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Abstract—This letter presents the design of a self-healing
protocol for automatic discovery and maintenance of the network
topology in Software Defined Networks (SDN). The proposed
protocol integrates two enhanced features (i.e. layer 2 topology
discovery and autonomic fault recovery) in a unified mechanism.
This novel approach is validated through simulation experiments
using OMNET++. Obtained results show that our protocol
discovers and recovers the control topology efficiently in terms of
time and message load over a wide range of generated networks.

Index Terms—topology discovery, protocols, software defined
networks, fault tolerance, network management.

I. INTRODUCTION

NETWORK topology discovery represents a description of
the physical infrastructure in a network. This description

contains information about the connectivity, latency and link
capacity between the network devices at the low level (i.e.
Data Link layer). In Software Defined Networks (SDN), the
SDN controller (SDNC) collects the topology information
from the data plane and maintains an abstract view of the
entire network [1]. This topology discovery (TD) service is
crucial for the proper functioning of topology-aware network
applications (i.e. network configuration, traffic engineering,
attack detection, load balancing, etc.) [2]. Although discov-
ering the network topology is an essential service for SDN-
managed networks, there is no official standard that defines a
TD mechanism in SDN [1]. Therefore, most of current SDNCs
(i.e. Beacon, NOX, Ryu, Floodlight, among others) [2] imple-
ment conventional TD mechanisms based on the southbound
protocol OpenFlow [3].

Different mechanisms can be designed to implement the TD
service in SDN. However, OpenFlow-based TD mechanisms
need a preconfigured network identifier (i.e. IP address) on
each forwarding device [3]. Otherwise, SDNCs will not be
able to discover the OpenFlow switches in the network. Addi-
tionally, these mechanisms also require a previous knowledge
of network devices’ characteristics such as number of active
ports and MAC addresses [4]. This information is requested by
SDNCs after the establishment of an initial control connection
with each device. Current SDNCs cannot implement any con-
ventional TD mechanism without this requested information.

After discovering the network topology, the control plane
needs a survivability strategy to guarantee its reliability at all
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times. In that direction, we propose a self-healing technique
to boost the control plane resilience in SDN-managed envi-
ronments without overburdening the SDNC performance.

The widespread adoption of SDN in heterogeneous and
failure-prone deployments (i.e. data centers, clouds, etc.), has
brought a general interest in providing SDN with the self-
healing attribute. Although autonomic management is agreed
as the next generation of management [5], we identify lack of
proposals to integrate autonomic attributes (e.g. self-healing)
into SDN. To the best of our knowledge, our protocol is the
first one in proposing a unified mechanism for discovering the
physical topology and providing native fault recovery in the
control plane without intervention of the SDNC. Therefore,
this letter proposes the design and simulation of a self-healing
topology discovery (SHTD) protocol in order to improve the
current TD service in SDN environments.

The main contributions and novelty of the proposed protocol
are summarized as follows.

1) A prior topology knowledge or specific network configu-
rations are not required to discover the network topology
before the initial control connection.

2) Recovery of the network from node, link or SDNC
failures autonomously and stably, by only taking actions
at the forwarding level.

3) Integration of both features (i.e. topology discovery and
fault recovery) as an enhanced mechanism.

The remainder of this letter is organized as follows: In Sec-
tion II, we describe the proposed protocol in detail. Section III
discusses the performance of the proposed protocol through
simulations. Finally, we make some conclusions in Section IV.

II. SELF-HEALING TOPOLOGY DISCOVERY PROTOCOL

The SHTD protocol discovers and maintains an accurate
network view integrating two modules. These modules are
the following: the layer 2 topology discovery mechanism and
the autonomic fault recovery mechanism. This protocol can
be implemented in a domain with multiple SDNCs through a
software agent running in each network device. The control
plane can be interconnected with a plurality of network devices
through different transmission media. Although in this work
SDNCs use an in-band control scheme, this approach can also
be implemented using out-of-band connections.

The global view of the network is provided by SDNCs,
after running the SHTD protocol. Unlike conventional mech-
anisms [4], [3], the proposed protocol uses layer 2 messages
to create a control tree rooted at SDNCs and it discovers the
network topology before the establishment of the initial control
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connection. Once the control tree is created, each network
device can establish a secure control channel to the SDNCs.
A similar approach has been considered in [6], [7]. However,
these works do not provide any procedure or technique to
recover the control tree after a network failure.

A. Layer 2 Topology Discovery Mechanism

The TD mechanism is initialized by each SDNC sending
a topoRequest message. The propagation of this multicast
message creates a control tree topology rooted at the SD-
NCs for collecting network state data. Moreover, this control
tree distributes the management of the physical infrastructure
among several SDNCs.

Besides the SDNC, nodes have one of the four roles: non-
discovered, leaf, v-leaf or core. A node is non-discovered until
it receives a topoRequest message from another node, leaf
nodes are the external nodes in the network and a node is v-
leaf when all of its downstream ports are connected to leaf or
v-leaf nodes. The remaining nodes are denoted as core nodes.

Additionally, each active port has one of four states related
to the control tree: standby, parent, child or pruned. Each port
has a state machine that tracks and governs its current state
during the control tree creation.
• A standby port is an active port in the node that is not

used in the control tree.
• A parent port is an upstream port in the control tree,

which has first received the topoRequest message. Each
node cannot have more than one parent port.

• A child port is a downstream port which has received an
echoReply message as part of the control tree.

• A pruned port is a child port which has received a
topoReply message indicating that it is connected to a
leaf or v-leaf node.

Initially, each node in the network is in the non-discovered
state, waiting for a topoRequest message from a SDNC or
another node. Algorithm 1 shows the mechanism, for a given
node v, after receiving the topoRequest message. When node v

receives the topoRequest from a node u, it sends a one-hop
echoReply message to node u. This automatic reply enables
the measurement of the Round Trip Time (RTT) in each
network link. Moreover, it contains an association bit which
is used by node v as a join message to announce to its
neighbours whether it has joined one of them in the control
tree. If node v receives the topoRequest by a standby port, it
confirms the association in the echoReply, sets the parent state
to the incoming port p and forwards the topoRequest to all the
ports except the incoming port. By contrast, if the topoRequest
arrives at a non-standby port, node v denies the association in
the echoReply and discards the message. In this way, node v

performs an implicit mechanism to detect and avoid loops.
As the tree is being created, each node periodically sends its

neighbourhood data through the parent port using a topoReply
message. This cyclic process is asynchronously started by the
leaf nodes. Given their topological nature, if the parent ports
of leaf and v-leaf nodes fail, they cannot provide an alternative
control path to the SDNCs. Hence, a one-bit field is used in
the topoReply message in order to prune their neighbouring

Algorithm 1 topoRequest message forwarding
1: Node v receives topoRequest from node u by port p
2: if p.state = Standby then
3: Send echoReply to node u . association bit set
4: STATEMACHINE (p)
5: Send topoRequest for all ports except p
6: else
7: Send echoReply to node u . association bit clear
8: Discard topoRequest
9: end if

port. In this way, unnecessary topoRequest messages are not
forwarded to them in the control tree. This is critical to achieve
minimal communication overhead in the proposed SHTD
protocol. Meanwhile, core nodes aggregate the topology data
from their child ports. Once they have received information
through all their child ports, they send it towards the SDNCs.
As a result, topoReply messages are gathered at the SDNCs,
which receive at most an aggregated message from each of
their active interfaces.

B. Autonomic Fault Recovery Mechanism
By definition, autonomic networks comprise two major enti-

ties: the managed components and the autonomic manager [5].
In this context, both elements are identified as follows:
• Managed Components: Represented by the set of network

devices which supports the SHTD protocol. Each man-
aged component includes sensors to monitor the state of
its neighbouring links.

• Autonomic Manager: Coupled within each SDNC, it
is responsible for monitoring the managed components,
analysing their collected data and optimise the network
performance in order to better accomplish its high-level
objectives (i.e. native control plane robustness).

The proposed autonomic mechanism is implemented by the
network devices through topoUpdate messages in the data
plane. When a network device detects a port failure (i.e. neigh-
bour’s connectivity breaks down), the managed component
executes specific actions depending on the state of disrupted
ports. Failures on standby, pruned or child ports are automat-
ically informed to SDNCs with no changes in the upstream
control tree. Please note that each child port is connected to
a parent port of downstream nodes. On the other hand, if a
parent port fails, the node have to autonomously recover its
control connectivity by taking actions at the forwarding level
only (i.e. with no SDNC interventions).

Fig. 1 shows an example of the SHTD protocol basic
operation. For this sample topology, we consider two SDNCs
connected to 8 switches through links that have the same
unitary delay. This multi-SDNC platform can be deployed
in the cloud using a secure and resilient architecture. After
both SDNCs run the protocol, the control tree topology and
its distribution of switches among SDNCs is depicted through
colours and shapes in Fig. 1(a). For instance, if N2 fails as it
is shown in Fig. 1(b), N6 and N7 have to send a topoUpdate
message for all active ports, except the pruned ports, in order
to find new control paths towards the SDNCs.
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Fig. 1. Example of SHTD protocol operation.

To avoid propagation loops, each topoUpdate contains an ID
field with the disrupted port ID, which can be generated from
the MAC address of this port, as proposed in [3]. Thus, each
port is uniquely identified in the network. When a topoUpdate
is received, stored ID values are compared to the one received
in the message. If a match exists, then the topoUpdate is
discarded. Otherwise, this message is forwarded for all ports
except incoming or pruned ports, in order to avoid forwarding
unnecessary topoUpdate messages to nodes that cannot be
used to recover the control tree topology.

To clearly illustrate what happens, Fig. 2 shows the message
sequence for the proposed fault recovery mechanism when N6
detects its parent port down. As explained above, N6 sends
one topoUpdate message to N5 and N7, simultaneously. This
message is also forwarded from N7 to N3. Nodes that have its
parent port active (i.e. N5 and N3), instead of forwarding the
topoUpdate, send a replyUpdate message. This replyUpdate is
sent one-hop back through the path followed by the received
topoUpdate message, creating a new way for N6 to reach
SDNCs. Upon receiving the first replyUpdate -sent by N5-,
N6 sets parent state to the incoming port and it automatically
sends a modified topoReply message to N5. Afterwards,
following replyUpdate messages will be discarded (e.g. the
one from N7). The modified topoReply message contains the
association bit set, which is used by N6 to announce to N5 that
they are already joined in the recovered control tree topology.
Hence, N5 should update its port status as well as informs its
SDNC (i.e. C1) with the updated topology data.

Once the connectivity is recovered in the forwarding plane,
the recovered control topology can be optimized by the
SDNCs. To achieve this, the autonomic managers, aware of
the network knowledge contained in several control modules
(such as network topology and statistics, routing policies, etc.),
can better diagnose the problem [8]. As a result, each SDNC
may change the overlay control topology in order to ensure
the requirements of the supported network applications (e.g.
load balancing, traffic engineering, monitoring, etc.).

C. Benefits of SHTD Protocol

The benefits of adopting the SHTD protocol are many-
fold. First, the mechanism uses the least possible amount of
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Fig. 2. Message flows for the autonomic fault recovery mechanism in N6.

messages (i.e. minimal communication overhead) and each
message has a small size. Therefore, it is easy to implement
and yet efficient. Second, echoReply messages enable accurate
latency measurements within the network abstract view at
SDNCs. Third, the proposed fault recovery scheme enables
network devices to stably recover the network from ”broken”
states with very low recovery times, few packet loss and
reduced memory requirements at network devices. Finally, the
proposed SHTD protocol enables a survivability strategy to
ensure the control plane reliability, as long as one SDNC is
still reachable in the network.

III. SIMULATION AND RESULTS

We have implemented the SHTD protocol from scratch
in OMNET++ network simulator, by its suitability to study
realistic large-scale scenarios. To evaluate the performance of
our solution across varying connectivity degree, we generated
three sets of networks. Each network family was generated
using an underlying topology from SNDlib [9]. Specifically,
we select three network graphs representative of different
scales, namely DfnBwin (10 nodes, 45 links, i.e., full mesh),
NobelGermany (17 nodes, 26 links) and Zib (54 nodes,
80 links). Topologies that belong to NobelGermany and Zib
based sets have been constructed as scale-free networks using
a power-law node degree distribution with the same degree
exponent as of the original network (NobelGermany: 3.06
and Zib: 3). This was a result of using the static Barabási-
Albert model (i.e. keeping the original number of nodes and
links). On the other hand, all networks based on DfnBwin
have a full mesh topology. Different link latencies for each
network family were randomly generated considering the mean
and standard deviation values of the original topology used
as master. For SDNC placements, we use the most central
nodes in each topology based on the closeness centrality. All
simulation results include their respective 95 % confidence
intervals (CI) in the plots, based on Student-t distribution.

Fig. 3 shows the performance evaluation of the SHTD
protocol for different key metrics. Each family size was
determined after restricting the margin of error of the indicated
average values to less than 3 % on each simulation instance.
Specifically, DfnBwin, NobelGermany and Zib based sets are
composed of 500 generated networks. For the computation
of the presented time values, we consider the propagation
latencies and the switch processing delays, as given in [10]
for NetFPGA implementations. Furthermore, we use a Bidi-
rectional Forwarding Detection (BFD) scheme to detect link
losses instead of path failures, as proposed in [11].

In Fig. 3(a), we measure the average discovery time required
by a number of SDNCs to discover the overall network
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Fig. 3. Performance evaluation of SHTD protocol.

topology. The proposed discovery mechanism do not reveal
a significant reduction of the average discovery time as the
number of SDNCs increases from 1 to 5. This result is
expected since generated topologies have a small network
diameter, in terms of delay. Moreover, this behaviour remains
similar across topologies with different connectivity degrees.
Consequently, the proposed discovery mechanism can be con-
sidered irrespective of the network topology.

The average number of packets handled per switch required
to discover the abstract network view is shown in Fig. 3(b).
As expected, this metric is related with the average network
degree. Moreover, in these topologies the required number of
packets increases along with the number of SDNCs until lev-
elling off at around 3-4 SDNCs. Thus, it may be inferred that
the SHTD protocol is scalable with respect to the number of
SDNCs, a characteristic that is crucial in practical applications.

Additionally, we show in Fig. 3(c) the reduction in the
average number of packets managed by SDNCs considering
two existing approaches as baseline, namely OpenFlow Dis-
covery Protocol (OFDP) [3] and OFDPv2 [4], derived from
equation (NumPktbaseline −NumPktSHTD)/NumPktbaseline.
As no study shows the OFDP operation for several SDNCs, we
assume the switch distribution among SDNCs obtained from
SHTD protocol. In contrast with [3], [4], in SHTD protocol
each SDNC has to send and receive only one packet from each
of its active interfaces which decrease the burden on SDNCs.

To assess the performance of the proposed recovery mech-
anism, in Fig. 3(d) we consider multi-links failure assump-
tion for each pair of network links in NobelGermany-like
topologies. To get a sense of the recovery times achieved,
we also include in this analysis a Rerun approach. This
approach denotes the discovery mechanism once the switches
spontaneously notified the failure to SDNCs. As expected,
in all cases the recovery mechanism outperforms the Rerun
approach in terms of required time to update the global
network view at SDNCs. Furthermore, it is confirmed that
for all generated topologies, the recovery mechanism needs
less than 50 ms, exhibiting the compliance with carried-
grade networks requirement. In addition, this behaviour is
not influenced by the increase of SDNCs, showing the good
scalability of this proposal. It is worth to highlight that, similar
results have been obtained for the other two sets of topologies,
but due to space limitation we decide to show the behaviour
on NobelGermany-like topologies, as they present the higher
network delay diameter.

How much control intelligence should remain in SDN
switches is still an issue of ongoing debate [4]. Although
our solution embraces the network control decoupling from
forwarding devices, we envisage an autonomic SDN environ-
ment where services like TD and fault recovery are mainly
supported by the data plane.

IV. CONCLUSION

In this letter, we have proposed a novel SHTD protocol
for SDN-managed networks. It is designed to optimize the
current TD service and its reliability in the face of network
failures. To achieve this, it combines a layer 2 topology
discovery mechanism with the self-healing attribute to en-
hance the control plane robustness. Simulation results show
the time-efficiency and scalability of the proposed solution
on key network metrics. Moreover, the recovery of control
connectivity is assured within the 50 ms required for carrier-
grade networks. As future work, we will extend this protocol
considering current network state data in order to optimize
recovered control trees.
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