the energy-
proportional features of new-generation network equipment
(adapting power consumption to traffic load), privileg-
ing paths through elements powered by renewable (and
cheaper) energy sources, or taking advantage from time or
location-dependent fluctuations in electricity costs. Achiev-
ing energy-efficiency in network elements, usually through
energy-proportional behavior, is an objective strongly pur-
sued by the most recent standardization efforts, and tech-
nologies are available off-the-shelf [1].

The latter task, often referred to as traffic engineering,
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involves optimizing the routing control logic responsible for
dynamically routing traffic flows in the network accord-
ing to their performance requirements. In modern carrier
networks, a smart integrated network engineering approach
can be developed to combine the above three tasks into a
common multi-objective optimization framework, aimed at
harmonizing the apparently disjoint (or, worse, contrasting)
energy and traffic-related objectives. In particular, accord-
ing to our vision, energy efficiency becomes a first-class
objective in the wavelength routing scenario, together with
the more traditional network-related ones.

Since the optimal selection of paths satisfying multiple
independent requirements, objectives and constraints is a
computationally intractable problem, incompatible with a
dynamic on-line routing environment, in this work we pro-
pose a heuristic approach to effectively find feasible paths,
leading to sub-optimal solutions, in a bounded time. For this
purpose, we developed a single-step shortest path routing-
based dynamic RWA scheme, using the Dijkstra algorithm,
suitably modified to properly work into the wavelength
switching environment, with a combined network/traffic en-
gineering and energy-aware cost functions whose main goal
is finding the best compromise solution among the three
aforementioned carriers’ and users’ objectives in an ex-
tremely simple and performance-effective way. It performs
dynamic on-line constrained shortest-path-first selections
by considering multiple weighting factors such as optical
link transmission properties (e.g., wavelengths per link,
distance/delay, total link capacity, etc.) and impairments
(e.g., bit-error rate, intermediate amplification steps) as
well as energy-related ones (e.g., power consumption of
intermediate elements, such as routers, switches and optical
amplifiers). The proposed framework can accommodate for
particular operating conditions, hardware characteristics,
or carrier necessities. Other parameters related to energy
consumption can be added and integrated, and the choice
of the objective weighting function may be modified to
tailor specific needs. The presented RWA scheme relies
on the presence of an underlying fully distributed network
control plane, implying cooperation between the nodes
concurring to the RWA problem solution and providing a
link-state advertisement protocol to synchronize the nodes’
network views by conveying all the link status information
(including energy-related ones) to every participant, as well
as a signaling mechanism to be used for the reservation
and establishment of paths (e.g., [2]). The presence of
such a common control plane guarantees the convergence
of all the independent decisions taken by the nodes that
behave according to a fully decentralized scheme but share
the same network topology and status view, resulting in
identical routing plans when running the same shortest-
path-first algorithm at the same time.

II. RELATED WORK

Several RWA approaches available in literature focused
their attention on the use of shortest path routing mech-
anisms, to keep the implementation simple and limit the

overall problem computational complexity. For example,
the work in [3] discusses some structural properties of
unsplittable shortest path routing by developing several
ILP models to find lengths that induce a prescribed set
of shortest paths. In addition, in [4] it has been shown
that the problem of finding simple routing weights that
uniquely induce a prescribed set of shortest paths is com-
putationally hard. In [5] the authors analyzed the signaling
mechanisms supporting fully adaptive shortest path rout-
ing in wavelength-routed networks whereas the proposal
in [6] used the Bellman-Ford algorithm for shortest-path
routing on each individual wavelength plane, which, how-
ever, suffers from several well-known convergence prob-
lem typical of distance vector routing mechanisms. In the
works presented in [7],[8] and [9] the Dijkstra’s shortest-
path algorithm has been used to determine the shortest
lightpath or semi-lightpath in a polynomial time while
considering that since such algorithm employs a uniform
search strategy, in large networks it may unnecessarily
visit many nodes and take much time before the shortest
path is identified. Following the seminal work of [10] who
first envisioned the idea of energy conservation in Internet-
based infrastructures, the concept of energy-awareness has
been introduced in shortest path routing by [11] and [12]
where a Dijkstra scheme modified to reduce the number
of links and share the best paths under light loads, in
order to contain energy consumption, has been proposed.
Another approach managing energy-awareness at the sub-
wavelength level has been presented in [13], where a
modular physical architecture is discussed for the optical
multiplexers and the advantages of energy-awareness in
individual components such architecture are evaluated. On
the other hand, some greedy heuristics to contain network
power consumption, based on the ranking of nodes and
links with respect to the amount of traffic that they would
carry in the context of an energy-agnostic configuration,
have been proposed in [14]. A two-stage approach, based on
performing energy-aware selection on the K-shortest paths
determined according to traditional network engineering
criteria has been presented in [15]. The great advantage of
this work on the above ones is that its handles an inherently
multi-objective optimization problem into a unique two-
stage routing scheme. Nonetheless, its two-stage selection
process (originally developed in [16]), whose complexity
linearly depends on the number of K alternative routes
considered, can introduce additional effort in the compu-
tation of the “best” path. In this sense, the routing scheme
here proposed, has the advantage of being a single stage
Dijkstra-based algorithm, whose computational complexity
is polynomial in time and does not depend on any of the
parameters of the algorithm. Finally, a single stage shortest
path-based scheme has been also proposed in [17], mainly
targeted, however, at the seamless introduction of energy-
related information into the standard GMPLS framework,
with minimal modification efforts in the control plane
protocols (e.g., OSPF with traffic engineering extensions),
and providing backward compatibility with all the existing
implementations.
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While the above contribution achieves good results in
terms of energy demand and GHG emission containment,
the scheme proposed in this work, being based on a
more sophisticated paradigm for combining and weighting
multiple optimization objectives (e.g., QoS/SLA, network
management and energy-related ones) is able to achieve
significantly better trade-offs between these objectives and
hence more satisfactory results for all the involved actors
(i.e., end users and network providers).

III. THE RWA FRAMEWORK

An effective RWA solution applies methodological and
technological considerations and principles to the modeling,
characterization, control and performance optimization of
the network behavior. Optimization in this context refers to
a more complex joint criterion combining the traditional
traffic/network engineering goals with the new energy-
related ones in a common multi-objective optimization
framework, searching from the best compromise between
the above goals. We structured the above solution according
to an adaptive shortest-path routing scheme, which dynam-
ically selects the minimum cost path between each pair
of source and destination nodes based on the up-to-date
global network status and specifically on the individual
costs assigned to the underlying communication links. The
motivations beyond this choice arise from the evidence
that shortest-path routing is one of the most commonly
used strategies in the control plane for wavelength-routed
optical infrastructures, since, while being really easy to
implement and effective, it is known to be asymptotically
cost-optimal in heavily loaded networks, and asymptotically
near-optimal in large, sparse networks supporting any-to-
any communication [18].

A. The network model

In the proposed scheme, the network topology can be
modeled as a graph G(N,E), where N denotes the set
of vertices (the wavelength switching devices) and E
the set of edges (the optical fiber links). A weighting
function wt(u, v), whose value is dynamically determined
at each time t, is associated to each link (u, v) ∈ E,
representing the cost of using the link at the time t. Every
edge (u, v) represents an optical connection between two
sites u, v ∈ N , composed by f(u,v) independent fibers,
each one with the same length l(u,v), delay d(u,v), bit error
rate e(u,v), number of intermediate optical amplification
stages a(u,v) and/or number of regeneration stages r(u,v).
All the f(u,v) fibers associated to an edge (u, v) support
the same number λc(u,v) of wavelength channels, with

maximum nominal bandwidth b(u,v), where λa(t)(u,v) of them
are available at the time t. We also model a set of service
requests R ⊆ N2 where each request r = (s, d) ∈ R
is characterized by its time of arrival t and by a set Qr
of QoS constraints comprising the minimum requested
bandwidth br, the maximum acceptable BER er or
delay dr so that Qr = {br, er, dr, . . .}. When a new
service request r = (s, d) arrives, a dedicated lightpath

pλ = {(s, x1), . . . (xn, d)} defined as a unique wavelength
channel λ, carved onto a set of optical links physically
connecting the source and destination nodes s, d through
the intermediate switching devices {x1, . . . , xn}, should
be created. For each optical link (u, v) ∈ pλ it must hold
that b(u,v) ≥ br ∧ e(u,v) ≤ er ∧ d(u,v) ≤ dr. Given the
set R of service requests, our main goal is to allocate the
optical wavelength channels so that the maximum number
of requests can be simultaneously satisfied, exhausting the
capacity of the minimum number of fibers and reducing
as much as possible both the energy and network-related
costs. At first, in the so-called routing phase, the optical
path for a generic request r is determined by using a
traditional constrained shortest path routing algorithm
such as Dijkstra’s, working at each time t of invocation
on the graph G in which the edges in E are dynamically
assigned a cost value given by the link weighting function
wt(u, v). The resulting path is the minimum cost one
satisfying the Qr requirements, according to the above
costs calculated at the time of invocation t, considering
that the cumulative cost associated with a lightpath pλ on
the wavelength λ is defined as the sum of its constituent
link {(s, x1), . . . (xn, d)} costs. In other words, the shortest
path routing algorithm is constrained by operating on a
graph whose links or nodes are restricted to those ones
in the original topology that satisfy the Qr requirements.
Successively, in the wavelength assignment phase, a
wavelength reservation request is propagated to all the
intermediate devices along the path, to provisionally reserve
and then allocate a dedicated wavelength on each involved
fiber link. In a pure wavelength routing environment, that
does not provide any conversion capability either in the
optical or in the electric domain, the same wavelength must
be used on all links, by enforcing the continuity constraint.
Such a unique wavelength is selected by using a traditional
best-fit scheme between the available ones. Clearly, the
choice of avoiding wavelength conversion on intermediate
nodes can adversely affect the blocking probability
experienced by connection requests. However, it avoids
long delays and ensures end-to-end optical transparency to
the signal, which is a very desirable property in modern
protocol-independent transport networks. To improve the
overall efficiency of the whole process, the aforementioned
logical phases can be combined into a dynamic single
step implementation resulting in an integrated routing
and wavelength assignment (RWA) framework, where
the use of a unique wavelength must be introduced as
an additional constraint to the routing algorithm. The
aforementioned single-step integrated RWA framework
based on shortest-path routing offers many practical
advantages, starting from the fully decentralized and
distributed routing architecture, providing excellent scaling
properties with growing network dimensions (bounded by
the polynomial Dijkstra algorithm’s complexity – O(N2),
or O(E + N logN) if a Fibonacci heap is used) at the
expense of a very limited administrative overhead.

However, some less obvious side effects, emerging be-
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hind the above advantages require great attention in the
design of a really effective RWA paradigm based on shortest
path routing. In order to prevent unwanted reordering and
other undesirable effects of multi-path, particularly critical
in the optical domain, a discrete, unsplittable routing model
has to be adopted, so that the traffic demand from a
source/destination pair must be satisfied by choosing and
using only a single path between them. While preventing
a large number of problems, the unsplittable nature of the
routing model introduces additional difficulties, especially
from the network engineering perspective. As links with
lower costs are preferred by all communication demands,
unsplittable shortest path routing protocols potentially lead
to localized congestion phenomena (traffic concentrates on
the lowest cost links) and unbalanced load distribution in
the network. This may have severe effects on the number
of service requests that can be satisfied at any time (for, as
congestion increases, the number of rejected connections
grows), and hence on the overall network providers’ rev-
enue. Furthermore, the shortest path routing model implies
the existence of some complex and subtle interdependencies
among the paths determined as the service demand evolves.
More precisely, the choice of the end-to-end routing paths
that constitute a valid solution can be only controlled
in an indirect way by changing the costs assigned to
the individual links. In addition, the associated weighting
functions jointly influences all the paths together, without
any granular control on specific paths and their demands
or service classes. Thus, designing weighting functions that
cause the selection of globally efficient (both in terms of
energy and traffic-related goals) end-to-end paths is the
major challenge in modeling such a routing scheme.

IV. THE MULTI-OBJECTIVE WEIGHTING FUNCTION

The partially conflicting goals of serving the maximum
possible number of users’ requests, characterized by spe-
cific QoS constraints (concerning requested bandwidth,
minimum acceptable link quality, etc.), while keeping the
network resource usage fairly balanced, and optimizing
the overall power consumption by reusing, as possible,
energy-efficient paths across the network, give origin to a
multivariate and multi-objective optimization problem, that
is known to be NP-hard [19]. In the proposed approach,
such a problem can be heuristically coped with by design-
ing a composite scalar weighting function simultaneously
combining the impact on the final solution of the different
network, traffic engineering and energy related objectives.
This technique, commonly referred as weighted-sum or
scalarization, aggregates together n objectives by assigning
a specific weight ωi to each of them, according to the rel-
ative importance of the individual objective function oi(x)
in the cumulative goal, resulting into a linear combination
representing the whole optimization problem as:

max

n∑
i=1

ωi · oi(x) (1)

subject to:

ωi > 0, ∀ i ∈ {1, . . . , n}
n∑
i=1

ωi = 1
(2)

It can be shown that the optimization of such single-
objective convex sum is an efficient solution for the original
multi-objective problem [20], that is, its image belongs
to the associated Pareto curve. The Pareto curve is the
set of all efficient feasible solutions, i.e., the solutions
whose objective vector is not dominated by any other
solutions1. The shape of the Pareto curve sketches the trade-
off between the different objective functions oi(x). Clearly,
modifying the weights ωi may lead to different points of the
curve, even if a uniform spread of the assigned weights does
not lead to a uniform spread of points on the Pareto front,
i.e., all the solution are clustered only in certain areas of the
front. By slightly relaxing the convexity constraint, some
objectives may be privileged over the others, so that sub-
optimal solutions to the aggregate problem can be found.

A. Shortest path wavelength routing in a multi-objective
scenario

When formally defining the shortest path routing problem
within a multi-objective optimization scenario, it must be
considered that the meaning of the term “shortest” should
be simultaneously associated to the different objectives
involved, so that the cost corresponding to each edge, that
is the real decision-maker in all the available formulations,
must result from the composition of multiple edge fea-
tures, such as channel capacity, available resources and
power consumption. In order to model such behavior a
vector ~wt(u, v) = (w1(u, v), . . . , wn(u, v)) of n different
weights/costs must be associated at the time t to any
edge (u, v) in the network graph G. Accordingly, each
lightpath pλ on G can be weighted by means of a vector
~Πpλ =

(
π
(1)
pλ , . . . , π

(n)
pλ

)
where:

π(i)
pλ

=
∑

(u,v)∈pλ

wi(u, v) ∀i ∈ {1, . . . , n}. (3)

We define a set of binary variables xu,v so that:

xu,v =

{
1
0

if (u, v) ∈ pλ, ∀ λ
otherwise.

(4)

Hence, the problem of determining the multi-objective
shortest path from an origin s to a destination d, in presence
of n different objectives [20], can be formalized as:

min
k∈{1,...,n}

∑
(u,v)∈E

wk(u, v) · xu,v, (5)

subject to:

∑
u:(u,v)∈E

xu,v −
∑

v:(v,u)∈E
xv,u =

 1 if u = s,
0 ∀ u ∈ N\{s, d}
−1 if u = d

(6)

xu,v ≥ 0 ∀ (u, v) ∈ E
1an objective vector dominates another objective vector if it is at least

as good in all the objectives; domination is strict if at least one inequality
is strict
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The lightpath pλ joining the endpoints (s, d) is an efficient
solution to the above problem if it does not exist another
lightpath qµ between s and d such that:

π(i)
qµ < π(i)

pλ
∀i ∈ {1, . . . , n}. (7)

B. Weighting the individual objectives

An effective heuristic-based RWA scheme relying on
the aforementioned multi-objective shortest path routing
optimization model, can be implemented by using the tradi-
tional Dijkstra Algorithm, almost totally driven by an edge
weighting function that dynamically associates a specific
cost value to each edge in the network graph, with the effect
of combining the ~wt(u, v) vectors into a single scalar value
wt(u, v). Hence, a correct choice of the weighting function
is of fundamental importance for the overall success of the
RWA framework. It should condition the edge selection
according to the best compromise between the following
classes of objectives:
• First, traffic engineering objectives essentially concern

the ability to place the traffic associated to new incom-
ing end-to-end connection requests characterized by
specific QoS requirements (bandwidth, latency, BER,
etc.) when sufficient capacity exists to accommodate
the connection and discarding the associated request
when such a capacity is not available (no end-to-
end lightpath solution on the network is able to fully
support the above requirements).

• On the other hand, network engineering objectives are
associated to the ability of using at best the available
capacity in order to accommodate as much connection
requests as possible.

• Finally, energy-awareness objectives are related with
the purpose of placing the traffic on the network so
that the communication resources (circuits and nodes)
that minimize the overall energy consumption are priv-
ileged, thus containing the energy-related expenses.

The traffic engineering objectives have an acceptance
threshold: either a path can accommodate a connection
request satisfying its QoS requirements, or it cannot.
The weighting function must, then, adapt its behavior to
each specific end-to-end connection request enabling the
selective discard of all the edges (i.e., the communication
links) that do not satisfy the involved QoS requirements
(admission policy). Accordingly, the cost of all the edges
corresponding to optical links that are not fully compliant
to the above requirements is set to infinity, so that such
edges are logically removed from the graph and cannot be
selected in any search for feasible paths. Analogously, the
edges on which all the available wavelengths are currently
utilized are also marked as unavailable by setting their cost
to infinite until the next routing update. Furthermore, also
in case of QoS compliance, the link parameters associated
to potential QoS requirements, are used to proportionally
increase the edge cost in order to influence the path
selection according to a rigid best-fit model, so that the
selected paths will be preferentially composed by the

edges that present the minimum gap between the requested
amount of resource quality (e.g, the free bandwidth or
the minimum latency or BER) and the available ones.
In such a way, the risk of “over-provisioning” (routing a
connection onto a path that is “too good” for it) is avoided,
and the number of future requests that can potentially
be accommodated is maximized. To this end, the above
QoS parameters should be properly weighted to result
in the desired impact on the edge cost, as described in
Section IV-C.

In heavily loaded network scenarios, end-to-end
connection requests cannot be satisfied because there
are no wavelengths available on any of the links along
all the feasible paths. This phenomenon is commonly
known as connection blocking (or rejection). Network
engineering objectives essentially aim at reducing the
blocking probability, ensuring that a maximal number
of requests are accepted, thereby minimizing congestion
and ensuring that the network resources are not over-
or under-utilized (unbalanced traffic loads). This can be
intuitively achieved by privileging the selection of edges
which guarantee that the maximum aggregated available
flow between all the source and destination node pairs is
kept at the highest possible value. The larger the available
maximum aggregated flow between a specific (source,
destination) pair is, the smaller the blocking probability
of connection requests between the involved pair will
be, considering that the flow between all node pairs is a
rough measure of how many routing options will be open
when the (unknown) upcoming requests will be served.
Aggregated flow information in the considered atomic
unsplittable problem can be approximated by considering
the “hit ratio” σ(u,v) of each edge (u, v), defined as the
ratio between the number of times such edge has been
selected, and the total number of requests. The higher the
hit ratio is, the greater the likelihood of an edge to be
selected again in the future is; hence, edges with high hit
ratio values have greater probability to become bottlenecks
in the maximum end-to-end flow perspective. Therefore,
the hit-ratio provides an indication about the “criticality”
of each edge for the overall network economy. Thus, in
order to avoid as much as possible a reduction of the
maximum source-destination flow, the weighting function
has to assign to all the most critical edges (the ones whose
hit ratio exceeds a specific threshold) a cost value that is
inversely proportional to the criticality measure, whose
value is further amplified by using the residual capacity as
an inverse multiplicative factor.

Finally, to handle energy-awareness objectives, the
weighting function should provide the ability to consider as
candidate paths for connections, in addition to the shortest
and/or less congested paths, also the paths which minimize
the energy consumption or the overall energy costs/bills.
Accordingly, the weighting function wt should properly
condition the cost of each edge (u, v) by considering
the fixed and variable energy consumption associated to
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the involved end-to-end interfaces and to the intermediate
optical amplification (a(u,v)) or 3R regeneration stages
(r(u,v)). Clearly all the aforementioned strategies for dy-
namically determining the edge costs can be implemented
by properly combining several per-link parameters to be
weighted according to their relative importance with respect
to both the individual (traffic, network or energy related)
objectives and the aggregated one. Therefore, we map the
parameters into the following classes, in correspondence to
the three aforementioned objectives:

• QoS-related parameters, directly affecting the suitabil-
ity of an optical link to carry a connection: b(u,v),
d(u,v), e(u,v)

• Network-related parameters, directly affecting the
blocking rate: λa(t)(u,v), λ

c
(u,v), f(u,v), σ(u,v)

• Energy consumption-related parameters, directly af-
fecting the power draw: a(u,v), r(u,v), l(u,v)

Parameters in the first group are threshold parameters,
meaning that they indicate requirement thresholds that
must be met by an optical connection in order to support
a connection request. Note that value of a QoS parameter
for a path pλ is the minimum value of the parameter
across all of the links comprising the path. Nevertheless,
when many paths meet the threshold requirements for a
connection request, one of these paths must be chosen
somehow. In this case, it is reasonable to select the
path that has the lowest QoS values, so that the costly
high-performance links will be spared for use with more
demanding connection requests (in accordance with a
best-fit allocation strategy). Energy consumption-related
parameters are clearly conditioned by specific interface
and equipment-level power consumption characteristic, as
will be described in detail in Section IV-E. Parameters
take a wide range of different values. In order to be able
to combine them in a significant way, parameter values
should be rescaled to a common interval. Otherwise,
the difference in ranges could cause relevant variations
of parameters taking smaller ranges to disappear in the
combination, because the values of parameter taking
bigger values would be dominant. Thus, in order to be
comparable, parameters are normalized into the interval
[0, 1]. The relative importance of the parameter classes and
their different sensitivity within the aforementioned three
classes of objectives can be expressed by differentiating
the growth rate of the weighting function with respect
to the parameters. This has the effect of biasing the
overall multi-objective optimization problem towards
sub-optimal solutions that privilege an objective class
over the others, but still keeping the other optimization
tasks into an acceptable success range. The mapping
between parameter and objective classes can be specified
as in Table I. According to the classic sensitivity analysis
theory, we can obtain a simple and effective measure of
the sensitivity of the cost function C with respect to a
specific parameter by estimating the value of the second
order partial derivative of the function C with regard to
that parameter. With this approach, any change observed in

TABLE I
SENSITIVITY OF THE PARAMETER CLASSES FOR THE DIFFERENT

TRAFFIC OBJECTIVES

QoS Network Energy
Traffic Engineering high medium low

Network Engineering medium high low
Energy-Related low medium high

the cost function will unambiguously be due to the specific
parameter changed. For a high-sensitivity parameter x,
∂2C
∂x2 should be negative in the interval [0, 1], whereas for
a low-sensitivity parameter y, ∂2C

∂y2 > 0. In the former
case, small increments in the parameter will quickly lead
to saturation, whereas only values close to the maximum
will have an effect in the latter case.

Let χ be a parameter class (QoS, network or energy-
related), and let Sχ denote the set of parameters in the
class. Then:

C =
∑
χ

∑
x∈Sχ

xαχ (8)

where αχ is an assigned (tunable) constant for the class
χ. We can assume, without loss of generality, that αχ > 0.
Clearly, the sign of ∂

2C
∂x2 will be determined by αχ(αχ − 1).

Then, a reasonable starting point can be:

αχ =


1/2 for high-sensitivity parameters
1 for medium-sensitivity parameters
2 for low-sensitivity parameters

(9)

Since we can directly associate the three aforementioned
parameter classes with the individual objective functions
oi(x) in Eq. (1), this implies that the convexity constraint
in the scalarization weighted sum is slightly relaxed only
for the weight associated to high-sensitivity parameters, in
order to give more importance to the corresponding ob-
jective in the global multi-objective optimization problem.
The effect of such choice is creating a perturbation effect
in the problem optimality that results in the creation of
three service classes whose expected treatment in terms
of balancing of the individual objectives corresponds to
the schema reported in Table I. The association of the
individual service request to these classes is up to the car-
rier, according to specific agreements, economic conditions,
policies or internal strategic considerations.

C. QoS-related parameters

The QoS service level agreements (SLAs) of the con-
nection requests r = (s, d) have to be enforced on the
lightpaths that are being established; therefore, the QoS-
related parameters represent thresholds that admit or not
paths in the network to be eligible routes for accommo-
dating the incoming connection requests. When no routes
satisfying the QoS SLAs are available from the source node
s to the destination node d, the connection request has
to be blocked. On the other hand, when more than one
route connecting the involved source and destination nodes
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satisfies the SLAs, a selection criteria has to be employed in
order to minimize the use of expensive network resources.
In such a scenario, a best-fit policy is chosen, which
reserves the least performing resources that are still able to
satisfy the requested SLAs, while leaving more expensive
resources available for future, high demanding connection
requests. We model such a best-fit criteria in Eq. (10),
which assigns lower cost to links that best satisfy the SLAs
requirements (on bandwidth br, BER er and delay dr), and
infinite cost to those links which do not comply with the
specified requisites:

CQoS(u,v)(br, er, dr) = 1
3 (T (

b(u,v)−br
b(u,v)

)+

+T (
er−e(u,v)

er
) + T (

dr−d(u,v)
dr

)),
(10)

where T is the threshold function discriminating between
eligible and not eligible links:

T (x) =

{
x if x ≥ 0
∞ otherwise . (11)

D. Network-related parameters

The aim of the network parameters is to lower the
connection blocking probability. The idea is to take traffic
away from the most congested paths by using the hit ratio
σ(u,v) of each edge (u, v) as a measure of its criticality, and
routing connections over the set of links that are currently
under-utilized, in a more traditional load-balancing fashion.
The higher the number of available wavelengths, the lower
will be the link cost. However, also the global link capacity
and the number of physical fibers available on the link posi-
tively drive the link selection, but in a more attenuated way,
properly conditioned by a logarithmic trend. The resulting
cost function involving the network-related parameters is
reported in Eq. (12), in which edges are assigned a cost
that is proportional to its actual congestion and hit ratio:

CN(u,v) = 1
2

(
σ(u,v) + 1

λ
a(t)

(u,v)
·logβ

(
β·λc

(u,v)
·f(u,v)

)) (12)

being β, the base of the logarithm, a tunable parameter that
characterizes the dampening effect of fiber and wavelength
capacities on the link cost. In presence of no available
wavelength (λa(t)(u,v) = 0), the link cost in Eq. (12) goes
to infinity and hence the link is kept off from the graph
in all the shortest path calculations. Furthermore, the cost
function explicitly considers the very special case in which
we have only a single channel on a single fiber link (λc(u,v) ·
f(u,v) = 1) that can be used for modeling non-WDM links
that have to be selected only as a worst case alternative. In
this case, the highest cost value (1) is assigned. Noting that
logβ

(
β · λc(u,v) · f(u,v)

)
= 1+logβ

(
λc(u,v) · f(u,v)

)
, it can

be seen that a slightly better cost is assigned when a very
limited number of fibers and wavelengths are available on
the edge (u, v), being β the threshold discriminating such
bottleneck links. Finally the logarithmic function assigns a
low cost to the edge (u, v) when a high number of fibers
and wavelengths are available on it.

E. Energy-related parameters

According to [21] [22], we assume that the energy de-
mand of a communication link is characterized by two fun-
damental components respectively associated to a “fixed”
and a “variable” power absorption. The fixed component
is needed to keep the communication link “on”, while the
variable one depends on the traffic load that is currently
affecting the link. Starting from these considerations, a
sufficiently general per-link energy consumption model can
be built, expressing the power consumption of any kind of
communication circuit as a linear combination (according
to [23]) of its static and traffic-dependent characteristics,
such as the presence of intermediate amplification or re-
generation stages, the involved endpoint interfaces and their
aggregated bandwidth in Gbps. More specifically, we define
a power consumption function P(u,v)(x) expressing the
power requirements of the link (u, v), characterized by an
aggregated per-endpoint interface consumption Pi(x) and
by the number of amplification (a(u,v)) and regeneration
(r(u,v)) devices, variably conditioned by a traversing traffic
load x.

P(u,v)(x) = Pu(x) + Pv(x)︸ ︷︷ ︸
link (u,v) interfaces

+

+ ξ(u,v) · ϕ(u,v) · a(u,v)︸ ︷︷ ︸
Optical Amplification

+ ρ(u,v) · x · r(u,v)︸ ︷︷ ︸
3R Regeneration

(13)

Where ϕ(u,v) is the power consumption value (measured
in Watts) for an individual optical amplifier used on the
link (u, v), whereas ρ(u,v) (expressed in Watts/Gbps) is the
power required for regenerating a 1 Gbps flow according to
the regeneration technology used on (u, v). We assume, for
simplicity sake, that all the amplifiers and regenerators used
on a single link (u, v) are of the same type. Furthermore,
since optical amplifiers work simultaneously on the entire
C-band, the contribution of ϕ(u,v) must be considered once
for each link when determining the incremental per-link
power-related cost at the time t. That is, if no wavelength
are actually used on the link (u, v) then the power consump-
tion ϕ(u,v) of each amplifier activated on the link has to be
added to P(u,v)(x). Otherwise, if at least a lightpath already
traverses (u, v) the entire term can be zeroed (amplifiers
were already active thus no power increment is introduced
from the new connection). This is accomplished by using
the binary variable ξ(u,v), defined as:

ξu,v =

{
0
1

if ∃ pλ ∈ Λ
∣∣(u, v) ∈ pλ,

otherwise.
(14)

where Λ is the set of al the active lightpaths on the
network graph G. The aggregated per-endpoint interface
consumption Pi(x) can be modeled a linear function of its
current load x:

Pi(x) = θi + x · ϑi with θi ≤ Pi(x) ≤ 2 · θi (15)

so that when an interface on the endpoint i is totally
unloaded (x = 0) it is characterized by a fixed power con-
sumption θi that is half of its maximum power demand [21]
and, as the load increases, its power consumption linearly
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increases, up to its maximum value which is reached when
the interface is fully loaded. Accordingly, also totally idle
nodes are characterized by a (minimum) fixed power con-
sumption since we assume that no sleep mode is available
at the node level, to avoid wasting previous infrastructural
investments, as reported also in [23]. The slope according
to which the power consumption grows together with the
load depends on a specific scaling factor ϑi, measured in
W/Gbps, representing the number of Watts needed to route
1 Gbps of traffic. The values for ϑi may usually range
from 1 to 10 W/Gbps [24] depending on the endpoint node
features, where small-sized nodes require more energy per
bit than bigger ones, that are characterized by the use of
more energy-efficient technologies and usually are designed
to aggregate large volumes of traffic [25]. Finally, we can
define an energy cost function CE(u,v)(x) for the link (u, v)
as:

CE(u,v)(x) =
P(u,v)(x)

Pmax
(16)

where
Pmax = max

(u,v)∈E,x=b(u,v)
P(u,v)(x) (17)

is the maximum power consumption that can be experi-
enced on any feasible end-to-end connection at its maxi-
mum load.

V. PERFORMANCE ANALYSIS

In order to evaluate the effectiveness of the proposed
RWA framework according to the traditional carriers’ goals,
as well as its impact on the infrastructure-level energy
consumption, we conducted extensive simulation studies
on the well-known GÉANT2 Pan-European research and
education network [26], modeled as an undirected graph in
which each link has multiple fibers with a non-negative
capacity and a specific power demand depending from
both its physical and technological features. The specific
34-nodes GÉANT2 topology used in our experiments is
reported in Fig. 1, where only optical nodes are represented:
each optical node (indicated as n-idO) is connected to an
electrical router (idE = idO + 34) with 1 fiber link 1 km
long with 32 λ, each with a capacity of 48 OC-units. We
used in our analysis an ad-hoc optical network simulation
environment [27] allowing flexible and effective modeling
of network topologies as well as traffic load generation,
data recording and post-processing, running on an Intel R©

CoreTM i7-950 CPU at 3.07 GHz with 16 GB RAM
and 64 bit operating system server. In order to improve
the significance of the obtained results and make them
more easily comparable with the other experiences available
in literature, we spent a significant effort on the use of
realistic data in all our experiments (network topology,
traffic demands, cost and power consumption models). The
connection requests, bidirectional and satisfied by using the
same wavelength in both directions, have been modeled by
using different randomly generated or static [5] [28] traffic
matrices. In the former case, the connections, generated
according to a dynamic traffic scenario characterized by
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Fig. 1. The GÉANT2 network topology [26] used in the simulations.

Poissonian arrivals, have been distributed uniformly among
all the network nodes, whereas in the latter one, the traffic
volumes have been scaled proportionally to the reported
traffic distributions. Each connection was characterized by
a random bandwidth demand ranging from OC-3 to OC-
48 units (i.e., from 155 Mbps up to 2.5 Gbps) a random
delay ranging from 2 to 100ms and a BER ranging from
0 to 10%. The energy consumption data for each link has
been populated with the real power consumption values
taken from [23], [24] and [29]. All the results have been
determined with a 95% confidence interval not exceeding
6% of the indicated values, estimated by using the batch
means method with at least 40 batches. As the network load
grows, that is, the number of busy connection resources
increases more and more respect to the free/released ones,
we continuously monitored the overall network power de-
mand and the network efficiency expressed by the rejection
ratio/blocking factor. Recall from Sec. IV-B that QoS-
related parameters, modeling the traffic engineering objec-
tive, are threshold-based, meaning that, given a connection
request r = (s, d), all the lightpaths connecting s and
d that do not satisfy the QoS requirements of r are not
eligible to accommodate the connection request. Such a
restriction is guaranteed by the dynamic on-line constrained
shortest-path-first selection employed by the proposed RWA
scheme. Among the feasible paths satisfying the specified
QoS requirements, the RWA scheme evaluates network-
related parameters (αLB), modeling the network engi-
neering objective (load-balancing), and the energy-related
parameters (αEA), modeling the energy-awareness objec-
tive, eventually choosing the lightpath minimizing the cost
function of eq. (8). Note that in eq. (8), since αχ appears
as an exponent of x, with x being a parameter normalized
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in the interval [0, 1], αχ > 1 values will lower the relative
weight of the x parameter, whilst 0 < αχ < 1 will increase
its relative weight, and αχ = 1 will leave the x value
unchanged (useful when we want to compare two different
parameters assigning them the same relative weight). In
order to assess the effectiveness of the proposed RWA
scheme, in a first set of simulations we present the perfor-
mance of our approach (referred to as “NeatSPF”, stand-
ing for “Network, Energy Aware and Traffic engineered
Shortest Path First”) with varying αχ parameters (αLB
for the load-balancing and αEA for the energy-awareness);
then, in a second set of simulations, we compare these
results with well-known state-of-the-art RWA algorithms.
In Fig. 2 and 3, the results of NeatSPF are reported in terms
of blocking and power consumption, respectively. Several
assignment of the αLB and αEA parameters determine
different behaviors of the NeatSPF algorithm. In detail,
we set αLB = 1 and αEA = bigM , with bigM >> 1
being a large constant, in order to obtain the extreme
case in which NeatSPF only consider the network-related
parameters to achieve the network engineering objective
of maximizing the overall load balancing, thus minimizing
the blocking probability. On the other hand, the opposite
assignment of αLB = bigM and αEA = 1 makes NeatSPF
pursue only the energy-awareness objective, discarding any
network engineering constraint, thus minimizing the energy
consumption. These two extreme cases are useful to study
the lower and upper bounds of the NeatSPF performance.
Then, in order to study the trade-offs between the dif-
ferent objectives, two intermediate cases biasing the load-
balancing and the energy-awareness goals are considered.
The NeatSPF more Load-balancing (LB) is obtained by as-
signing a higher weight (αLB = 0, 5) to the network-related
parameter, and a lower one to the energy-related parameter
(αEA = 2), slightly privileging the network engineering
objective over the energy consumption. Speculatively, the
NeatSPF more Energy-awareness (EA) is obtained with
the reverse assignment of weights to the network and
energy-related parameters (αLB = 2 and αEA = 0, 5),
slightly privileging the energy awareness objective over the
load-balancing. Finally, the NeatSPF LB and EA equally
weighted is obtained by assigning the same weights to both
parameters (αLB = 1, αEA = 1), making the two objective
directly comparable, in an effort to achieve a balance
between the network and energy engineering objectives.

In Fig. 2, NeatSPF only Load-balancing (LB) achieves
the lowest blocking probability, by routing the highest
number of connection requests, followed by NeatSPF more
Load-balancing (LB). On the other hand, NeatSPF only
Energy-awareness (EA) rejects the highest number of con-
nections, since it will select longer routes in order to
pass through the least energy-consuming network elements
(nodes, links, optical amplifiers, etc.). A slightly better per-
formance is observed in NeatSPF more Energy-awareness
(EA) which considers some network-related parameter in
its decision process, even if with quite low relative weight.
Finally, the NeatSPF LB and EA equally weighted exhibits
well balanced performance, standing just in the middle
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Fig. 2. The blocking probability (lines) and the load (bars) of the
NeatSPF RWA scheme with different values of the αχ parameters versus
the connection requests.
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Fig. 3. The power consumption of the NeatSPF RWA scheme with
different values of the αχ parameters versus the load (routed connections).

among the previous cases. The power consumption of the
NeatSPF RWA scheme is reported in Fig. 3. As expected,
the lowest energy consumption is achieved by the NeatSPF
only Energy-awareness (EA), where the energy-related pa-
rameter assumes the highest weight and no load-balancing
is pursued, whilst the worst performance in terms of power
consumption is exhibited by NeatSPF only Load-balancing
(LB), which is completely energy-unaware. However, it
is worth to note that the power consumption is easily
decreased by assigning even a small weight to the energy-
related parameter. The NeatSPF more Load-balancing (LB)
sensibly decreases its power consumption with respect to
NeatSPF only Load-balancing (LB), while achieving good
performance in terms of connections blocking. The hybrid
NeatSPF LB and EA equally weighted exhibits a very
low power consumption, in some points even lower than
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Fig. 4. The blocking probability (lines) and the load (bars) of well-known
state-of-the-art RWA schemes compared with the NeatSPF algorithm
versus the connection requests.
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Fig. 5. The power consumption of well-known state-of-the-art RWA
schemes compared with the NeatSPF algorithm versus the load (routed
connections).

NeatSPF only Energy-awareness (EA). This phenomenon
is due to the better load distribution achieved by the
hybrid NeatSPF, which leaves more free resources to be
used by future requests with respect to the pure NeatSPF
only Energy-awareness (EA) algorithm which in turn, by
occupying all the lowest emitting routes at the beginning,
will possibly not have enough resources and will be forced
to select longer routes which will lead to slightly increased
power consumption. In other words, the greedy choice
of NeatSPF only Energy-awareness (EA) made at each
connection request may punctually lead to sub-optimal
routing in the long run (in this case, we can see that “the
perfect is the enemy of the good” as explained numerically
by the Pareto principle in its 80-20 rule); therefore, a
more balanced selection of parameters can lead to better
results. In Fig. 4 and 5, we report the the blocking and

the power consumption of several well-known state-of-the-
art routing algorithms, whose implementation details are
publicly available, compared with NeatSPF. Only some
instances of NeatSPF are reported for comparison, since
the other cases have been already presented. In particular,
we show the performance of MHA (Minimum Hop Algo-
rithm, [30]), SWP (Shortest Widest Path algorithm, [31]),
MIRA (Minimum Interference Routing Algorithm, [32])
and GreenSpark (Green Smart Parametric Adaptive RWA
algoritm based on K-shortest path, [15]). MHA selects
the shortest route (in terms of hop count) among source
and destination; SWP selects, among the shortest routes,
the widest one, i.e., the one with the highest residual
capacity. MIRA selects the route that is foreseen to less
interfere with future connection requests that are likely to
come in the network. GreenSpark is based on a two stage
selection process: in the first step, the k best balanced
paths are selected, according to an exclusively network
engineering objective of optimizing the load balancing
and, thus, minimizing the congestion and the consequent
blocking. In the second step, according to a pure energy-
awareness objective, the lowest energy consuming route
among the k is finally selected to route the connection. In
Fig. 4, we can observe that the lowest blocking is achieved
by NeatSPF only Load-balancing (LB), followed by MHA
which achieves good performance thanks to the limited
number of connections in the network. Similar performance
are obtained by GreenSpark MinPower (k = 3) and
NeatSPF LB and EA equally weighted. MIRA performs
quite well at the beginning, but its performance degrades
as the load increases, since it does not take into account
the current traffic load in routing decisions. In Fig. 5, we
can observe that the lowest power consuming algorithms are
NeatSPF only Energy-awareness (EA) and NeatSPF LB and
EA equally weighted. GreenSpark MinPower is the second
less consuming algorithm, being GreenSpark MinPower
(k = 3) better than GreenSpark MinPower (k = 1)
as expected, since it has a higher degree of choice to
lower the power consumption of connections. Following the
increasing power consuming algorithm, the NeatSPF only
Load-balancing (LB), which performs better that all the
remaining algorithm, which are, in the order, MHA, SWP
and MIRA. MHA, by selecting the shortest paths, achieves
lower power consumption than SWP and MIRA, which in
turn select longest routes in an effort to reduce blocking.
It is worth to note that MHA, SWP and MIRA, are
totally energy-unaware, since they do not consider energy-
related parameters in their routing decision; GreenSpark,
instead, was designed with both load-balancing and energy-
awareness in mind. However, here it suffers for the lack
of the grooming capability, for which it was originally
conceived. Furthermore, being based on the k-shortest
path, the computational complexity of GreenSpark linearly
depends on k, whilst the NeatSPF family has the advantage
of being faster, since its complexity does not depend on
any parameter of the algorithm but just on the size of the
network. Such a consideration leads us the last chart shown
in Fig. 6, in which the running times of the algorithms
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Fig. 6. The running times of well-known state-of-the-art RWA schemes
compared with the NeatSPF algorithm versus the connection requests.

have been plotted during the simulations. NeatSPF exhibits
a very low computational complexity (regardless of the
αχ values), overcome only by a constant factor by MHA,
GreenSpark MinPower (k = 1) and SWP. MHA, which has
an extremely simple shortest-path routing algorithm, has
however well-known drawbacks in terms of blocking and
power consumption too. GreenSpark MinPower (k = 1) is
slightly slower than MHA, due to its more complex load-
balancing edge cost function, followed by SWP which has
to add some calculation before selecting the final route. In
general, all these Dijkstra-based algorithms perform very
well in terms of running times, routing 100 connections in
less than 5 seconds (0,05 seconds per connection). Notably
higher times are shown by GreenSpark MinPower (k = 3),
which shows the effects of the k-shortest path calculation.
Finally, the slowest algorithm is shown to be MIRA, which
suffers for the maximum flow calculation to identify the
“critical” links performed each time a new LSP has to
be established. In conclusion, NeatSPF, thanks to its para-
metric cost function, can be easily tuned to achieve either
the best load-balancing or the lowest power consumption
with respect to the other algorithms with which it has been
compared. It also demonstrated that an optimal trade-off
can be achieved by an appropriate selection of the network
and energy-related parameters according to the objective
of the network operator, while maintaining computational
complexity very low and therefore providing a more than
satisfactory network responsiveness.

VI. CONCLUSIONS

We presented a simple but effective RWA framework,
based on shortest-path routing with an adaptive link weight-
ing function. It is designed to be suitable for real time
network control and management as well as effective in
providing good wavelength utilization together with low
blocking probabilities, leading to efficient usage of the
network’s resources. It also integrates energy awareness

in its decision process, driven by a flexible and config-
urable energy model, in order to support sophisticated
strategies for containing the network’s energy consumption
and reducing the associated costs. Apart from being a
successful wavelength routing scheme, the most significant
added value of the proposal is the inherent flexibility of the
multi-objective optimization model, where multiple tunable
parameters can be used to drive the solution towards several
sections of the Pareto curve. This leads to sub-optimal
solution to the aggregate problem that may privilege some
specific objective (e.g., the containment of energy consump-
tion) over the others, according to the dynamically changing
carriers’ needs, while maintaining an affordable polynomial
time complexity which makes it suitable for online routing
employed by modern control planes. Extensive simulation
experiments, conducted on several real network topologies,
resulted in a good trade-off between the different involved
(and apparently conflicting) users’ and carrier’s optimiza-
tion objectives, demonstrating that the proposed approach
is computationally inexpensive, easy to implement, quite
balanced in its results and, hence, ready for deployment in
real-world optical networks.
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